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Abstract. A novel methodology for the fatigue life uncertainty quantification of anisotropic structures is presented in this work.
The concept of the Equivalent Initial Flaw Size Distribution (EIFSD) is employed to overcome the difficulties in small cracks
detection and fatigue prediction. This EIFSD concept is combined with the Dual Boundary Element Method (DBEM) to provide
an efficient methodology for modelling the fatigue crack growth. Bayesian inference is used to infer the EIFSD based on inspec-
tion data from the routine maintenance of the structure, simulated with the DBEM. A large amount of DBEM simulations were
required for the Bayesian inference. Therefore, surrogate models are used as part of the inference to further improve computational
efficiency. A numerical example featuring an anisotropic plate is investigated for demonstrating the proposed methodology. When
considering a low level of uncertainty in the crack propagation parameters, an error of 0.12% was found between the estimated
fatigue life obtained using the proposed method compared to actual fatigue life, and only 0.35% error when considering high level
of uncertainty. The application of the estimated fatigue life can be used to determine an appropriate inspection interval for aircraft
maintenance.

INTRODUCTION

The use of anisotropic materials in the aviation industry has increased significantly over the last decade due to
the advantages they provide in terms of weight and strength. Therefore, being able to perform structural integrity
assessments of anisotropic components and estimate their fatigue life is a fundamental requirement for structural
integrity management. Ideally, when estimating fatigue life, the growth of an initial crack to some final permissible
size could be modelled using a short crack growth model. However, due to the small size of the initial flaw, it
is challenging to measure accurately and its growth behaviour is difficult to model due to the heavy influence of the
material’s micro-structure [1]. These difficulties are especially prominent in anisotropic materials. However, this often
results in conservative estimates of fatigue life [2], and over-designed structures that lose the lightweight advantages
provided by anisotropic materials. The concept of the Equivalent Initial Flaw Size Distribution (EIFSD) is an efficient
fatigue life estimation method that circumvents the above difficulties. EIFSD is not an actual physical quantity, but
can be considered as a model parameter used in long crack growth models, such as Paris’ law. After the EIFSD has
been inferred, it can be used to provide accurate fatigue life estimates for a structure, and can be applied to other
structures with the same loading conditions. Fatigue life estimated by EIFSD can be used to avoid over-engineering
of components and preserve the weight saving advantages offered by anisotropic materials.

Previous research on the inference of EIFS includes: Bayesian inference was used with Finite Element Method
to estimate EIFS by Salemiet [3]. Sankararaman et al. [4] inferred EIFS using Bayesian updating for a cylindrical
structure under the presence of various geometric, load, and material uncertainties. Lee et al. [5] conducted sev-
eral experimental studies considering different probability distributions in the sources of uncertainties. Li et al. [6]
inferred EIFS for an anisotropic structure using the modified Kitagawa-Takahashi diagram method. Compare to tradi-
tional isotropic materials, anisotropic materials have significantly more uncertainty related to the modelling of fatigue
and crack propagation. These uncertainties likely arise due to the manufacturing process and due to the increased
complexity associated with modelling crack propagation in anisotropic materials compared to isotropic materials. As
a result, determining the EIFSD for anisotropic materials can be challenging.

It can be difficult to collect real inspection data, and it is inefficient to perform experiments on the same structure
under several uncertainties. Therefore, in this work, DBEM is used to model the fatigue problem of materials and
simulate this inspection data. DBEM is commonly used in modelling crack propagation problems and it only needs to



model the external boundary of a structure [7], thereby improving computational efficiency. By combining DBEM and
EIFSD methods, EIFSD can be inferred with a smaller quantity of inspection data. Prior work on the combined EIFSD
and DBEM approach has been used in a multi-site damage problem [8] and an assembled plate bending problem [9].

In summary, the aim of this work is to extend the previous work for inferring the EIFSD of an anisotropic structure
under uncertainties in the geometrical and crack growth parameters. The method presented in this paper is based on
previously published work by the same author [10]. Larger coefficient of variance in the uncertainties are included
in the example. This is to further verify the proposed method. The methodology of the EIFSD and DBEM will be
introduced first, followed by a numerical example with multiple sources of uncertainty.

METHODOLOGY

The Equivalent Initial Flaw Size Approach

EIFS is an ’imaginary’ quantity that can be thought of as a parameter in a long crack growth model. EIFS can be
defined mathematically by:

N =
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1
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where IFS is the actual initial flaw size and ac is some critical crack size. gs(a) is a short crack growth model which
can accurately both the long and short crack growth. The EIFS can be found by growing the crack backwards from
ac to its initial state using a long crack growth model gl(a). A graphical demonstration of the concept of EIFS can be
seen in Fig.1. The area under the two curves is the same and represents the number of cycles N required to grow the
crack from IFS to ac using gs(a) is the same as the number of load cycles required to grow from EIFS to ac using
gl(a).

FIGURE 1. Concept of the EIFS and the equivalence between the EIFS and IFS [4].

The DBEM for Anisotropic Materials

In order to simulate the fatigue crack propagation of the structure and estimate the fatigue life, it is necessary to
establish a numerical model of the structure. The Dual Boundary Element Method (DBEM) as an alternative version
of Boundary Element Method (BEM) which developed specially for modelling the crack were used in this work. In
the DBEM, the boundaries S are discretised into Ne elements, and ne represents the enumeration of each element. The
displacement integral equation in a discretised form can be written as:
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and the traction integral equation as:
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where ui is the displacement at the boundaries and t j represents the traction at the boundaries. z′ and z are the field
point and source point. Ti j, Ui j, Ski j and Dki j are the fundamental solutions. Details of these fundamental solutions
can be found in [7].

One of the reasons that the DBEM is used for modelling crack propagation is that it does not require the re-meshing
of the model and the crack propagation path can be calculated automatically. The maximum circumferential stress
criterion was used to determine the crack propagation direction [10] and the direction is corrected iteratively by the
correction procedure proposed by Lucht [11]. The J-integral method is employed to determine the crack tip stress
intensity factors.

Crack Growth Model

The long crack growth model used in this work is the Paris Law. The mathematical formulation of the Paris Law
can be written as [12]:

N =
∫ a

a0

1
da/dN

da (4)

where N is the number of load cycles required to grow the crack from a starting length a0 to some final crack length
a, and da/dN is the crack growth rate defined by:

da
dN

=C(∆Ke f f )
m (5)

where C and m are the Paris Law constants and exponential that vary depending on the material, ∆Ke f f is the
effective stress intensity factor difference at the minimum and maximum stress level ∆Ke f f = Kmax

e f f −Kmin
e f f . Walker’s

equation defines the relationship between the Paris Law constant C and the stress ratio R = σmax/σmin as:

C =
C0

(1−R)m(1−γ)
(6)

where γ is Walker’s equation coefficient and C0 is the constant evaluated when the stress ratio R = 0.

Bayesian Inference

Inferring the EIFSD relies upon updating the prior distribution using inspection data to obtain a posterior distribu-
tion. The inspection data in this work is in the form of the number of cycles require to reach a critical crack length. A
crack is assumed to be detected as soon as it reaches the critical length of adet = 20 mm, which is the minimum flaw
size that can be detected by the Non-Destructive Inspection (NDI). Assuming that the ’true’ EIFSD has a Lognormal
distribution with mean µ and standard deviation σ , but the value of the µ and σ are unknown. The purpose of the
Bayesian updating is to infer the ’true’ EIFSD. Trial pairs of mean and standard deviation (µ̂i, σ̂ j) within a possible
range are defined before the Bayesian Updating. The likelihood that the trial pair (µ̂i, σ̂ j) is the ’true’ EIFSD (µ,σ)
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where αi j and βi j are the location and shape parameters of the lognormal distribution fN|µ̂i,σ̂ j ,Y. The values of these
two parameters are estimated by propagating the crack with a trial distribution (µ̂i, σ̂ j) to the critical crack length using
Monte Carlo Simulation (MCS). The vector Y consist of the uncertainties that can affect the fatigue crack growth.

To obtain an accurate likelihood after l inspection data has been used, the likelihood of the trial pair (µ̂i, σ̂ j) can be
written as:
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and normalized by:

Lnorm (
µ̂i, σ̂ j | Nins

1:l ,Y
)
=

L
(
µ̂i, σ̂ j | Nins

1:l ,Y
)∫ ∫

L
(
µ̂, σ̂ | Nins

1:l ,Y
)

dµ̂dσ̂
(9)

the likelihood of individual µ̂i and σ̂ j is the true mean and standard deviation is:
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where fM̂|Nns
l−1,Y

and f
Σ̂|Nins

l−1,Y
represent the prior distributions of the inferred mean µ̂ and standard deviation σ̂

respectively. Initial guesses of these prior distributions are needed for the first iteration of Bayesian inference. The
posterior distributions can be updated from the prior terms iteratively. These posterior distributions are given as:
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where fM̂|Nns
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and f
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1:l ,Y
are the posterior distributions. The estimation of mean and standard deviation of EIFSD

is obtained by applying:
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It is expected that the estimated µBU,1:l and σBU,1:l will approach the ’true’ values of µ and σ when more inspection
data is used.

NUMERICAL EXAMPLE

A numerical example featuring an anisotropic plate with a centred hole and a crack was investigated to demonstrate
the proposed method for the inference of EIFSD. The geometry is shown in Fig. 2. Uniform stresses were applied
on the top and bottom boundaries. Assuming that the principal axis of anisotropy is oriented at an angle al pha to
the horizontal. A fictional material property that is a function of the ratio between Young’s modulus ψ = E1/E2 was
used. Poisson’s ratio ν12 = 0.29, shear modulus G12 = 789 MPa, material constant γ = 0.68 [9]. Young’s modulus
is represented by E1 = G12(ψ +2ν12 +1) [13]. The location of the starting crack size a0 is shown in region B and it
is assumed to be initialised along the E1 direction. The ’true’ EIFSD is assumed to have a lognormal distribution of
θact ∼ lnN(6.0,0.6) mm .



FIGURE 2. Sub-figure (a): The boundary element mesh of the structure and the boundary conditions. Sub-figure (b): The zoom-in
demonstration of the starting crack.

The structure consists of an outer boundary, an inside circular boundary, and the crack. Each edge of the outer
boundary is meshed by four elements each, and the inner boundary is composed of 160 elements. Fig.2 shows the
mesh for the starting crack. The starting crack a0 of length 3 mm mm is composed of three elements for each crack
surface. When modelling the growth of the crack, one element is added during each crack increment to each crack
surface at the crack tip.

In this work, the inspection data is numerically created using the DBEM. The parameters that affect the crack
growth are the Young’s modulus ratio ψ , the orientation of the axis of anisotropy α , Paris law constantsC0 and m,
maximum loading stress σmax and stress ratio R = σmin/σmax. These parameters are assumed to have lognormal
distributions. To determine the robustness of the proposed method, two uncertainty levels for each crack growth
parameter are investigated: low and high. The distribution and coefficient of variation (COV) assigned to each crack
growth parameter are listed in the Tab. I. For each inspection simulation, the ’true’ EIFSD is randomly sampled to
generate a starting crack size, while the value of each crack propagation parameters are randomly selected from their
distributions. For each inspection, the number of cycles required to grow a starting crack size to adet was recorded.

TABLE I. Uncertainties in the parameter presented in the fatigue crack growth.

CoV
Variable Description Distribution Mean Low High

C0 Paris law Constant Lognormal 1.027×10−9 m/cycle
(MPa

√
m)m 0.02 0.05

m Paris law exponent Lognormal 2.389 0.01 0.02
σmax Maximum applied stress Lognormal 25 MPa 0.02 0.05

R Stress ratio Lognormal 0.3 0.02 0.05
ψ Ratio of Young’s modulus Lognormal 0.15 0.02 0.05
α Anisotropic principal axis orientation Lognormal 25o 0.02 0.05



TABLE II. The statistical error in stress intensity factors and fatigue life between the actual DBEM and the surrogate model.

Model RRSE(%) MAPE(%) MAE RMSE R2 (%)
Ke f f 4.59 0.35 0.058 MPa

√
m 0.089 MPa

√
m 99.7

N 6.33 2.74 494 cycles 599 cycles 99.6

Surrogate model

As described in the previous section, 60×60 trial pairs of mean and standard deviation were assumed and applied in
Monte Carlo Simulation for the estimation of the distribution fN|µ̂i,σ̂ j ,Y in Eq.7. Overall 1×106 samples were used for
each trial pair to estimate this distribution with high accuracy. The computational cost is expensive when simulating
the structure using the DBEM for large amount of samples. Instead, a stochastic Kriging model was used to replace
the DBEM in MCS. The output from the model is the effective SIF Ke f f , once the effective SIF is determined, the
number of cycles for crack growth can be obtained by using the Paris Law in Eq.5. When training a stochastic Kriging
model, the values of material property ψ , crack propagation length a0, a were provided as inputs, such that:

Ke f f = f kriging(ψ,α,a0,a) (15)

where f kriging is the surrogate model (stochastic Kriging model) that estimates the crack tip effective SIF when grow-
ing the crack from the starting length a0 to a final length a. Once the surrogate model for the Ke f f is obtained, the
Paris Law can be applied to create the surrogate model for the fatigue cycles N to grow the crack from a0 to a.

Overall 342 points were used to train the surrogate model and 6.7 hrs were required for the training. An accuracy
test was conducted to determine the error between the DBEM and the obtained surrogate models. Overall 2700
testing points of Ke f f and N were generated directly from the DBEM and the values were compared to that given by
the surrogate model. A graphical presentation of the entire stochastic model is difficult to show since the model has
four inputs and an output. Therefore, only a 3-D example of the model when ψ = 0.18 and α = 24◦ for Ke f f and N is
given in Fig.3, the corresponding testing points are shown in black dots. The statistical errors between the stochastic
models and the testing points were evaluated and shown in Tab.II. The errors between the surrogate model and the
results from the DBEM have very low values.

To determine the efficiency of the surrogate model, a study was carried out. It was found that the average CPU time
required to estimate one value of Ke f f was 3.73 s for the DBEM, while it was 0.0156 s for the surrogate model, a
decrease by a factor of around 239.

Bayesian Inference of EIFS

The proposed inference methodology described earlier is applied here to the geometry shown in Fig.2. To demon-
strate the robustness of the proposed method, two sources of the uncertainties were considered:

1. The quality of the prior distribution: An initial guess of the prior distribution should be given to start the
Bayesian Updating as shown in Eq.12 and 11. This prior distribution is normally chosen according to previous
experience and engineering judgment. Two quality levels of the prior distributions were tested to show the
robustness of the inference methodology. The quality levels are referred to here as ’good’ and ’poor’ prior
distributions. The quality of a prior distribution is defined by its ’closeness’ to the ’true’ EIFSD. The ’good’
prior distribution is (5mm,0.5mm), while ‘poor’ prior distribution is (0.5mm,1.5mm).

2. The uncertainty level of the crack growth parameters: Two levels of uncertainties, ‘low’ and ‘high’, are
given in Tab. I in terms of the coefficient of variation (COV);

The convergence of the mean and standard deviation is shown in Fig. 4 and 5 under low and high levels of uncertainty,
respectively. Fig. 4 shows, for the ’low’ uncertainty case, that after using the data from 123 inspections, the value of
the mean achieves convergence at 5.97 mm. The data from around 77 inspections are required to bring the mean close
to the ’true’ mean (6±0.1 mm). The difference between the inferred mean and the ’true’ mean is 0.56%. The value
of standard deviation achieves convergence at around 265 inspections. The value of the inferred standard deviation is



FIGURE 3. Surface plot showing the results of stochastic Kriging model evaluation comparing to the test dataset when ψ = 0.18
and α = 24◦. Sub-figure (a) surrogate model for Ke f f and sub-figure (b) surrogate model for N.

0.619 mm with an error of 3.11%. The quality of the prior estimation has very little impact on the inferred value, a
noticeable impact can only be observed when a limited amount of inspections are available (less than 80 inspections).

The convergence for in the ’high’ uncertainty case is shown in Fig. 5 and similar convergence pattern can be
observed. The mean converged at about 183 inspections of the data was used with an error of ±0.1 mm to the ’true’
mean (6 mm). The values of the mean after 700 inspections achieve the same value as in the ’low’ uncertainty case.
The standard deviation achieves an error of 4.83% (0.629 mm) after 790 inspection data were used. The initial guess
quality has a small effect on the convergence of the mean. However, the convergence behaviour for the standard
deviation is greatly affected when the data from a low number of inspections is used (under 170 inspections), but is
less affected when more inspection data is available. It is within expectations that for higher uncertainty level, more
inspection data is needed to achieve convergence.

Application of the inferred EIFSD

Aircraft components should be routinely inspected to avoid failure of the structure. The inspection interval of a
component is usually determined according to its fatigue life, which can be determined by propagating the crack
from the inferred EIFSD to a critical size acritical . This demonstrates how employing EIFSD inference could be
advantageous for maintenance.

A showcase of how the EIFSD can be applied tp determine fatigue life is demonstrated using the same example
from Fig.2 and the same uncertainties in the fatigue crack growth parameter. Since the same example is used, the



FIGURE 4. Convergence behaviour for the ’low’ level of uncertainty.

FIGURE 5. Convergence behaviour for the ’high’ level of uncertainty.

inferred EIFSD from Bayesian updating in the last section can be applied for estimating the fatigue life via Monte
Carlo Simulations (MCS). The critical crack size is assumed to be acritical = 35 mm as an example and the number
of cycles required to grow the crack from its EIFSD to acritical is recorded. Overall 1× 106 samples were used in
MCS. The initial crack size, uncertainties in the geometry and the parameters that are affecting the crack growth are
randomly sampled for each simulation. The values of the location and shape parameter α and β can be found by
fitting the results obtained from the MCS to a lognormal distribution.

The obtained results from the Bayesian updating under ’high’ and ’low’ levels of uncertainty were used for MCS.
The criterion used to determine the inspection interval largely depends upon engineering judgment. The hypothesis



TABLE III. The results of the distribution of the fatigue life in the form of lnN(α,β ) obtained using the Monte Carlo simulation.
Assuming that the structure need to ensure that the failure chance of less than 2%.

Lognormal
EIFSD (mm) α β Nins (×104cycles) required for Pf ailure ≤ 2%

θlow ∼ lnN(5.9661,0.6186) 11.211 0.0751 6.339
θhigh ∼ lnN(5.9661,0.6289) 11.215 0.1868 5.059

θact_low ∼ lnN(6.0,0.6) 11.209 0.0737 6.346
θact_high ∼ lnN(6.0,0.6) 11.213 0.1853 5.077

used in this work is that the component should be inspected at Nins so that the structural failure chance is less than 2%.
As such, the obtained fatigue lifetime can be used to estimate Nins. The fatigue life distributions and the corresponding
Nins are given in Tab.III.

It can be seen from Tab.III, that a reduced inspection interval is needed when there exists a higher level of uncer-
tainty in the crack propagation. This means that inspections should be conducted more frequently and the overall cost
of inspection will increase. Furthermore, it can be seen that the number of cycles for failure are very similar (0.12%
difference at low uncertainty and 0.35% at high uncertainty) between the case where the actual EIFSD was used ver-
sus the case where inferred EIFSD was used. This demonstrates that the proposed EIFS inference methodology is
capable of accurately estimating the true EIFS and that it can be used to accurately determine inspection intervals.

CONCLUSION

A novel methodology for the fatigue life uncertainty quantification of anisotropic structures was presented in this
work. This methodology employed the concept of the Equivalent Initial Flaw Size Distribution (EIFSD), the Dual
Boundary Element Method (DBEM), and surrogate modelling, to overcome the challenges associated with modelling
the growth of small cracks and to provide an efficient methodology for fatigue crack growth modelling. Statistical
inference, in the form of Bayesian inference, was used to infer the EIFSD using simulated aircraft inspection data.
To demonstrate the proposed novel methodology, a numerical example featuring an anisotropic square plate with a
crack was investigated. To test the robustness of the proposed method, two levels of uncertainty were considered.
Convergence results show that the EIFSD was accurately inferred within 5% error for both levels of uncertainty.
The quality of the estimated prior distribution only has a significant effect when the data from a small number of
inspections are available. Once the EIFSD has been inferred, inspection intervals can be accurately determined. This
shows one potential application of the inferred EIFSD in the maintenance of aircraft.
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