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Abstract: The development of effective disease-modifying therapies to halt Parkinson’s disease (PD)
progression is required. In a subtype of PD patients, alpha-synuclein pathology may start in the
enteric nervous system (ENS) or autonomic peripheral nervous system. Consequently, strategies to
decrease the expression of alpha-synuclein in the ENS will be an approach to prevent PD progression
at pre-clinical stages in these patients. In the present study, we aimed to assess if anti-alpha-synuclein
shRNA-minicircles (MC) delivered by RVG-extracellular vesicles (RVG-EV) could downregulate
alpha-synuclein expression in the intestine and spinal cord. RVG-EV containing shRNA-MC were
injected intravenously in a PD mouse model, and alpha-synuclein downregulation was evaluated by
qPCR and Western blot in the cord and distal intestine. Our results confirmed the downregulation of
alpha-synuclein in the intestine and spinal cord of mice treated with the therapy. We demonstrated
that the treatment with anti-alpha-synuclein shRNA-MC RVG-EV after the development of pathology
is effective to downregulate alpha-synuclein expression in the brain as well as in the intestine
and spinal cord. Moreover, we confirmed that a multidose treatment is necessary to maintain
downregulation for long-term treatments. Our results support the potential use of anti-alpha-
synuclein shRNA-MC RVG-EV as a therapy to delay or halt PD pathology progression.
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1. Introduction

Although Parkinson’s disease affects 2–3 % of the population over 65 years of age [1]
and its prevalence has been estimated to double over the next 30 years [2], current treatment
options comprise dopamine-restoring, symptomatic therapies focused on alleviating and
controlling disease motor and non-motor symptoms [3]. Even with the best medical care,
this increasingly prevalent disease is devastating for the patients and has serious adverse
social and economic consequences. Despite scientific advances in Parkinson’s disease
research, effective treatments to alter the underlying neurodegenerative process or halt
disease progression are still lacking. In the prodromal stage, most Parkinson’s disease
patients developed non-motor symptoms, with the most frequent symptoms being the
impairment in olfaction and the gastrointestinal dysfunction, in particular constipation [4].

The possibility of stopping Parkinson’s disease progression at early clinical or pre-
clinical stages could represent a breakthrough in the treatment, as patients may not even
develop motor symptoms. Unless the primary cause of Parkinson’s disease in the majority
of patients is not known, current data point to a central role of alpha-synuclein in Parkin-
son’s disease pathology. A key pathological feature of Parkinson’s disease is the presence
of alpha-synuclein aggregates, and there is increasing evidence that the transmission of
pathological alpha-synuclein between neurons plays a central role in the progression and
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pathogenesis of Parkinson’s disease [5,6]. A recent hypothesis suggests that Parkinson’s
disease subtypes are determined by the location of the initial alpha-synuclein pathology;
in the brain-first subtype, the pathology may originate in the brainstem or limbic system,
and in the body-first subtype the pathology may start in the enteric nervous system or
autonomic peripheral nervous system [7]. The hypothesis in the body-first cases suggests
that alpha-synuclein aggregates originate in the enteric nervous system and spread via the
vagus nerve to the lower brainstem [8,9]. In accordance with this, alpha-synuclein pathol-
ogy can be found in the large intestine of Parkinson’s disease patients up to 20 years before
the diagnosis [10], and a recent study demonstrated a decreased risk of Parkinson’s disease
in patients who went under truncal vagotomy [11]. Consequently, strategies to decrease the
expression of alpha-synuclein in the enteric nervous system will be an attractive approach
to prevent Parkinson’s disease progression at pre-clinical stages, before pathology can affect
the brain and before clinical debut, in a subtype of Parkinson’s disease patients.

Gene therapy is a powerful tool to downregulate the expression of alpha-synuclein
and a promising approach for the treatment of Parkinson’s disease. A major challenge
for clinical applications is the development of vehicles for delivery to the central nervous
system that cross the blood-brain barrier and deliver the molecules specifically into the
central nervous system following peripheral administration, avoiding the activation of the
immune response and allowing repeat administration.

We have designed and generated a new delivery approach using modified extracellu-
lar vesicles (EV), which specifically target the central nervous system, by placing the rabies
virus glycoprotein peptide (RVG peptide) in the external surface of the EV [12]. In a recent
study, we demonstrated the potential of intravenous administration of RVG-targeted EV
(RVG-EV) to deliver shRNA minicircles (shRNA-MC) to the brain. The treatment induces
long-term alpha-synuclein downregulation in the brain and prevents dopaminergic cell
death and motor abnormalities in a Parkinson’s disease mouse model [13]. These results
confirmed the potential of shRNA-MC delivered by RVG-EV to induce long-term downreg-
ulation of protein expression in the brain after systemic injection and halt the pathological
progression. Our approach has the advantage that it is minimally invasive and reduces the
protein synthesis or post-translational modification preventing its aggregation [12]. How-
ever, this new therapeutic approach for long-term Parkinson’s disease treatment requires
further characterization.

In the present study, we aimed to assess if anti-alpha-synuclein shRNA-MC RVG-EV
could downregulate alpha-synuclein expression in organs affected in pre-clinical stages of
Parkinson’s disease, as intestine and spinal cord. Moreover, we investigated if our therapy
could halt the disease progression after the development of alpha-synuclein pathology, and
we evaluated the duration of the therapeutic effect. Our results confirmed the downregula-
tion of alpha-synuclein mRNA and protein levels in the intestine and spinal cord of mice
treated with anti-alpha-synuclein shRNA-MC RVG-EV. The treatment with RVG-EV loaded
with anti-alpha-synuclein shRNA-MC after the appearance of pathology was effective to
downregulate alpha-synuclein expression not only in the brain, but also in the intestine and
spinal cord. Finally, we demonstrated that a multidose treatment is necessary to maintain
the alpha-synuclein downregulation for long-term treatments.

2. Materials and Methods
2.1. Animals

Normal male C57BL6/C3H F1 mice (8 to 9 weeks old) were purchased from Charles
River Laboratories. Animals were housed under environmentally controlled standard
conditions with a 12-h light/dark cycle and provided with food and water ad libitum. All
procedures involving animals were carried out in accordance with the European Com-
munities Council Directive (2010/63/UE) and Spanish legislation (RD53/2013) on animal
experiments and with approval from the ethical committee on animal welfare for our
institution (Órgano Encargado del Bienestar Animal del Centro de Investigación Biomédica
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de La Rioja, OEBA-CIBIR). All efforts were made to minimize suffering and pain of the
animals.

2.2. Study Design

Mice received an injection of sonicated murine alpha-synuclein pre-formed fibrils
(PFFs) into the dorsal striatum as described below. In one study, mice received two intra-
venous injections of RVG-EV containing alpha-synuclein shRNA-MC or vehicle (glucose
5%) 2 and 45 days after alpha-synuclein PFF intrastriatal injection and were sacrificed
90 days post injection (dpi). In compliance with the 3Rs for refining, reducing, and replac-
ing animals for research purposes, we obtained the spinal cord and intestine samples of the
present study from a previous published study [13]. In another study, mice received two
doses of alpha-synuclein shRNA-MC loaded into RVG-EV or vehicle (glucose 5%) 35 and
80 days after alpha-synuclein PFF injection, while another group received only one dose of
alpha-synuclein shRNA-MC RVG-EV 35 days after PFF injection, and mice were sacrificed
140 dpi. Control animals in both studies were injected into the striatum with an equal
volume of sterile PBS. Brains, spinal cords, and intestines were removed and immediately
frozen and stored at −80 ◦C until used for biochemical analysis. For histological studies,
spinal cords and intestines were removed after transcardial perfusion.

2.3. Preparation of Mouse Wild-Type Alpha-Synuclein Preformed Fibrils

Mouse wild-type alpha-synuclein PFFs were prepared in sterile PBS (pH 7.4) from
alpha-synuclein monomer 5 mg/mL by agitation (250 rpm at 37 ◦C) for one week. Fibrils
were isolated by centrifugation at 10.600× g for 15 min. The total amount of fibrils formed
was determined using a Jasco V-650 spectrophotometer by the difference between the total
amount of protein in solution before incubation and the total amount of protein left in
the solution in the supernatant at the end of the incubation period. The pellet was then
suspended at a concentration of 1 mg/mL in sterile PBS. Fibril formation was confirmed by
Congo red staining. On the day of the surgery, alpha-synuclein PFFs were sonicated for
two cycles of 6 s 50 % power (10 microns amplitude) using a probe sonicator (Soniprep 150,
MSE) to generate the alpha-synuclein seeds. A new aliquot of sonicated alpha-synuclein
PFF was prepared every day of surgery.

2.4. Stereotaxic Surgery

C57BL6/C3H F1 mice were anesthetized with isoflurane and placed in a stereotaxic
frame with ear bars. Mice received two unilateral 2.5 µL injections of sonicated murine
alpha-synuclein PFF (5 µg in 5 µL total) into the right striatum (coordinates: AP, +0.2 mm
relative to the bregma, ML, −2.0 mm relative to bregma, DV, −3.4 mm and −2.6 mm below
the skull) at the rate of 0.25 µL/min as previously described [13]. Control animals were
injected with an equal volume of sterile PBS.

2.5. shRNA-Minicircle Generation

The production of shRNA-MC is carried out in 2 major steps: the cultivation in a
bioreactor and the purification by specific chromatographic steps. The cultivations were
carried out at 37 ◦C in a MBR bioreactor (MBR BIO REACTOR, Recherswil, Switzerland)
with 5 L, pH adjusted to 7.0 with 2 M sodium hydroxide solution and 2 M phosphoric acid.
The oxygen concentration of 60% was controlled by varying the stirrer speed. LB-medium
was used without addition of antibiotics. The bioreactor was inoculated with 50 mL of an E.
coli K12 culture transformed with the parental plasmid (PP) and grown in LB-medium for
approximately 15 h. The recombinase expression was induced at an OD600 » 4 by adding
L-arabinose. After 1 h of further growth, cells were harvested by centrifugation, frozen,
and purified by the PlasmidFactory contract manufacturing service (Bielefeld, Germany).

After successful recombination, the shRNA-MC was separated from the miniplasmid
(MP). This was done by a series of chromatography steps, including an affinity chromatog-
raphy step separating MP and shRNA-MC. The recombination product (shRNA-MC and
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MP) was further purified by affinity chromatography as previously described [14]. The
sequence specific DNA binding was optimized with different ionic strength and pH values
and resulted in a highly purified supercoiled monomeric shRNA-MC product.

2.6. Dendritic Cell Culture and RVG-EV Isolation

Primary mouse dendritic cells were harvested from murine bone marrow and cultured
in complete DMEM medium supplemented with 10 ng/mL murine GM-CSF (Peprotech EC
Ltd., London, UK). Following transfection of the dendritic cells with mouse RVG-Lamp2b
plasmid, the cell culture medium was changed on Day 7. EV were isolated from cell culture
supernatant harvested 24 h after, by serial centrifugation at 12,000× g for 30 min, and at
120,000× g for 1 h to pellet EV. EV were resuspended in 0.1 M ammonium acetate with a
27G syringe.

2.7. RVG-EV Treatment of Mice

A total of 150 µg of shRNA-MCs and 150 µg of RVG-EV were electroporated (450 V,
100 mA) in 5 mL electroporation buffer (1.15 mM potassium phosphate pH 7.2, 25 mM
potassium chloride, 21% OptiPrep) and treated with 100 U DNase (Promega, Madison, WI,
USA) at 37 ◦C for 30 min. After ultracentrifugation at 120,000× g for 1 h, RVG-EV (150 µg)
were resuspended in 100 µL 5% glucose immediately before tail vein injection.

2.8. Western Blot Analysis

Brain and spinal cord samples were homogenized in buffer containing 10 mM Tris/HCl
(pH 7.4), 0.1% SDS, protease inhibitor mixture (Thermo Scientific, Walthman, MA, USA),
and Dnase (Promega). Distal intestine samples were homogenized in the same buffer
containing 8 M urea. Proteins levels were determined by the Pierce BCA protein assay
(Pierce BCA protein assay kit, Thermo Scientific) using bovine serum albumin as the
standard. Samples (20 µg of protein) were solubilized in LDS buffer and reducing agent,
separated on NuPAGE Novex 4–12% Bis-Tris Gels (Invitrogen, Walthman, MA, USA),
transferred to PVDF membrane, and analyzed by western blot as previously described [13]
using anti-alpha-synuclein (Abcam, Cambridge, UK, ref# ab1903, dilution 1:2000) and
anti-beta-actin (Abcam, ref# ab6276, dilution 1:30,000) antibodies. Horseradish-peroxidase-
conjugated anti-mouse immunoglobulin G (IgG) secondary antibody (Agilent Dako, Santa
Clara, CA, USA) was detected using ECL Western Blot Substrate (Pierce, Walthman, MA,
USA) and ChemiDoc MP Imaging System (Bio-Rad, Hercules, CA, USA). Signals in the
linear range were quantified using ImageJ and normalized to beta-actin levels.

2.9. Quantitative PCR

Total RNA was isolated from frozen brain, spinal cord, and distal intestine samples
using the RNeasy kit (Qiagen, Gilden, Germany) according to the manufacturer’s pro-
tocol. Subsequently, reverse transcription was performed with High -Capacity cDNA
Reverse Transcription kit (Applied Biosystems, Walthman, MA, USA) as per manufac-
turer’s instruction. qPCR experiments were performed on a QuantStudio 5 Real-Time
PCR system (Applied Biosystems) using NZY Supreme qPCR Green Mastermix (Nzytech,
Lisbon, Portugal). Values were calculated using the standard ∆∆Ct method. The primer se-
quences for alpha-synuclein (forward: 5′-GCCAAGGAGGGAGTTGTGGCTGC-3′; reverse:
5′-CTGTTGCCACACCATGCACCACTCC-3′) were synthesized by Sigma (San Luis, CA,
USA) and the sequence for mouse actin (forward: 5′-TCTACAATGAGCTGCGTGTG-3′;
reverse: 5′-GGTGAGGATCTTCATGAGGT-3′) was synthesized by Primer Design (Chan-
dler’s Ford, UK).

2.10. Immunohistochemistry and Immunofluorescence

Mice were transcardially perfused with PBS followed by 4% paraformaldehyde (PFA)
in PBS; the cords and intestines were post-fixed in 4% PFA, cryoprotected in 30% sucrose,
rapidly frozen, and stored at −80 ◦C until use. Then, 30 µm thick coronal sections were
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prepared using a freezing microtome. Cord and intestine sections were washed with TBS
and incubated with 3% hydrogen peroxidase to inactivate the endogenous peroxidase. After
wash steps, sections were incubated with a blocking solution containing 5% normal goat
serum followed by incubation overnight at 4 ◦C with the primary antibodies: anti-alpha-
synuclein (Abcam, ref# ab1903, dilution 1:5000) and anti-phospho S129-alpha-synuclein
(Abcam, ref# ab51253, dilution 1:2000). Sections were rinsed and then incubated with
fluorescent or biotinylated secondary antibody of the appropriate species. All the samples
were processed simultaneously to allow comparison.

2.11. Statistical Analysis

All data are presented as mean values ± the standard error of the mean (SEM). Statis-
tical analyses of the data were carried out using SPSS program (version 25.0). Statistical
comparisons between experimental groups were performed with the parametric one-way
ANOVA followed by the Tukey HSD as indicated. When variables were non-normally dis-
tributed, statistical differences were analyzed by non-parametric Kruskal–Wallis followed
by the Mann–Whitney U-test. A probability level ≥ 0.05 was considered to be statistically
significant.

3. Results
3.1. Alpha-Synuclein shRNA-MC RVG-EV Therapy Downregulate Alpha-Synuclein in Spinal
Cord and Intestine of Alpha-Synuclein PFF Mouse Model of Parkisnon’s Disease

The efficacy of anti-alpha-synuclein shRNA-MC delivered by RVG-EV to downreg-
ulate alpha-synuclein in spinal cord and intestine was evaluated using a progressive
alpha-synucleinopathy mouse model based on the injection of alpha-synuclein PFFs into
the striatum of normal mice. Mice received IV injections of 150 µg RVG-EV loaded with
150 µg anti alpha-synuclein shRNA-MC (n = 18) or IV injections of vehicle (glucose 5%;
n = 18) 2 and 45 days after alpha-synuclein PFF or PBS (control group) injection and were
sacrificed 90 dpi (Figure 1).
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RVG-EV therapy administrated intravenously.

After 90 days, there was a significant decrease in the mRNA levels of alpha-synuclein
in the spinal cord of mice treated with anti-alpha-synuclein shRNA-MC RVG-EV (decreased
83% compared to controls) (Figure 2a). The mRNA decrease was associated with lower
levels of alpha-synuclein protein (decreased 41% compared to controls) (Figure 2b). The IV
injection of anti-alpha-synuclein shRNA-MC RVG-EV also decreased mRNA levels of alpha-
synuclein in the intestine of mice treated with the therapy (decreased 40% compared to
controls) (Figure 3a). A concomitant decrease of alpha-synuclein protein was demonstrated
in intestinal samples (decreased 37% compared to controls) (Figure 3b). The injection of
alpha-synuclein PFFs into the striatum was associated with S129 phospho-alpha-synuclein-
positive inclusions in the cord and intestine, the treatment with anti-alpha-synuclein
shRNA-MC RVG-EV prevented the S129 phospho-alpha-synuclein aggregate formation in
those tissues (Figures 2c and 3c).
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3.2. Evaluation of Alpha-Synuclein Downregulation by shRNA-MC RVG-EV Administrated after
the Development of Alpha-Synuclein Pathology

By the time of the diagnosis, Parkinson’s disease patients already present massive
dopaminergic neuronal loss and alpha-synuclein pathology. In order to evaluate if the
anti-alpha-synuclein shRNA-MC RVG-EV therapy could be able to downregulate alpha-
synuclein expression after the development of alpha-synuclein pathology, mice were treated
IV with RVG-EV loaded with anti-alpha-synuclein shRNA-MC 35 and 80 days after alpha-
synuclein PFF injection and were sacrificed 140 dpi. Moreover, one group of animals
received only one dose of alpha-synuclein shRNA-MC RVG-EV 35 days after PFF injection
in order to evaluate the duration of the therapy effect (Figure 4a).
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Figure 4. Effect of anti-alpha-synuclein shRNA-MC RVG-EV therapy administrated after the develop-
ment of alpha-synuclein pathology. (a) Experimental design of the study is shown (b) Alpha-synuclein
mRNA expression levels in the midbrain, striatum, and cortex of mice treated with the therapy after
the development of pathology. Values are expressed as mean ± SEM (n = 8). ** p < 0.01; *** p < 0.001,
parametric one-way ANOVA test.

In brain samples, we confirmed a decrease in the mRNA levels of alpha-synuclein in
the midbrain (decreased 38% compared to controls), striatum (decreased 22% compared to
controls, non-significant), and cortex (decreased 50% compared to controls) of mice treated
with anti-alpha-synuclein shRNA-MC RVG-EV (Figure 4b). However, these levels were
unaltered 105 days after the single administration of the therapy in the same brain regions
(Figure 4b).

The treatment with anti-alpha-synuclein shRNA-MC RVG-EV after the development of
alpha-synuclein pathology significantly reduced the mRNA levels of alpha-synuclein in the
spinal cord (decreased 50% compared to controls) (Figure 5a). The mRNA downregulation
was associated with decreased levels of alpha-synuclein protein (decreased 43% compared
to controls) (Figure 5b,c). The treatment with only one dose of the therapy was not sufficient
to reduce mRNA or protein levels of alpha-synuclein 105 days after therapy administration
(Figure 5a–c). Similar results were observed in intestinal samples, with an mRNA decrease
of 32% compared to controls (Figure 6a). There was a concomitant reduction of alpha-
synuclein protein levels (decreased 55% compared to controls) (Figure 6b,c) in mice treated
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with both doses of anti-alpha-synuclein shRNA-MC RVG-EV therapy. The mRNA levels
and alpha-synuclein protein levels were unaffected in mice treated with only one dose of
anti-alpha-synuclein shRNA-MC RVG-EV (Figure 6a–c).
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4. Discussion

Although current Parkinson’s disease treatments can improve clinical symptoms, there
is no effective treatment options capable to alter or halt the progression of Parkinson’s disease
pathology. Given the increasing evidence that the transmission of pathological alpha-synuclein
between neurons plays a central role in Parkinson’s disease progression [5,6] and that pathology
may start in the ENS and spreads to the brain via the vagus nerve [8,9], strategies targeting
these organs could be a potential therapeutic approach to prevent progression at the
prodromal stage in body-first Parkinson’s disease patients. This is the first study targeting
alpha-synuclein in the intestine and spinal cord (central nervous system), supporting
the potential use of anti-alpha-synuclein shRNA-MC RVG-EV as a therapy to delay or
halt Parkinson’s disease pathology progression. To date, all the studies were focused in
interfere with pathological alpha-synuclein dissemination by immunization or decrease
alpha-synuclein level in brain and thereby halt the spread in the brain.

In a previous study, we developed and validated a new therapy using shRNA-MC
delivered by RVG-EV [13]. However, the development of this new technology for long-term
targeted gene downregulation in Parkinson’s disease required a detailed characterization
including other organs targeted and the duration of the effect. Our study confirmed that anti
alpha-synuclein shRNA-MC RVG-EV therapy decreases the total levels of alpha-synuclein
protein in intestine and spinal cord in a similar range of effect previously described in
different brain areas [13].

Several studies of EV biodistribution reported the presence of untargeted EV isolated
from different cell types in the gastrointestinal system after iv injection [15,16]. However,
the potential of untargeted or targeted EV to deliver siRNAs or shRNA into the intestine
and spinal cord, and downregulate protein expression was not previously assessed. Our
study demonstrated for first time that RVG-EV could efficiently deliver shRNA-MC in both
tissues modulating the levels of the targeted protein.

Previous studies have highlighted the use of gene therapy for spinal cord repair and
demonstrated the therapeutic potential in vivo for the treatment of spinal cord injury [17].
All these studies used viral vectors except for one that used liposomes [18], and adminis-
trated gene therapy molecules locally by intralesional, intraspinal, or intrathecal injections.
There are also numerous studies that have demonstrated local gene expression of therapeu-
tic molecules in the intestine for the treatment of inflammatory bowel diseases [19]. The
majority of the studies used viral vectors, although other non-viral vectors, as nanoparti-
cles [20,21] or liposomes [22], were also assessed successfully. The genetic material was
administrated by different routes including intraperitoneal [23,24], intravenous [25,26],
oral [27,28], or local [29–31] administration. Compared with those approaches, our therapy
has the advantage that it not only targets the intestine, but also targets the spinal cord and
brain, important organs affected by the alpha-synuclein pathology in Parkinson’s disease.
The delivery to the enteric nervous system and central nervous system at the same time is
a clear advantage and simplifies the Parkinson’s disease treatment.

Moreover, it has been demonstrated that RVG-EV intravenously injected avoids the
delivery of the genetic cargo into other organs including the liver, heart, muscle, and
spleen [12]. Another major challenge for clinical applications is the development of vehicles
that avoid activation of the immune response, which could both preclude repeat dosing
and also exacerbate the inflammation, which is an important aspect of neurodegenerative
diseases. None of the current approaches, including viral vectors, in vivo transfection
reagents, or liposomes, comply with the requirements. However, we have demonstrated in
previous studies that the RVG-EV delivery system allows repeated diffuse delivery into the
brain [12,13] without immune activation, a clear advantage for long term treatment.

shRNA-MC allows sustained episomal transgene expression for several weeks; how-
ever, as a chronic disease, the treatment for Parkinson’s disease must be effective in the
long term. The chronic gene downregulation in the brain and enteric nervous system using
a shRNA-MC requires repeated doses; however, previously the duration of the effect was
only evaluated up to 8 weeks [13,32]. In this study, we assessed the alpha-synuclein mRNA
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expression 60 days and 105 days after the last shRNA-MC RVG-EV injection. The results
demonstrated that 60 days after injection the mRNA level is downregulated, however,
105 days after injection the mRNA level was normal. Our results demonstrated that a mul-
tidose treatment every 2 months is necessary to maintain alpha-synuclein downregulation
for long term treatments.

A limitation of the initial study was that mice were treated with the shRNA-MC
RVG-exosomes therapy before the development of alpha-synuclein pathology; however,
Parkinson’s disease diagnosis is based on the presence of classical motor symptoms, and
at this point significant disease pathology and Parkinson’s disease progression already
exist [33]. Our results confirmed that the treatment with anti-alpha-synuclein shRNA-MC
RVG-EV after the development of pathology is effective to downregulate alpha-synuclein
expression in the brain as well as in the intestine and spinal cord.

The results of the study suggested that shRNA-MC RVG-EV therapy could not only
decrease alpha-synuclein aggregation in brain but also could reduce the formation of alpha-
synuclein fibrils/aggregates in organs affected in pre-clinical stages of Parkinson’s disease.
These data should be confirmed using a progressive model recently developed based in the
injection of mouse alpha-synuclein PFF into the intestine of normal C57BL/6J mice [9]. The
prevention of alpha-synuclein aggregation in brain and the dopaminergic degeneration
in this model may suggest that this therapy could alter the course of Parkinson’s disease
progression in a subset of patients.

5. Conclusions

Our results confirmed that shRNA-MC RVG-EV therapy reduce alpha-synuclein
expression and protein levels in the spinal cord and intestine. Moreover, the treatment
with RVG-EV loaded with alpha-synuclein shRNA-MC after the appearance of pathology
is also effective to downregulate alpha-synuclein expression in the brain as well as in
the spinal cord and intestine. Finally, a multidose treatment is necessary to maintain the
alpha-synuclein downregulation for long-term treatments.

The results of this study highlight the therapeutic potential of anti-alpha-synuclein
shRNA-MC RVG-EV as a therapy to delay or halt Parkinson’s disease pathology progres-
sion at pre-clinical stages.
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