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How astrocytic ATP shapes neuronal activity and brain
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Abstract

Astrocytes play a key role in processing information at syn-
apses, by controlling synapse formation, modulating synapse
strength and terminating neurotransmitter action. They release
ATP to shape brain activity but it is unclear how, as astrocyte
processes contact many targets and ATP-mediated effects are
diverse and numerous. Here, | review recent studies showing
how astrocytic ATP modulates cellular mechanisms in nearby
neurons and glia in the grey and white matter, how it affects
signal transmission in these areas, and how it modulates
behavioural outputs. | attempt to provide a flowchart of astro-
cytic ATP signalling, showing that it tends to inhibit neural cir-
cuits to match energy demands.
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Introduction

Astrocyte networks spread over the whole brain, and
they are commonly known for their role in supporting
neurons: they maintain a steady environment by con-
trolling extracellular potassium concentration and by
removing neurotransmitters released at synapses, and
they control energy supply by regulating blood flow and
providing lactate to neurons [1]. They are ideally
organised to fulfil these tasks, as each astrocyte covers a
distinct volume and has many processes that potentially
contact all cell types at various subcellular localisations.
Astrocytes essentially do not overlap with other neigh-
bouring astrocytes, but neighbouring astrocytes are
connected with gap junctions which allow Ca®" waves to
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propagate [2]. More recently, there has been a broad
interest in the role of astrocytes in synaptic transmission,
in particular to understand how they actively participate
in brain information processing. Although it is becoming
evident that astrocytes are essential for regulating
cognition and behaviour [3—8], the cellular and molec-
ular mechanisms underlying these processes are unclear,
because astrocytes release several gliotransmitters such
as glutamate, 'y-aminobutyric acid (GABA), D-serine and
adenosine triphosphate (ATP), that act differently on
neuronal receptors expressed at sites responsible for
integrating and generating signals [9].

"To understand these signalling pathways, it is important
to dissect each of them separately. In this review, I will
focus on the role of a unique modulatory molecule, ATP,
which was originally known for its role in providing
energy to cells, and only many decades later was shown
to act as a transmitter in the brain [10]. It may prove to
be a challenging task to interpret experimental data
involving ATP’s general aspects as a modulatory mole-
cule because it is generated by, and thus can be released
by, any cell type and it targets many receptors that
trigger either opposite or redundant effects within the
purinergic receptor family or other types of receptors
[11,12]. Based on recent literature investigating astro-
cytic ATP signalling from the molecular to the behav-
ioural level, I will attempt to simplify astrocytic ATP-
mediated regulation of neuronal activity and its impact
on brain circuits and behavioural outputs, focusing on
advances in understanding the role of astrocytic ATP
near excitatory and inhibitory synapses, and near axons
in the grey and white matter. I will conclude by specu-
lating on how astrocytic ATP signalling may reshape
functional circuitry within and between brain areas
during different brain states and according to
energy status.

Influence of astrocytic ATP on synaptic
transmission

Influence on excitatory synapses

Astrocytes play an integral part in synaptic communi-
cation, as they interact with both the pre- and post-
synaptic compartments, forming the so-called “tri-
partite synapse” [13]. Their role in modulating excit-
atory synaptic gain has been widely documented [13].
ATP is released from astrocytes onto many targets via
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2 Metabolic underpinnings of normal and diseased neural function

membrane channels and Caz+—dependent €X0Cytosis
(see below and review [14]). ATP activates ionotropic
PZX and metabotropic P2Y receptors found at pre-
synaptic compartments to regulate glutamate release
[15,16] and at post-synaptic compartment can control
the function and the number of NMDA and AMPA re-
ceptors [17,18] (Figure 1a). ATP is converted by ecto-
ATPases into adenosine in the extracellular space.
Adenosine also modulates synaptic activity by activating
Al and A2a receptors expressed at glutamatergic syn-
apses. These receptors counterbalance each other’s ac-
tivity via changes in cAMP level (which is lowered by Al
and raised by A2a receptors) to regulate information
transmission at excitatory synapses [19—24], however
the dominant effect is a reduction of excitatory trans-
mission by presynaptic adenosine receptors [25,26].

Influence on inhibitory inputs

ATP/adenosine signalling at inhibitory (GABAergic)
neurons has been less studied than at their excitatory
counterparts, perhaps because the vast majority of neu-
rons and synapses (about 85%) are glutamatergic [27,28].
However, this should not detract from the potential
importance of AT P-mediated modulation of inhibition, as
inhibitory inputs in neural circuits are crucial for brain
computation [29]. It is therefore essential to understand
how astrocytic ATP affects inhibitory synapses. Only
recently, it was shown that ATP release from astrocytes,
via postsynaptic AIR activation at GABAergic synapses,
upregulates the inhibition mediated by somatostatin-
expressing (SST) interneurons onto pyramidal neurons
in the CA1 hippocampus and layer II/III visual cortex
[30,31] (but not the inhibition mediated by parvalbumin-
expressing (PV) interneurons [30]). Astrocyte-derived
ATP also upregulated cholecystokinin-expressing inter-
neuron activity in the hippocampal CA1 area, but not PV
interneuron activity, following P2Y1R activation and
subsequent K2P K" channel blockade [32]. Thus,
although still elusive, recent literature indicates that
astrocytic ATP wupregulates at least some inhibi-
tory inputs.

Impact on circuit output and behavioural
consequences

Tan et al. [32] showed that, while potentiating inhibi-
tory neurons as described above, astrocytic ATP
depressed the activity of excitatory pyramidal neurons
via A1Rs and subsequent opening of GIRK K channels.
Yet, it should be noted that this study used optogenetics
to induce Ca** activity at astrocytes, which is expected
to increase the extracellular KT concentration and
engender many non-specific effects [33]. A similar type
of regulation, where astrocyte-derived ATP acts in syn-
ergy to potentiate inhibitory neurons and depress
excitatory neurons, has also been described in the
amygdala. There, astrocytic ATP/adenosine depressed
excitatory synapses via A1R activation and enhanced

inhibitory synapses via A2aR activation, which reduced
fear expression in mice [34]. This differential regulation
may take place in other brain areas, as depression of
excitatory synapses via activation of A1Rs by astrocytic
ATP/adenosine is also observed in the nucleus accum-
bens, which is involved in the dopaminergic brain
reward system [35,36], and in the hypothalamic arcuate
nucleus, where astrocytic ATP inhibits AGRP neurons
via AIR or ATP-sensitive potassium (Kyrp) channel
activation, thereby dampening food intake [37—39]. In
sleep, the decrease in neuronal activity is also mediated
by A1Rs via astrocytic ATP release in the cortex and the
basal forebrain [40], and the disinhibition of sleep-
promoting GABAergic projection neurons via A1R acti-
vation in the ventrolateral preoptic nucleus may
contribute to this [41] (although unspecific optogenetic
stimulation of astrocytes was used here as well [33]).
Although A1R-mediated effects seem to be predomi-
nant (particularly at glutamatergic synapses), post-
synaptic A2aRs at inhibitory synapses may play an
important role during development, as these receptors
are transiently overexpressed to regulate the number of
active GABAergic synapses [42]. Thus, the expression of
purinergic receptors at synapses mainly dictates how
ATP/adenosine regulates synaptic transmission. Overall,
it appears that inhibition of neural circuits dominates
the effects mediated by astrocytic ATP across different
areas via: (1) inhibition of excitatory inputs via A1Rs and
(i1) activation of inhibitory inputs (although the pre-
dominant mechanisms mediating the latter remain un-
clear), thereby shaping various behavioural outputs [3].

Mechanisms potentiating astrocytic ATP
signalling

Local feedback mechanisms

ATP release from astrocytes is controlled by synaptic
activity, in mechanisms that also lead to a depression of
neuronal activity. Glutamate release from excitatory
neurons raises astrocytic Ca’t via mGluR2/3 glutamate
receptors expressed on the astrocytes [43]. Increasing
the activity of GABAergic neurons induces Ca®" tran-
sients via GABA, [44] and GABAg receptors expressed on
astrocytes [44—47], as well as via the astrocytic GABA
transporter GAT-3 which co-transports GABA and
Na T into astrocytes and thus in turn promotes Ca**
influx via Na*/Ca** exchange [30,47,48] and via Ca’™"
release-activated Ca®" (CRACQC) channels [49]. Interest-
ingly, Mariotti et al. showed that SST interneuron stim-
ulation raised astrocyte [Ca®"]; more robustly than PV
interneuron activity, indeed repetitive stimulation of PV
interneurons depressed astrocyte Ca*" rises while stim-
ulation of SST interneurons potentiated them due to the
release of somatostatin [46] (Figure 1b). Astrocytes
further support the inhibition of neuronal circuits via
paracrine and autocrine ATP signalling, as ATP released
by the same astrocytes or by nearby cells can raise astro-
cyte [Ca2+]i, and thus release more ATP. Astrocytes

Current Opinion in Neurobiology 2023, 79:102685

www.sciencedirect.com


www.sciencedirect.com/science/journal/09594388

ATP shapes neuronal activity Lezmy 3

Figure 1
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Cellular mechanisms and functions mediated by astrocytic ATP. Astrocyte (A) processes contact many targets, and release onto them ATP and
adenosine (Ado), resulting in an overall dampening of brain activity. They release ATP/adenosine onto excitatory synapses to reduce presynaptic
glutamate release and postsynaptic AMPA/NMDA currents, and enhance the internalisation of AMPA/NMDA receptors (inset a). Astrocytic release of ATP/
adenosine potentiates presynaptic GABA release and postsynaptic GABA currents in inhibitory synapses, particularly the ones formed by interneurons
(IN) expressing and releasing somatostatin (SST) (inset b). Astrocyte processes also interact with axons at sites of spike generation of excitatory py-
ramidal neurons (PN): at the axon initial segment, ATP/adenosine reduces the firing rate of highly active neurons (inset f), while at nodes of Ranvier it
slows down the axonal conduction speed, as it increases HCN currents at these sites (inset g). Effects mediated by astrocytic Ca®*-dependent ATP/
adenosine release are amplified by: (i) Ca®>* waves propagating between astrocytes linked by gap junctions, and via autoctine/paracrine astrocytic ATP
signalling enhancing [Ca®*]; rises (inset c); (i) astrocytic Ca*-dependent vasodilation, increasing glucose supply and thus ATP production by astrocytes
(inset d); (iii) interactions between astrocytes and microglia (M), as ATP attracts microglial processes expressing CD39 and CD73, enzymes that catalyse
adenosine production (inset e). Microglia contact synapses and sites of spike generation (insets a, b, f and g), although less commonly than astrocytes.
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express ionotropic P2X7 receptors [50], which facilitate
influx of Ca**, and metabotropic PZYRs that release Ca?t
from intracellular stores [14] (Figure 1c). Altogether,
these feedback mechanisms may serve to reinforce and
sustain inactivation of local circuits.

Participation of microglia

Another key player at synapses are microglia, the brain’s
main immune cells. They are known for pruning non-
functional synapses during development [51,52].
Although they are not considered an integral component
of the synaptic structure as much as astrocytes, their
highly motile processes may be recruited to the vicinity
of synapses in response to high neuronal activity. ATP
release from astrocytes can activate P2Y12Rs, the re-
ceptors in charge of microglial targeted motility to syn-
apses and neuronal somata [53—55]. As microglial
processes are recruited to the proximity of synapses,
they amplify the production of extracellular adenosine
because they express the ectonucleotidases CD39 and
CD73 on their membrane [56,57] (Figure 1e). Phar-
macological blockade of P2Y12R, CD39 and CD73
reduced neuronal inhibition induced by Al1Rs in the
striatum and the cortex [56]. This effect exacerbated
neuronal response to neurostimulants, implying that
microglia might be involved in preventing aberrant hy-
perexcitability or excitotoxicity rather than in processing
brain information per se. In line with these findings,
microglial deletion of P2Y12R increased the excitability
of hippocampal CA1 pyramidal neurons [58]. P2Y12
microglial knock-out also enhanced innate fear behav-
iour [58], consistent with the decrease in fear expres-
sion mediated by astrocytic Ca’*-derived ATP release in
the amygdala [34]. Thus, microglia may regulate ATP/
adenosine levels in the synaptic environment and
similarly near axons (see below).

Link between neuronal activity and brain energy
status

Astrocytic ATP release is tightly linked to brain energy
status. Blood vessels provide energy to the brain as
glucose and oxygen. Glucose is converted into ATP (via
glycolysis and mostly via oxidative phosphorylation in
mitochondria) that will be used for many intracellular
processes consuming energy. Blood supply and neuronal
activity are coupled, as ATP is in particular needed for
synaptic transmission which is highly demanding ener-
getically [59,60]. Astrocytes contact both synapses and
blood vessels at their end-feet, and are thus perfectly
suited to mediate neurovascular coupling [61]. Indeed,
ATP released at synapses during high neuronal activity
activates astrocytic P2X1Rs and raises [Caz+]i which
leads to the release of prostaglandin E2 on capillaries
and vasodilation via EP4 receptors, ultimately increasing
blood supply [62] (Figure 1d). In parallel, astrocytes, via
Ca®* rises, release ATP/adenosine onto synapses to
dampen neuronal activity in a negative feedback

manner. When the brain is energy-deprived, intracellular
adenosine accumulates as ATP production is limited,
and equilibrative nucleoside transporters (ENT) release
adenosine from the cells driven by the concentration
gradient of adenosine [63] (adenosine’s extracellular
concentration can rise 100-fold in an ischaemic brain
[64]). Thus, the energy status molecules ATP and
adenosine secreted by astrocytes may be able to adjust
blood supply to power neuronal activity, and vice versa
(i.e., astrocytes may be able to adjust neuronal activity
to regulate blood supply). Microglial recruitment to
synapses might contribute to this because microglial
contacts with neurons increase when the activity of
neuronal mitochondria is high [55]. By supplying
glucose and oxygen, and thus ATP to brain areas, blood
vessels do not only provide the main substrates for
energy supply but also allow generation of two crucial
modulators of neuronal activity (ATP and adenosine).

Influence of astrocytic ATP on axonal
conduction

Astrocytes have mainly been investigated for their impact
on synapses, but, as they cover all the areas of the brain,
their processes contact other subcellular structures. The
axon initial segment (AIS), where action potentials are
generated, is an area prone to extrinsic modulation by
externally-released molecules [65—67]. A2a receptor
activation at the AIS of cortical layer V pyramidal neu-
rons, via astrocyte Ca”" rises, prevented high-frequency
firing in response to robust stimulations [68]
(Figure 1f). In another study, P2X7 receptor activity
disrupted the AIS structure and reduced the excitability
of pyramidal CA3 hippocampal neurons and layer V
cortical neurons [69], although it is unclear whether the
effect was mediated by P2X7 receptors on neurons, or at
least partially via P2X7 receptors on astrocytes, which
would raise astrocytic Ca®" levels and in turn release
ATP/adenosine [50]. ATP and adenosine released by as-
trocytes may also regulate signal propagation along axons.
Astrocyte Ca®" rises near unmyelinated axons of hippo-
campal CA3 pyramidal neurons broadened the action
potentials and strengthened downstream synaptic trans-
mission [70]. This was mediated by glutamate release
and depolarisation of the axonal membrane via AMPA
receptor activation. However, intriguingly, blocking
axonal Al receptors mimicked the glutamate-evoked ef-
fects in an independent manner, implying that basal
adenosine levels were sufficient to dampen axonal
excitability and the generation of downstream excitatory
post-synaptic currents (EPSCs).

Astrocytes are found in abundance in the white matter,
which constitutes half of the human brain and where
synapses are mainly lacking. Although astrocytes were
found decades ago in the vicinity of myelinated axons, in
particular contacting nodes of Ranvier [71] (where action
potentials are regenerated along myelinated axons), their
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impact on axonal propagation has been surprisingly
understudied. A cellular mechanism was recently discov-
ered by which, as near the AIS, astrocyte release of ATP/
adenosine onto nodes of Ranvier activated A2a receptors.
"This raised the cAMP concentration and depolarised the
nodal membrane by activating HCN (Ih) channels, thus
reducing the conduction speed of myelinated axons
extending from layer V pyramidal neurons [68]
(Figure 1g). This modulation may not occur along axons
extending from inhibitory neurons [68]. The node of
Ranvier and AIS are also contacted by microglia, which
might contribute to rises in local adenosine levels, as near
synapses. Thus, although its role is still elusive, astrocytic
ATP release along axons in the white matter may share
similarities with its effects at synapses in the grey matter,
in that it regulates neuronal excitability and signal trans-
mission, promoting depression of brain activity.

Why is astrocyte-mediated ATP signalling
needed?

What are the advantages of regulating neuronal net-
works via astrocytic ATP/adenosine signalling? In

Figure 2
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appearance, it offers much less specificity as ATP and
adenosine can be potentially released by all the cells and
target many receptors which mediate various effects, in
contrast to the much more defined roles of molecules
that can similarly modulate neuronal activity, such as
GABA and glutamate. In addition, astrocytic secretion is
more diffuse, likely to target many cells and many re-
ceptor types concurrently, in contrast to the confined
release of transmitters from presynaptic terminals
within synaptic clefts. Additionally, the astrocyte
network does not provide much sophistication in its
function since these cells are not as spatially polarised as
neurons. The power of the astrocyte network may in fact
lie in this apparent functional crudeness. Calcium
transients in a single astrocyte process affect the func-
tion of nearby structures (e.g. a few synapses or a few
nodes of Ranvier), while a robust calcium rise would
rather lead to ATP/adenosine secretion near all the
structures the astrocyte contacts (e.g., a single astrocyte
can contact about 140,000 synapses on different neurons
[72], many nodes of Ranvier on different axons, many
AlSs, and blood capillaries). Astrocytes are linked by gap
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Perspective on how astrocytic ATP may shape neural circuitry and behavioural outputs. Depending on the energy status of the brain, and thus on
the level of astrocyte-mediated ATP/adenosine, a defined input is expected to promote different behavioural outputs. When the brain energy need is low
(leff), ATP/adenosine-mediated concentration is low, and outputs will promote the completion of cognitive tasks. When the brain energy need is high

(right), ATP/adenosine concentration accumulates via feedback mechanisms described in this review, and outputs will promote behaviour linked to food-
seeking or resting. Therefore, astrocytic ATP reshape neural circuitry functionally by providing a different “context” to a received input, thereby matching

behaviour linked to arousal to brain energy demands.
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junctions via connexin 30 and connexin 43 [2], so that
Ca’" waves can propagate long distances in the brain
(travelling hundreds of microns in cell cultures,
although conclusive data  vivo on whether astrocytic
Ca”*" waves occur and on how far they propagate is still
lacking) [73—75]. By these means, astrocytes may syn-
chronise neuronal activity locally and across different
brain areas. Thus, although brain computation is unar-
guably complex, the astrocyte network via ATP/adeno-
sine signalling offers a relatively straightforward solution
to orchestrate brain neuronal activity and couple it to
brain energy status.

The slow rate of astrocytic ATP signalling implies that it
does not act to resolve the immediate demands of the
brain. While synaptic transmission and spike generation
at the AIS and nodes occur within a few milliseconds,
mechanisms mediated by astrocyte Ca** occur in sec-
onds to minutes (although calcium transients in astro-
cytic microdomains can occur faster [76]). The
interconversion of ATP and adenosine, the lack of re-
striction to spatially constrained domains (as opposed to
synaptic release) and most effects being mediated by
intracellular signalling cascades downstream to metab-
otropic receptor activation further accentuate the slow
timescale of these mechanisms. In regard to regulation
across different areas, the time delays between neuron-
neuron and astrocyte-neuron communication will be
even more pronounced: the propagation speed of
intercellular Ca?t waves in astrocytes ranges between
10 and 60 um/s [73,75], about 10’ times slower than the
conduction speed along myelinated axons in the brain’s
white matter (about 3 m/s [77]). Assuming that an
neuronal EPSC and astrocytic Ca’" transient occur
together at a synapse, the evoked action potential would
reach a node of Ranvier located one centimetre down
the axon in 3 ms (for a speed of 3 m/s), while the Ca’*
wave would reach the same node up to 5.5 min later (for
a speed of 30 Um/s) (assuming that astrocyte processes
run parallel to myelinated axon [68]). Some areas in the
human brain are several centimetres distant, thus ATP
released during astrocyte Ca** waves does not provide a
solution for fast information processing, but it is likely to
be involved in slower mechanisms such as those con-
trolling food intake and sleep. Adenosine levels build up
with extended wake time and with energy deprivation
[40,64,78]. During sleep, transitions from non-REM to
REM sleep characterised by different neuronal activities
and oscillatory patterns are linked to changes in astro-
cytic ATP levels [74,79,80]. Food deprivation decreases
ATP use and AMPAR currents, thereby impairing coding
precision in the visual cortex [81]. Thus, during states
reflecting brain energy status, information processing in
the brain is altered. Indeed, cognitive tasks and behav-
ioural outputs are generally affected when one experi-
ences tiredness or hunger. Gradually, increasing ATP or
adenosine levels and their effects mediated via feedback
mechanisms described above will alter the functional

circuitry and the behavioural outputs in response to a
defined stimulus (Figure 2). This may have evolved as a
way to match behaviour linked to arousal to brain energy
needs (for example by prioritising food-seeking or
resting over cognitive tasks).

Conclusions

Astrocyte control of brain activity by ATP provides a
different “context” to areceived input and will in practice
reshape the neural circuitry functionally. Thus, the ATP-
mediated effects discussed above will need to be taken
into consideration when exploring brain circuity and
related behaviours. Astrocyte ATP signalling acts, asarule
of thumb, as a local inhibitor of neural networks, which
can expand its repressive actions to distant brain areas.
Astrocytic ATP and adenosine signalling at synapses has
been widely studied and, as it was also demonstrated to
be crucial in tuning the information flowing along axons,
it will be important in future studies to understand how it
orchestrates brain activity as a whole.
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