
Received: 11 July 2022 Revised: 21 December 2022 Accepted: 2 March 2023

DOI: 10.1002/eqe.3873

RESEARCH ARTICLE

Flexure-axial-shear interaction of ductile beams with
single-crack plastic hinge behaviour

Eyitayo A. Opabola1 Kenneth J. Elwood2

1Department of Civil, Environmental and
Geomatic Engineering, University College
London, London, UK
2Department of Civil and Environmental
Engineering, University of Auckland,
Auckland, New Zealand

Correspondence
Eyitayo A. Opabola, Department of Civil,
Environmental and Geomatic
Engineering, University College London,
London, UK.
Email: e.opabola@ucl.ac.uk

Funding information
QuakeCoRE NZ; UK Research and
Innovation

Abstract
One of the key damage observations in modern reinforced concrete (RC)
frame buildings, damaged following the 2010/2011 Canterbury and 2016 Kaik-
oura earthquakes, was localised cracking at the beam-column interface of
capacity-designed beams. The localised cracking in the beams was due to
curtailed longitudinal bars at the beam-column interface. Following these obser-
vations, without experimental data to justify desirable seismic performance,
modern beams controlled by localised cracking were assumed to be potentially
earthquake-vulnerable. To address this, an experimental programwas carried out
on six RC beam specimens susceptible to single-crack plastic hinge behaviour
due to curtailed longitudinal bars. The experimental data show that RC beams
with single-crack plastic hinge behaviour can undergo significant inelastic drift
demands without loss of lateral resistance. However, contrary to conventional
beams with distributed cracking, the response of RC beams with single-crack
plastic hinge behaviour due to curtailed longitudinal bars is mainly dominated
by hinge rotation (via bond-slip) and shear sliding at the column face. The cur-
rent paper studies the interdependence of axial elongation, bond-slip and shear
sliding deformation of RCbeamswith single-crack plastic hinge behaviour under
cyclic demands. A procedure for seismic assessment of RC beams with single-
crack plastic hinge behaviour due to curtailed longitudinal bars is proposed. The
proposed formulations can be adopted to develop adequate numerical models
for simulating the response of RC frames with beams susceptible to single-crack
plastic hinge behaviour due to curtailed longitudinal bars.

KEYWORDS
axial elongation, deformation capacity, ductile beam, localised cracking, shear sliding, single-
crack

1 INTRODUCTION

Reconnaissance reports1 following the 2010/2011 Canterbury and 2016 Kaikoura earthquakes highlighted various damage
mechanisms in older-type andmodern reinforced concrete (RC) frame structures. Aside from thewell-known non-ductile
behaviour of poorly-confined RC columns and walls, localised cracking was observed in various damaged RC structural
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NOVELTY

Following the 2010/2011Canterbury and 2016Kaikoura earthquakes, a number of RCbeams in high-rise structures
exhibited localised cracking mechanism. The single crack response was due to longitudinal bar curtailment in
the beams at the column face. There are currently no experimental data or assessment guidance on the seismic
behaviour of these beams. However, it is now known that many existing frame buildings in New Zealand and
United States have beams with curtailed bars.
To address this, this study:
∙ Presents experimental data on the seismic response of six full-scale beams susceptible to single crack response.
∙ Uses the experimental data to study and develop numerical formulations for predicting the interdependence of
shear sliding deformation and axial elongation in such beams.

∙ Proposes a seismic assessment procedure for such beams.

components. The localised cracking in RCwalls was attributed to the low longitudinal reinforcement in thesewalls, result-
ing in the cracking moment capacity being higher than the flexural strength of the walls.2 In the case of modern RC
moment frames with localised cracking at beam ends (See Figure 1A), the limited-crack mechanism was attributed to the
common pre-castconstruction practice of bar curtailment close to the column face (Figure 1B). In the case of bar curtail-
ment in beams close to the column face, the yield moment capacity of the beam section at the column face is significantly
smaller than that of sections adjacent to the column face; resulting in a concentration of cracking at the column face.3 It
is noted that the bar curtailment detailing is also a common construction practice in the United States.4
Irrespective of building type or age, it was widely assumed that the localised cracking mechanisms in modern beams

would potentially reduce the plastic rotation capacity of the hinges, premature rupture of the reinforcing bars, and lower
hysteretic energy dissipation. Also, locally-concentrated strain in the bars may impact the residual low-cycle fatigue life
available to withstand future earthquakes.5 Hence, RC components determined to be susceptible to single-crack plastic
hinge behaviour were assumed to be potentially earthquake-vulnerable.6 In the case of modern RC beams with single-
crack plastic hinge behaviour, such conservatism means that post-1995 capacity-designed buildings may be considered to
require intervention.
Given the high cost associated with retrofitting buildings considered earthquake-vulnerable, there is a huge financial

burden on building owners, the government, and the economy of countries with a high level of seismicity. To ease this
burden, it is essential to develop refined seismic assessment provisions that will aid engineers in identifying the most
vulnerable structures and prioritising them for the appropriate intervention strategies.
An experimental program on six full-scale beam specimens of a ten-story RC frame building in Wellington (designed

in 1986) was developed to understand better the response of modern beams susceptible to single-crack plastic hinge
behaviour. The aim of the study was to (a) understand the seismic response of beams susceptible to single-crack plastic
hinge behaviour due to curtailed longitudinal bars; (b) understand the post-earthquake residual capacity and repairabil-
ity of damaged beams susceptible to single-crack plastic hinge behaviour due to curtailed longitudinal bars; (c) develop

F IGURE 1 (A) Observed damage following the
2016 Kaikoura earthquake (Photo by Synge A) (B)
Bar curtailment detailing close to the column face
(NB:—Curtailed bars are in red colour).
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OPABOLA and ELWOOD 3

F IGURE 2 Cross-section of beam specimens (All D12 and D16 bars are curtailed as shown in Figure 1B).

formulations for predicting the seismic response of beams susceptible to single-crack plastic hinge behaviour due to
curtailed longitudinal bars.
The experimental test data from these six beam specimens show that modern beams with single-crack plastic hinge

behaviour due to curtailed longitudinal bars can withstand significant inelastic demands. However, the damage mecha-
nism of the beams with single-crack plastic hinge behaviour due to curtailed longitudinal bars significantly influences the
axial elongation-shear sliding relationship under drift demand; such that models developed for beams with distributed
cracking may not be applicable for beams with single-crack plastic hinge behaviour. Without appropriate formulations to
quantify the interdependence of shear sliding deformation and axial elongation of RC beams with a single-crack plastic
hinge mechanism, numerical modelling of RC frame structures with these components becomes difficult. Hence, it is
important to understand the flexure-axial elongation-shear sliding relationship of RC beams with a single-crack plastic
hinge mechanism.
Using measured data from the six beam specimens, this paper seeks to develop numerical formulations for the seismic

behaviour of beams with a single-crack plastic hinge behaviour. The interdependence of shear sliding deformation and
axial elongation was studied. Subsequently, simple formulations are proposed to simulate the interdependence of shear
sliding deformation and axial elongation. Also, a seismic assessment procedure for such beams is proposed. The proposed
formulations can be adopted in developing adequate numerical models for simulating the response of RC frames with
beams susceptible to single-crack plastic hinge behaviour.

2 EXPERIMENTAL PROGRAM

An experimental program was carried out on six full-scale replica beams with bar curtailment detailing similar to those
in a ten-storey ductile RC frame building with localised beam hinging following the 2016 Kaikoura earthquake. All six
beam specimens have a 400 mm × 700 mm cross-section dimension (Figure 2). The frame building, situated on a site
class C soil inWellington, was designed in accordance to NZS 3101:1982.7 It is noted that the provided transverse andmain
longitudinal reinforcement detailing conform to NZS 3101:2006.A3 provisions.8
Four of the beams (CYC-1.96.25, EQ-R-1.96.25, EQ-S-1.96.25, and EQ-D-1.96.25) are nominally identical specimenswith a

shear span of 1960 mm (Table 1). Different displacement histories were adopted for these four specimens. Specimen CYC-
1.96.25, the baseline specimen, was subjected to a standard cyclic loading protocol (Figure 3A). EQ-R-1.96.25 was used to
assess the reparability of beams susceptible to single-crack plastic hinge behaviour. Following an initial earthquake (EQ)
protocol (Part I) with a peak drift of 1%, the beamwas repaired using epoxy injection before being subjected to another EQ
protocol with a peak drift of 2%, followed by one loading cycle at 3% drift (Part II) (See Figure 3B). The EQ protocol was
derived from a time-history analysis of a structural model of the ten-storey building using a 2016 Kaikoura groundmotion
record from a nearby station. Further discussions on the building model are available in Opabola and Elwood.3
With the aim of studying the residual capacity of damaged beams, specimen EQ-S-1.96.25 was initially subjected to an

earthquake (EQ) loading history with a peak drift of 3%, followed by a standard cyclic loading protocol (See Figure 3C).
It is noted that the EQ loading protocol for EQ-S-1.96.25 was applied at a static loading rate of 0.75 mm/s (Table 1). EQ-
D-1.96.25 was subjected to a similar loading history as EQ-S-1.96.25, except that the EQ loading history was applied at a
dynamic rate of 75 mm/s. EQ-S-1.96.25 and EQ-D-1.96.25 provided an avenue to understand the influence of loading rate
on the behaviour of pristine beams and the residual capacity of damaged beams.
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4 OPABOLA and ELWOOD

TABLE 1 Test matrix.

Specimen IDa
Cross-section
type

Aspect ratio
(a/d)

Bar size db
(mm)

Steel grade
(MPa) Test type

CYC-1.96.25 A 3.2 25 300 Quasi-static cyclic (0.75 mm/s)
CYC-1.24.25 A 2.0 25 300 Quasi-static cyclic (0.75 mm/s)
CYC-1.96.32 B 3.2 32 500 Quasi-static cyclic (0.75 mm/s)
EQ-S-1.96.25 A 3.2 25 300 Quasi-static EQ (0.75 mm/s) + Quasi-static

cyclic (0.75 mm/s)
EQ-D-1.96.25 A 3.2 25 300 Pseudo-dynamic EQ (75 mm/s) +

Quasi-static cyclic (0.75 mm/s)
EQ-R-1.96.25 A 3.2 25 300 Quasi-static EQ + repair + Quasi-static EQ

+ 1 cycle at 3% drift (Reparability test)
aSpecimen ID labels is related to the shear span (1.96 m or 1.24 m), bar size (25 mm or 32 mm) and loading protocol adopted in the specimens. CYC—Cyclic;
EQ—Earthquake protocol; S—Quasi-static; D—Pseudo-dynamic; R—Repaired.

(A) (B)

(C)

F IGURE 3 Loading protocol for test specimens.

Specimen CYC-1.24.25 has cross-section properties similar to CYC-1.96.25. However, the shear span was reduced to
1240mm to study the influence of high shear stress on the damagemechanism of beams susceptible to single-crack plastic
hinge behaviour. Specimen CYC-1.96.32 has a shear span of 1960 mm, but the longitudinal reinforcement diameter was
increased to 32mm (Figure 2B). CYC-1.96.32 was used to study the influence of larger bar size and higher steel grade on the
behaviour of beams susceptible to single-crack plastic hinge behaviour. Both CYC-1.24.25 and CYC-1.96.32 were subjected
to the standard cyclic loading protocol. For the sake of brevity, discussions on instrumentation layout are not presented
here. Interested readers are referred to Opabola and Elwood.3

3 EXPERIMENTAL RESULTS

3.1 Damage pattern and deformation component hysteretic behaviour

The observed damage patterns in specimens CYC-1.96.25, CYC-1.24.25, and CYC-1.96.32 are presented in Figure 4.
As shown in Figure 4A, the response of CYC-1.96.25 was dominated by the single crack at the beam end. Secondary
cracks with maximum crack width less than 0.25 mm formed away from the specimen end during the elastic phase.
However, none of these secondary cracks had any significant progression during the inelastic phase. A similar pattern
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OPABOLA and ELWOOD 5

F IGURE 4 Damage pattern of (A) CYC-1.96.25 (B) CYC-1.24.25 (C) CYC-1.96.32 at 3% drift.

F IGURE 5 (A) Hysteresis plot and (B) contribution of deformation components to response of specimen CYC-1.96.25.

was observed in specimens EQ-S-1.96.25, EQ-D-1.96.25, and EQ-R-1.96.25. The hysteresis plot for CYC-1.96.25 is shown
in Figure 5A. As shown in Figure 5A, CYC-1.96.25 was able to withstand significant drift demands before the onset
of lateral strength loss. Using data from instrumentation, Figure 5B shows the contribution of various deformation
components to the total response of CYC-1.96.25. As shown in Figure 5B, prior to flexural yielding of CYC-1.96.25,
bond-slip deformation contributes about 48% of the total deformation, but this increases to about 80% in the post-yield
phase. There is also an increase in shear sliding with increasing drift demands, attributed to axial elongation concentrated
at the beam-foundation interface, leading to a reduction in aggregate interlock resistance.
The higher shear distress in CYC-1.24.25 resulted in a switch to a flexure-shear mechanism with significant diagonal

cracking observed (Figure 4B). This observation agrees with previous conclusions9 that beams with shear stress≥0.25√f’c
(MPa) are likely to have a higher contribution of shear deformation. On the other hand, the damage pattern of CYC-1.96.32
was similar to CYC-1.96.25 until a drift demand of 3%. Afterwards, longitudinal cracks (attributed to the dowel action in
the tensile bars) formed in the specimen. The force-displacement and deformation components for CYC-1.24.25, and CYC-
1.96.32 are not presented here. Interested readers are referred to Opabola and Elwood.3 However, Table 2 shows that both
beams were able to sustain significant drift demands before the onset of lateral strength loss. It is noted that bar fracture
was not observed in any of the test specimens. However, significant buckling of the longitudinal bars was observed in
all specimens. Further information on the damage mechanisms, hysteretic response, deformation components, residual
capacity and reparability of the test specimens can be found in Opabola.3 In agreement with the aim of this study, sub-
sequent sections will focus on understanding and proposing formulations for modelling the interdependence of shear
sliding deformation and axial elongation in beams susceptible to single-crack plastic hinge behaviour.
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6 OPABOLA and ELWOOD

TABLE 2 Measured force-drift parameters for all test beams.

Specimen Peak strength Vmax (kN)

(+) (−)
Vmax/(bd√f’c)
(MPa)

Measured
θy (%)a

Effective
stiffness
(EIeff/EIg)

Measured
θu (%)b

CYC-1.96.25 229.9 227.6 0.17 0.48 0.22 5.0
CYC-1.24.25 346.4 350.7 0.26 0.4 0.16 5.0
CYC-1.96.32 299 299.3 0.22 0.8 0.2 7.0
EQ-S-1.96.25 EQ 233.5 233.2 0.17 0.6 0.18 –

CYC 202 202.2 0.15 – 0.04 4.5
EQ-D-1.96.25 EQ 248.4 250.3 0.18 0.4 0.29 –

CYC 186.2 189.9 0.14 – 0.046 4.5
EQ-R-1.96.25 Part I 203.7 216.2 0.16 0.38 0.25 –

Part II 229.3 236.1 0.17 – 0.165 –
aThe yield rotation (θy) is measured by drawing a secant line to pass through 0.7Vmax. The drift where the secant line intersects with the horizontal line drawn
along Vmax is taken as θy.
bThe ultimate rotation (θu) is defined as the rotation corresponding to 20% loss in lateral strength.

F IGURE 6 Stress-strain state of a RC component with a single-crack plastic hinge behaviour, assuming no shear sliding.

4 RELATIONSHIP BETWEEN PURE BOND-SLIP AND DRIFT DEMAND

The stress-strain state of tensile bars in the anchorage and shear span of a RC component, assuming pure bond-slip
behaviour, is represented in Figure 6. The slip at the end-section can be estimated by integrating the strain in the
reinforcing bar along the development length such that:

𝑠 =

𝑙𝑑+𝑙𝑑
′

∫
0

𝜀𝑠 (𝑥) 𝑑𝑥 (1)

where ld and ld′ are the development lengths for the elastic and inelastic portions of the bar, respectively.
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OPABOLA and ELWOOD 7

Assuming a uniform bond stress, an expression for the development length in the elastic portion of the bar is given by:

𝑙𝑑 =
𝑓𝑠𝑑𝑏
4𝑢̄

(2)

Where 𝑢̄ is the elastic bond stress, db is the longitudinal reinforcement diameter and fs is the stress in the reinforcement.
By adopting a linear strain-hardening law, the post-yield steel stress fs can be evaluated as a function of the steel strain

ɛs, yield steel stress fy and strain ɛy; ultimate steel stress fu and strain ɛu such that:

𝑓𝑠 = 𝑓𝑦 +
(
𝑓𝑢 − 𝑓𝑦

) (
𝜀𝑠 − 𝜀𝑦

)
(
𝜀𝑢 − 𝜀𝑦

) (3)

The development length in the inelastic portion of the reinforcing bar can be estimated as:

𝑙𝑑
′
=

(
𝑓𝑠 − 𝑓𝑦

)
𝑑𝑏

4𝑢̄′
=
𝑑𝑏

(
𝑓𝑢 − 𝑓𝑦

)
4𝑢̄′

(
𝜀𝑠 − 𝜀𝑦

)
(
𝜀𝑢 − 𝜀𝑦

) (4)

where 𝑢̄′ is the inelastic bond stress and can be taken as 0.5
√
𝑓′𝑐 in MPa units.10

For a linear strain distribution, the reinforcement slip during the inelastic phase, sp*, can be estimated by solving
Equation (1) such that:

𝑠∗𝑝 =
𝜀𝑠 + 𝜀𝑦

2
𝑙𝑑
′
=
𝑑𝑏

(
𝑓𝑢 − 𝑓𝑦

)
8𝑢̄′

(
𝜀𝑠 + 𝜀𝑦

)
(
𝜀𝑢 − 𝜀𝑦

) (
𝜀𝑠 − 𝜀𝑦

)
(5)

Equation (5) is the inelastic reinforcement slip due to strain penetration into just one side of the principal crack.
As shown in Figure 6, however, there is strain penetration on both sides of the principal crack. Hence, the inelastic
reinforcement slip due to strain penetration into both sides of the crack (sp) can be taken as:

𝑠𝑝 = 2𝑠∗𝑝 =
𝑑𝑏

(
𝑓𝑢 − 𝑓𝑦

)
4𝑢̄′

(
𝜀𝑠 + 𝜀𝑦

)
(
𝜀𝑢 − 𝜀𝑦

) (
𝜀𝑠 − 𝜀𝑦

)
(6)

The plastic rotation of the beam is given as:

𝜃𝑝 =
𝑠𝑝

𝑑 − 𝑐
=
𝑑𝑏

(
𝑓𝑢 − 𝑓𝑦

)
4𝑢̄′

(
𝜀𝑠 + 𝜀𝑦

)
(
𝜀𝑢 − 𝜀𝑦

)
(
𝜀𝑠 − 𝜀𝑦

)
(𝑑 − 𝑐)

(7)

It is noteworthy that if ɛs equals ɛu and it is assumed that the change in compression zone depth c between the yield
state and ultimate state is negligible, then

(
𝜀𝑠 − 𝜀𝑦

)
(𝑑 − 𝑐)

=

(
𝜀𝑢 − 𝜀𝑦

)
(𝑑 − 𝑐)

≈ 𝜙𝑢 − 𝜙𝑦 = 𝜙𝑝 (8)

According to Paulay and Priestley,11 the plastic rotation of a beam can be expressed as a function of the plastic curvature
𝜙𝑝 and plastic hinge length Lp, such that

𝜃𝑝 =
(
𝜙𝑢 − 𝜙𝑦

)
𝐿𝑃 = 𝜙𝑝𝐿𝑝 (9)

Assuming the plastic hinge length Lp equals the strain penetration length into both sides of the crack (2lsp) and putting
Equation (8) into Equation (7) and equating this to Equation (9), the strain penetration depth equals

𝑙𝑠𝑝 =
𝑑𝑏

(
𝑓𝑢 − 𝑓𝑦

)
8𝑢̄′

(
𝜀𝑠 + 𝜀𝑦

)
(
𝜀𝑢 − 𝜀𝑦

) (10)
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8 OPABOLA and ELWOOD

At ultimate state, ɛs equals ɛu and by assuming ɛu >> ɛy and 𝑢̄′ equals 0.5
√
𝑓′𝑐 in MPa units, strain penetration length

can be evaluated as:

𝑙𝑠𝑝 =
𝑑𝑏

(
𝑓𝑢 − 𝑓𝑦

)
8𝑢̄′

=

(
𝑓𝑢

𝑓𝑦
− 1

)
𝑓𝑦𝑑𝑏

4
√
𝑓′𝑐

(11)

For range of fu/fy between 1.2 and 1.5,12 the value of lsp ranges from 0.008 to 0.025. For fu/fy equals 1.5, a concrete
compressive strength (f’c) of 30 MPa, Equation (11) would yield a strain penetration value of lsp equals 0.023fydb. It is
noteworthy that Paulay and Priestley11 had previously proposed that lsp equals 0.022fydb.
Based on the previous assumption that ɛs equals ɛu and ɛu >> ɛy, the plastic rotation due to strain penetration in both

directions can be estimated by putting Equation (10) into Equation (7):

𝜃𝑝 =
2𝑠𝑝

𝑑 − 𝑐
=

2𝜀𝑠𝑙𝑠𝑝

(𝑑 − 𝑐)
(12)

Equation (12) can be combined with Equation (11) to give Equation (13).

𝜃𝑝 =
𝜀𝑠

(𝑑 − 𝑐)

(
𝑓𝑢

𝑓𝑦
− 1

)
𝑓𝑦𝑑𝑏

2
√
𝑓′𝑐

(13)

Equation (13) provides an estimate of the plastic rotation capacity, given an ultimate strain capacity of the longitudinal
reinforcement, of a beam dominated by a pure bond-slip mechanism. Given that the response of beams with single-crack
plastic hinge behaviour is not dominated by a pure bond-slipmechanism, additional measuresmay be required to account
for the contribution of shear sliding deformation. Hence, it is important to explore formulations to predict the relationship
between axial elongation and shear sliding in beams with single-crack plastic hinge behaviour under drift demand. Such
formulations are described subsequently in this paper.

5 RELATIONSHIP BETWEEN AXIAL ELONGATION AND DRIFT DEMAND

The relationship between axial elongation and drift ratio for all six specimens is presented in Figure 7. Experimental data
suggest that, for the same drift demand, CYC-1.96.32 hadmore significant axial elongation thanCYC-1.96.25 (See Figure 7).
This can be attributed to the influence of larger bar size and higher steel grade on strain penetration in CYC-1.96.32. It
is also noted that experimental data from tests on undamaged specimens EQ-S-1.96.25 and EQ-D-1.96.25 do not suggest a
strong influence of loading rate on axial elongation.
Researchers such as Fenwick andMegget13 have studied the axial elongation response of beams with distributed crack-

ing. Axial elongation is associated with the residual strains in the compression and tension reinforcement under cyclic
reversals. Plasticity spread in beamswith distributed cracking is primarily due to flexural curvature andbond slip. In beams
with single-crack plastic hinge behaviour, the spread of inelasticity is mainly due to bond slip. Hence, it is important to
explore the axial elongation—drift demand relationship in cases where localised cracking is expected.
Figure 8 represents the response of a single-curvature beamwith single-crack plastic hinge behaviour undergoing cyclic

actions at a displacement demand Δ. Under this displacement demand, the concentration of damage at the beam-column
interface results in crack widths of δ1 and δ2 at the location of the tension and compression bars, respectively. The crack
width at the location of the compression bar δ2 is attributed to the influence of irreversible extensions of the compression
reinforcement. Under larger displacement reversals, there is an irreversible extension of the compression reinforcement.
This is due to insufficient compressive stress to yield the bars back in compression after they have previously yielded in
tension, arising majorly from wedging action of the aggregates.13 In Figure 8, the fixed-end rotation (θslip) is assumed to
be equal to the total drift demand (θm) on the beam such that:

𝜃𝑚 =
Δ

𝑎
= 𝜃𝑠𝑙𝑖𝑝 =

𝛿1 − 𝛿2
𝑑 − 𝑑′

(14)
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OPABOLA and ELWOOD 9

F IGURE 7 Relationship between axial elongation and drift ratio.

Likewise, the axial elongation of the beam is taken to be:

𝛿𝑒𝑙 =
𝛿1 + 𝛿2

2
(15)

Combining Equations (14) and (15), the axial elongation of the beam is evaluated as:

𝛿𝑒𝑙 = 𝛿2 +
𝜃𝑚
2

(
𝑑 − 𝑑′

)
(16)

If δ2 is assumed to be dependent on drift demand, then:

𝛿𝑒𝑙 = 𝜆
𝜃𝑚
2

(
𝑑 − 𝑑′

)
(17)
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10 OPABOLA and ELWOOD

F IGURE 8 Axial elongation in a beam with single-crack plastic hinge mechanism.

Where λ is a coefficient accounting for the influence of irreversible extension of the compression reinforcement on beam
elongation.
For a beam with single-crack plastic hinge behaviour under monotonic loading or low cyclic deformation demands, δ2

will be close to zero, making λ equals unity and the elongation of the beam can be readily computed as:

𝛿𝑒𝑙 =
𝜃𝑚
2

(
𝑑 − 𝑑′

)
(18)

It is noteworthy than Equation (18) has previously been verified by Fenwick and Megget13 for components with
distributed cracking.
Measured axial elongation in the beam specimens were compared with estimates using an axial elongation model,

incorporated in NZS 3101:20068 for estimating axial elongation in beams with distributed cracking. According to NZS
3101:2006, axial elongation (δel) of a beam-column component with reversing plastic hinges can be estimated as:

𝛿𝑒𝑙 = 2.6
𝜃𝑚
2

(
𝑑 − 𝑑′

)
(19)

A simple data fitting approach suggested that a value of λ of 1.3 (half of that proposed for beams with distributed
cracking) is appropriate for Specimens CYC-1.96.25, CYC-1.96.32, EQ-S-1.96.25 and EQ-R-1.96.25 (See Figure 7). On the
other hand, a λ value of 1.3 underestimates the cyclic test on EQ-D-1.96.25, despite providing a good estimate of the beam
response during the EQ protocol. This suggests that the strain rate effect from a previous seismic event may have an influ-
ence on the axial elongation response of a damaged beam. Additional test data are, however, needed to further explore
this.
Based on current data, for slender beams expected to be dominated by a single-crack plastic hinge behaviour,

𝛿𝑒𝑙 = 1.3
𝜃𝑚
2

(
𝑑 − 𝑑′

)
(20)

As shown in Figure 7B, Equation (20) underestimates the response of the beam. This is not surprising, given the fact
that the behaviour of Specimen CYC-1.24.25 was dominated by distributed cracking. Figure 7B also shows that Equa-
tion (19) slightly overestimates the response of Specimen CYC-1.24.25. A better relationship is estimated by assuming a
λ = 2.0, which roughly coincides with the mid-way between λ = 1.3 and λ = 2.6. Hence, it is proposed that for beams
with curtailed bars having a/d ≤ 2 or Vu/(bd√f’c) ≥ 0.25√f’c, Equation (17) should be adopted with λ = 2.0. Additional
experimental data are required to validate this. If a high level of conservatism is required, however, a λ value of 2.6 may be
adopted.
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OPABOLA and ELWOOD 11

F IGURE 9 Lateral force versus shear sliding for specimens (A) CYC-1.96.25 (B) CYC-1.24.25.

6 SHEAR SLIDING DEFORMATION AT BEAM-COLUMN INTERFACE

6.1 Degradation of shear sliding stiffness with ductility

The contribution of shear sliding to the response of beams with a single-crack plastic hinge behaviour is quite significant.
As seismic demand increases, the contribution of shear sliding increases aswell. Figure 9A shows the relationship between
drift ratio and shear sliding ratio (defined as the ratio of measured shear sliding displacement to beam shear span) for
specimen CYC-1.96.25. The increase in shear sliding is attributed to the degradation of the shear transfer mechanism
along the beam-column interface. The degradation of the shear transfer mechanism is majorly due to an increase in base
crack width, leading to loss of aggregate interlock, degradation of dowel capacity of the longitudinal bars, and loss of
concrete cover and confinement provided by stirrups. Experimental observations show that the stirrups are exposed to
significant lateral pressure from the longitudinal bars under dowel action, leading to excessive buckling of these stirrups.
Without this restraint, the resistance to sliding shear reduces.
Figure 9B shows the relationship between lateral shear resistance and shear sliding deformation for specimen CYC-

1.96.25. As shown in Figure 9, there is a significant pinching behaviour after the beamhas been subjected to drift demands.
Two mechanisms contribute to the lateral stiffness provided by the longitudinal bars—the bearing of the bars on the
concrete core and the bearing of the bars on the stirrups. During reversal from a peak drift, once no support is provided
to the bars by the concrete core and stirrups, the shear sliding stiffness reduces significantly.
For the three specimens subjected to the standard cyclic protocol (i.e. specimens CYC-1.96.25, CYC-1.96.32 and CYC-

1.24.25), the average shear sliding stiffness for the second cycle to each drift level was evaluated. The adopted approach is
similar to that used in evaluating the lateral stiffness of the beams in a previous section. Shear sliding stiffness is evaluated
as:

𝐾𝑠 =
𝑉+ + |𝑉−|
Δ+𝑠𝑠 +

||Δ−𝑠𝑠|| (21)

where V+ and V− are the peak positive and negative shear forces at the second cycle at a peak drift level respectively. Δ+ss
and Δ−ss are the shear sliding displacements corresponding to these peak shear forces.
Each computed shear sliding stiffness is normalised against the shear sliding stiffness corresponding to the measured

yield rotation of the specimen (Ks,y). Two relationships were explored—(a) the degradation of shear sliding stiffness rela-
tive to ductility demands (μ) (Figure 10A) and (b) the degradation of shear sliding stiffness relative to μs which is equal to
Δss/Δss,y (where Δss,y is the shear sliding displacement at yield) (Figure 10B).
As shown in Figure 10, the relationship between shear sliding stiffness and μ (as well as μs) is nonlinear. The

relationships can be expressed as:

𝐾𝑠
𝐾𝑠,𝑦

=
1

𝑎1𝜇
𝑎2

(22)
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12 OPABOLA and ELWOOD

(A) (B)

F IGURE 10 Relationship between sliding shear stiffness degradation, μ and μs for beams with single-crack and distributed crack
response.

and

𝐾𝑠
𝐾𝑠,𝑦

=
1

𝑏1𝜇
𝑏2
𝑠

(23)

where a1, a2, b1 and b2 are coefficients relating shear sliding stiffness to μ and μs
Based on currently available data, Figure 10A shows that the relationship between shear stiffness degradation and

ductility demand is best estimated using a1 equals unity and a2 equals 2. Likewise, the relationship between shear stiffness
degradation and μs is best estimated using b1 equals unity and b2 equals unity (Figure 10B).
The relationship between shear stiffness degradation and μs can be mathematically proven by assuming a bilinear

relationship between stiffness degradation and μs such that:

𝐾𝑠
𝐾𝑠,𝑦

=
𝑉max∕Δ𝑠𝑠

𝑉max
/
Δ𝑠𝑠,𝑦

=
1

𝜇𝑠
(24)

By combining Equations (22) and (24), the relationship between μ and μs can be determined; such that:

𝜇𝑠 = 𝑎1𝜇
𝑎2 (25)

The relationship between μ and μs is plotted in Figure 11. As previously suggested, adopting an a1 value of unity and
a2 value of 2 in Equation (25) provides a good estimate of the relationship between μ and μs for specimens CYC-1.96.25
and CYC-1.96.32. On the other hand, an a2 value of 2.25 provides a better estimate for specimen CYC-1.24.25; suggesting
that a2 is dependent on aspect ratio, that is shorter beams are more susceptible to a significant increase in shear sliding
displacement with an increase in ductility demands. Further testing is needed to validate this.
The applicability of Equations (22), (23) and (25) to conventionally reinforced beams with distributed cracking was

explored. Sarrafzadeh14 subjected two ductile beam specimens LS-CYC and SS-CYC, with aspect ratios of 3.4 and 2.8,
respectively, to a standard cyclic protocol. As shown in Figures 10 and 11, the proposed relationships between shear sliding
stiffness, μ and μs may be valid for beams with single-crack and distributed crack plastic hinge behaviour. However,
it is noted that the relationship was only calibrated to data up until a ductility of about four for specimens SS-CYC
and LS-CYC. Hence, care must be taken when using the model at larger ductility demands in beams with distributed
cracking. Based on available data, the response of the shorter beam SS-CYC can be predicted by a2 value of 2.25 while
an a2 value of 2 provides a good estimate for Specimen LS-CYC. Additional test data are needed to validate these
conclusions.
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OPABOLA and ELWOOD 13

F IGURE 11 Relationship between μ and μs for beams
with single-crack and distributed crack response.

Hence, it is proposed that for beams with single-crack and distributed crack response, a2 equals 2 for beams with a/d
≥ 3 and 2.25 for beams with a/d < 3. The values of a1, b1 and b2 equal unity for all beams. Additional test data (including
tests on restrained beams) are, however, needed to further validate the proposed expressions in this section.
For seismic assessment purposes, the shear sliding at a given ductility demand (μ = θm/θy) can be derived from

Equation (25) such that:

Δ𝑠𝑠 =
(
Δ𝑠𝑠,𝑦

)
𝜇𝑎2 (26)

In order to adopt Equation (26), it is important to evaluate the shear sliding displacement corresponding to the yield
rotation of the beam (Δss,y). Discussions on the estimation of Δss,y is provided below.

6.2 Shear sliding during elastic response

Shear deformation in RC members is due to the combined effect of shear sliding at the beam-column interface, rigid
shear distortion of member and shear sliding along diagonal cracks (more pronounced in squat members). Rather than
derive complex formulations for evaluating shear sliding deformation at yield due to shear sliding at beam-column
interface, it is proposed that evaluating shear sliding (at beam-column interface) deformation at yield be conservatively
assessed as total shear deformation. Recall for a single-curvature beam, the shear sliding at yield can be computed
as15:

Δ𝑠𝑠,𝑦 =
𝑀max

𝐴𝑣𝐺𝑒𝑓𝑓
(27)

Mmax is the moment corresponding to peak lateral resistance, Av is the effective shear area, and it is equal to 5/6 of the
gross cross-sectional area, and Geff is adapted to be equal to 0.2Ec.15
The adequacy of Equation (27), for all five specimens presented in Figure 10, is shown in Figure 12. As shown in

Figure 12, Equation (27) provides good estimates of shear sliding displacement at yield for all specimens, except CYC-
1.24.25 (shortest beam specimen) which was underestimated. This underestimation may be attributed to the fact that
other forms of shear deformation (i.e. rigid shear distortion of member and shear sliding along diagonal cracks) also pro-
vide significant contributions to the total shear deformation of the beam. In slender beams, the contribution of shear
distortion is relatively low, and no diagonal crack planes are formed; hence, it can be assumed that all shear deformation
is provided by shear sliding displacement. Additional data are needed to provide a refined formulation for shear sliding
displacement for squat beams. In the absence of such data, the adoption of Equation (27) is suggested.
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14 OPABOLA and ELWOOD

F IGURE 1 2 Prediction of shear sliding displacement at
yield using Equation (27).

7 MATHEMATICAL RELATIONSHIP BETWEEN SHEAR SLIDING AND AXIAL
ELONGATION

Figure 13 shows the relationship between axial elongation and shear sliding for all beam specimens. As shown in the
Figure, when the axial deformation in the beam is small, shear sliding deformation is not significant. As the beam con-
tinues to elongate under cyclic demands, the influence of cyclic action-induced shear-friction deterioration, separation of
the two concrete interfaces, and excessive longitudinal bar buckling lead to a significant increase in shear sliding with a
minimal increase in drift demand.
For specimen CYC-1.24.25 with a shear span of 1240 mm and aspect ratio of 2, due to diagonal cracking, shear deforma-

tion is split between sliding at the beam-column interface and sliding through the diagonal crack planes along the beam
length. The reduced shear sliding at the beam-column interface suggests that the section of the longitudinal bars at the
beam-column interface is subjected to lesser dowel action compared to other specimens with a shear span of 1960 mm
and aspect ratio of 3.2.
As shown in Figure 13 the relationship between axial elongation and shear sliding is nonlinear. It is intuitive to expect

that shear sliding at the beam-column interface increases bond slip (and axial elongation) due to the degradation of
the concrete-bar bond. Also, shear sliding stiffness is further reduced with an increase in bond slip. Hence, the inter-
dependence between axial elongation and shear sliding is complex. This subsection, however, seeks to develop a simple
formulation to quantify this interdependence.
Recalling that μ = θm/θy, Equation (17) can be rewritten as:

𝛿𝑒𝑙 =
𝜆

2
𝜇𝜃𝑦

(
𝑑 − 𝑑′

)
(28)

Rearranging Equation (28):

𝜇 =
𝛿𝑒𝑙

0.5𝜆𝜃𝑦 (𝑑 − 𝑑′)
(29)

Putting Equation (29) into Equation (26),

Δ𝑠𝑠 = Δ𝑠𝑠,𝑦 ⋅

(
𝛿𝑒𝑙

0.5𝜆𝜃𝑦 (𝑑 − 𝑑′)

)𝑎2

(30)

From the Opabola and Elwood16 formulation for evaluating the yield rotation of RC beam-column components
(𝜃𝑦 = 𝛽𝜀𝑦𝑎∕2𝑑), and assuming (d-d′)/d equals 0.8, Equation (30) can be simplified as:

Δ𝑠𝑠 = Δ𝑠𝑠,𝑦 ⋅

(
5𝛿𝑒𝑙
𝜆𝛽𝜀𝑦𝑎

)𝑎2

(31)
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OPABOLA and ELWOOD 15

F IGURE 13 Relationship between axial elongation and shear sliding.

It is noted that δel/a is the axial strain in the beam; hence, from Equation (31), it can be concluded that the ratio of axial
strain in the component to the yield strain of the longitudinal bar is quadratically proportional (assuming a2 equals 2) to
the magnitude of shear sliding displacement for slender beams. β is a coefficient that accounts for the contribution of bar
slip and shear deformation to yield rotation, and it is expressed as a function of aspect ratio (See Opabola and Elwood16)
For a beam with a/d ≥ 3, a2 equals 2 and if a single-crack plastic hinge behaviour is expected, λ= 1.3. Equation (31) can

be approximately rewritten as:

Δ𝑠𝑠 = Δ𝑠𝑠,𝑦 ⋅

(
4𝛿𝑒𝑙
𝛽𝜀𝑦𝑎

)2

(32)

As previously proposed, for the squat Specimen CYC-1.24.25, a λ of 2.0 and a2 of 2.3 is adopted; such that from
Equation (31),

Δ𝑠𝑠 = Δ𝑠𝑠,𝑦 ⋅

(
2.5𝛿𝑒𝑙
𝛽𝜀𝑦𝑎

)2.3

(33)
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16 OPABOLA and ELWOOD

TABLE 3 Comparison of measured and predicted effective stiffness for all specimens.

Predicted ΕΙeff/ΕΙg Measured/Predicted

Specimen
Measured
ΕΙeff/ΕΙg ASCE 41-17

Opabola and
Elwood (2020) ASCE 41-17

Opabola and
Elwood (2020)

CYC-1.96.25 0.22 0.3 0.23 0.73 0.96
CYC-1.24.25 0.16 0.3 0.14 0.53 1.14
CYC-1.96.32 0.23 0.3 0.23 0.77 1.00
EQ-S-1.96.25 0.21 0.3 0.23 0.7 0.96
EQ-D-1.96.25 0.26 0.3 0.23 0.87 1.13
EQ-R-1.96.25 0.25 0.3 0.23 0.83 1.09

As shown in Figure 13B, Equation (33) provides a good estimate of the relationship between shear sliding and axial
elongation for CYC-1.24.25. Additional testing is, however, required to further validate Equation (33) for squat beams.

8 PREDICTION OF FORCE-DISPLACEMENT RESPONSE

8.1 Effective stiffness

According to ASCE/SEI 41-17,17 the effective stiffness (EIeff) of a RC beam can be taken as 30% of the gross section (EIg)
of the beam. The measured effectiveness from each test specimen was derived from the measured yield displacement (as
described previously) as:

𝐸𝐼𝑒𝑓𝑓 =
𝑉max𝑎

3

3Δ𝑦
(34)

where Δy is the measured yield displacement, Vmax is the measured peak strength, a is the shear span of the specimen.
The measured effective stiffness for all six test specimens is presented in Table 3. A comparison of measured effective

stiffness values for the beams to that predicted by ASCE/SEI 41-17 is presented in Table 3. As shown in Table 3, the effective
stiffness of all specimens were all over-predicted.
The over-prediction of the effective stiffness by ASCE/SEI 41-17 is due to the fact that the effective stiffness provisions

of ASCE/SEI 41-17 only account for flexural rigidity, neglecting the contribution of bar slip and shear deformation. In
a recent study, Opabola and Elwood16 proposed a formulation for accounting for the contribution of bar slip and shear
deformation to effectiveness as function of the aspect ratio (a/d) of the component, such that:

𝐸𝐼𝑒𝑓𝑓

𝐸𝐼𝑔
= 𝛼

(
0.27

(𝑎
𝑑

)
− 0.07

) ≤ 𝛼 (35)

where α is the flexural rigidity of the component and can be taken as proposed by ASCE/SEI 41-17. For a beam, α is taken
as 0.3EIg.
A comparison of measured and predicted, using Equation (35), effective stiffness values for the beams is presented in

Table 3. As shown in Table 3, the effective stiffness of all specimens are well-predicted. For specimen CYC-1.24.25 with
a short aspect ratio, Equation (35) is able to adequately capture the lower stiffness in the specimen relative to the other
slender beams. Thehighermeasured effective stiffness of SpecimenEQ-D-1.96.25, relative to theEQ-S-1.96.25 subjected to a
pseudo-static loading rate, may be attributed to the higher strain rate. The effect of strain rate on themeasured is, however,
not so significant; hence, it is assumed that Equation (35) is applicable to components under dynamic strain rates.

8.2 Plastic rotation capacity

Formulations presented in the preceding sections have been used to analyse the behaviour of components with
single-crack plastic hinge behaviour. The interdependence and/or relationship between axial elongation, shear sliding
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OPABOLA and ELWOOD 17

F IGURE 14 Adequacy of Equation (36) in predicting the relationship between maximum crack width at peak drift demand.

F IGURE 15 Influence of beam depth on base crack width at different drift demands, computed using Equation (36).

displacement and drift demand has been mathematically established. The mathematical formulations are considered
applicable when rigorous predictions are desired. For most engineering applications (e.g. seismic assessment), however,
assessing the deformation capacity of these beams is the main objective.
From Equations (14), (15) and (20), it can be easily derived that δ2 = 0.13δ1. Putting this back into Equation (14), this

leads to:

𝜃𝑚 =
0.87𝛿1
𝑑 − 𝑑′

(36)

The efficiency of Equation (36) in predicting the relationship between base crack widthmeasured at the tensile end and
drift demand is shown in Figure 14. Experimental data from test specimens suggest that the relationship between base
crack width and drift demand can be assumed to be linear. Also, as shown in Figure 14, this linear relationship is well
captured by Equation (36).
As shown in Equation (36), the relationship between base crack width and drift demand is influenced by the section

depth. For section depths of 700 mm, 900 mm and 1200 mm, assuming the corresponding d—d’ of 595 mm, 795 mm and
995mm, respectively, the relationship is depicted in Figure 15. As shown in Figure 15, deeper beams are likely to have larger
crack widths for a given drift demand. For example, a 3% drift demand corresponds to a crack width of approximately 20
mm and 35 mm in 700 mm and 1100 mm deep beams, respectively.
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18 OPABOLA and ELWOOD

TABLE 4 Comparison of the adequacy of ASCE/SEI 41-17 and Equation (37) in estimating the plastic rotation capacity of the beams

Predicted θp (%) Measured/Predicted
Specimen Measured θp (%) ASCE 41-17 Equation (37) ASCE 41-17 Equation (37)
CYC-1.96.25 4.5 2.5 4.4 1.8 1.0
CYC-1.24.25 4.6 2.5 4.4 1.8 1.0
CYC-1.96.32 6.2 2.5 5.2 2.5 1.2

Thus, enough care must be taken to ensure the base crack width at an expected seismic drift demand on a beam with
single-crack plastic hinge behaviour is acceptable for the spatial integrity of the frame system.
As mentioned earlier, the response of a beam with single-crack plastic hinge behaviour consists of three phases. The

elastic response of such beams (i.e. contribution of different deformation components) is similar to that of a conventional
beam. As shown in Table 3, the measured effective stiffness of the beams are well-predicted by formulations developed
for components with distributed cracking. To predict the inelastic rotation capacity of beams with single-crack plastic
hinge behaviour, it is suggested that the formulation for a pure-bond slip mechanism presented previously in this paper
be modified to account for the influence of shear sliding deformation. As observed in the beam specimens, once high
tensile strains developed in the longitudinal bars, they became susceptible to bar buckling during a load reversal due to
the combined effect of lateral dowel forces and longitudinal compression forces. To account for this, as recommended
by Priestley and Kowalsky,18 it is suggested that the ultimate tensile strain capacity of the longitudinal reinforcement be
limited to 0.06. Excessive longitudinal bar buckling may be expected once this strain limit is exceeded. It is noted that this
tensile strain limit applies to beams with stirrup spacing 𝑠 ≤ 3 + 6(𝑓𝑢∕𝑓𝑦 − 1)𝑑𝑏.12 A lower strain limit may be adopted if
the stirrup spacing is larger.
Hence, the plastic rotation capacity of a beam with a single-crack plastic hinge mechanism can be estimated from

Equation (13), assuming an ultimate tensile strain capacity of 0.06 and taking d—c to be equal to 0.8D, as:

𝜃𝑝 =
0.15𝑙𝑠𝑝

𝐷
(37)

Where lsp can be estimated from Equation (11).
The adequacies of Equation (37) and ASCE/SEI 41-17 provisions are presented in Table 4. ASCE/SEI 41-17 provides an

estimate for the plastic rotation capacity at onset of loss of lateral strength for flexure-dominated beams as a function of
maximum shear stress, longitudinal and transverse reinforcement detailing. Themaximum shear stresses (Vu/(bd√f’c)) of
Specimens CYC-1.96.25, CYC-1.96.32 and CYC-1.24.25 are 0.17√f’c, 0.22√f’c and 0.26√f’c respectively; hence the predicted
plastic rotation at capacity at the onset of loss of lateral resistance for all three specimens equals 0.025.
Recall that the measured ultimate drift capacity was defined as a 20% loss in lateral resistance. The measured plastic

rotation capacities at the onset of loss of lateral strength of the test specimens were evaluated as the difference between
measured drift capacities and the yield rotation which was measured as previously described in this paper.
As shown in Table 4, ASCE/SEI 41-17 underestimates the plastic rotation capacities at the onset of loss of lateral resis-

tance for all three specimens. On the other hand, Equation (37) provides a good estimate of the plastic rotation capacities.
It is, therefore, proposed that Equation (37) be adopted for predicting the plastic rotation capacity of modern beams
susceptible to single-crack plastic hinge behaviour.
Looking at Table 4, the deformation capacity of Specimen CYC-1.24.25 was well-predicted by Equation (37) despite the

fact that the response of Specimen CYC-1.24.25 was not dominated by a single-crack. This suggests that Equation (37) may
be applicable for evaluating the drift capacity of ductile RC beams. may be applicable for evaluating the drift capacity of
ductile conventional RC beams with distributed cracking. Further studies are required to validate this.
The seismic assessment procedure for a beam susceptible to single-crack plastic hinge behaviour would entail:

1. Evaluation of the probable peak shear stress demand (Vu/(bd√f’c)) of the beam. If Vu/(bd√f’c)≥ 0.25√f’c, assume that
distributed shear cracking is likely; else, assume that the response of the beam would be dominated by a single-crack
plastic hinge behaviour.

2. Evaluation of the probable yield rotation using the Opabola and Elwood16 formulation.
3. Evaluation of the probable plastic rotation capacity using Equation (37) and summing up the computed yield rotation

and plastic rotation capacity to derive the drift capacity limit of the beam
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4. Evaluation of expected beam elongation at the predicted drift capacity using Equation (17). If Vu/(bd√f’c) ≥ 0.25√f’c,
λ = 2.0; else, λ = 1.3.

5. Evaluation of the expected shear sliding deformation using Equation (31).
6. If the computed shear sliding and axial elongation deformations are deemed unacceptable based on deformation com-

patibility considerations or any engineering requirement, the deformation capacity from step 3 should be reduced until
a target shear sliding or axial elongation deformation is achieved.

The presented experimental data and formulation are based on unrestrained beams. Slab effect and frame actions
may induce axial restraint in typical frame beams. Additional testing is needed to validate the proposed formulations
for restrained beams.

9 CONCLUSION

Due to bar curtailment at the column face, certain modern beams (i.e., designed according to modern seismic design phi-
losophy) may be susceptible to a single-crack plastic hinge behaviour instead of the desirable conventional distributed
cracking mechanism. The response of beams with single-crack plastic hinge behaviour is different from that with dis-
tributed plastic hinge behaviour. This study explores the response of beams with single-crack plastic hinge behaviour due
to curtailed longitudinal bars using experimental data from six full-scale beam test specimens.
Experimental results from the six specimens show that the inelastic response of such a beam is dominated by the fixed-

end rotationmechanismvia bond-slip. Due to reinforcement and geometrical detailing, however, theremight be variations
in the response of the beams expected to be dominated by single-crack plastic hinge behaviour. Due to high shear stress,
beams with or without curtailed bars having Vu/(bd√f’c) ≥ 0.25√f’c should be expected be have significant diagonal
cracking along the shear span.
In beams dominated by single-crack plastic hinge behaviour due to curtailed longitudinal bars, once flexural yielding

occurs at the beam-column interface and inelastic deformations starts concentrating at the interface, shear forces can only
be transmitted across the crack by two modes—aggregate interlock between the surfaces of the crack and dowel action
in the reinforcement crossing the crack. As the beam elongates, aggregate interlock is lost and dowel resistance serves
as the only shear resisting mechanism. This results in an increase in shear sliding deformation. Hence, the response
of beams with single-crack plastic hinge behaviour is characterised by the interdependence between base shear sliding
and axial elongation as displacement demand increases. This relationship was derived analytically and validated using
experimental results. Also, it was concluded that beams with single-crack plastic hinge behaviour may experience half of
the axial elongation expected in beamswith distributed cracking. However, due to a higher likelihood of diagonal cracking
initiation along shear span, short beams with curtailed bars (a/d ≤ 2) or Vu/(bd√f’c) ≥ 0.25√f’c should be treated as if
distributed cracking is expected.
Also, procedure for seismic assessment of such beams is proposed. The proposed formulations can be adopted in

developing adequate numerical models for simulating the response of RC frames with beams susceptible to single-crack
response due to curtailed longitudinal bars.
A limitation of this study is the unavailability of an extensive experimental dataset to validate the proposed formu-

lations. Additional testing on beams susceptible to distributed plastic hinge behaviour is required to validate this study
further. Furthermore, the presented experimental data and formulation are based on unrestrained beams. Slab effect and
frame actions may induce axial restraint in typical frame beams. Additional testing is needed to validate the proposed
formulations for restrained beams.
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