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Do environmental effects indexed by parental genetic variation
influence common psychiatric symptoms in childhood?
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Parental genes may indirectly influence offspring psychiatric outcomes through the environment that parents create for their
children. These indirect genetic effects, also known as genetic nurture, could explain individual differences in common internalising
and externalising psychiatric symptoms during childhood. Advanced statistical genetic methods leverage data from families to
estimate the overall contribution of parental genetic nurture effects. This study included up to 10,499 children, 5990 mother–child
pairs, and 6,222 father–child pairs from the Norwegian Mother Father and Child Study. Genome-based restricted maximum
likelihood (GREML) models were applied using software packages GCTA and M-GCTA to estimate variance in maternally reported
depressive, disruptive, and attention-deficit hyperactivity disorder (ADHD) symptoms in 8-year-olds that was explained by direct
offspring genetic effects and maternal or paternal genetic nurture. There was no strong evidence of genetic nurture in this sample,
although a suggestive paternal genetic nurture effect on offspring depressive symptoms (variance explained (V)= 0.098, standard
error (SE)= 0.057) and a suggestive maternal genetic nurture effect on ADHD symptoms (V= 0.084, SE= 0.058) was observed. The
results indicate that parental genetic nurture effects could be of some relevance in explaining individual differences in childhood
psychiatric symptoms. However, robustly estimating their contribution is a challenge for researchers given the current paucity of
large-scale samples of genotyped families with information on childhood psychiatric outcomes.
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INTRODUCTION
Psychiatric symptoms in children are often linked to parental
characteristics [1–5], but these intergenerational associations are
not necessarily causal with the parental characteristics having a
direct effect on the offspring symptoms. As parents and children
share both genes and environment, parent-offspring associations
may be explained by genetic as well as environmental factors [6].
Insight into genetic versus environmental mechanisms of inter-
generational transmission and their respective impact on indivi-
dual differences in children’s psychiatric traits is important to
provide families and healthcare providers with adequate informa-
tion about the aetiology of children’s symptoms and for the
development of interventions targeting modifiable factors.
The most common types of psychiatric difficulties experienced

during childhood are inward-focused internalising traits charac-
terised by negative affect, such as depression or anxiety, as well as

outward-focused externalising traits such as disruptive behaviours
or attention-deficit hyperactivity disorder (ADHD) symptoms
characterised by poor impulse control or inattention [7]. Evidence
from twin studies, which help to differentiate the contribution of
genetic and environmental influences to variation in traits, shows
that large proportions of variance (40–80%) in these internalising
and externalising traits during childhood is explained by genetic
factors [8, 9]. This suggests that genetic transmission is a key factor
in explaining associations between parental characteristics and
these childhood psychiatric symptoms. Twin studies also provide
some hints on parental contributions through the environment.
For instance, the shared environment, reflecting all aspects of the
common environment experienced by children in the same family
(including parental effects), explains a proportion of individual
differences in internalising and externalising traits in primary
school aged children [10, 11]. However, this effect may include
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other (i.e., non-parental) aspects of the environment and
additionally, parental factors may also influence children through
the environment that is not shared between siblings. This
challenge in assessing the overall importance of parental
contributions can now be addressed through the use of novel
family-based genetic designs.
Family-based genetic designs can leverage DNA variation from

parents and children to study the overall impact of heritable
parental traits on an offspring phenotype. This effect, in which
parental genetic variation may influence offspring outcomes
through the environment that parents create for their children, is
referred to as an indirect genetic effect or genetic nurture [12, 13].
Current family-based genetic designs use the most common type
of DNA sequence variation, known as single nucleotide poly-
morphisms (SNPs), to study the overall impact of genetic nurture
on an offspring trait by modelling the cumulative effect of millions
of parental SNPs on offspring behaviour [14–16]. This technique
does not involve the study of measured parental behaviours, but
examines the effect of parental genetic variants as a proxy for the
parentally provided environment. Designs that estimate the
overall effect of genetic nurture in this way include molecular
genetics technique known as genome-based restricted maximum
likelihood (GREML) estimation. The standard GREML approach
estimates variance in a given trait that trait that is explained by
common genetic variation (i.e., SNP-based heritability). This is
done by exploring whether unrelated individuals that are more
similar genetically also show more phenotypic similarity [17].
Extended GREML designs include both offspring and parental
genotype in the same model to estimate direct and indirect
genetic effects on a phenotype [14–16]. In other words, this
analysis allows the partition of variance into the effect of the
offspring’s genotype (direct genetic effect), the effect of the
parent’s genotype (indirect genetic effect, i.e., genetic nurture),
and the effect of the covariance between the two. The covariance
term reflects the contribution of genes present in both the parent
and offspring. This effect corresponds to a passive gene-
environment correlation, when parents pass on both trait-
associated genes and environment to the child [18]. Hence,
extended GREML models also offer a way of estimating the
contribution of at least a part of the gene-environment correlation
that explains individual differences in offspring traits.
Given the recent development and the data requirements of

these types of analyses, the application of GREML models to study
genetic nurture effects on common childhood psychiatric
symptoms is scarce, with only three publications to date. Our
previous work used an extended GREML method called maternal-
effects genome-wide complex trait analysis (M-GCTA) [15] to
separately model maternal and paternal genetic nurture effects on
depressive and anxiety symptoms in 8-year-olds from the
Norwegian Mother Father and Child cohort study (MoBa), a
population-based sample with an extensive, and growing, number
of genotyped families. We found non-significant but suggestive
maternal and paternal genetic nurturing effects on offspring
depressive, but not anxiety, symptoms [19]. Two subsequent
studies performed in the same cohort used other GREML methods
(described in detail elsewhere) [15, 16] to estimate parental effects
on childhood internalising traits [20] and externalising traits [21].
These studies, based on a newer MoBa data release with
additional participants, found evidence of combined parental
effects on childhood depressive symptoms, as well as inattention,
hyperactivity and conduct problems, but not anxiety or opposi-
tional defiant behaviour [20, 21]. The latter study did not detect
meaningful distinctions between maternal and paternal effects on
childhood externalising traits using trio-GCTA [21], while the
earlier study could not distinguish between maternal and paternal
effects on internalising traits using the Relatedness Disequilibrium
Regression (RDR) approach [20]. This highlights a key difference
between extended GREML methods, in that RDR only estimates a

combined parental effect, while M-GCTA and trio-GCTA can model
individual parental effects, either in separate maternal and
paternal models (M-GCTA) or a joint model (trio-GCTA) [15, 16, 22].
The current study uses the M-GCTA approach to investigate

maternal and paternal genetic nurture effects on common
childhood psychiatric symptoms. We consider maternal and
paternal effects separately as there may be differences in parental
effects depending on the sex of the parent. An advantage of the
M-GCTA approach is that it can estimate individual parental
effects while carrying a lower burden for sample size requirements
by estimating fewer parameters in a single model than trio-GCTA.
We extend our previous work by examining direct and indirect
genetic effects on externalising traits, in addition to internalising
symptoms, in a larger dataset of genotyped families in MoBa.
More specifically, we focus on depressive, disruptive, and ADHD
symptoms which represent the most common psychiatric
disorders experienced during childhood [7]. As no strong evidence
of genetic nurture effects on anxiety has been indicated in
previous literature [19, 20], we excluded anxiety from this study.
We discuss and compare the results of our M-GCTA models in
relation to other GREML-based methods and provide recommen-
dations for future research estimating genetic nurture effects on
childhood psychiatric traits.

METHODS
Sample
The Norwegian Mother, Father and Child Cohort Study (MoBa) is a
population-based pregnancy cohort study conducted by the Norwegian
Institute of Public Health. Pregnant women were recruited from all over
Norway from 1999-2008 [23]. The women consented to participation in
41% of the pregnancies. The cohort now includes 114,500 children, 95,200
mothers and 75,200 fathers [24]. After birth, information on offspring
outcomes was gathered through parental questionnaires at regular follow-
up intervals. Parent and infant DNA samples were collected at birth and
stored in a biobank [25]. Of these, genotyped data from 98,110 individuals
comprised of ~33,000 trios (mothers, fathers and offspring) is currently
available in MoBa Genetics. The current study is restricted to a subset of
this sample consisting of 14,064 unique individuals in the offspring
generation, for whom data on psychiatric symptoms was also available.
This was linked to parental genotype data from 13,690 mothers and 13,299
fathers.
The establishment and data collection in MoBa is based on regulations

related to the Norwegian Health Registry Act. The current study was
approved by The Regional Committee for Medical Research Ethics (REK
2013/863) and is based on version 11 of the quality-assured data files
released for research in 2018.

Measures
The outcome measures were maternally rated depressive, disruptive, and
ADHD symptoms in 8-year-olds. Depressive symptoms were measured
using the parent version of the Short Mood and Feelings Questionnaire
(SMFQ) [26]. The 13-item scale is based on DSM-III-R criteria for depression,
and consists of a series of descriptive phrases regarding the child’s recent
feelings and behaviours that were rated on a 3-point Likert scale. Example
items include ‘felt miserable or unhappy’ and ‘didn’t enjoy anything at all’.
The externalising traits (disruptive and ADHD symptoms) were measured
using the Parent/Teacher Rating Scale for Disruptive Behaviour Disorder
(RS-DBD) which relates to DSM-III-R criteria for oppositional defiant
disorder, conduct disorder, and ADHD [27]. As conduct disorder and
oppositional defiant disorder are both disruptive disorders that are
characterised by children acting out against other children or adults
through defiant behaviours, we combined the oppositional defiant and
conduct disorder subscales of the RS-DBD, consisting of 8 items each, to
measure overall disruptive symptoms. Example items include ‘deliberately
annoys people’ and ‘argues with adults’ for the oppositional defiant
subscale and ‘bullies, threatens or intimidates others’ and ‘initiates physical
fights’ for the conduct disorder subscale. The attention-deficit hyperactivity
disorder (ADHD) subscale of the RS-DBD, consisting of 18 items, was used
to measure ADHD symptoms, characterised by inattention and hyper-
activity. Example items include ‘has difficulty sustaining attention in tasks
or play activities’ and ‘talks excessively’. All RSD-BD items were rated on a
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4-point Likert scales. Childhood depressive, disruptive, and ADHD
symptom scores were calculated with maximum allowed missingness of
two items for the SMFQ, three items for the RD-DBD disruptive scale and
four items for the RS-DBD ADHD subscale. Missing items were imputed
with the mean of the non-missing responses.

Genotyping
The current release of the MoBa Genetics dataset consists of ~33,000 trios
who were genotyped as part of a collaborative research effort, consisting
of four major research projects. Genotyping, quality control and
imputation procedures were performed separately for each subproject
according to standard practices and are described in detail elsewhere
(https://github.com/folkehelseinstituttet/mobagen). After imputation of
missing genotypes, all datasets were merged to create the MoBa Genetics
dataset. Using this dataset as the starting point, we conducted post-
imputation quality control to select high-quality SNPs for analysis. SNPs
were selected if they met the following standard criteria: Hardy-Weinberg
equilibrium p < 1 × 10−6, 90% genotyping rate, minor allele frequency >
0.05, high imputation quality (INFO score > 0.9 on average across batches),
non-multiallelic, and non-duplicated. 5.1 million SNPs were retained for
subsequent analysis. All analyses were performed on the core ethnic
sample, consisting of individuals of European ancestry who form 95% of
the study population with genotypes currently available [28].

Statistical analyses
To first obtain estimates of the variance in childhood psychiatric symptoms
explained by offspring genotype without correcting for parental genotypes
(offspring model), the GCTA software package was used [17]. A genomic
relatedness matrix (GRM) was constructed to index genetic similarity
between the 14,064 genotyped offspring in the dataset. Based on this
GRM, a correlation cut-off threshold of 0.025 was applied to exclude
excessive relatedness, as the presence of closely related individuals can
bias variance estimates. This resulted in a reduced sample size of up to
10,499 individuals. A GREML model was run in GCTA to estimate variance
in offspring depressive, disruptive and ADHD symptoms explained by
offspring genetic variants (Vo).
The M-GCTA software package [22] implements extended GREML

models to estimate variance in offspring phenotype that is explained by
direct offspring genetic effects, genetic nurture and gene-environment
correlation. As M-GCTA estimates maternal and paternal effects in separate
models, the overall genotyped dataset was first split into separate
mother–child and father–child datasets using Plink 1.96 [29]. Using the
mother–child dataset, M-GCTA was then used to construct multiple GRMs
indexing genetic similarity between: (1) individuals within the offspring
generation, (2) individuals within the maternal generation, and (3)
unrelated mother-child pairs (i.e., offspring from X family and mother

from Y family). The same, but for fathers, was repeated for individuals in
the father–child dataset. A correlation cut-off threshold of 0.025 was
applied using each of the constructed GRMs to exclude excessive
relatedness within the offspring generation, the parental generation, and
between unrelated pairs across the generations in the mother–child and
father–child datasets. After this step, 5,990 pairs in the mother–child
and 6222 pairs in the father–child dataset were retained.
Using the mother–child dataset (maternal model), extended GREML

analyses were carried out in M-GCTA to estimate the proportion of
variance in childhood depressive, disruptive and ADHD symptoms that was
explained by offspring genotype (Vo; corrected for maternal genetic
nurture effect), maternal genotype (Vm i.e., maternal genetic nurture) and
the covariance between offspring and maternal genotypes (Vom i.e.,
passive gene-environment correlation between offspring genetic effects
and maternal genetic nurture). To test for significance, the full model was
compared to a model that only estimated the effect of offspring genotype.
The analyses were repeated using the father–child dataset (paternal
model) to estimate the variance explained by offspring genotype (Vo;
corrected for paternal genetic nurture effect), paternal genotype (Vf i.e.,
paternal genetic nurture) and the covariance between offspring and
paternal genotypes (Vof i.e., passive gene-environment correlation
between offspring genetic effects and paternal genetic nurture).
The following covariates were regressed out of the outcomes in all

analyses: child sex (to account for differences between males and females
in the average scores of the outcome phenotypes), genotyping batch and
ten genetic principal components based on offspring genotype (to correct
for population structure).

RESULTS
The overall sample of children had a mean age of 8.08 with a
standard deviation (SD) of 0.67. There were slightly more boys
(52%) than girls in this study. The mean SMFQ score for depressive
symptoms was 14.85 (SD= 2.45) and the scores ranged from 13 to
36. The mean RS-DBD score for disruptive symptoms was 20.28
(SD= 4.28) and the range was from 16 to 53. The mean score RS-
DBD score for ADHD symptoms was 26.72 (SD= 7.61) and the
range was from 18 to 72. Sex differences in all scales were
observed, with boys scoring slightly higher than girls (p= 0.004
for depressive symptoms, p < 0.001 for disruptive and ADHD
symptoms). Moderate correlations between symptom scores were
observed; depressive symptoms were correlated with disruptive
symptoms (r= 0.52, p < 0.001) and ADHD symptoms (r= 0.53,
p < 0.001), which in turn were also correlated with each other
(r= 0.59, p < 0.001).

Table 1. Estimates of variance explained, standard errors, and sample sizes of the fitted models.

Vo (SE) Vm/f (SE) Vom/of (SE) G (SE) logL p N

Depressive symptoms

Offspring model 0.053 (0.027) – – 0.053 (0.027) −5250.08 0.021 10475

Maternal model 0.002 (0.057) 0.029 (0.060) 0.076 (0.045) 0.107 (0.064) −2828.09 0.312 5964

Paternal model 0.074 (0.059) 0.098 (0.057) 0.000 (0.044) 0.172 (0.062) −2932.84 0.181 6184

Disruptive symptoms

Offspring model 0.029 (0.026) – – 0.030 (0.027) −5111.40 0.128 10493

Maternal model 0.029 (0.060) 0.041 (0.060) 0.000 (0.047) 0.070 (0.064) −2750.72 0.263 5966

Paternal model 0.087 (0.061) 0.019 (0.058) 0.001 (0.047) 0.108 (0.063) −2718.52 0.369 6196

ADHD symptoms

Offspring model 0.101 (0.029) – – 0.102 (0.029) −5215.83 <0.001 10499

Maternal model 0.063 (0.060) 0.084 (0.058) 0.000 (0.048) 0.155 (0.065) −2737.43 0.069 5972

Paternal model 0.000 (0.056) 0.000 (0.058) 0.038 (0.045) 0.038 (0.060) −2833.18 0.500 6204

Vo= variance explained by offspring genetic effects, Vm/f= variance explained by maternal or paternal genetic nurture, Vom/of= variance explained by a
passive gene-environment correlation between offspring genetic effects and maternal or paternal genetic nurture, G= variance explained by combined direct
and indirect genetic effects, SE= standard error, logL= log-likelihood value, p= p-value, N= sample size.
Note: the offspring model estimating standard SNP-based heritability was implemented in GCTA, and maternal and paternal models were implemented in
M-GCTA.
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GREML models
Full results for the offspring, maternal and paternal GREML models
are presented in Table 1.
The offspring models estimated variance in childhood psychia-

tric symptoms explained by the child’s own genotype, without
correcting for parental genotype. In these models, offspring
genetic effects explained 5% of variance in their depressive
symptoms (95% confidence interval (CI)= 0.008–11%), 3% of
variance in their disruptive symptoms (95% CI=−2–8%), and 10%
of variance in ADHD symptoms (95% CI= 4–16%).
The maternal and paternal models estimated variance in

childhood psychiatric symptoms explained by direct genetic
effects, maternal or paternal genetic nurture, and the covariance
between offspring and maternal or paternal genetic effects. After
correcting for maternal or paternal genetic nurture effects,
variance explained by direct effects of offspring’s own genetic
effects varied, with inconsistent estimates and wider confidence
intervals (Table 1; maternal and paternal models). There was no
strong evidence of maternal or paternal genetic nurture effects on
childhood psychiatric behaviours. However, estimates for paternal
genetic nurture effects on offspring depressive symptoms (10%,
95% CI=−1–21%) and maternal genetic nurture effects on
offspring ADHD symptoms (8%, 95% % CI=−3–20%) were higher
than others and could point to suggestive genetic nurture effects
that might be different from zero with more power.
As genetic nurture effects were not robust, with large

confidence intervals overlapping zero, we cannot meaningfully
interpret the observed covariances between offspring genetic
effects and parental genetic nurture estimates.

DISCUSSION
This study utilised parent and offspring genotypic data to estimate
maternal and paternal genetic nurture effects on depressive,
disruptive, and ADHD symptoms in 8-year-olds within a large
population-based Norwegian sample. Although no strong evi-
dence of genetic nurture emerged, there was some indication of a
paternal genetic nurture effect on offspring depressive symptoms
and a maternal genetic nurture effect on ADHD symptoms which
could be different from zero with more power.
We estimated maternal and paternal genetic nurture effects on

childhood psychiatric symptoms using the M-GCTA approach. To
gauge whether our findings are likely to reflect genuine genetic
nurture effects or be spurious, it is useful to compare our results to
existing publications using M-GCTA and other GREML methods to
investigate genetic nurture effects on childhood internalising and
externalising traits in the MoBa cohort. In doing so, we first note
that despite using the same dataset we retained fewer
participants in our models than comparable studies due to a
more stringent threshold for relatedness in our methodology. This
reduction in power is reflected in our results. For depression,
findings from the current and previous M-GCTA analyses did not
identify robust evidence of genetic nurture effects, although small
maternal and/or paternal effects were suggested [19]. With a less
stringent exclusion criteria, a parental effect was robustly
estimated by Cheesman et al. using the RDR approach, and was
found to be partly mediated by maternal anxiety and depressive
symptoms [20]. Altogether, it is likely that maternally driven
genetic nurture effects explain at least a part of the variance in
children’s depressive symptoms in the MoBa cohort, but might go
undetected when the analysis is based on a smaller subsample
with lower power. Findings for paternally driven effects were more
inconsistent and further investigation in better-powered analyses
is needed to clarify the presence and importance of these effects.
For externalising traits, our results do not directly replicate the

recent findings of Eilertsen et al. who used the trio-GCTA method,
but are somewhat in line with their findings. For instance, our
results indicated a suggestive maternal effect on childhood ADHD

symptoms, while the trio-GCTA study identified robust parental
effects on both inattention and hyperactivity symptoms of ADHD
[21]. Additionally, where we found no strong evidence of genetic
nurture effects on disruptive symptoms, the trio-GCTA study
found robust parental effects on conduct, but not oppositional
defiant behaviours. It is plausible that indirect genetic effects
might be of differential importance for subtypes of disruptive
behaviours and are masked when conduct and oppositional
defiant behaviours are grouped together. If validated, this could
inform research on environmentally mediated influences on
disruptive behaviours and be a factor of consideration in whether
these effects on distinct disruptive subtypes should be studied
independently or as a higher-order phenotype. Finally, our results
provide some indication that maternal effects might explain more
variation in externalising traits than paternal effects. This trend
was also observed in the trio-GCTA study of externalising subtypes
[21], although meaningful distinctions between parental effects
could not be made in either study. Exploring differences in effects
between mothers and fathers remains an important avenue for
future work.
Estimates of children’s own genetic effects on depressive and

ADHD symptoms in the offspring models are in line with previous
literature, showing SNP heritability estimates of between 0–17%
for depressive and 0–34% for ADHD symptoms [30]. Similarly, the
low estimate of SNP heritability for disruptive symptoms (3%; non-
significant) is within the wide range (0–54%) observed in previous
studies [30], but in particular matches the estimate from the
recent GWAS of childhood aggression (3%) [31]. The considerable
range within estimates of SNP heritability can be explained by
factors including the method, sample size, selection of SNPs, and
genomic relatedness threshold, all of which may have an impact
on the estimation of variance components using genetic data. It
should be noted that these estimates of SNP heritability in the
offspring models could include potential indirect genetic effects
from relatives and the inclusion of family data in GREML analyses
is necessary for identifying if this is the case.
This study adds to a small body of work investigating whether

genetic nurture effects are of importance in the development of
psychiatric symptoms during childhood [19–21]. It is important to
note that this type of research is still in its infancy stages. More
effort to clarify the presence, impact and underlying mechanisms
of these effects is needed to understand to what extent potential
effects encapsulate specific parental factors that could be targeted
for intervention, or reflect other influences, such as assortative
mating or population stratification [32]. Additionally, as all current
findings are based on 8-year-olds of European ancestry in a
Norwegian cohort, it is unknown to what extent these effects are
present in other populations and at other developmental periods.
For example, differences in the importance of genetic nurture
effects on childhood educational achievement between Dutch
and British samples were observed in a recent study [33]. Given
that environmental influences on mental health may vary across
communities and developmental stages, it is plausible that
potential indirect genetic effects could be of differential impor-
tance in different contexts. More investment in global datasets
with genotyped parents and children who also have information
on childhood psychiatric phenotypes will provide opportunities
for examining the role of parental effects across different cultures,
societies, and contexts.
The study and design have other limitations that should be

acknowledged. First, power is a considerable concern for
extended GREML analyses. Power calculations suggest that as
many as 50,000 genotyped pairs could be required to estimate
maternal and offspring genetic effects with a realistic effect size
[34]. Given the paucity of large-scale family-based datasets,
collaborative efforts that combine data from multiple cohorts is
of importance. Identifying techniques to maximise power in
family-based GREML studies is also necessary. One approach could
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be to set less stringent thresholds for exclusions based on
relatedness than were used in the current study. Second, while the
M-GCTA method estimates maternal and paternal effects in
separate models, recent work indicates that modelling maternal
and paternal effects together will provide more accurate estimates
of offspring and parental genetic effects [35]. In subsequent
research, researchers may want to give trio-GCTA preference over
M-GCTA, although it carries a higher sample size burden due to
additional parameters. Finally, as our analyses are based on
maternally reported psychiatric symptoms, it is possible that the
estimates in this study could be impacted by responder bias
[36, 37], if for instance mothers with higher genetic susceptibility
to psychiatric difficulties report higher symptoms in their off-
spring. This could be addressed by incorporating information from
other informants, e.g., fathers and teachers, in future work.
This study used GREML models to estimate variance in

childhood depressive, disruptive and ADHD symptoms that could
be explained by common genetic variance in children and their
parents. While there was some suggestive indication of parental
genetic nurture effects, follow-up analyses in better-powered
samples are required to obtain more reliable effect estimates. If
robust genetic nurture effects on childhood psychiatric symptoms
are identified, the subsequent step in this line of research would
be to identify mediating factors that account for these effects and
investigate whether they could be targeted for intervention.
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