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Abstract

We present GLASS, the Generator for Large Scale Structure, a new code for the simulation of galaxy
surveys for cosmology, which iteratively builds a light cone with matter, galaxies, and weak grav-
itational lensing signals as a sequence of nested shells. This allows us to create deep and realistic
simulations of galaxy surveys at high angular resolution on standard computer hardware and with
low resource consumption. GLASS also introduces a new technique to generate transformations of
Gaussian random fields (including lognormal) to essentially arbitrary precision, an iterative line-of-
sight integration over matter shells to obtain weak lensing fields, and flexible modelling of the galaxies
sector. We demonstrate that GLASS readily produces simulated data sets with per cent-level accurate
two-point statistics of galaxy clustering and weak lensing, thus enabling simulation-based validation
and inference that is limited only by our current knowledge of the input matter and galaxy properties.
Keywords: Cosmology: large-scale structure – Gravitational lensing: weak – Methods: simulations

1. INTRODUCTION

Simulations are an important scientific tool for cur-
rent galaxy surveys. With increased computational and
algorithmic capabilities, past and current galaxy sur-
veys have used simulations for complementary purposes:
modelling complex astrophysical properties (Springel
et al. 2005; Tassev et al. 2013; Fosalba et al. 2015;
Howlett et al. 2015; Pillepich et al. 2018; Davé et al.
2019; Hopkins et al. 2018, 2023), validating implementa-
tions of measurement techniques and covariance matrices
(Kitaura et al. 2016; Xavier et al. 2016; Takahashi et al.
2017; Harnois-Déraps et al. 2018; Villaescusa-Navarro
et al. 2020; Ramı́rez-Pérez et al. 2022; Jung et al. 2022)
and even performing inference from comparisons of data
to realistic simulation (Leclercq 2018; Taylor et al. 2019;
Alsing et al. 2019; Kodi Ramanah et al. 2021; Lemos
et al. 2023; Kacprzak et al. 2023). Thus, the ability to
simulate galaxy surveys is at the core of achieving the
necessary accuracy and precision to tackle our current
challenges in contemporary cosmology.

The fundamental reason for the use of simulations in all
of the above is that it is often significantly easier to simu-
late a complicated model, sometimes called forward mod-
elling, than it is to compute its effects analytically. For
the upcoming generation of galaxy surveys, carried out
e.g. by Euclid (Laureijs et al. 2011), Rubin (LSST Sci-
ence Collaboration et al. 2009), DESI (Levi et al. 2019),
J-PAS (Benitez et al. 2014), SphereX (Doré et al. 2014),
Roman (Spergel et al. 2015), and SKA (Square Kilometre
Array Cosmology Science Working Group et al. 2020),
collectively called Stage 4 surveys, the increase in data
volume, complexity, and survey systematics will elevate
the status of simulations from important to essential.

For galaxy surveys, simulations can be broadly split
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into two kinds: on the one hand, there are very large
N -body or hydrodynamical simulations, which compute
astrophysical processes in great detail. These simula-
tions can, at least in principle, model observations with
as much detail as desired, and have been used for mod-
elling the non-linear power spectrum (Peacock & Dodds
1996; Giocoli et al. 2010; Takahashi et al. 2012; Giblin
et al. 2019; Cataneo et al. 2019; Angulo et al. 2021) and
several effects in the non-linear power spectrum such as
neutrino masses (Agarwal & Feldman 2011; Bird et al.
2012; Adamek et al. 2016), intrinsic alignments of galax-
ies (Heavens et al. 2000; Heymans et al. 2004; Joachimi
et al. 2013; Kiessling et al. 2015; Chisari et al. 2015; Wei
et al. 2018; Hoffmann et al. 2022), baryonic feedback
(Mead et al. 2021; Bose et al. 2021; Carrilho et al. 2022),
and also for providing collaborations with a controlled
data set for testing measurement techniques (Fosalba
et al. 2008; Kitaura et al. 2016; Takahashi et al. 2017;
DeRose et al. 2019). However, N -body and hydrodynam-
ical simulations cannot simulate everything: at the level
of so-called “subgrid physics”, they rely on approximate
descriptions of processes below the resolution of the sim-
ulations. Overall, the computational cost of these simu-
lations is very high, and they usually run on dedicated
infrastructure. Although techniques such as “cosmology
rescaling” (Angulo & White 2010) and “baryon correc-
tion models” (Schneider & Teyssier 2015; Schneider et al.
2019; Aricò et al. 2020) allow changes to some cosmolo-
gical parameters within a given realisation, it is gener-
ally not the case that one can quickly compute a few
thousand independent realisations over a range of input
parameters to obtain robust statistical measures.

On the other hand, there are statistical simulations,
where one generates realisations of relevant observables
directly from their (known or assumed) statistical dis-
tributions. These simulations can generate many real-
isations of simulated surveys with great flexibility, and

ar
X

iv
:2

30
2.

01
94

2v
2 

 [
as

tr
o-

ph
.C

O
] 

 2
2 

M
ar

 2
02

3



2 Tessore, Loureiro, Joachimi, von Wietersheim-Kramsta & Jeffrey

have been used to generate fast and accurate galaxy
mock catalogues (Xavier et al. 2016; Agrawal et al. 2017;
Tosone et al. 2020; Ramı́rez-Pérez et al. 2022) for co-
variance matrix estimation (Balaguera-Antoĺınez et al.
2018; Gruen et al. 2018; Yoon et al. 2019; Loureiro et al.
2019, 2022) and validation (Troxel et al. 2018; Gatti et al.
2020; Joachimi et al. 2021; Abramo et al. 2022; Camacho
et al. 2022), as well as simulation-based inference (Taylor
et al. 2019; Jeffrey et al. 2021; Oliveira Franco et al. 2022;
Lemos et al. 2023; Boruah et al. 2022). Naturally, the
statistical simulations can only be as good as the models
for their distributions, and obtaining such models theor-
etically is essentially the problem that we are trying to
solve in the first place.

Recently, there has been growing use of a hybrid ap-
proach to simulation, situated between the physical and
the statistical (Refregier & Amara 2014; Herbel et al.
2017; Voivodic et al. 2019; Tortorelli et al. 2020; Kac-
przak et al. 2020; Amara et al. 2021; Sudek et al. 2022;
Alsing et al. 2023). Here, the idea is to make an initial
statistical simulation of some appropriate quantity that
is well understood, e.g. the luminosity function, and then
forward-model the more difficult observables through a
series of physically inspired models. Such models usually
take some limited input, compute some effect on said in-
put, and produce some limited output, which is far easier
to describe than the equivalent effect on the eventual ob-
servables. At the same time, it reduces the necessary
theoretical modelling to the initial random sampling:
For a fixed “amount of theory”, any number of observa-
tions or observational effects can be taken into account
simply by combining more and more models. This kind
of simulation is therefore well suited to likelihood-free
or simulation-based inference (Alsing et al. 2018, 2019;
Cranmer et al. 2020; Jeffrey & Wandelt 2020; Jeffrey
et al. 2021; Huppenkothen & Bachetti 2022; Lemos et al.
2023), which is a promising new avenue for cosmological
analysis.

The idea has been applied to galaxy surveys for weak
lensing by Xavier et al. (2016). In their approach, matter
fields are generated from a random lognormal distribu-
tion, and the weak lensing fields are subsequently com-
puted by a line-of-sight integration, similar to the actual
physical process of weak lensing. Unfortunately, the ex-
act method of Xavier et al. (2016) quickly becomes too
computationally expensive. The matter fields are dis-
cretised as shells, in the form of HEALPix maps (Górski
et al. 2005) with a certain thickness in the radial direc-
tion. For accurate numerical results, the line-of-sight in-
tervals must be small enough that two consecutive matter
intervals remain significantly correlated. If that is not the
case, too much of the large-scale structure is smoothed
out by the discretisation, and is subsequently missing
from the weak lensing fields. That limits the line-of-sight
intervals to be of order 100 Mpc comoving. A simula-
tion up to redshift 3, which is required for many applic-
ations in Stage 4 galaxy surveys, would thus require the
simultaneous generation of around 60 matter fields. For
HEALPix maps of a given Nside parameter, this means
generating 60 × 12 × N2

side floating point numbers. Us-
ing Nside = 8192, as necessary for high-resolution science
in Stage 4 surveys, the resulting memory requirement is
around 400 gigabyte for maps of the matter field alone.

Here, we set out to make this approach more compu-
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Figure 1. Flow chart of the typical simulation steps for a weak
lensing galaxy survey. Superscripts indicate the section where a
particular step is discussed in this work.

tationally feasible for even the largest simulations. As
stated above, our main insight is that one can perform
the entire simulation iteratively. If only a limited num-
ber of matter shells remain effectively correlated, as is
the case for large-scale structure, then we only need to
keep that number of shells in memory. Along the way, we
obtain many other improvements for simulating galaxy
surveys, which are useful even beyond this specific com-
putational method. The resulting code is modular, ex-
tensible, and publicly available as the glass package for
Python.1

The outline of this work mirrors the steps for simu-
lating a weak lensing galaxy survey, shown in Figure 1.
In Section 2, we introduce the discretisation of the mat-
ter field into nested shells. In Section 3, we show how
the matter field can be sampled iteratively using a trans-
formed Gaussian distribution. In Section 4, we show how
the weak lensing fields, which are integrals over all mat-
ter shells of lower redshift, can be computed iteratively
via a recurrence. In Section 5, we show how we can pop-
ulate the simulation with galaxies, as far as necessary for
a cosmological galaxy survey. We then present an ac-
tual simulation using our models and implementation in
Section 6. Finally, we discuss our results in Section 7.
We provide some additional details of a more technical
nature in Appendices A, B, and C.

2. MATTER

Our overarching goal in this work is to simulate the
universe as it is accessible to a wide-field galaxy survey.
This is a universe at relatively late times, where radi-
ation has become insignificant, and galaxies are formed.
If there is dark energy, it does not imprint much of an
interesting signal, except for an accelerated expansion
of the cosmological background. A galaxy survey there-
fore ultimately probes matter, and particularly its spa-
tial distribution, the so-called large-scale structure of the
universe. But most matter appears to be dark matter,
which we cannot detect directly. Instead, galaxy surveys
actually observe two phenomena which trace the mat-
ter distribution, and which we must therefore ultimately
simulate: weak gravitational lensing and the distribution
of galaxies.

1 Available from the Python Package Index.
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Figure 2. Ten shells of the discretised matter field as simulated by GLASS, with the first shell shown in detail. The simulations were
created with Nside = 8192 (8.05× 108 pixels) over a redshift range 0.0 ≤ z ≤ 1.0 in 10 shells of ∆z = 0.1. Shown are an illustration of the
concentric nested matter shells at reduced resolution (left), a hemisphere of the innermost matter density shell at full resolution (centre),
and a 5◦ × 5◦ zoom into the first matter shell showing the details in the simulated fields (right).

The way we approach the simulation mirrors the real
astrophysical situation. First, we simulate the matter
field itself. We do so by means of a statistical simula-
tion, creating a random field with just the right spatial
distribution to look like the large-scale structure of the
universe, or at least when applying the statistics in which
we are interested. Once we have the matter field, we then
compute the associated effects of weak gravitational lens-
ing and galaxies using a physically inspired model. We
must hence be careful to get the matter distribution right
to a high degree of precision and accuracy, even if we do
not directly observe it, since everything else will depend
on it later. We split the task in two: This section treats
the definition of the matter fields in our simulation, while
the next section discusses how to perform an accurate
statistical simulation.

Throughout the text, we assume a standard ΛCDM
cosmology. We expect that most results continue to hold
in most extensions to ΛCDM, perhaps with some minor
modification of e.g. the weak lensing sector.

Cosmological parameters and functions used here and
in the following sections are the matter density frac-
tion Ωm, the Hubble function H, of which the present
value is the Hubble constant H0, and the dimension-
less Hubble function E = H/H0. Relevant distance
functions are the comoving distance dc, and the trans-
verse comoving distance dM. We mainly use dimen-
sionless distance functions in units of the Hubble dis-
tance dH = c/H0, namely the dimensionless comoving
distance xc = dc/dH, and the dimensionless transverse
comoving distance xM = dM/dH. The matter distribu-
tion in the universe is characterised by the matter density
contrast δ = (ρ− ρ̄)/ρ̄, where ρ is the matter density at
a given point in space, and ρ̄ is the cosmic mean matter
density at that point in time.

Whenever results are computed explicitly, we must
pick a specific set of background cosmological parameters
values; we use Ωm = 0.3 and H0 = 70 km s−1 Mpc−1.

2.1. Matter shells

To simulate the matter distribution of the universe, we
must start by picking a suitable discretisation of three-
dimensional space. Our goal is to simulate wide-field
galaxy surveys for cosmology, and in particular those
surveys that measure weak gravitational lensing. These
surveys observe millions, and soon billions, of individual
galaxies, by taking highly resolved images of galaxy
fields. But they do not generally observe a significant
amount of galaxies by any spectroscopic means. It fol-
lows that the kind of galaxy survey we wish to simulate
has i) very high angular resolution, ii) fairly low resolu-
tion along the line of sight.

We construct our simulation accordingly, by dividing
space into a series of nested spherical shells centred on the
observer, as shown in Figure 2. The shells are specified
by the redshifts

0 = z0 < z1 < z2 < z3 < . . . (1)

of their boundaries, so that the shell with index i > 0
contains redshifts z with zi−1 ≤ z ≤ zi. We can thus
construct shells with any desired radial resolution. As
we will show below, using nested shells also has another
major advantage: Any outer shell can be simulated con-
ditional only on its inner shells, so that we are able to
iteratively construct an entire light cone, one shell at a
time.

To compute the distribution of matter over a given
shell i, we first fix a radial weight functionWi, which does
not have to be normalised. We then use Wi to project
the matter density contrast δ in shell i along the line of
sight and onto the unit sphere. This yields a spherical
function δi which is the averaged matter density contrast
in shell i,

δi(û) =

∫
δ
(
dc(z) û

)
Wi(z) dz∫

Wi(z) dz
, (2)
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where û is a unit vector that parametrises the surface
of the sphere, and the radial direction is parametrised
as usual by the redshift z, so that dc(z) û is the three-
dimensional comoving position of a point along the line-
of-sight in the direction of û.

In practice, we then need to further discretise δi in the
angular dimensions, since we cannot compute with con-
tinuous functions on the sphere. We therefore construct
a map δi,k = δi(ûk) by evaluating the field δi over the
spherical HEALPix grid of points ûk, k = 1, . . . , 12N2

side,
with Nside a chosen HEALPix resolution parameter.

2.2. Matter weight functions

The radial weight function Wi in the matter field (2)
is in principle a free parameter of the simulation. In this
work, we assume a uniform weight in redshift,

Wi(z) =

{
1 if zi−1 ≤ z < zi,

0 otherwise.
(3)

We show in Sections 4 and 5 why the uniform weight
function (3) is a good choice for simulations that include
weak gravitational lensing or galaxy distributions.

Nevertheless, there are situations in which a different
choice of matter weight function might be appropriate.
For example, instead of (3), we could choose a uniform
weight in comoving distance,

Wi(z) =

{
1/E(z) if zi−1 ≤ z < zi,

0 otherwise,
(4)

where E is the dimensionless Hubble function. A true
volume average of the matter density contrast is achieved
if the weight function is proportional to the differential
comoving volume,

Wi(z) =

{
x2

M(z)/E(z) if zi−1 ≤ z < zi,

0 otherwise.
(5)

Similarly, one can obtain maps of the true discretised
mass by averaging the mean matter density,

Wi(z) =

{
ρ̄(z)x2

M(z)/E(z) if zi−1 ≤ z < zi,

0 otherwise.
(6)

The weight functions (4), (5), and (6) may therefore be
good choices in simulations where these physical quant-
ities are of particular interest.2

2.3. Angular matter power spectra

In principle, the discretised matter fields (2) can be
provided from any suitable source. For example, it is
possible to compute the matter density contrast δi in
each shell from the outputs of an N -body simulation. Of
course, we will normally want to generate the matter field
as part of our simulation, and it must therefore contain
the information that is relevant for cosmology. For the
wide-field galaxy surveys we wish to simulate, that means
we have to imprint the correct two-point statistics.

The two-point statistics of our generated matter fields
are described by the angular matter power spectrum for

2 Since the matter weight function is purely a means for project-
ing the three-dimensional matter distribution onto the sphere, the
distribution n(z) of eventually observed sources is generally not a
good choice.

each pair of shells. Many of the usual cosmology codes
such as CAMB (Lewis et al. 2000; Lewis & Bridle 2002),
CCL (Chisari et al. 2019), or CLASS (Lesgourgues 2011;
Blas et al. 2011) can compute these spectra, which only
requires the matter weight function Wi that defines the
matter field (2) in each shell i. Since δi is the projec-
tion of the matter field, and not the galaxy field, the
angular matter power spectrum is computed without
bias, redshift-space distortions, or any other such obser-
vational effect.

This is important, because the angular power spectra
completely determine the underlying physical model for
matter in the simulation. If the angular power spectra
are computed e.g. using only the linear matter power
spectrum, the simulation will only produce the linear
matter field. Similarly, if the angular power spectra in-
clude a full non-linear treatment of matter, so will the
simulation. The only task of the simulation is to repro-
duce the given angular power spectra faithfully, which
we achieve using the methods of the next section.

The fact that we consider many relatively thin shells
with a thickness of ∆z . 0.1 in redshift means that the
computation of the angular power spectra must largely
be performed without use of Limber’s approximation
(Limber 1953; Kaiser 1998; Simon 2007). For this work,
we use CAMB, since it is widely available, and allows
Limber’s approximation to be switched off altogether. To
work around a numerical issue in CAMB for flat mat-
ter weight functions that do not go to zero at z = 0,
we slightly modify (3) to increase linearly from zero at
z = 0 to unity at z = 0.1, which is an otherwise negli-
gible change. To obtain results at the required level of
accuracy, we also set the TimeStepBoost parameter in
CAMB to 5.

3. SAMPLING RANDOM FIELDS ON THE SPHERE

The projected matter field of the previous section is
at the heart of our simulations, as we will derive the
weak gravitational lensing fields and the distribution of
galaxies from the matter shells in the following sections.
In this section, we show how we can produce random
realisations of the projected matter density contrast (2)
with

i) a realistic distributions of values of the matter field,
i.e. the one-point statistics, and

ii) the physically correct angular matter power spec-
trum, i.e. the two-point statistics.

These two criteria are imposed by our aim of producing
simulations for the typical clustering and weak lensing
studies done on wide-field galaxy surveys.

Sampling a Gaussian random map X with fully spe-
cified statistical properties is readily done. However, the
normal distribution is not a good model for the evolved
matter fields that we wish to simulate. But if we ap-
ply a suitable transformation f to the map, we obtain
a second random map Y = f(X) which now has a dif-
ferent distribution. By picking the right transformation,
we will be able to recreate the one-point statistics of the
matter field with high fidelity. The main challenge is
then to imprint the correct two-point statistics onto the
transformed map Y via the transformation f(X).
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There is also a computational reason for basing our
simulation on Gaussian random maps. The random real-
isations must contain the right correlations between the
projected matter fields across all simulated shells. This
means that we must either simulate, and hence hold in
memory, all shells at once, or we must sample each new
shell conditional on the existing shells. The former is usu-
ally not feasible for high-resolution maps without dedic-
ated hardware. But the latter is particularly simple for
Gaussian random maps.

3.1. Transformed Gaussian random fields

Let us for the moment assume that the transforma-
tion f has already been fixed. Naturally, we must match
the distribution of the Gaussian map X to the desired
distribution of the transformed map Y , such that the
realisation has e.g. the correct mean and variance after
the transformation. In the following, we always assume
that the fields are homogeneous, i.e. invariant under ro-
tations, as asserted by the cosmological principle. If the
Gaussian map X is homogeneous, it has the same mean µ
and variance σ2 everywhere, in the sense that for all
points û on the sphere the expectation over realisations,
denoted by 〈 · 〉, is

〈X(û)〉 = µ and 〈X2(û)〉 − µ2 = σ2 . (7)

Since Y (û) = f
(
X(û)

)
and X(û) is normally distrib-

uted with mean µ and variance σ2, it follows that the
transformation Y = f(X) of a homogeneous Gaussian
map X remains homogeneous, and the distribution of Y ,
and thus all one-point statistics, depend solely on f , µ,
and σ2. In particular, Y has the same mean 〈Y 〉 and
variance 〈Y 2〉 − 〈Y 〉2 everywhere.

Apart from the overall distribution of the values, the
transformation must also imprint the realised map Y
with the correct two-point statistics, since that is where
we extract cosmological information from the simula-
tions. If Y and Y ′ are two not necessarily distinct homo-
geneous spherical random fields, the correlation in the
respective points û and û′ is described by the angular
correlation function C,

〈Y (û)Y ′(û′)〉 = C(θ) , (8)

which, due to homogeneity, is a function of the angle θ
between û and û′ alone. Let both fields be the respective
transformations Y = f(X) and Y ′ = f ′(X ′) of homogen-
eous Gaussian fields X and X ′, so that X(û) and X ′(û′)
are jointly normal with the respective means µ and µ′

and variances σ2 and σ′2. If the correlations between X
and X ′ are given by the correlation function G,

〈X(û)X ′(û′)〉 = G(θ) , (9)

the joint distribution of X(û) and X ′(û′), being jointly
normal random variables, is completely described by the
values of µ, µ′, σ2, σ′2, and G(θ). It follows that the
correlation (8) between the transformed random vari-
ables Y (û) = f(X(û)) and Y ′(û′) = f ′(X(û′)) must be
a function of these variables alone,

C(θ) = C
(
G(θ);µ, µ′, σ2, σ′2

)
, (10)

where the form of this function depends on the trans-
formations f and f ′ between the fields. The function C

will normally be obtained by computing (8) explicitly.
Inverting the result, either analytically or numerically,
then yields the function

G(θ) = G
(
C(θ);µ, µ′, σ2, σ′2

)
, (11)

which characterises the two-point statistics of the Gaus-
sian maps in terms of the two-point statistics of their
transformations.

Given a transformation f , we can hence expect to also
be given the relations (10) and (11) for translating the
desired correlations C(θ) of Y into the correlations G(θ)
to be imprinted onto the Gaussian random field X.

3.2. Lognormal fields

One popular choice of transformation f for matter
fields is the lognormal distribution (e.g. Coles & Jones
1991; Kayo et al. 2001; Hilbert et al. 2011; Xavier et al.
2016),

f(x) = λ (ex − 1) , (12)

where the parameter λ is the so-called “shift” of the
lognormal distribution. Since the exponential is limited
to positive values, the value of λ is effectively the lower
bound of variates of the distribution. A volume devoid
of any matter has matter density contrast δ = −1, so
a shift parameter λ = 1 is usually assumed for matter
fields.

The simulation of lognormal random fields on the
sphere was discussed in detail by Xavier et al. (2016),
and we only repeat the relations (10) and (11) here,

C(θ) = αα′
{

eG(θ) − 1
}
, (13)

G(θ) = ln
{

1 +
C(θ)

αα′

}
, (14)

which are characterised by the parameter α = 〈Y 〉 + λ
for Y , and similarly α′ for Y ′.

Lognormal distributions are widely used not only for
simulating the matter field (Coles & Jones 1991; Böhm
et al. 2017; Abramo et al. 2016, 2022) but also weak lens-
ing convergence fields (Hilbert et al. 2011; Clerkin et al.
2017; Giocoli et al. 2017; Gatti et al. 2020). In particular,
Hall & Taylor (2022) showed that lognormal distributions
reproduce, up to reasonable precision and accuracy, the
bispectrum (i.e. three-point statistics) and the covariance
(i.e. four-point statistics) of the underlying fields when
compared to results obtained from N -body simulations
over the typical scales for a Stage 4 photometric galaxy
survey. However, the agreement between lognormal and
N -body simulations for higher-order statistics is not per-
fect, and it is conditional on the scales and configurations
analysed (Piras et al. 2023).

3.3. Gaussian angular power spectra

Having obtained a suitable transformation f , such as
e.g. the lognormal transformation (12), and derived its
relations (10) and (11) for the two-point statistics, we
face two further issues before we can actually sample the
Gaussian random map X: Firstly, theoretical calcula-
tions usually do not produce C(θ), but instead the angu-
lar matter power spectrum Cl for the matter fields (2).
And secondly, the procedure for sampling a Gaussian
random map also requires the Gaussian angular power
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Figure 3. The effect of a band limit in the Gaussian angular
power spectrum Gl on the transformed angular power spectrum Cl,
here for the lognormal transformation of two inputs (solid, dashed)
with different band limits (vertical lines). The shape of Cl depends
critically on the band limit of Gl, and will generally have a higher
band limit.

spectrum Gl instead of G(θ). We must therefore convert
between the angular correlation functions and angular
power spectra.

The conversion is done using the well-known trans-
forms between angular correlation functions and angular
power spectra,

C(θ) =

∞∑
l=0

2l + 1

4π
Cl Pl(cos θ) , (15)

with Pl the Legendre polynomial of degree l, and

Cl = 2π

∫ π

0

C(θ)Pl(cos θ) sin(θ) dθ , (16)

and similarly for G(θ) and Gl. In theory, the steps to
obtain Gl from Cl are hence straightforward:

i) Compute the correlations C(θ) from Cl using (15),

ii) apply relation (11) to obtain G(θ) from C(θ), and

iii) compute Gl from from G(θ) using (16).

Overall, the computation can be summarised as

Cl → C(θ)→ G(θ)→ Gl , (17)

which we call the “backward” sequence. This name is
owed to the fact that the sampling of a Gaussian random
field from Gl and subsequent transformation Y = f(X)
instead correspond to

Gl → G(θ)→ C(θ)→ Cl , (18)

which we consequently call the “forward” sequence.
In practice, we can usually neither evaluate the infinite

sum in (15) for all θ, nor the continuous integral in (16)
for all l, and we always have to work with angular power
spectra of finite length. But imposing a band limit on
both Cl and Gl is problematic: Xavier et al. (2016) noted
that, for lognormal fields, a band-limited Gl yields val-
ues Cl beyond the band limit, and the same holds more
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Figure 4. Relative error ∆Cl/Cl of the realised angular power
spectra using the Gauss–Newton solver. Shown are various settings
of the nominal tolerance of the algorithm and the length n of the
internal Legendre transforms relative to the length N of the inputs.

generally for any non-linear transformation f . The effect
is shown in Figure 3.

To work around the finite nature of their transforms,
the approach of Xavier et al. (2016) was to take a given
band-limited Cl and compute Gl using the backward se-
quence (17) at a higher band limit. This is shown to
achieve per-cent level fidelity of the realisation when the
band limit is set very generously, which is computation-
ally expensive, since the cost of a discrete spherical har-
monic transform increases with the square of the band
limit. It also requires regularisation of the transformed
angular power spectra, which may at least partly be due
to the fact that Cl contains zeros when padded to a
higher band limit, rendering the conversion between Gl
and Cl ill-defined.

On closer inspection, the difficulty arises from use of
the backward sequence (17) for directly computing Gl
from a given band-limited Cl. But there are other ways
to approach the conversion (Shields et al. 2011). For
example, we can try and solve the inverse problem in-
stead, which is: find a band-limited Gaussian angular
power spectrum Gl of length N such that the forward
sequence (18) recovers N given values Cl. As it turns
out, that approach is both simpler and more accurate.
All it needs is a standard numerical method for the solu-
tion, or approximate solution, of non-linear equations.
Here, we use the Gauss–Newton algorithm.

To start, let Gl be an initial guess for the Gaussian
angular power spectrum, and let Fl be the residuals of the
forward sequence (18) and given values Cl. The Gauss–
Newton update moves from Gl to Gl + Sl, where the
step Sl is found by solving the matrix equation∑

l′

∂Fl
∂Gl′

Sl′ = −Fl . (19)

Applying the derivative to the forward sequence (18)
yields

∂Fl
∂Gl′

= 2π

∫ π

0

∂C(θ)

∂G(θ)

∂G(θ)

∂Gl′
Pl(cos θ) sin(θ) dθ . (20)

Note that ∂C(θ)/∂G(θ) is the derivative of (10) with
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respect to G(θ); for short, let ∂C(θ)/∂G(θ) = Ċ(θ).

Like C(θ) itself, the function Ċ is characteristic of the
transformation f , and can be computed. The other de-
rivative in (20) is readily found using (15),

∂G(θ)

∂Gl′
=

2l′ + 1

4π
Pl′(cos θ) . (21)

Using (20) and (21), the matrix equation (19) becomes
the integral

2π

∫ π

0

Ċ(θ)S(θ)Pl(cos θ) sin(θ) dθ = −Fl , (22)

where we have exchanged summation and integration to
transform Sl into S(θ) using (15),∑

l′

2l′ + 1

4π
Sl′ Pl′(cos θ) = S(θ) . (23)

Since the resulting equation (22) itself is precisely the
transform (16), we obtain the result that the Gauss–

Newton step must obey Ċ(θ)S(θ) = −F (θ) in real space.
The solution of (19) therefore has the representation

S(θ) = −F (θ)

Ċ(θ)
, (24)

which can be transformed back into Sl using (16). It
only remains to find an initial guess for the values Gl,
which we do using the backward sequence (17) for the
fixed length N . This generally yields a starting point
such that the Gauss–Newton algorithm converges in just
a handful of iterations.

Solving for a Gaussian angular power spectrum Gl
with the above method still involves the transforms (15)
and (16), so that the true, continuous transforms must
in practice still be approximated by finite, discrete ones.
The crucial difference is that we do not transform C
and G here, but instead F and S. Depending on the
desired accuracy, we can choose an arbitrarily large
length n� N for the transforms; since they are internal
to the Gauss–Newton step, both Cl and Gl remain of the
length N that we ultimately want to realise. As men-
tioned earlier, this quadratically improves the sampling
performance over methods relying on padded spectra.

In practical terms, we note that the transforms (15)
and (16) are effectively discrete Legendre expansions
with slightly modified coefficients. We can compute them
using the method we describe in Appendix A, which
maps n values Fl to n values F (θ) over a regular grid of θ
values using the Fast Fourier Transform. The mapping
is one-to-one and invertible, so that we can transform
back and forth without loss of information. Commonly
used methods based on Gaussian quadrature, as well as
the method of Driscoll & Healy (1994), or the method
of Healy et al. (2003) used by Xavier et al. (2016), map
between n values of Fl and 2n values of F (θ), and are
therefore clearly not generally invertible. Our transforms
are very fast and do not construct any large matrices, so
that values of e.g. n > 100 000 are readily achievable.

To give an idea of the accuracy of our new method
for computing Gaussian angular power spectra, Figure 4
shows the relative error of the lognormal transformation
of a typical angular power spectrum Cl with l ≤ 5 000,

i.e. N = 5 001. We show the solution of the Gaussian an-
gular power spectrum Gl using a number of settings for
the nominal tolerance of the Gauss–Newton algorithm,
as well as different lengths n of the internal Legendre
transforms. To compare the result to the input, we com-
pute the forward sequence (18) for each solution Gl us-
ing 1 000 000 terms in the Legendre expansion. We find
that, in the regime shown, the accuracy of the solution
depends mainly on n. We adopt a tolerance of 10−5

and n = 3N as good default values, having a relative er-
ror better than 10−4 everywhere, with the understanding
that better accuracy is readily available.

Overall, this new method allows us to simulate trans-
formed Gaussian random fields on the sphere in such
a way that the first N modes of the angular power
spectrum match any given values Cl reliably. In prin-
ciple, we could therefore accurately simulate maps of the
matter fields up to the band limit lmax of a HEALPix
map, which for a given resolution parameter Nside is
lmax = 3Nside − 1. However, as shown in Figure 3, the
transformed random field will in general not be band-
limited to lmax. Even if the angular power spectrum is
simulated accurately up to lmax, it is hence difficult to
actually use this part of the spectrum for practical pur-
poses, due to aliasing from modes beyond the band limit.
To obtain interpretable results, we find values of N some-
where between Nside and 2Nside most reliable.

Because they are generally useful beyond this spe-
cific work, we provide our implementations of the trans-
forms (15) and (16) as the stand-alone transformcl
package for Python, and our solver for Gaussian angular
power spectra as the stand-alone gaussiancl package for
Python.3

3.4. Zero monopoles

Computer codes often produce theoretical angular
matter power spectra with a vanishing monopole. For
the simulated matter shells, this is problematic for two
reasons: Physically, it is not the case that a matter shell
of finite size has an exactly vanishing average density
contrast with no variance at all. And mathematically,
a vanishing monopole results in an ill-defined Gaussian
transformation. The first issue requires better theoret-
ical computations, which is not part of our work. But we
can try and mitigate the second issue ourselves.

More specifically, the problem is that a vanishing
monopole value C0 = 0 in the transformed angular power
spectrum will generally result in a negative monopole G0

in the Gaussian angular power spectrum. This occurs
because the transformation mixes Gaussian modes with
non-zero random values from beyond the monopole into
the monopole of the transformed field. To counteract
the randomness, at least formally, a negative variance
is required, and the Gaussian random field becomes ill-
defined.

To work around this issue, we can exclude both mono-
poles C0 and G0 from our solver, fixing G0 = 0. After the
transformation, the realised field will have a value C0 > 0
that is realistic, but arbitrary. The result is essentially
a smooth extrapolation to l = 0 of the given modes Cl
with l > 0, which is the best we can do to obtain a
well-defined random field.

3 Both available from the Python Package Index.
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The Gauss–Newton solver is readily adapted to ig-
nore C0 and fix G0 to its initial value: The latter is
equivalent to S0 in the update step (24) being zero, and
there always exists a value of C0 such that this is the
case. Since the given C0 is ignored, we can arbitrarily
assume that it was that particular value. To obtain the
constrained solution, it therefore suffices to set S0 = 0
and F0 = 0 in the unconstrained solution.

3.5. Sampling the Gaussian random fields

To sample a Gaussian random field X on the sphere
with a given angular power spectrum Gl, we sample the
complex-valued modes alm of its spherical harmonic ex-
pansion,

X(û) =
∑
lm

alm Ylm(û) . (25)

We can obtain a number of conditions on the distribution
of the alm. If the field is homogeneous, i.e. invariant
under rotations, the mean of the modes with l > 0 must
vanish,

〈alm〉 = 0 . (26)

If the field also has zero expectation, as is the case for
the matter density contrast, the same holds for the mono-
pole l = 0. The angular power spectrum determines the
covariance of the modes with numbers l,m and l′,m′,

〈alm a∗l′m′〉 = δK
ll′ δ

K
mm′ Gl , (27)

where the Kronecker delta expresses that differently-
numbered modes are uncorrelated, which follows from
homogeneity of the field. For a real-valued field, the
symmetry a∗lm = (−1)m al,−m and the covariance (27)
together imply that the pseudo-variance of the modes
vanishes for m 6= 0,

〈a2
lm〉 = (−1)m 〈alm a∗l−m〉 = δK

m0Gl . (28)

Finally, since any linear combination of normal random
variables remains normally distributed, we can sample
the modes alm themselves as complex normal random
variables.

The sampling is most easily done by splitting each alm
into its real and imaginary part,

alm = xlm + i ylm , (29)

and sampling the set of xlm and ylm as a real-valued
multivariate normal random variable. If the field is real-
valued, the symmetry a∗lm = (−1)m al,−m implies that
only the xlm and ylm with m ≥ 0 need to be sampled.
By condition (26), the means of all xlm and ylm vanish,

〈xlm〉 = 〈ylm〉 = 0 . (30)

By conditions (27) and (28), a pair of xlm and ylm
with m > 0 is uncorrelated, 〈xlm ylm〉 = 0, with equal
variance,

〈x2
lm〉 = 〈y2

lm〉 =
Gl
2

(m > 0) . (31)

For m = 0, the same conditions imply that

〈x2
l0〉 = Gl and 〈y2

l0〉 = 0 , (32)

and thus yl0 = 0 identically. Furthermore, by condi-
tion (27), the xlm and ylm are pairwise uncorrelated

for different modes. We therefore only have to sample
for m ≥ 0 each pair of xlm and ylm independently, with
zero mean and the correct variance. After an inverse
spherical harmonic transform, we obtain the Gaussian
random field X with the prescribed statistics.

When correlated Gaussian random fields Xi and Xj

are simulated, with i and j some indices, there is an
additional condition that the covariance of their respect-
ive modes ailm and ajlm recovers the angular cross-power

spectrum Gijl ,

〈ailm a
j∗
l′m′〉 = δK

ll′ δ
K
mm′ G

ij
l . (33)

For fixed values of l and m, the sets xlm = {x1
lm, x

2
lm, . . .}

and ylm = {y1
lm, y

2
lm, . . .} taken over different fields are

thus multivariate normal random vectors with covariance
matrix

〈xilm x
j
lm〉 = 〈yilm y

j
lm〉 =

Gijl
2

, m > 0 , (34)

〈xil0 x
j
l0〉 = Gijl and 〈yil0 y

j
l0〉 = 0 , (35)

and remain independent across different modes. For n
correlated Gaussian random fields, we thus have to
sample the multivariate normal random variables xlm
and ylm for each l,m independently from their n × n
covariance matrix.

For our specific application, this is problematic. At the
highest map resolutions, it is not feasible to sample the
integrated matter fields for hundreds of shells all at once,
due to the amount of memory required. However, it is
possible to sample multivariate normal random variables
iteratively, which in our case means: shell by shell. The
technique, shown in Appendix B, allows us to generate
each new integrated matter field in turn, while still im-
printing the correct correlations with previous shells. In
addition, we use that the correlations of the matter field
along the line of sight become negligible above a certain
correlation length, of the order of 100 Mpc. As we show
in the appendix, the iterative sampling then only requires
us to store those fields which are effectively still correl-
ated, so that we are able to sample arbitrarily many shells
without increasing our memory requirements. Only the
thickness of the shells determines the amount of correl-
ation between them, and thus how many previous shells
we must store. We show how an informed choice can be
made in Section 6.

4. WEAK GRAVITATIONAL LENSING

We now use our realisation of the matter fields in each
shell to compute other, related fields, namely the con-
vergence and shear of weak gravitational lensing. The
fact that we compute lensing from matter in determin-
istic fashion, close to the real physical situation, means
that we do not have to make any additional assumptions
about e.g. the statistical distributions of the fields.

On the other hand, it also means we have to overcome
two associated difficulties: First and foremost, the fact
that we wish to continue sampling the fields iteratively,
shell by shell. Lensing happens continuously between
source and observer, and the computation of the lensing
fields requires an integral over the line of sight. We there-
fore have to develop a way to perform the computation
iteratively. The second difficulty is also related to the
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integration: the matter fields that we sample are already
discretised into shells, and we have to approximate the
lensing integral using the existing discretisation.

4.1. Convergence

We compute the convergence field κ from the matter
density contrast δ in the Born approximation, i.e. along
an undeflected line of sight. In the case of weak lensing,
this approximation is sufficient even for upcoming weak
lensing surveys (Petri et al. 2017). The convergence for
a source located at angular position û and redshift z is
hence (see e.g. Schneider et al. 2006)

κ(û; z)

= 3Ωm
2

∫ z

0

δ
(
dc(z′) û

) xM(z′) xM(z′,z)
xM(z)

1+z′

E(z′) dz′ , (36)

where we have used the dimensionless distance and
Hubble functions. The integral in (36) presents two im-
mediate problems for our computations: Firstly, we do
not have access to the continuous matter distribution δ,
but only the discretised matter fields δi in each shell.
And secondly, the integral in (36) depends on all matter
below the source redshift z, while we want to perform the
computation iteratively, keeping only a limited number
of matter fields in memory.

To solve these problems, we impose three additional
requirements for the matter shells i = 0, 1, . . . and their
matter weight functions Wi. The first requirement is
that every shell i has an associated effective redshift z̄i
which is, in some sense, representative of the shell. For
example, this could be the mean redshift of the matter
weight function,

z̄i =

∫
zWi(z) dz∫
Wi(z) dz

, (37)

but other reasonable choices exist. The second require-
ment is that the matter weight functions of shells j < i
vanish beyond the effective redshift z̄i,

Wj(z) = 0 (j < i and z ≥ z̄i) . (38)

The third requirement is that the matter weight func-
tions of shells j > i vanish below the effective redshift z̄i,

Wj(z) = 0 (j > i and z ≤ z̄i) . (39)

In short, the requirements say that each matter shell
has a representative redshift which partitions the mat-
ter weight functions of all other shells. This is clearly
the case for the effective redshifts (37) and the matter
weight function (3).

To then approximate the continuous integral (36) by
a discrete sum, we first have to bring the integrand into
a shape that matches the definition (2) of the integrated
matter fields. Using the trivial partition of unity∑

j

Wj(z)∑
kWk(z)

= 1 , (40)

where the sums extend over all shells, we can introduce

the matter weight function Wi into the convergence (36),

κ(û; z)

= 3Ωm
2

∑
j

∫ z

0

δ
(
dc(z′) û

)
Wj(z

′) q(z′; z) dz′ , (41)

with the function q being short for the geometric and
weight factors,

q(z′; z) =
1∑

kWk(z′)

xM(z′)xM(z′, z)

xM(z)

1 + z′

E(z′)
. (42)

To make our approximation, we now assume that the
weight function Wj in the integral (41) is so localised
that the function q is constant and equal to its value at
the effective redshift z̄j for shell j,

κ(û; z)

≈ 3Ωm
2

∑
j

q(z̄j ; z)

∫ z

0

δ
(
dc(z′) û

)
Wj(z

′) dz′ . (43)

If the support ofWj corresponds to a thin shell, this holds
for z > z̄j as long the sum of weights in (42) changes
as slowly as the cosmological quantities. We can then
evaluate the convergence (43) in the effective redshift z̄i
for a given shell i: By requirement (38), we can truncate
the sum before shell i, since q(z̄i; z̄i) = 0 by definition,

κi(û) = κ(û; z̄i)

= 3Ωm
2

i−1∑
j=0

q(z̄j ; z̄i)

∫ z̄i

0

δ
(
dc(z′) û

)
Wj(z

′) dz′ , (44)

and by requirement (39), we can extend the remaining
integrals over all redshifts. If we compare the resulting
expression and the integrated matter fields (2), we find
that we can indeed write a discrete approximation of the
convergence,

κi(û) = 3Ωm
2

i−1∑
j=0

xM(z̄j) xM(z̄j ,z̄i)
xM(z̄i)

1+z̄j
E(z̄j)

wj δj(û) , (45)

where we have defined the lensing weights wj to contain
the dependency on the matter weight functions,4

wj =
1

Wj(z̄j)

∫
Wj(z) dz . (46)

The approximation (45) as such is well known: Lensing
can be approximated by collapsing a continuous mat-
ter distribution onto a set of discrete lensing planes.
Our main insight here is the exact form of the lensing
weights (46) for the given matter weight functions, as
well as the requirements (38) and (39) on them.

Although the convergence (45) is now discretised, it
still cannot be computed iteratively, since the geomet-
ric factor in each term depends explicitly on the shells i
and j. Here, the distance ratio relation of Schneider

4 The sum over weights in (42) reduces to a single term because
of the requirements (38) and (39) on the matter weight functions
in the effective redshift z̄j .
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Figure 5. Effective lensing kernel of the lensing recurrence for
source redshifts zs = 0.50 (top), zs = 1.03 (middle), and zs = 2.00
(bottom). Vertical lines indicate the boundaries of matter shells
with constant thickness in comoving distance ∆dc = 150 Mpc.
Also shown is the true lensing kernel (black).

(2016) is a powerful tool: For i ≥ 2, define the ratio
of distance ratios

ti =
xM(z̄i−2, z̄i)

xM(z̄i)

/
xM(z̄i−2, z̄i−1)

xM(z̄i−1)
. (47)

The distance ratios for any other redshift z̄j then obey

xM(z̄j , z̄i)

xM(z̄i)
= ti

xM(z̄j ,z̄i−1)
xM(z̄i−1) + (1− ti) xM(z̄j ,z̄i−2)

xM(z̄i−2) . (48)

As shown by Schneider (2016), this relation is exact and
a consequence of the mathematical form of the trans-
verse comoving distance in generic Robertson-Walker
space-times. Inserting (48) into the discrete approxim-
ation (45), we immediately obtain a recurrence relation
for the convergence,

κi(û) = ti κi−1(û) + (1− ti)κi−2(û)

+ 3Ωm
2

xM(z̄i−1) xM(z̄i−1,z̄i)
xM(z̄i)

1+z̄i−1

E(z̄i−1) wi−1 δi−1(û) . (49)

This is equivalent to the multi-plane formalism for the
deflection in strong gravitational lensing (Petkova et al.
2014; Schneider 2019).

Overall, we have obtained the lensing recurrence (49)
by making specific choices for our matter weight func-
tions, and one single approximation in (43). To test
this approximation, we can compare the effective lensing
kernel of the recurrence, i.e. the resulting factor in (36)
multiplying δ, to the true lensing kernel. This is done
in Figure 5 for source redshifts zs = 0.50, zs = 1.03,
and zs = 2.00. For the matter shells, we use a constant
size of ∆dc = 150 Mpc in comoving distance, which is a
reasonable choice, as we show in Section 6. The effect-
ive lensing kernel of our approximation is essentially the
matter weight function in each shell, scaled by the lensing
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Figure 6. The relative error in the angular power spectra for
the effective lensing kernels of the lensing recurrence, as shown
in Figure 5. The shaded area shows the standard deviation of a
Gaussian field for comparison. Here and below, the logarithmic
y-axis changes to linear when passing through the origin.

recurrence, so that the flat matter weight function (3) is
a good global approximation to the true kernel. As one
would expect, thinner shells result in a better approxim-
ation, since we are essentially computing the convergence
integral (36) as a Riemann sum. For the same reason,
the approximation improves naturally with higher source
redshifts, which cover a larger number of shells.

For a more quantitative check, we can compute the
angular power spectra of the effective lensing kernels,
and compare the results to the true angular conver-
gence power spectra for each source redshift. We com-
pute the true spectra with CAMB, for angular modes
up to number l = 5 000, without Limber’s approxima-
tion. Figure 6 shows the resulting relative errors. For
shells with ∆dc = 150 Mpc, the error is well below the
per cent level, and much smaller than the expected un-
certainty due to cosmic variance, which we approximate
here by the Gaussian one for the sake of simplicity.

4.2. Shear

Having found the convergence (36) for weak lensing by
our simulated matter distribution, we can obtain other
weak lensing fields by applying the spin-raising and spin-
lowering operators ð and ð̄ (see e.g. Boyle 2016). Their
effect on the spin-weighted spherical harmonics sYlm is

ð sYlm = +
√

(l − s)(l + s+ 1) s+1Ylm , (50)

ð̄ sYlm = −
√

(l + s)(l − s+ 1) s−1Ylm , (51)

where the spin-0 spherical harmonic 0Ylm is the scalar
spherical harmonic Ylm.

On the sphere, the Poisson equation for weak lensing
reads

2κ = ðð̄ψ , (52)

and relates the convergence κ to the lensing (or deflec-
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tion) potential ψ. Let κlm be the modes of the spherical
harmonic expansion of the convergence field,

κ(û) =
∑
lm

κlm Ylm(û) , (53)

and similarly ψlm for the lensing potential ψ. Inserting
the expansions into (52) and applying the operators (50)
and (51), the Poisson equation in harmonic space reduces
to a simple algebraic relation between the modes κlm
and ψlm,

2κlm = −l (l + 1)ψlm . (54)

We can readily solve for ψlm, except when l = m = 0.
The mode ψ00, however, describes a constant offset of the
potential without physical meaning, and can be given an
arbitrary value. We can thus completely determine the
lensing potential from the convergence via the spherical
harmonic expansion.

The principal observational effect of weak gravitational
lensing, discussed below in Section 5, is caused by the
shear field, commonly denoted γ. Shear is the spin-2 field
obtained by applying ð twice to the lensing potential,

2γ = ððψ . (55)

As before, we can obtain an algebraic relation between
the modes γlm of the shear field and ψlm,

2γlm =
√

(l + 2) (l + 1) l (l − 1)ψlm . (56)

An alternative definition is sometimes used where the
shear is a spin-(−2) field γ = ð̄ð̄ψ. However, this yields
exactly the same modes (56). The difference between
the definitions is whether the coordinate system is left-
or right-handed, and the shear in one definition is the
complex conjugate of the shear in the other.

From (56), it follows that the shear modes with l < 2
vanish identically, as expected for a spin-2 field. We can
hence treat the case γ00 = 0 separately, and compute
the remaining shear modes with l > 0 directly from the
convergence modes by combining (56) and (54),

γlm = −

√
(l + 2) (l − 1)

l (l + 1)
κlm . (57)

While this implies that the difference between the modes
of convergence and shear vanishes for large l, it is as
much as 18% at l = 2, so that the conversion factor
in (57) should always be applied.

In practice, we can hence construct a map of the shear
field γ as follows: Compute the discrete spherical har-
monic transform (53) from a map of the convergence
field, convert from convergence to shear using (57), and
compute the inverse discrete spherical harmonic trans-
form. This can once again be efficiently done using
HEALPix. We thus obtain maps of the shear field at
the discrete source redshifts of the convergence maps.

5. GALAXIES

So far, we have developed robust methods to simu-
late the matter and weak lensing fields, but neither of
these are directly accessible to observations. For that,
we need galaxies, which are tracers of both the matter
field (through the clustering of their positions), and of

the weak lensing field (through the distortion of their
observed shapes).

Positions and shapes of galaxies are thus the funda-
mental observables for cosmological galaxy surveys, and
we must simulate them. We have seen that the weak
lensing fields depend on the redshift of a given source,
and we must hence also assign redshifts to our simulated
galaxies. We may also wish to emulate the tomographic
binning of galaxies along the line of sight, which is typical
of modern galaxy surveys for weak lensing. In wide-field
surveys, this is usually not done using the true, or at least
spectroscopically-measured, redshift, but a photometric
redshift estimate, and this additional source of uncer-
tainty should be taken into account as well. Besides,
there are not only observational, but also astrophysical
effects which subtly change the expected clustering or
weak lensing signal of galaxies, such as their intrinsic
alignment due to the influence of a common tidal field
from the large-scale structure of the universe.

While all of these are complex phenomena in their own
right, the fact that we are merely using galaxies as tracers
of other, hidden observables works greatly in our favour.
After all, if we are not interested in e.g. the shapes of
galaxies as such, but only in what they can tell us about
the two-point statistics of the weak lensing fields, then it
suffices to pick a simple model of the former, as long as
it accurately reproduces the latter.

In this section, we will therefore not spend too much
time on specific models of galaxy properties, but describe
in rather general terms how individual models can be
combined into a whole simulation.

5.1. Galaxy positions

To sample galaxy positions in a given shell i, we start
by constructing the HEALPix map of galaxy number
counts Ng

i,k. We parametrise Ng
i,k in a manner that is

similar to the matter density,

Ng
i,k = N̄g

i,k [1 + δg
i,k] , (58)

where N̄g
i the mean galaxy number in each HEALPix

pixel, and δg
i,k is a HEALPix map of the discretised

galaxy density contrast. While N̄g
i is a free parameter of

the simulated survey, the galaxy density contrast δg
i must

trace the realised large-scale structure of the simulation.
We therefore express δg

i as a function of the projected
matter density contrast δi of the shell using a generic
galaxy bias model Bg,

δg
i,k = Bg

(
δi,k
)
. (59)

The bias function Bg can in principle be arbitrarily com-
plicated, and depend not only on δi,k but also explicitly
on e.g. position, redshift, or tidal field (see e.g. Des-
jacques et al. 2018).5

The most common choice of bias model is a linear
bias δg = b(z) δ, where b(z) is a redshift-dependent bias
parameter. On linear scales, such a model is accurate
and well-motivated; besides, it makes theoretical com-
putation of the angular galaxy power spectra relatively

5 Since δi is the discretised field, any non-linear bias model will
also implicitly depend somewhat on the chosen shell boundaries,
matter weight functions, and resolution of the maps.
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Figure 7. Effective redshift distribution (blue) of the discret-
ised galaxy density contrast δgi for two representative populations
(black) with mean redshifts 〈zg〉 = 0.5 (top) and 〈zg〉 = 1.0 (bot-
tom). Vertical lines indicate the boundaries of matter shells with
constant thickness in comoving distance ∆dc = 150 Mpc.

straightforward. Because we apply the bias model (59) to
the integrated matter fields (2) in shells, we must trans-
late a continuous redshift-dependent bias parameter b(z)
into an effective bias parameter bi for shell i. For that,
we use a weighted mean,

bi =

∫
b(z)Wi(z) dz∫
Wi(z) dz

, (60)

where Wi is the matter weight function. The typical shell
size in redshift of our simulations is ∆z . 0.1, so that
the effective bias (60) is usually a good approximation.

Having obtained the galaxy number counts (58) from
the matter field and a bias model, we can further adjust
the resulting full-sky map Ng

i,k to account for observa-
tional details such as e.g. the survey footprint or varying
survey depth. We describe these effects using an optional
visibility map: Each number Ng

i,k is multiplied by a vis-
ibility value Vi,k between 0 and 1 that is the probability
of observing a galaxy in HEALPix pixel k for shell i.

With the final map of expected galaxy numbers Ng
i,k

constructed, we sample the realised number of galaxies
in each HEALPix pixel from some given distribution.
The Poisson distribution is commonly assumed, but any
other choice is possible. Finally, we pick for each galaxy
a uniformly random position inside its HEALPix pixel.
Overall, we thus obtain an observed galaxy distribution
that traces the large-scale structure of our simulation.

Because we sample galaxy positions from the discret-
ised galaxy density contrast δg

i , all galaxies in a given
shell i follow the same matter density field δi, given by
the projection (2). As far as the two-point statistics
are concerned, the effective redshift distribution of the
galaxies in shell i is therefore determined by the mat-
ter weight function Wi. This is shown in Figure 7 for
shells of size ∆dc = 150 Mpc in comoving distance, and
two representative Gaussian redshift distributions with
respective means z = 0.5 and z = 1.0 and the same
standard deviation σz = 0.125. Although the situation
is ostensibly similar to the lensing kernels in Figure 5, the
smaller size of the distributions compared to the shells
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Figure 8. The relative error in the angular power spectra for
the effective galaxy distribution of the discretised galaxy field, as
shown in Figure 7, for positions (blue) and lensing (orange). The
shaded area shows the standard deviation of a Gaussian field for
comparison.

results in relative errors at the per cent level in the an-
gular power spectra for the galaxy positions and lensing,
shown in Figure 8. However, this level of uncertainty in
the galaxy distribution is comparable to that achieved
by observations (Tanaka et al. 2018; Graham et al. 2018;
Euclid Collaboration et al. 2020; Hildebrandt et al. 2021;
Cordero et al. 2022), so that there is little real incentive
to push the errors down by decreasing the shell size. In
fact, the observational uncertainty means that we can
simply assume the discretised distribution in Figure 7 to
be the true redshift distribution of our simulated survey,
without introducing a significant disagreement between
simulations and observations. If we apply this strategy,
errors from the discretisation of the matter fields dis-
appear entirely in the galaxies sector, for both angular
clustering and weak lensing.

5.2. Galaxy redshifts

For the radial distribution of galaxies, we sample the
true redshift z of galaxies from a given redshift distribu-
tion dN/dz, with N the number density of galaxies as a
function of redshift. This is done separately within each
matter shell. Although the resulting galaxy redshifts will
follow the given distribution, they will not display any ra-
dial correlations on scales smaller than the matter shells.
The choice of redshift distribution is arbitrary, and could
be the actual distribution from a galaxy survey, or the
commonly used distribution of Smail et al. (1994) for
photometric surveys,

p(z) ∝ zα e−(z/z0)β , (61)

where z0 is related to the median redshift of the distri-
bution, while the exponents α and β are typically set
to 2 and 1.5, respectively (Amara & Réfrégier 2007).
We allow for multiple such redshift distributions to be
given, which might represent different samples or tracers
of large-scale structure.

We can additionally generate photometric galaxy red-
shifts zph by sampling from a conditional redshift dis-
tribution p(zph|z). For example, a redshift-dependent
Gaussian error with standard deviation σ(z) = σ0 (1+z),
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parametrised by the error σ0 at z = 0, has the conditional
distribution

p(zph|z) =
1

σ(z)
√

2π
exp
{
−1

2

(zph − z
σ(z)

)2}
, (62)

which is readily numerically sampled. If a more realistic
and tailored simulation is desired, any other conditional
distribution can be used in place of this simple model,
such as e.g. the empirical photometric redshift distribu-
tion of a given survey.

Finally, we note that both the true and the photomet-
ric redshift distributions do not have to coincide at all
with the matter shells, and can have arbitrary overlaps.

5.3. Galaxy shears

One of the main cosmological observables in galaxy
surveys is the shape of objects. It is quantified by the
ellipticity ε, which is complex-valued with components ε1
and ε2,

ε = ε1 + i ε2 . (63)

The simplest case is the ellipticity of an elliptical isophote
with axis ratio q, rotated by an angle φ against the local
coordinate frame,

ε =
1− q
1 + q

e2iφ . (64)

For extended surface brightness distributions, the ellipt-
icity is defined in terms of the second moments of the
distribution (see e.g. Schneider et al. 2006). It is strictly
true that |ε| ≤ 1, which follows immediately from (64)
for an elliptical isophote, and from positive definiteness
of the second moments in the general case.

The importance of the ellipticity ε for cosmology is
owed to the fact that it is a tracer of the so-called reduced
shear g, which is a complex-valued field that combines
the convergence κ and shear γ from weak gravitational
lensing,

g =
γ

1− κ
. (65)

Under the influence of a reduced shear g, the ellipticity ε
of a small source transforms as

ε 7→ ε+ g

1 + g∗ε
. (66)

It was shown by Seitz & Schneider (1997) that if the
unlensed galaxy ellipticity distribution is isotropic, i.e.
with no preferred direction, then the expectation of the
ellipticity ε equals the reduced shear g,

〈ε〉 = g . (67)

Although this result is often stated as an approximation
to first order in g (which it is not), it holds exactly for
any isotropic distribution of galaxy ellipticities. If we
only care for galaxy ellipticities as tracers of the weak
lensing field, we thus have the freedom to choose any
such distribution for our simulation.

A common choice is to sample the ellipticity compon-
ents ε1 and ε2 as independent normal random variates
with a given standard deviation σε in each component.
We present this model, as well as a related but improved
distribution, in Appendix C. For a more realistic ellipti-
city distribution, we can sample the galaxy shape e.g. as

a triaxial ellipsoid under a random viewing angle (Ryden
2004). In this way, it is also possible to include even more
subtle effects such as e.g. dust extinction and reddening,
which depend on the viewing angle of the galaxy (Padilla
& Strauss 2008).

For any chosen distribution, we sample an ellipticity
for each galaxy in a given shell i. We then interpolate
the convergence map κi and shear map γi at the galaxy
position. From these values, we compute the reduced
shear (65) and use the transformation law (66) to give
each galaxy an observed ellipticity under the effect of
weak lensing. As commonly done, we call the weakly-
lensed ellipticities the “galaxy shears”.

5.4. Intrinsic alignments

Galaxies systematically align with the overall large-
scale structure of the universe (for reviews, see Joachimi
et al. 2015; Kiessling et al. 2015; Kirk et al. 2015). This
effect breaks the assumed isotropy of the distribution of
galaxy shapes, and translates into correlations in the el-
lipticities between physically close galaxies. On the level
of two-point statistics, the result is a contamination of
the cosmic shear signal by so-called intrinsic alignments
(Heavens et al. 2000; King & Schneider 2002; Heymans
& Heavens 2003; Bridle & King 2007).

However, the fact that the signals from weak lensing
and intrinsic alignments are very similar can be exploited
for simulations (Hikage et al. 2019; Gatti et al. 2020;
Asgari et al. 2021; Jeffrey et al. 2021). If we adjust the
convergence κ from weak lensing to include an effective
contribution κIA from intrinsic alignments,

κ 7→ κ+ κIA , (68)

this is subsequently transformed into an effective shear
via (57), and the resulting reduced shear (65) imprints
the correlation due to intrinsic alignments onto the iso-
tropic galaxy ellipticities at the same time as the shear.6

To simulate intrinsic alignments in this manner, we
add κIA to our κ map before the galaxy ellipticities are
sampled (but after all simulation steps that require the
true convergence have passed).

To give a specific example, a widely used model to
obtain the effective convergence (68) is the Non-Linear
Alignment (NLA) model (Catelan et al. 2001; Hirata &
Seljak 2004; Bridle & King 2007). It proposes that the
shear signal coming from intrinsic alignments is propor-
tional to the projected tidal field and hence ultimately
to the matter density contrast δ. For a given shell i, we
compute the effective contribution κIA

i in (68) from the
projected matter field δi,

κIA
i (û)

= −AIA
C1 Ωm ρcr(z̄i)

D(z̄i)

(
1 + z̄i

1 + zIA

)η(z̄i)

δi(û) , (69)

where AIA is the intrinsic alignment amplitude, C1 is a
normalisation constant (Hirata & Seljak 2004), ρcr(z̄i)
is the mean critical matter density of the universe at a
representative redshift z̄i for shell i, D(z̄i) is the growth

6 We note that the effective κIA is constructed under the assump-
tion of a linear relation between convergence, shear, and galaxy
ellipticity, which only holds to linear order; see (65) and (66).
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Figure 9. Correlation coefficient Rijl for the angular matter power spectrum of shells with constant thickness ∆dc = 150 Mpc in comoving
distance. Shown are consecutive shells with j − i = 1 (top left) to j − i = 8 (bottom right). The colours indicate the effective redshift of
each shell from z = 0 to z = 2.

factor normalised to unity today, and η is the index of
a power law which describes the redshift dependence of
the intrinsic alignment strength relative to the tidal field
with respect to the pivot redshift zIA.

6. SIMULATING A WEAK LENSING GALAXY SURVEY

We have implemented the simulation steps of the pre-
vious sections in a new, publicly available computer code
called GLASS, the Generator for Large Scale Structure.
In this section, we use GLASS to demonstrate a simula-
tion that would be typical for a Stage 4 photometric weak
lensing galaxy survey such as Euclid, LSST, or Roman.

Our initial Figure 1 provides a high-level flowchart for
how GLASS simulates individual shells. In the matter
sector, we specify the shell boundaries and the matter
weight functions, from which the angular matter power
spectra are computed. For this example, we once again
use CAMB, without Limber’s approximation. A lognor-
mal matter field is subsequently sampled from the an-
gular matter power spectra, using a chosen number of
previous shells for correlations.

In the weak lensing sector, the matter weight functions
are used to compute the lensing weights (46). The lensing
weights and the matter field are then used to iteratively
compute the convergence field. If intrinsic alignments of
galaxies are being simulated, their effect is added to the
convergence field. Finally, the shear field is computed
from the convergence using a spherical harmonic trans-
form.

In the galaxies sector, the matter field is biased to
sample the random galaxy positions. Galaxy redshifts
are sampled directly from the provided source distribu-
tions. Galaxy ellipticities are sampled from a suitable
distribution. Positions and ellipticities then enter the
computation of the galaxy shears: The convergence and
shear fields are interpolated using the galaxy redshifts
and evaluated at the galaxy positions to produce the re-

duced shears, which is applied to the galaxy ellipticities
to produce the final galaxy shears.

The outcome of these steps is a typical galaxy cata-
logue with positions, redshifts, and shears, which can be
used for what is often called “3x2pt” analysis.

We will now carry out a simulation to validate these
results, which requires a number of user choices. The
first is the distribution of the matter shell boundaries,
and hence the size of the shells. Because the two-point
statistics of the matter field ultimately depend on phys-
ical distance, we generally choose matter shells with a
constant size in comoving distance. As shown in Sec-
tions 4 and 5, we obtain accurate results from the re-
spective approximations for lensing and galaxies when
the matter fields are discretised in shells of a constant
size of ∆dc = 150 Mpc in comoving distance. We there-
fore adopt this value here.

As explained in Section 3, we can then choose to only
keep a limited number of correlated matter shells in
memory over the course of the simulation, to reduce the
computational burden imposed by such thin shells. To
make an informed choice for said number, we quantify
the correlation of the matter fields between two shells i
and j by introducing the correlation coefficient Rijl of the
angular matter power spectra,

Rijl =
Cijl√
Ciil C

jj
l

. (70)

Angular power spectra are the (co)variances of the modes

of the spherical harmonic expansion, and Rijl is hence a
proper correlation coefficient in the usual sense: It takes
values between +1 and −1, with the former meaning per-
fect correlation, and the latter meaning perfect anticor-
relation. Figure 9 shows the correlation coefficient Rijl
for offsets j − i = 1, . . . , 8 in shells with ∆dc = 150 Mpc
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Figure 10. Mean relative error of the angular matter power spec-
tra from 200 realisations of a lognormal matter field. Shown are
three shells containing redshifts z with 0.47 ≤ z ≤ 0.52 (top),
1.00 ≤ z ≤ 1.06 (middle), and 1.95 ≤ z ≤ 2.05 (bottom). The
vertical line indicates the Nside parameter of the simulation. The
shaded area shows cosmic variance of the realisations.

at redshifts between 0 and 2. We see how the correla-
tion between shells scans through the three-dimensional
matter correlation function: On scales . 150 Mpc co-
moving, matter is largely positively correlated, which is
seen in adjacent shells. This is compensated by negative
correlation on larger scales, which is seen in the non-
neighbouring shells.

We now consult Figure 9 to find the number of matter
shells to correlate. If we wish to achieve per cent-level
accuracy in the matter sector at l ≈ 10, say, we find
that it suffices to keep five correlated shells in memory
over the entire redshift range, which is readily achievable
on standard computer hardware. This level of accuracy
is consistent with the lensing sector, shown in Figure 6,
and the galaxies sector, shown in Figure 8. We can there-
fore make simple and understandable choices about the
simulation parameters, based on the desired accuracy of
the results. Of course, the specific values we use depend
entirely on our adopted shell size of ∆dc = 150 Mpc.

To demonstrate that the realised matter field achieves
our stated accuracy, we create 200 simulations of lognor-
mal matter fields with angular modes up to l = 5 000
from HEALPix maps with Nside = 4 096. Figure 10
shows the mean relative error of the realised angular mat-
ter power spectra for three representative shells with red-
shifts near z = 0.5, z = 1.0, and z = 2.0. The achieved
error is well below the per cent level, which in turn is
well below the level of cosmic variance of the realisa-
tions. This level of accuracy in the recovered matter
fields is not currently attained by lognormal simulations
(Xavier et al. 2016), which shows that our Gaussian an-
gular power spectrum solver is working as intended.

Using the same 200 realisations, we also demonstrate
that the iterative computation of the convergence field
with the multi-plane formalism (45) achieves the desired
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Figure 11. Mean relative error of the angular power spectra of the
convergence from 200 realisations of a lognormal matter field with
five correlated shells (blue). Shown are source redshifts zs = 0.50
(top), zs = 1.03 (middle), and zs = 2.00 (bottom). Also shown is
the expected curve from Figure 6 for fully correlated shells (black).
The shaded area shows cosmic variance of the realisations.

accuracy. Figure 11 shows the mean relative error of the
realised angular power spectra for three source redshifts
near z = 0.5, z = 1.0, and z = 2.0. The realisations agree
with the theoretical predictions from Figure 6 up to the
point near l ≈ 10 where missing (anti-)correlations from
the uncorrelated shells become significant, according to
Figure 9. This missing negative correlation explains why,
for values of l . 10, the simulated convergences have
angular power spectra which lie above the expectations.
Overall, the results of Figure 11 hence show not only that
the multi-plane approximation for weak lensing holds,
but also that cross-correlations are correctly imprinted
on the matter fields.

As a final test, we simulate a catalogue of galaxies that
is typical for “3x2pt” analysis with tomographic redshift
bins. Since we are only interested in validation here,
we use two redshift bins with small but not insignificant
overlap, which is the case where cross-correlations are
most difficult to get right. In particular, we adopt the
discretised distribution of Figure 7 as the true galaxy dis-
tribution, so that we can expect there to be no effect due
to discretisation on our results. We generate 1 000 simu-
lations of galaxy positions, redshifts, and shears, using a
mean number density of 1 galaxy per square arcminute
in each tomographic bin. To be able to compute accur-
ate theoretical predictions for the results, we use a linear
galaxy bias with constant bias parameter b = 0.8. This
unrealistically low value b < 1 is necessary for accuracy
of the theory, not our simulations: If b > 1, the galaxy
density contrast δg = b δ can become less than −1 in
very underdense regions. We would have to clip such
unphysical values to −1 in our simulation, which effect-
ively renders the model non-linear, and deviates from the
assumed theory.

For every combination of galaxy positions and shears
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across the two bins, we then compare the realised an-
gular power spectra to theory. The results are shown in
Figures 12 and 13.7 For validation, we show shear signals
computed from the full-sky weak lensing maps, so that
we do not have to account for the effect of shot noise from
the galaxy positions, which is difficult to model theoretic-
ally at our intended level of accuracy. Another difficulty
is the reduced shear approximation (Krause & Hirata
2010; Deshpande et al. 2020): galaxies trace the reduced
shear (65), whereas theory codes in general only com-
pute the angular power spectrum of the convergence or
shear field. The difference between the two cases is read-
ily seen in our simulations, as shown in Figure 13. For
an accurate evaluation of our results, we must therefore
compare the shear, and not the reduced shear, with the
theoretical values computed by CAMB. Overall, we find
very good agreement at the sub-per cent level, in line
with our expectations.

7. DISCUSSION & CONCLUSIONS

We have introduced GLASS, the Generator for Large
Scale Structure, which is a public code for creating sim-
ulations of wide-field galaxy surveys, with a particular
focus on weak gravitational lensing. Our simulated light
cones are built as a series of nested matter shells around
the observer, iteratively sampled from a given statistical
distribution. If the matter field can be approximated as
uncorrelated beyond a certain length scale, which is a
fair approximation, our simulations can be carried out
with constant memory use. This allows us in principle
to simulate any number of matter shells, and therefore to
achieve a much higher resolution than currently possible
in both the radial and angular dimensions. As a result,
our method readily achieves per cent-level accuracy for
clustering and weak lensing two-point statistics for an-
gular mode numbers l & 3 000 and redshifts z & 2, which
are typical for Stage 4 photometric galaxy surveys.

A key part in that is a novel way to realise transformed
Gaussian random fields, such as e.g. lognormal fields,
with angular power spectra of a given angular range and
practically arbitrary accuracy and precision. Moreover,
we developed a scheme to compute the weak lensing con-
vergence field iteratively, using a multi-plane formalism
usually employed in strong gravitational lensing. The
accuracy of the weak lensing fields is essentially determ-
ined by the size of the matter shells, and can therefore
be controlled as necessary for a given simulation. The
situation is similar for angular galaxy clustering, which
is more sensitive to the relative resolution of the mat-
ter shells compared to the width of the galaxy redshift
distribution. Overall, the ability to increase the radial
resolution, and hence number of matter shells, without
quadratically increasing memory use, is therefore crucial.

GLASS is fast: the high-precision matter, galaxy clus-
tering, and lensing simulations we present take around 30
minutes wall-clock time each on standard 8-core comput-
ing nodes, including analysis of the results. Another be-
nefit of the iterative computation in shells is that results
are available for processing as soon as each new shell is

7 The position–shear signal is sometimes shown with a positive
sign when defined as “galaxy–galaxy lensing” in terms of tangential
and cross-components of the shear. The negative sign is consistent
with the spherical harmonic definition (57).

computed. Therefore, simulation and analysis pipelines
can be constructed in which no large amounts of data
(e.g. catalogues or maps) are ever written to disk. This
is particularly important since the speed and resource
efficiency of GLASS can lead to input and output be-
coming a limiting factor in such pipelines.

Our approach of a hybrid mix of statistical and phys-
ical models allows for simulations in which each indi-
vidual step is understandable, analysable, and extens-
ible, providing the simulator with control over the trade-
off between accuracy and speed/resource consumption.
The GLASS design is completely modular, and without
a “default mode” of operation; all models we present in
this work, including the most basic ones for matter and
lensing, are readily replaced or expanded. This makes
GLASS a well-suited tool for stress-testing and validat-
ing the processing and analysis pipelines of galaxy sur-
veys.

We demonstrated that the GLASS simulator matches
or exceeds the accuracy of our current analytic models
of the dark matter distribution (c.f. Euclid Collabora-
tion et al. 2019; Mead et al. 2021). Hence, simulation-
based inference of two-point statistics employing GLASS
will be at least as accurate as traditional analytic ap-
proaches, but offers a much more straightforward route
to addressing otherwise formidable analysis challenges,
such as non-Gaussian likelihoods, higher-order signal cor-
rections, complex galaxy sample selection, and spatially
varying survey properties, to name just a few. In forth-
coming work we will extend the GLASS approach to
also produce highly accurate higher-order statistics of
the matter distribution to enable their simultaneous in-
ference.
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APPENDIX

A. DISCRETE LEGENDRE TRANSFORM

The transformation (15) and (16) between angular power spectra and angular correlation functions is essentially the
Legendre expansion of the function C(θ). To compute it for inputs of finite length, we use a recursive algorithm, based
on the starting point for the algorithms of Alpert & Rokhlin (1991). The main idea is as follows. If a function f has
a finite Legendre expansion of the form

f(θ) =

n−1∑
l=0

al Pl(cos θ) , (A1)

then it also has a finite Fourier cosine expansion of the form

f(θ) =

n−1∑
k=0

bk cos(kθ) , (A2)

since Pl(cos θ) is a polynomial of degree l in cos θ. The coefficient vectors a = {a0, . . . , an−1} and b = {b0, . . . , bn−1}
are related as b = Ma, where the matrix M has entries

Mij =


1
π

Γ( j+1
2 )2

Γ( j+2
2 )2

if 0 = i ≤ j < n and j even,

2
π

Γ( j−i+1
2 ) Γ( j+i+1

2 )

Γ( j−i+2
2 ) Γ( j+i+2

2 )
if 0 < i ≤ j < n and i+ j even,

0 otherwise,

(A3)

and Γ is the gamma function. Conversely, if f has a finite Fourier cosine expansion (A2), then it also has a finite
Legendre expansion (A1), and the coefficient vectors are related as a = Lb, where the matrix L has entries

Lij =



1 if i = j = 0,

√
π

2

Γ( 2i+2
2 )

Γ( 2i+1
2 )

if 0 < i = j < n,

−j (i+ 1
2 )

(j+i+1) (j−i)
Γ( j−i−1

2 ) Γ( j+i2 )

Γ( j−i2 ) Γ( j+i+1
2 )

if 0 ≤ i < j < n and i+ j even,

0 otherwise.

(A4)

Since the transformation between coefficient vector b and function values f(θ) can be done efficiently with a Discrete
Cosine Transform (DCT), the Discrete Legendre Transform (DLT) reduces to a DCT and matrix multiplication a = Lb;
and the inverse DLT reduces to a matrix multiplication b = Ma and inverse DCT.

With fast algorithms for the DCT widely available, our task reduces to computing the matrix products with L
and M. Although the main result of Alpert & Rokhlin (1991) was an efficient algorithm for this purpose, here we use
a simple recurrence to compute Ma or Lb without explicitly constructing a large matrix. The recursive computation
does not have the same algorithmic complexity as the method proposed by Alpert & Rokhlin (1991), but is nevertheless
very fast due to its simplicity.
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The entries (A3) of M can alternatively be specified by the first two diagonal elements M00 = M11 = 1, from which
all subsequent diagonal elements Mii, i > 1, can be computed as

Mii =
(

1− 1

2i

)
Mi−1,i−1 . (A5)

The lower triangle of the matrix is identically zero. Above the diagonal, the values Mij for j > i can be computed as

Mij =
(

1− 1

j − i

)(
1− 1

j + i

)
Mi,j−2 . (A6)

The first off-diagonal and every other subsequent entry vanishes (i+ j odd).
The entries (A4) of L can be computed similarly by starting the diagonal with L00 = L11 = 1 and continuing as

Lii =
1

1− 1
2i

Li−1,i−1 . (A7)

The lower triangle is again zero, and the values Lij for j > i can be computed as

Lij =
(

1 +
2

j − 2

)(
1− 3

j − i

)(
1− 3

j + i+ 1

)
Li,j−2 . (A8)

As before, the first off-diagonal and every other subsequent entry vanishes (i+ j odd).

B. ITERATIVE MULTIVARIATE NORMAL RANDOM SAMPLING

Let xn+1 = {x1, . . . , xn+1} be a multivariate normal random vector of length n+1 with mean µn+1 = {µ1, . . . , µn+1}
and covariance matrix Σn+1. The vector xn of the first n variates is then a multivariate normal random vector with
mean µn and covariance matrix Σn, which is the leading n × n submatrix of Σn+1. Given a sample xn from its
marginal distribution, what is the conditional distribution of xn+1?

Of course, this is a classical problem with a well-known solution: Writing the covariance matrix Σn+1 in block
matrix form as

Σn+1 =

[
Σn cn
cTn σ2

n+1

]
, (B1)

the conditional distribution of xn+1 is normal with mean

µ̃n+1 = µn+1 + cTn Σ−1
n (xn − µn) (B2)

and variance
σ̃2
n+1 = σ2

n+1 − cTn Σ−1
n cn . (B3)

We can hence sample from a multivariate normal distribution by sampling each individual normal variate in turn,
using the conditional mean (B2) and variance (B3).

In fact, the entire sampling process can be performed iteratively. Let An be the Cholesky decomposition of Σ−1
n

such that Σ−1
n = AT

n An. We can write the conditional mean (B2) and variance (B3) as

µ̃n+1 = µn+1 + aTn yn , (B4)

σ̃2
n+1 = σ2

n+1 − aTn an , (B5)

where we have introduced vectors an = An cn and yn = An (xn − µn). Since AT
n An = Σ−1

n , the vector yn contains
the n standard normal random variates of the whitened given sample. It is updated by appending each new standard
normal variate yn+1 = (xn+1 − µ̃n+1)/σ̃n+1 as it is drawn,

yn+1 =

(
yn
yn+1

)
. (B6)

To obtain the conditional mean and variance, we therefore only have to compute the vector an explicitly. To do so,
we require An.

Writing the matrix Σn in block matrix form (B1), the inverse Σ−1
n can be computed using block matrix inversion,

and factorised as

Σ−1
n =

(
I −Σ−1

n−1 cn−1

0 I

) (
Σ−1
n−1 0
0 σ̃−2

n

) (
I 0

−cTn−1 Σ−1
n−1 I

)
, (B7)

where I and 0 are the identity and zero matrix, respectively, of the appropriate shape. Looking at (B7), the updating
rule for An is readily obtained,

An =

(
An−1 0

−σ̃−1
n aTn−1 An−1 σ̃−1

n

)
. (B8)



22 Tessore, Loureiro, Joachimi, von Wietersheim-Kramsta & Jeffrey

It is clear that An grows by one row and one column in each iteration, and is a lower triangular matrix for all n.
To sample xn+1 iteratively, we hence need to store the n standard normal variates yn and the n × n matrix An.

However, the storage requirements reduce from n to k if each new random variable xn+1 only correlates with the last k
random variates xn−k+1, . . . , xn. The covariance matrix Σn+1 is then a banded matrix, so that the vector cn has n−k
leading zeros. In block matrix form,

cn =

(
0
c̃n

)
, (B9)

where c̃n is the reduced vector of k non-zero correlations. The lower triangular matrix An can be written in block
matrix form as

An =

(
Un 0
Vn Ãn

)
, (B10)

where Ãn is the lower k × k block of An, with Un, Vn the remaining blocks. It follows that the vector an = An cn
will also have n− k leading zeros, since

an =

(
Un 0
Vn Ãn

) (
0
c̃n

)
=

(
0

Ãn c̃n

)
=

(
0
ãn

)
, (B11)

where ãn = Ãn c̃n is the non-zero part of an of length k. The conditional mean (B4) and variance (B5) can hence be
written

µ̃n+1 = µn+1 + ãTn ỹn , (B12)

σ̃2
n+1 = σ2

n+1 − ãTn ãn , (B13)

where ỹn is the reduced vector of the last k standard normal variates. Writing the update (B8) of the matrix An in
terms of reduced quantities,

An =

 Un−1 0 0
Vn−1 Ãn−1 0

−σ̃−1
n ãTn−1 Vn−1 −σ̃−1

n ãTn−1 Ãn−1 σ̃−1
n

 , (B14)

it is clear that only the lower k × k submatrix Ãn needs to be computed and stored. Its update can be written as(
· · · ·
... Ãn

)
=

(
Ãn−1 0

−σ̃−1
n ãTn−1 Ãn−1 σ̃−1

n

)
, (B15)

where the dots on the left-hand side indicate the first row and column, which can be discarded. Hence, for iterative
multivariate normal random sampling of k correlated variates, we only need to store k (k + 3)/2 numbers: the k

vector ỹn, and the k × k lower triangular matrix Ãn.

C. NORMAL DISTRIBUTIONS FOR GALAXY ELLIPTICITY

The galaxy ellipticity components ε1, ε2 are commonly sampled as bivariate normal random variates with zero mean,
variance σ2

ε in each component, and no correlation,

ε1, ε2 ∼ N (0, σ2
ε ) . (C1)

We call this the “extrinsic” normal distribution of ellipticities, because ε is treated here as a point in the Euclidean
plane, with no regard for e.g. the requirement that |ε| ≤ 1. To obtain valid ellipticities, we must reject samples
with |ε| > 1 explicitly after the fact.

It is also possible to define a normal distribution that produces valid ellipticities naturally. To do so, we first note
that the space of ellipticities is not the Euclidean plane but the hyperbolic plane; more specifically, the ellipticity ε
denotes a point in the Poincaré disc model of hyperbolic geometry (see e.g. Cannon et al. 1997). While this can be
shown rigorously (see e.g. Chapter 2.3 of Astala et al. 2009), here we will only point to the fact that the transformation
law (66) of weak lensing is precisely an isometric translation of the hyperbolic plane which maps the origin to g.

The hyperbolic plane is a Riemannian manifold, and we may therefore use the method of Pennec (2006) to define
an “intrinsic” normal distribution for ellipticities: It is the normal (in the statistical sense) distribution in normal (in
the differential-geometric sense) coordinates in the mean of the distribution. Since the mean of an isotropic ellipticity
distribution is necessarily zero, let η = η1 + i η2 be normal coordinates in the origin of the hyperbolic plane. Writing η
in polar representation,

η = |η| e2iφ , (C2)

the angle φ is the same as that of its associated ellipticity ε in (64), and the magnitude |η| is related to |ε| as

|η| = 2 atanh |ε| = −2 ln q . (C3)
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Figure C1. Relation between the standard deviations σε and ση
of the extrinsic and intrinsic normal distribution for ellipticity
(blue) and a fit by a rational function (dotted orange).
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Figure C2. Comparison of intrinsic normal and extrinsic normal
ellipticity distributions with standard deviation σε = 0.256 in each
component.

The intrinsic normal distribution for ellipticities can therefore be sampled straightforwardly by drawing uncorrelated
normal random variates η1, η2 instead of ε1, ε2,

η1, η2 ∼ N (0, σ2
η) , (C4)

where σ2
η is now the per-component variance in normal coordinates, and inverting the relation (C3) to convert the

normal coordinates back to the associated ellipticity ε.
The change of variable (C3) yields the probability distribution function p of the ellipticity magnitude |ε| under the

intrinsic normal distribution,

p(|ε|) =
4 e
− 2 atanh2 |ε|

σ2η atanh |ε|
σ2
η (1− |ε|2)

. (C5)

In particular, the resulting standard deviation σε for a given ση can be computed using (C5), which yields the relation
shown in Figure C1. A useful fit to the curve is

σ2
η ≈ σ2

ε

8 + 5σ2
ε

2− 4σ2
ε

, (C6)

which is good enough to match the intrinsic normal galaxy ellipticity distribution to data from a survey. A comparison
between the intrinsic normal and extrinsic normal distributions with σε = 0.256 is shown in Figure C2. The most
notable difference is the more realistic suppression of high ellipticities with |ε| > 0.8 in the intrinsic normal case.

Besides, there is also a computational advantage: The extrinsic normal distribution requires explicit rejection of
ellipticities with |ε| > 1, and hence repeated sampling, particularly when σ2

ε is large. The intrinsic normal distribution
accepts all samples for any value of the variance σ2

ε . Given the slightly more realistic shape of the distribution, as
well as the improved sampling efficiency, we can generally recommend the intrinsic normal distribution for galaxy
ellipticities, particularly when their numbers are large.
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