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1 Introduction

Quantum tunneling, a non-perturbative phenomenon for which there is no classical coun-
terpart, plays an essential role in a number of physical processes. A famous example of
tunneling is the decay of the false vacuum due to the nucleation of bubbles of true vacuum
during first order phase transitions [1, 2]. Consequently, a curved de Sitter spacetime —
an idealized approximation of our universe in the far past and future — is possibly in a
metastable false vacuum state [3].1 Additional fundamental processes with a tunneling
description range from nuclear fusion to Hawking radiation [5], to cosmological phase tran-
sitions and structure formation, e.g., [6–8]. A particularly interesting subclass of tunneling
processes include the nucleation of membranes in flat and curved backgrounds. As a higher
dimensional analog of Schwinger pair production [9], membrane nucleation provides a
mechanism for the neutralization of the cosmological constant [10, 11] (see [12–14] for a
modern treatment), and acts as an illustrative precursor for studying the materialization of
various topological defects during cosmic inflation [15].

1Alternatively, via the creation of false vacuum bubbles, a de Sitter-like background may undergo true
vacuum decay [4].
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By now it is standard practice to describe tunneling processes using instanton techniques.
Instantons, as classical solutions to the Euclidean equations of motion obeying suitable
boundary conditions, are saddle points to a Euclidean path integral and therefore are the
leading order contribution to the path integral in a saddle-point approximation. The leading
order contribution to the nucleation rate Γ, or, equivalently, the exponential behavior of
the tunneling probability, of an object is found by computing the partition function and is
thereby proportional to the exponential of the on-shell Euclidean action SE of the system
of interest (see [16] for a pedagogical review)

Γ = Ae−SE . (1.1)

Here the prefactor A is typically comprised of functional determinants generated by inte-
grating out small quantum fluctuations about the instanton stationary point, thus encoding
typically subleading 1-loop quantum corrections. For example, the Schwinger nucleation
rate2 of a spin-j particle-antiparticle pair of mass m in a strong electric field E is [9]

Γ = (2j + 1)E2

8π3

∞∑
n=1

(−1)(n+1)(2j+1)

n2 e−
πm2n
E , (1.2)

which can be recovered from a sum over instanton amplitudes to tunnel through a potential
barrier [19]. Similar derivations hold for the computation of nucleation rates of strings,
membranes, and topological defects, in both flat and curved backgrounds [15, 20, 21].

Despite being non-perturbative in nature, an unfortunate limitation of each of the
aforementioned computations, including the rate (1.2), directly or indirectly assume the
quantum field theory is weakly coupled. Of course, weakly coupled field theories comprise
only a small class among the landscape of field theories; indeed the standard model of
particle physics is an example of a strongly coupled field theory. It is of interest then
to compute nucleation rates beyond the weak coupling regime. In this article we take
steps in addressing this question and analyze nucleation rates of spherical membranes
in flat and de Sitter backgrounds using the Anti-de Sitter space/conformal field theory
(AdS/CFT) correspondence.

AdS/CFT, born from studies in string theory, is a non-perturbative candidate model
of quantum gravity, in which gravitational physics in a (bulk) d + 2-dimensional AdS
background has a dual description in terms of a conformal field theory living on the
d + 1-dimensional conformal boundary of AdS. The correspondence is thus a specific
realization of the holographic principle. A striking feature of the AdS/CFT correspondence
is that it is a strong-weak coupling duality: coupling constants between the bulk and
boundary theories are inversely related, such that strongly coupled field computations on
the boundary may instead be performed via a gravity calculation at weak coupling. For
example, the challenging task of computing entanglement entropy of certain strongly coupled

2More precisely, what we call Γ is the rate of vacuum decay per unit volume. This differs from the pair
production rate per unit volume [17, 18], which equals the first term in the sum (1.2). Here we study the
exponential phase factor e−SE for a single instanton with winding number n. The full vacuum decay rate
can be obtained by computing the prefactor A as a function of n and carrying out the sum over instantons.
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field theories can be accomplished by computing the area of bulk minimal surfaces obeying
certain homology conditions [22]. Further, AdS/CFT was used to predict a universal value
of the shear viscosity to entropy density ratio in a wide class of theories with classical
gravity duals [23], in remarkable agreement with the value measured experimentally for the
quark-gluon plasma produced in heavy-ion collision experiments [24]. Thus, at the very
least, AdS/CFT has proven to be a powerful tool to analyze aspects of strongly coupled
field theories. Here we exploit this feature to compute the nucleation rates of membranes
at strong coupling.

Progress along these lines has already been made. In particular, the Schwinger
pair production rate of W-bosons in a supersymmetric Yang-Mills theory in Minkowski
space was computed using holographic methods, leading to a holographic generaliza-
tion of Schwinger’s pair production formula (1.2) including strong coupling effects [25].
From the bulk perspective, this amounts to evaluating the on-shell Euclidean action of
a string ending on a stack of flavor branes. The endpoints of the string are coupled
to a Maxwell field with a constant electric field, and represent the particle-antiparticle
Schwinger pair. The holographic Schwinger effect has since been extended in a variety
of ways, e.g., [26–30], including the study of pair production in curved backgrounds, non-
relativistic backgrounds and confining models, among others [31–36]. In particular, the rate
of production of Schwinger pairs in de Sitter space was achieved by considering de Sitter fo-
liations of AdS [32], extending various non-holographic computations to the strong coupling
regime [15, 21, 37–43].

In this article we move beyond the holographic Schwinger effect and use AdS/CFT to
study the nucleation of spherical membranes in flat and de Sitter backgrounds of arbitrary
spacetime dimension. More precisely, we consider the creation of spherical membranes
coupled to a higher rank antisymmetric tensor field, which can be understood as a toy
model for false vacuum decay. The nucleation rate and critical value of the field strength
are computed by evaluating the on-shell membrane action. Our results thus extend the
aforementioned holographic Schwinger effect, reducing to this case in the appropriate limit,
as well as a strong coupling generalization of conventional field theoretic constructions. Of
note is the evaluation of the on-shell Euclidean membrane action in de Sitter space which is
determined completely analytically in arbitrary dimensions.

The remainder of this article is as follows. In section 2 we briefly review the holographic
set-up and computation of the on-shell action of a string used in the holographic Schwinger
effect. Section 3 is devoted to the analysis of membrane nucleation rates in flat space,
by computing the on-shell action for a membrane ending on a cutoff surface near the flat
conformal boundary of AdSd+2. We find the Lorentzian continuation of the instanton
describes a spherical membrane contracting and expanding at constant proper acceleration,
and relate the rest energy of the membrane to the bulk cutoff. Similarly, in section 4 we
compute the membrane nucleation rate in de Sitter space by considering various (d+ 1)-
dimensional de Sitter space foliations of AdS. In this case and in the limit the field strength
vanishes, our results yield the spontaneous nucleation rate for defects solely due to the
background inflation. We summarize and provide concluding remarks in section 5, discussing
multiple future avenues worth exploring. For the sake of completeness we include two
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appendices. Appendix A reviews the computation of membrane nucleation rates using
conventional quantum field theory at weak coupling [15], and appendix B lists multiple de
Sitter foliations of AdS.

2 Set-up and review of holographic Schwinger effect

We begin by providing an elementary review of the holographic set-up used to study the
holographic Schwinger effect, which we analyze using instanton methods by computing the
on-shell Nambu-Goto action for a string coupled to a Maxwell field. This review will act as
a useful comparison when we consider the nucleation of spherical membranes as many of
the techniques generalize in a straightforward manner.

2.1 Gravity set-up: preliminaries

Broadly, the AdS/CFT correspondence says the following: the states of certain conformal
field theories in the large Nc limit and large ’t Hooft coupling λ = g2

YMNc living on a
d + 1 dimensional spacetime Md+1 are dual to solutions of supergravity theories which
asymptotically approach AdSd+2 ×X, where X is a compact manifold whose isometries
are recognized as the global symmetries of the field theory, and the boundary of AdSd+2 is
identified withMd+1. In its strongest form, the duality purports a full equivalence between
the partition functions between the boundary CFT and the bulk theory. However, for
practical purposes it is often discussed within a saddle-point approximation, valid at large
Nc, because bulk calculations are tractable in this regime [44, 45]. The canonical example of
AdS/CFT duality relates type IIB string theory on an AdS5×S5 background with Nc units
of Ramond-Ramond flux through S5 to N = 4 SU(Nc) super-Yang-Mills theory, though we
will not restrict ourselves to a specific version of the correspondence.

In fact, it is often sufficient to consider a bulk spacetime Bd+2 ×X for an appropriate
internal space X, where Bd+2 is a solution to Einstein’s equations with a negative cosmo-
logical constant Λ = −d(d+1)

2L2 , where L being the length scale of the asymptotic AdSd+2
spacetime. In this context one relates the bulk (d+ 2)-dimensional Newton’s constant GN
to the central charge c of the dual CFT via

c = Ld

16πGN
. (2.1)

Hence, for fixed radius L, studying holographic CFTs in the large c limit amounts to
considering (classical) gravity in the GN → 0 limit, neglecting quantum gravity corrections.
With this in mind, we will consider the case when the bulk spacetime is represented by
empty AdSd+2, which in Poincaŕe coordinates has the line element

ds2
d+2 = L2

z2

(
−dt2 + d~x2 + dz2

)
, (2.2)

where d~x2 = dx2
1 + dx2

2 + . . . dx2
d. According to the standard AdS/CFT dictionary, this

geometry is dual to the vacuum of a (d+ 1)-dimensional CFT with central charge c (2.1).
Here the coordinate z is a bulk ‘radial’ coordinate, such that the (flat) conformal boundary
is located at z = 0. In the following two sections we will consider string and membrane
solutions living in this background subject to specific boundary conditions.
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As described above, Schwinger pair production or membrane nucleation requires one to
couple to a Maxwell gauge field or a higher antisymmetric tensor field, respectively. This
means one needs to add fundamental matter to the field theory. Holographically this would
entail introducing a stack of Nf flavor branes in the bulk geometry. With the canonical
example in mind, when Nf � Nc, the flavor branes act as probe branes, i.e., we may neglect
their backreaction effects on the background geometry and treat the geometry as given.
Furthermore, the flavor branes will be assumed to expand in all directions on the boundary,
however, only exist to finite extent in the bulk, between the boundary z = 0 and some
cutoff surface zm, where they ‘end’ (meaning that one of their internal cycles shrinks down
to zero size [46]). While this description provides a useful picture for us, we will be largely
agnostic to the precise details of the flavor branes. Rather, we will simply introduce a cutoff
surface at z = zm where the Maxwell gauge field or antisymmetric tensor field live.

A few additional comments are in order. First, it is natural to understand zm as a
fundamental UV scale in the theory. This follows from the usual UV/IR connection in
AdS/CFT, where the bulk coordinate z maps to a length scale L ∼ z in the boundary theory
such that z = zm corresponds to a length L ≈ zm. Second, for zm 6= 0, the fundamental
matter degrees of freedom added at the boundary acquire a finite mass (or energy). This is
easily understood as the introduction of this UV scale removes high energy modes, which
would provide any excitation with infinite energy. Third, the existence of such a scale
provides a non-zero thickness to the membranes analyzed here. The thickness is linked to
the aforementioned UV/IR connection, and the fact that a finite zm introduces a minimal
length one can resolve in the theory. Lastly, since z = zm 6= 0 is not exactly on the boundary,
non-normalizable modes of the bulk fields, including the metric, are allowed to fluctuate on
this surface. Thus, even though in our setup we are assuming a rigid boundary metric, one
may couple field theoretic degrees of freedom (e.g., those resulting from integrating out the
UV) to dynamical gravity, reminiscent of Randall-Sundrum braneworld models [47, 48]. In
such a setting one would need to add a codimension-1 brane at the cutoff surface z = zm
with induced dynamical gravity and proper field theoretic degrees of freedom which may
backreact on the classical geometry in a consistent way (cf. [49–51]).

2.2 Schwinger effect: Euclidean instanton, decay rate and critical field

As a warmup before we analyze membrane nucleation, let us consider a string moving in
one of the spatial directions of the flat AdS background (2.2), say x1 ≡ x. In holography,
the string is dual to a Schwinger pair of particles. The string is attached to a stack of flavor
branes that lie at z = zm. Working in static gauge ξi = (t, x), and parametrizing the string
embedding as Xµ = (t, x,~0, z(t, x)), the Nambu-Goto action for the string yields

SNG = Tst

∫
d2ξ
√
− det γij =

√
λ

2π

∫
Σ
dtdx

√
1 + z′2 − ż2

z2 , (2.3)

where γij = ∂iX
µ∂jX

νgµν is the induced metric on the string worldsheet Σ and Tst =
1

2πα′ =
√
λ

2πL2 is the string tension, given in terms of the ’t Hooft coupling λ. One can easily
verify that the following is a solution of the equations of motion [52]:

z(t, x) =
√
R2 + t2 − x2 . (2.4)
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Figure 1. Left: hyperbolic trajectory of a pair of particles undergoing constant proper acceleration.
Right: Euclidean analytic continuation of the instanton describing pair creation.

Notice this solution reaches out to the AdS boundary z = 0. Indeed, evaluating the
embedding at z = 0 we can obtain the trajectory of the (as we will see, infinitely massive)
particles dual to the string,

x(t) = ±
√
R2 + t2 , (2.5)

i.e., the usual hyperboloid trajectory for motion with constant proper acceleration A = 1/R.
Such a trajectory can be obtained by, e.g., exerting a constant electric field upon the
particles. In Euclidean signature, the trajectory of the pair must have rotational symmetry
given that the electric field acts as a magnetic field after Wick rotation. Hence, the instanton
follows the usual cyclotron orbit,

x(tE) = ±
√
R2 − t2E . (2.6)

See figure 1 for an illustration.
The above string solution reaches out to the AdS boundary z → 0, hence the dual

particles are infinitely massive. However, in order to properly analyze the Schwinger effect
one needs to consider finite mass, otherwise pair production would be suppressed. This can
be achieved by letting the flavor branes reach up to some finite radial distance zm 6= 0. The
string solution in this case is the same as (2.4) but truncated at some z = zm. It can be
written as follows [53]:

z(t, x) =
√
z2
m +R2 + t2 − x2 , (2.7)

such that we recover (2.5) by evaluating (2.7) at z = zm.
Note that this is still the same solution, however, we have shifted R2 → R2 + z2

m. The
cutoff parameter zm is a fundamental constant of the theory and is set by the position
of the flavor branes. As such, several physical observables will end up depending on this
parameter. For example, one can compute the (spacetime) momentum densities for a
fundamental string

Πµ = ∂LNG

∂Ẋµ
= −Tst

ẊµX
′2 −X ′µ(Ẋ ·X ′)√

(Ẋ ·X ′)2 − Ẋ2X ′2
, (2.8)

– 6 –
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and write them in terms of zm. The prototypical example is a static string hanging from
the stack of flavor branes at some x = constant. In this case, the total energy E yields the
rest mass m of the dual particle,

E =
∫ ∞
zm

Πtdz = TstL
2
∫ ∞
zm

dz

z2 =
√
λ

2πzm
≡ m, (2.9)

which can be inverted to obtain

zm =
√
λ

2πm . (2.10)

As advertised, the mass of the particle m turns out to be inversely proportional to the
cutoff radius zm, so that m→∞ as zm → 0. We can repeat the exercise for the accelerated
solution with embedding (2.7). In this case we obtain

E =
∫ √R2+z2

m+t2

zm
Πtdz = 2TstL

2√
R2 + z2

m

√
R2 + t2

zm
. (2.11)

The energy varies with time as the speed of the dual particles is changing. The rest energy
E0 ≡ E(t = 0) for this solution is

E0 =
√
λ

π
√
R2 + z2

m

(
R

zm

)
, (2.12)

which can also be inverted to obtain zm(E0, R).
We note that for zm � R, or equivalently,

√
λ� RE0, then zm ≈

√
λ

πE0
, where we may

relate the rest energy to the mass of a pair of static particles, E0 ≈ 2m, recovering (2.10).
A couple of comments are in order. First note that, as in the static case, the rest energy E0
is infinite in the limit zm → 0. This is due to the infinite volume of AdS near the conformal
boundary. Second, in general E0 6= 2m, rather, E0 ends up depending on R = 1/A, which is
a parameter of the specific trajectory. This is due to the fact that, for zm 6= 0, the dual
particles are no longer pointlike, but rather, are surrounded by a ‘glue cloud’ of finite size
zm [54–56]. The effects of such a cloud are most directly seen from expectation values of
local operators, such as 〈TrF 2(x)〉 or 〈Tµν(x)〉, which for accelerated trajectories end up
depending on not only the relativistic boost factor γ(t), but also, the acceleration a(t) and
higher order derivatives, j(t) ≡ ȧ(t), etc, rendering these observables anisotropic [57, 58].
For such extended objects, thence, the total intrinsic energy E (as well as their rate of
radiation) ends up depending highly non-trivially on the trajectory x(t), even when they
are instantaneously at rest.3

For all practical purposes, then, we may consider zm as a fundamental constant of the
theory which we will take as given. This parameter can be thought of as a UV scale giving
rise to the (finite) masses/energies of the various objects that the dual theory may nucleate.

Now, to enforce the accelerated motion one must include an external force which acts
upon the endpoints of the string. This can be achieved by turning on a constant electric field

3See [59] for a review on the subject.
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with strength Ftx = E on the flavor branes. This amounts to adding to the Nambu-Goto
action (2.3) the action SA of a minimally coupled gauge field A obeying F = dA,

SA =
∫
∂Σ
A , A ≡ Aidxi , (2.13)

with ∂Σ being the boundary of the string worldsheet living on the surface z = zm.
It turns out this system, described by the total action S = SNG +SA, is unstable above

a certain critical value of the electric field strength. This can be seen from the nucleation
rate of the string Γ, dual to the nucleation rate of Schwinger pair production. Indeed, from
the original computation of pair creation by Schwinger [9], one can see there is a critical
value of the electric field Ec = m2/αs, with fine structure constant αs ' 1/137, at which
point the vacuum becomes unstable and decay. Further, since the critical field strength is
beyond the limit of weak field condition, Ec � m2, one may expect nucleation processes
to receive relevant non-perturbative corrections. Motivated by this, the Schwinger pair
production rate (1.2) may be derived rederived using instanton techniques, specifically,
from the imaginary part of the Euclidean worldline path integral, (see e.g. [18]), where the
contribution of an instanton to the nucleation rate is of the form Γ = Ae−SE , where A is
a prefactor that comes from integrating over quantum fluctuations about the instanton
solution and SE is the on-shell Euclidean action.

Missing from this derivation, however, are effects coming from the backreaction of
the particles on the gauge fields, which are enhanced at strong coupling. To study such
corrections, one may use AdS/CFT to reexamine the Schwinger effect, holographically
understood as the nucleation of the string described above [25]. Thus, one moves to
Euclidean signature, t → −itE for Euclidean time tE , and looks for instanton solutions
to the Euclideanized Nambu-Goto action. In this case the instanton is given by the Wick
rotated string solution (2.7), which takes the following form:

z(tE , x) =
√
z2
m +R2 − t2E − x2 . (2.14)

Figure 2 shows a schematic illustration of the Lorentzian and Euclidean string embed-
dings, (2.7) and (2.14), respectively.

Note that at z = zm, the Euclidean solution reduces to a circle of radius R, as expected
from (2.6). Hence, an instanton of the Euclidean path integral is a cyclotron orbit which may
wrap n times in the time direction. The associated Euclidean action, SE = SNG +SA|t→−itE ,
evaluated on-shell is found to be

SE = n
√
λ

(√
1 + R2

z2
m

− 1
)
− nπR2E . (2.15)

For zm � R (i.e.,
√
λ� RE0), zm ≈

√
λ

πE0
≈
√
λ

2πm , the action reproduces the weak coupling
result of [18], however, corrected by a term −n

√
λ, representing the inclusion of a Wilson

loop amplitude in the path integral [25]. This extra term encapsulates the effects of
strong coupling which, as advertised above, we have a handle on only through the power
of holography.
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z

z = zm
z = zm

Figure 2. Left: Lorentzian string solution dual to a pair of particles undergoing constant proper
acceleration. Right: string solution dual to the Euclidean instanton. In both cases the solutions
are truncated at some z = zm where the embeddings coincide with the boundary Lorentzian and
Euclidean trajectories, (2.5) and (2.6), respectively.

The radius R of the orbit can be fixed by finding an extremum of (2.15),

R =
√

λ

4π2E2z2
m

− z2
m . (2.16)

Consequently, this yields the following critical value Ec of the field strength (when R→ 0,
or equivalently, A→∞),

Ec =
√
λ

2πz2
m

, (2.17)

which may be used to rewrite (2.16) as

R =

√ √
λ

2πEc

(
E2
c

E2 − 1
)

(2.18)

Similarly, the on-shell action (2.15) may be cast in terms of Ec as

SE = n
√
λ

2
(Ec − E)2

EcE
. (2.19)

Since SE vanishes as E → Ec, one sees that when this critical field is reached, the instanton
sum is no longer exponentially suppressed, rendering the vacuum unstable. Moreover, it
is easy to check that in the weak field limit E � Ec, and zm � R (or

√
λ � RE0), one

recovers the argument in the exponential of Schwinger’s result (1.2), valid at weak coupling.
As a final comment, we note that the critical field strength Ec can be easily understood

from the flavor brane point of view. Specifically, in the static gauge, the DBI Lagrangian
for a probe brane reads

√
− det(gab + 2πα′Fab) ∝

√
1
z4 −

( 2π√
λ
Ftx

)2
, (2.20)

which is real at z = zm provided Ftx ≡ E <
√
λ/(2πz2

m). Beyond this value, the creation of
open strings is energetically favored, such that the system becomes unstable, as E > Ec.
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3 Membrane nucleation rates in flat space

Having reviewed the nucleation of strings in flat space, we generalize to the case of nucleating
spherical membranes, first in (d+ 1)-dimensional flat space, and then in (d+ 1)-dimensional
de Sitter space in section 4.

3.1 Membranes in flat space

Let us consider a (p+ 1)-dimensional membrane embedded in pure AdSd+2, with 1 ≤ p ≤ d,
where in the limit p = 1 the system reduces to a string as reviewed in section 2. Assuming
spherical polar coordinates along the p-spatial directions, the bulk AdSd+2 metric in Poincaré
coordinates is

ds2
d+2 = L2

z2

(
−dt2 + dr2 + r2dΩ2

p−1 + d~x2
⊥ + dz2

)
. (3.1)

Here ~x⊥ denotes the directions transverse to the brane; however, when p = d, there are no
extra transverse directions. As before, we imagine flavor branes extending into the bulk
from the boundary at z = 0 to some finite cutoff position z = zm. The spherical membranes
are attached to the stack of flavor branes along z = zm, such that the boundary of the
membrane worldvolume ends at z = zm. In a moment we will see how to relate the energy
of various membrane solutions the bulk cutoff position zm, analogous to the string case.

Working in static gauge, the worldvolume Σp is parametrized by coordinates
ξi = (t, r, ~Ωp−1) while the embedding functions of the membrane into AdSd+2 are
Xµ = (t, r, ~Ωp−1, ~x⊥, z(t, r)). Here ~Ωp−1 denotes the collection of spherical angular co-
ordinates, and ~x⊥ denotes the coordinates of the (p − d) transverse directions, which,
without loss of generality, we may fix to be at ~0. The Lorentzian action Sp characterizing
the dynamics of the membrane is given by the area of Σp, generalizing the Nambu-Goto
action for a string:

Sp = Tp

∫
Σp
dp+1ξ

√
−detγij . (3.2)

Here Tp denotes the tension of the membrane, such that for p = 1 we recover the tension of
the string T1 =

√
λ

2πL2 . With respect to the line element (3.1), it is straightforward to show
the action becomes

Sp = TpL
p+1Ωp−1

∫
Σp
dtdr

rp−1√1 + z′2 − ż2

zp+1 , (3.3)

where Ωp−1 = 2πp/2

Γ(p/2) is the volume of a (p − 1)-dimensional unit sphere, and we have
introduced the shorthand notation ż ≡ dz

dt and z′ ≡ dz
dr .

From the action (3.3), one can easily verify the same solution z(t, r) for the string (2.7)
is a solution to the equations of motion of the membrane for any p

z(t, r) =
√
R2 + z2

m + t2 − r2 , (3.4)

with the change x↔ r and where we have explicitly included the cutoff zm such that the
membrane has finite mass (energy). Thus, at the cutoff surface z = zm, the solution (3.4)
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Figure 3. Snapshots of the (Lorentzian) membrane solution (3.4) as it contracts and expands in
time. For the sake of the plots, we have only shown the case of a (2 + 1)-dimensional membrane (i.e.,
with p = 2), but the solution is valid for arbitrary p. The p = 1 case reduces to a string worldsheet,
as depicted in figure 2 (left).

describes a massive spherical membrane which contracts and expands radially with radius
given by r(t) =

√
R2 + t2. Figure 3 illustrates the time evolution of this membrane solution.

As for the case of the holographic Schwinger effect, enforcing this solution requires
an external force acting on the boundary of the membrane ∂Σp. Unlike the string case,
however, this amounts to coupling the membrane to a higher antisymmetric tensor field A
of rank p,

A = A[i...k]dx
i ∧ . . . ∧ dxk , (3.5)

on the boundary where one imagines flavor branes to extend. The action for A is

SA =
∫
∂Σp
A . (3.6)

For spherically symmetric configurations, the gauge field strength F associated with A via
F = dA, will only have a single independent component, and may be expressed as

F = −Eε̃ , (3.7)

where ε̃ is the natural volume form of the (p+ 1)-dimensional spacetime, ε̃ =
√
|g|εi...kldxi ∧

. . . ∧ dxk ∧ dxl (with ε01...p = 1), and E is a constant ‘electric’ field strength. The total
action of interest is then

S = Sp + SA . (3.8)

Rest energy of membranes. We can compute the energy E of any membrane solution,
analogous to the string case (2.9) or (2.11), and determine its dependence on the various
parameters of the theory.

It is first worthwhile to consider the energy of a static membrane that hangs at some
x1 = constant and extends to infinity in the remaining p− 1 directions. In this case, the
total energy E yields the rest mass mp of the membrane, generalizing (2.9) to:

E =
∫ ∞
zm

Πtdz = TpL
p+1Vp−1

∫ ∞
zm

dz

zp+1 = Tp L
p+1Vp−1
p zpm

≡ mp . (3.9)

Here Vp−1 ≡
∫
dx2 · · · dxp stands the p− 1 volume. If desired, we can invert (3.9) to express

zm in terms of mp, which yields

zm =
(
Tp L

p+1Vp−1
pmp

)1/p

, (3.10)
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which correctly reproduces (2.10) for p = 1 with T1 →
√
λ

2πL2 and Vp−1 → 1.
We can now consider the spherical membranes with profile given by (3.4). In this case,

the momentum densities for a given spherically symmetric solution are given by:

Πµ = ∂Lp
∂Ẋµ

= −TpΩp−1

(
Lr

z

)p−1
ẊµX

′2 −X ′µ(Ẋ ·X ′)√
(Ẋ ·X ′)2 − Ẋ2X ′2

 . (3.11)

Substituting in the solution (3.4), the energy of the membrane yields,4

E =
∫ √R2+t2+z2

m

zm
dzΠt = TpΩp−1L

p+1

p
√
R2 + z2

m

(R2 + t2)p/2

zpm
. (3.12)

As expected, the energy decreases as the membrane contracts, reaches a minimum at t = 0
and then grows back to infinity as the membrane expands. The rest energy of the membrane
E0 ≡ E(t = 0) is thus

E0 = TpΩp−1L
p+1

p
√
R2 + z2

m

(
R

zm

)p
. (3.13)

As before, we assume zm to be a fundamental constant of the theory, which we take as
given. One may try to invert (3.13) to express the cutoff zm in terms of E0 and R, but the
result is lengthy and not particularly useful, hence we will refrain from doing so.

As a final comment we point out that, as for the case of the string, the truncated solution
with zm 6= 0 is expected to be dual to a membrane with a finite width proportional to zm,
thus departing from the infinitely thin shell regime. It would be interesting to investigate
this further. For example, it would be insightful to compute the expectation values of local
operators, such as 〈TrF 2(x)〉 or 〈Tµν(x)〉, e.g., following [57, 58], and determine the spatial
profiles sourced by these membranes. .

3.2 On-shell Euclidean action and nucleation rate

The nucleation rate Γ for membranes, analogous to Schwinger pair production, can be
computed using instanton methods [15], where the leading order effect is given by the
on-shell Euclidean action SE (1.1). Thus far, aside from the case of the string [32], such
nucleation rates have been carried out at weak coupling, without the employ of holography.
Here we use AdS/CFT as a general tool to compute Γ ∼ e−SE , for which the classical bulk
computation is valid, leaving aside the corrections due to quantum fluctuations. We thus
Euclideanize the total action (3.8) via Wick rotating the AdSd+2 time t→ −itE ,

SE = SEp + SEA , (3.14)

and use the fact that the field strength tensor F is unchanged under the Wick rotation (as
is the case for standard Maxwell theory).

Specifically, Euclideanizing the membrane action (3.3) leads to

SEp = TpL
p+1Ωp−1

∫
Σp
dtEdr

rp−1√1 + z′2 + ż2

zp+1 , (3.15)

4To carry out this calculation it is easier to parametrize the worldvolume with coordinates ξi = (t, z, ~Ωp−1)
and invert (3.4) to obtain r(t, z), such that we work with the embedding Xµ = (t, r(t, z), ~Ωp−1, ~x⊥, z).
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where now Σp is the Euclidean worldvolume and ż ≡ ∂z
∂tE

. The solution (3.4) Wick rotates to

z(tE , r) =
√
R2 + z2

m − t2E − r2 , (3.16)

and is a solution to the Euclidean equations of motion coming from (3.15). It corresponds
to a spherical membrane, where tE now acts as an additional spatial coordinate, and can
be viewed as a higher dimensional generalization to the Euclidean string solution shown in
figure 2 (right). In this case, the on-shell Euclidean action for the membrane yields

SEp = TpL
p+1Ωp−1

√
R2 + z2

m

∫
Σp
dtEdr

rp−1

[R2 + z2
m − t2E − r2](p+2)/2 . (3.17)

To evaluate the integral we perform the following change of integration variables,

r = ρ cosφ , tE = ρ sinφ , (3.18)

where since r is taken to be non-negative, ρ ∈ [0, R] and φ ∈ [−π
2 ,

π
2 ], in contrast with the

string case, where x ranges over positive and negative values. Consequently, the on-shell
membrane action evaluates to

SEp = π
p+1

2 Tp L
p+1Rp+1

Γ(p+3
2 )(z2

m +R2)
p+1

2
2F1

(
p+ 1

2 ,
p+ 2

2 ,
p+ 3

2 ,
R2

R2 + z2
m

)
, (3.19)

where we have used Ωp−1 = 2πp/2

Γ(p/2) . For later convenience, we also use the following identity
of hypergeometric functions:

zpm2F1

(
p+ 1

2 ,
p+ 2

2 ,
p+ 3

2 ,
R2

R2 + z2
m

)
= (R2 + z2

m)
p
2 2F1

(
1
2 , 1,

p+ 3
2 ,

R2

R2 + z2
m

)
,

(3.20)
to rewrite (3.19) as

SEp = π
p+1

2 Tp L
p+1Rp+1

Γ(p+3
2 )zpm

√
R2 + z2

m
2F1

(
1
2 , 1 , p+ 3

2 ,
R2

R2 + z2
m

)
. (3.21)

Meanwhile, since the boundary of the Euclidean worldvolume Σp is closed, we may
employ Stokes’ theorem such that, on-shell, the second part of the action, SEA , may be
cast as

SEA = −E
∫
Vp+1

ε̃ = −EVp+1 , (3.22)

where Vp+1 denotes the Euclidean spacetime volume enclosed by the boundary of the
membrane, ∂Σp, a (p+ 1)-dimensional ball of radius R,

Vp+1 = π
p+1

2 Rp+1

Γ
(
p+3

2

) = ΩpR
p+1

(p+ 1) . (3.23)

Combining (3.21) and (3.22), the total on-shell Euclidean action (3.14) for arbitrary p yields

SE = ΩpR
p+1

(p+ 1)

[
Tp L

p+1

zpm
√
R2 + z2

m
2F1

(
1
2 , 1 , p+ 3

2 ,
R2

R2 + z2
m

)
− E

]
. (3.24)

– 13 –



J
H
E
P
1
2
(
2
0
2
2
)
1
4
1

For example,

S
(p=1)
E = 2πL2T1

zm

(√
R2 + z2

m − zm
)
− πR2E,

S
(p=2)
E = 2πL3T2

z2
m

[
R
√
R2 + z2

m − z2
marctanh

(
R√

R2 + z2
m

)]
− 4

3πR
3E ,

S
(p=3)
E = 2π2L4T3

3z3
m

√
R2 + z2

m

[
R2 + 2z2

m

(√
z2
m

R2 + z2
m

− 1
)]
− 1

2π
2R4E ,

(3.25)

where for p = 1 we recover the on-shell string action (2.15) (for winding n = 1).
We can fix the radius R in terms of zm, Tp and E by finding the extremum dSE/dR = 0,

R =

√(
Tp Lp+1

Ezpm

)2
− z2

m . (3.26)

As for the string case, the entire system will become unstable for a critical value of the field
strength, denoted Ec, which occurs when A→∞ or R→ 0. Explicitly,

Ec = Tp

(
L

zm

)p+1
, (3.27)

such that the radius R is
R = zm

E

√
E2
c − E2 , (3.28)

and the on-shell action (3.24) becomes

SE = Ωp

(p+ 1)ER
p+1

[
2F1

(
1
2 , 1 , p+ 3

2 ,
E2
c − E2

E2
c

)
− 1

]
. (3.29)

Since SE ∝ Rp+1 it is clear the on-shell action vanishes when the field strength approaches
its critical value E → Ec. Further, given the field strength dependence in R, it is easy to see
that for any integer p > 0 SE diverges in the limit E → 0. Thus, there is not a consistent
limit for which membrane creation may occur in flat space without coupling to the external
gauge field A. We will see in the next section that this need not be the case for membrane
nucleation in a de Sitter background.

Lastly, in the weak field limit E � Ec, and zm � R (or, equivalently, TpLp+1 � RE0)
we have R ≈ ( pE0

EΩp−1
)1/p, reproducing the result found using standard field theoretic methods

at weak coupling [15] (see eq. (A.12) in appendix A for details)

SE ≈
Ωp

p(p+ 1)ER
p+1 = Ωp

(p+ 1)

 p
E

(
E0

Ωp−1

)(p+1)
1/p

, (3.30)

where we used 2F1(1
2 , 1,

p+3
2 , 1) = 1 + 1/p. More generally, expanding (3.24) in the two

dimensionless parameters, one finds an infinite set of corrections in powers of E/Ec and
TpL

p+1/RE0, which may be regarded as non-perturbative corrections to (3.30) due to strong
coupling and strong electric fields, and away from the infinitely thin shell regime.
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4 Membrane nucleation rates in de Sitter space

Thus far we efficiently computed the nucleation rate for spherical membranes including
non-perturbative effects via AdS/CFT holography, where the conformal boundary of AdS
was taken to be Minkowski space. Importantly, the conformal boundary of AdS where
the CFT lives need not be flat, allowing one to study, at least in principle, quantum
processes in curved backgrounds. As such, here we investigate membrane nucleation rates in
(d+ 1)-dimensional de Sitter space (dSd+1) at strong coupling using the tools of AdS/CFT.

As a starting point, notice one may foliate asymptotically AdSd+2 spaces using dSd+1
slices such that the dual theory is a strongly-coupled QFT living on a fixed dSd+1 back-
ground [60]. In particular, when the bulk geometry is pure AdSd+2, then the line element
can be cast in Fefferman-Graham form as [32, 61, 62]

ds2
d+2 = L2

z2

[
f(z)2ds2

dS + dz2
]
, f(z) ≡

(
1− H2z2

4

)
(4.1)

and the dual theory is a CFT.5 Here ds2
dS is the (d + 1)-dimensional line element for de

Sitter space in any coordinate system, with H being the Hubble constant. This metric has
an acceleration horizon at z = 2/H. Furthermore, for any static observer there is a local
notion of thermodynamics, with a temperature equal to the Gibbons-Hawking temperature
of the acceleration horizon, TdS = H

2π . It is useful to redefine the bulk z coordinate by

z = 2
H
e−2arctanh(u) = 2

H

(1− u)
(1 + u) , (4.2)

such that u ∈ [0, 1], with u = 0 corresponding to the acceleration horizon (z = 2/H) and
u = 1 the conformal boundary of AdS (z = 0). Thence, the line element (4.1) becomes

ds2
d+2 = 4L2

(1− u2)2

[
H2u2ds2

dS + du2
]
. (4.3)

In appendix B we analyze multiple such foliations of AdSd+2 due to various coordinate
representations of dSd+1. Two particular forms of the AdS2 line element (4.1) of interest
include foliations by de Sitter described in global coordinates,

ds2
d+2 = 4L2

(1− u2)2

[
H2u2

(
−dτ2 + cosh2(Hτ)

H2 dΩ2
d

)
+ du2

]
, (4.4)

and static patch coordinates,

ds2
d+2 = 4L2

(1− u2)2

[
H2u2

(
−(1−H2r2)dt2 + dr2

1−H2r2 + r2dΩ2
d−1

)
+ du2

]
, (4.5)

which may be transformed into one another via the coordinate change (B.9).

5Other studies of holographic CFTs in dS that make use of this type of foliations include [63–67].
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4.1 Membranes in de Sitter space

Let us now consider a (d+ 1)-dimensional membrane embedded in AdSd+2 foliated by dSd+1
slices in global coordinates (4.4).6 In particular, we would like to find membrane solutions
preserving the symmetries of a Sd−1. To do so, we look for embeddings depending only
on the polar angle in the line element dΩ2

d = dφ2 + sin2 φdΩ2
d−1. Parametrizing the world-

volume Σ with coordinates ξi = (τ, φ, ~Ωd−1), and choosing the embedding functions to be
Xµ = (τ, φ, ~Ωd−1, u(τ, φ)), it is a simple exercise to show the membrane action (3.2) becomes

Sd = 2d+1TdL
d+1Ωd−1

∫
dτdθ

ud cosd−1(Hτ) sind−1 φ
√
u′2 + cos2 τ(u2 − u̇2)

(1− u2)d+1 , (4.6)

where u′ ≡ du
dφ and u̇ ≡ du

dτ . From this action one may obtain the membrane equation of
motion and solve it for u(τ, φ) subject to appropriate boundary conditions.

We are interested in obtaining membranes expanding at a constant proper acceleration.
However, since we have a non-trivial boundary metric, we need to determine the form of such
a trajectory, and then impose it as a boundary condition for the bulk membrane. Without
lose of generality, we can parametrize the boundary trajectory as xµ = {τ, φ(τ),Ωd−1}. A
short calculation reveals that the trajectories we are looking for are of the form

φ(τ) = arccos (κ sech(Hτ)) , (4.7)

where κ is an arbitrary constant. For later convenience, we redefine this constant such that
κ = cos(α), in terms of which the norm of the acceleration vector yields

√
aµaµ = H cot(α) , aµ ≡ d2xµ

dτ2 + Γµαβ
dxα

dτ

dxβ

dτ
. (4.8)

The geometric meaning of α will be clear momentarily, once we move to Euclidean signature.
Imposing (4.7) as a boundary condition for the bulk membrane leads to the solution

u(τ, φ) =
cosh(Hτ) cos(φ)−

√
cosh2(Hτ) cos2(φ)− cos2(α)
cos(α) , (4.9)

where one can check one recovers (4.7) at u → 1. It is worth noting that, similar to the
flat space case (3.4), the embedding (4.9) for a spherical membrane in dS turns out to be
independent of d.7 The solution (4.9) directly follows from solving the equations of motion
for u(τ, φ), however, the analysis is cumbersome. In the next subsection we will provide an
alternative and far simpler derivation of (4.9).

Before proceeding further, it is illustrative to translate the membrane solution to static
patch coordinates using the transformations (B.9), such that

u(t, r) = 1
cos(α)

[√
1−H2r2 cosh(Ht)−

√
(1−H2r2) cosh2(Ht)− cos2(α)

]
. (4.10)

6For dS spacetimes, a constant ‘electric’ field is only a solution of the homogeneous gauge field equations
when p = d. Hence, in this section we specialize to (d+ 1)-dimensional bulk membranes.

7This solution was derived in [32] for the case of a string (d = 1 case), though the angle θ there was
taken to be an azimuthal angle of global dS, rather than a polar angle.

– 16 –



J
H
E
P
1
2
(
2
0
2
2
)
1
4
1

x1 x1 x1x2 x2 x2

rH = 1 rH = 1 rH = 1z z z

z = zmz = zmz = zm

zH = 2zH = 2zH = 2

t > 0t = 0t < 0

Figure 4. Snapshots of the (Lorentzian) membrane solution (4.14) as it contracts and expands in
time. The cosmological and bulk (acceleration) horizons, at r = 1/H and z = 2/H , respectively, are
depicted in red. For the sake of the plots, we have only shown the case of a (2 + 1)-dimensional
membrane (i.e., with d = 2), but the solution is valid for arbitrary d, with the d = 1 case reducing
to the string worldsheet studied in [32].

Alternatively, in terms of the original bulk coordinate z (4.2), we obtain

z(t, r) = 2
H

√√√√√1−H2r2 cosh(Ht)−
√

1−H2R2
√

1−H2r2 cosh(Ht) +
√

1−H2R2
, R ≡ sin(α)

H
. (4.11)

Notice in the flat space limit, H → 0, we recover the solution for a spherical membrane in
flat space (3.4) (with zm = 0). Evaluating this solution at z = 0 we recover

r(t) = sech(Ht)
H

√
sin2(Ht) +H2R2 , (4.12)

which describes the uniformly accelerated trajectory in the static patch of dS. From the
boundary perspective, the membrane contracts, reaches a minimum radius r = R and then
expands back at a ‘constant’ rate. However, as seen from the static observer, this rate of
expansion is redshifted; this means that for such an observer, the membrane appears to
slow down and only reach the cosmological horizon at r = 1/H as t→∞.

Similar to the flat space case, we now need to truncate this solution at some z = zm.
This can be achieved by redefining the constant R according to

R→
√
R2(4−H2z2

m)2 + 16z2
m

(4 +H2z2
m) , (4.13)

so that one recovers (4.12) by evaluating the embedding at z = zm. Explicitly, after this
substitution, the truncated solution becomes

z (t, r) = 2
H

√√√√(4 +H2z2
m)
√

1−H2r2 cosh (Ht)− (4−H2z2
m)
√

1−H2R2

(4 +H2z2
m)
√

1−H2r2 cosh (Ht) + (4−H2z2
m)
√

1−H2R2
. (4.14)

Contrary to the flat space case, this solution does not preserve spherical symmetry in the
bulk, but rather, describes a membrane that is squashed along the holographic z-direction.
We can understand this as a result of the non-trivial foliation of AdS. In figure 4 we show a
few snapshots of the Lorentzian evolution of this solution.
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Rest energy of membranes. Let us now compute the energy E of some membrane
solutions, as we did for a flat boundary.

First, note we can only generalize the static membranes with x1 = constant if we
consider the conformally flat patch of dS. A similar solution will not exist in global dS
or the static patch, given the lack of invariance under spatial translations. One problem,
however, is that it is only in the static patch that we have a time translation symmetry, so
that energy can be properly defined. Now, focusing on the static patch, one may be tempted
to look for static solutions that reach the boundary at some r = constant. This is indeed
possible for d = 1, as shown in [32]; however, such a solution does not generalize for higher
d. Solving perturbatively close to the boundary, one quickly learns that the embedding
function becomes imaginary, meaning that one needs to look for a more general ansatz
(i.e., one that allows for time-dependence in the bulk while keeping the radius fixed at the
boundary). We will not do this here. Instead, we will only consider the membrane solutions
we have already derived, dual to a boundary membrane contracting and expanding at a
constant proper acceleration.

We thus consider the AdSd+2 metric foliated with dSd+1 slices in the static patch.
Parametrizing the worldvolume with coordinates ξi = (t, z, ~Ωd−1) and choosing the embed-
ding as Xµ = (t, r(t, z), ~Ωd−1), the membrane action becomes8

Sd = TdΩd−1

∫
dzdt

(
Lfr

z

)d−1√
Ẋ2X ′2 − (Ẋ ·X ′)2 . (4.15)

Likewise, in this parametrization, the energy density Πt reads

Πt = TdL
d+1Ωd−1

fdrd−1

zd+1

 h(r) + f2r′2√
h(r) + f2r′2 − ṙ2

h(r)

 , (4.16)

with h(r) ≡ 1 −H2r2. The energy E then follows from integrating Πt with respect to z
from the cutoff zm to the maximum value of z (which occurs at r = 0), leading to

E = TdL
d+1Ωd−1

√
1−H2R2 (4−H2z2

m

)d+1

d
√

16z2
m +R2 (4−H2z2

m)2


√

sinh2 (Ht) +H2R2

4Hzm cosh (Ht)

d . (4.17)

Finally, the rest energy of the membrane E0 ≡ E(t = 0) is

E0 = TdΩd−1L
d+1

d

√
1−H2R2f(zm)d+1√
z2
m +R2f(zm)2

(
R

zm

)d
, (4.18)

with f(zm) = 1− H2z2
m

4 . Note that in the H → 0 limit, we recover the energy of a spherical
membrane in flat space (3.13). Further, as explained previously, we expect any zm 6= 0
to lead to a boundary membrane with finite width, departing from the infinitely thin
shell regime.

8Note one can easily invert (4.14) to obtain r(t, z).
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4.2 On-shell Euclidean action and nucleation rate

Let us now turn to the on-shell action for spherical membranes nucleating in dSd+1. Our
starting point is the Euclideanized action (3.14) including the gauge field contribution
SAE . To evaluate the Euclidean action, it is most convenient to work in coordinates where
Euclidean AdS is represented by a solid cylinder [32, 68]

ds2
d+2 = L2

[
dP 2

1 + P 2 + (1 + P 2)dZ2 + P 2dΩ2
d

]
, (4.19)

with ~Ωd = {ϕ, ~Ωd−1}. The coordinates (P,Z, ϕ) are related to Euclidean AdSd+2 foliated
by static patch coordinates via (see appendix B)

P = 2u
1− u2

√
1− cos2 tE cos2 θ ,

Z = arccosh
(

1 + u2√
(1 + u2)2 − 4u2 cos2 tE cos2 θ

)
,

ϕ = arccos
( cos θ sin tE√

1− cos2 tE cos2 θ

)
,

(4.20)

where we have Wick rotated the time t of a static observer t → −itE/H, and where the
angular variable θ is related to the radial coordinate r via Hr = sin θ, such that the
cosmological horizon is located at θ = π/2.9 In these coordinates the conformal boundary is
located at P →∞, however, it is typically cut off by a surface at P = Pm. See figure 5 (left).

We choose to parametrize the worldvolume Σd with coordinates ξi = (P, ~Ω), and pick
embedding functions Xµ = (P, ~Ωd, Z(P )). Consequently, the Euclidean membrane action is

SEd = TdL
d+1Ωd

∫
Σd
dPP d

√
(1 + P 2)2Z ′2 + 1

1 + P 2 . (4.21)

It is straightforward to show that Z(P ) = constant is a solution to the equations of motion
for Z. In particular, it is natural to fix

Z(P ) = 1
sinα , (4.22)

such that α coincides the instanton’s angle on the Euclidean ball with respect to the axis of
symmetry.10 To see this, we transform the solution (4.22) to static patch coordinates (B.12),

u(τE , θ) = cos tE cos θ −
√

cos2 tE cos2 θ − cos2 α

cosα . (4.23)

We recognize this as the analytic continuation of the Lorentzian solution (4.9). Further, we
note the parameter α has a very clear geometric meaning in this coordinate system, as the
polar angle subtended by the membrane at the conformal boundary, u→ 1. See figure 5
(right) for an illustration.

9The remaining angular coordinates, ~Ωd−1, remain untouched.
10We will shortly truncate this solution at the surface P = Pm, which will induce a shift in α.
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Figure 5. Left: membrane solution (4.22) in the Euclidean cylinder with bulk cutoff Pm. Right:
membrane solution (4.23) in the Euclidean ball with bulk cutoff um. The two solutions map to each
other under the bulk transformations (4.20). Furthermore, to properly account for the finite cutoff,
one needs to redefine α according to (4.26).

As before, we need to truncate these solution at the cutoff surface P = Pm to avoid
a diverging mass of the membrane. We may relate Pm to the original cutoff um (or,
equivalently, zm) by inverting (4.23) to express the angular variables in terms of u and α,
and substitute the result into the definition of P (4.20), yielding

Pm = 2um
(1− u2

m)

√
1− (1 + u2

m)2

4u2
m

cos2(α) , (4.24)

where the cutoffs um and zm are related via(
1 + u2

m

)
2um

=
(

4 +H2z2
m

4−H2z2
m

)
. (4.25)

We can think of α as the polar angle on the (d+ 1)-dimensional (Euclidean) de Sitter sphere
of radius H−1, such that the radius of the membrane instanton is R = H−1 sin(α). In order
to consistently truncate the solution at the cutoff surface, we thus need to redefine this
radius according to the replacement rule (4.13). In terms of α, this amounts to replacing

cos(α)→
(

4−H2z2
m

4 +H2z2
m

)
cos(α) , (4.26)

which, via (4.2) and (4.24), implies

Pm = 2um
(1− u2

m) sin(α) =
( 1
Hzm

− Hzm
4

)
sin(α) . (4.27)

We are now ready to compute the on-shell action. Using Z ′ = 0, the Euclidean
membrane action (4.21) may be computed exactly in any number of dimensions d,

SEd = TdL
d+1Ωd

∫ Pm

0
dP

P d√
1 + P 2

= TdL
d+1Ωd

P d+1
m

(d+ 1)2F1

(1
2 ,

d+ 1
2 ,

d+ 3
2 , −P 2

m

)
.

(4.28)
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Using (4.27), we may rewrite the result in terms of zm and R, so that

SEd = TdL
d+1Ωd

(d+ 1)

(
R

zm

)d+1
f(zm)d+1

2F1

(
1
2 ,

d+ 1
2 ,

d+ 3
2 , −R

2

z2
m

f(zm)2
)
. (4.29)

Furthermore, as in the flat space case, the on-shell Euclidean action for the external gauge
field A is given by

SEA =
∫
∂Σd

A = −E
∫
Vd+1

ε̃ = −EVd+1 , (4.30)

with Vd+1 being the Euclidean spacetime volume enclosed by the boundary of the membrane
with radius R = H−1 sin(α),

Vd+1 = Ωd

Hd+1

∫ α

0
sind θ dθ = Ωd

Hd+1

√πΓ
[
d+1

2

]
2Γ
[
d
2 + 1

] − cos (α) 2F1

(1
2 ,

1− d
2 ,

3
2 , cos2 (α)

) .
(4.31)

Combining these two results, we obtain the total Euclidean action SE yields

SE = SEd + SEA

= TdL
d+1Ωd

(d+ 1)

(
R

zm

)d+1
f(zm)d+1

2F1

(
1
2 ,

d+ 1
2 ,

d+ 3
2 , −R

2

z2
m

f(zm)2
)
− EVd+1 .

(4.32)

For example,

S
(d=1)
E =

√
λ

√1 +
( 1
Hzm

− Hzm
4

)2
sin2(α)− 1

− 2πE
H2 (1− cos(α)) ,

S
(d=2)
E = 2πL2T2

sin(α)
Hzm

f(zm)

√
1 +

(sin(α)
Hzm

)2
f(zm)2 − arcsinh

[sin(α)
Hzm

f(zm)
]

− 2πE
H3 [α− cos(α) sin(α)] ,

S
(d=3)
E = 2π2

3 L4T3

2 +

√
1 +

(sin(α)
Hzm

)2
f(zm)2

[(sin(α)
Hzm

)2
f(zm)2 − 2

]
− 8π2E

3H4 (2 + cos(α)) sin4
(
α

4

)
,

(4.33)

where in the first line we used T1 =
√
λ

2πL2 , recovering the string result derived in [32]. Note
that setting sinα = HR and taking the limit H → 0, we exactly recover the on-shell action
for spherical membranes in flat space (3.25).

We can fix the radius R (or, equivalently, α) by extremizing the on-shell action (4.32)
with respect to α. A quick calculation yields

sin2 (α) =
(
4−H2z2

m

)2(d+1) (HL)2(d+1) T 2
d − (4Hzm)2(d+1)E2

(4−H2z2
m)2

[
(HL)2(d+1) T 2

d + (4Hzm)2dE2
] . (4.34)
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As a consistency check, notice one may recover (3.26) in the H → 0 limit. Further, the
associated critical value for the field magnitude Ec, which occurs when R→ 0, is given by

Ec = Td

(
L

zm

)d+1
(

1− H2z2
m

4

)d+1

, (4.35)

which differs from the flat space result (3.27) only by an overall factor of f(zm)d+1. In
terms of Ec, the radius R is

R = H−1 sin (α) = 4dzm
f (zm)

√√√√ (E2
c − E2)[

(Hzm)2 f (zm)−2(d+1)E2
c + 42dE2

] , (4.36)

which indeed vanishes in the limit E → Ec. Since the total action SE vanishes when R (or
α) goes to zero, the action will likewise vanish in the limit E → Ec, indicating an unstable
vacuum.

It is worth emphasizing that in the E → 0 limit, i.e., when the external field A is
turned off, the on-shell action SE remains finite, unlike the flat space case, where it diverges.
This tells us that membrane nucleation occurs in de Sitter space when there is no external
gauge field present, mediated solely by the background gravitational field. This scenario
corresponds to the spontaneous nucleation of membranes or topological defects due to the
accelerated expansion present in the de Sitter background, analogous to [20, 69]. Thus, the
on-shell action (4.32) with E = 0 provides the dominant contribution to the nucleation of
defects during inflation, at strong coupling.

Finally, with some effort, in the weak field limit E � Ec and zm � R (or, equivalently,
E0 � TdL

d+1H), one exactly recovers the weakly coupled result (A.19) first uncovered
in [15]. Explicitly,

SE =
√
πΓ
(
d
2

)
Γ
(
d+1

2

) E0R√
1−H2R2

− qEΩdH
−(d+1)

∫ α

0
dθ sind(θ) , (4.37)

where sin(α) = HR and R = (dE0/qEΩd−1)1/d. As in the flat space case, this weak coupling
result receives corrections represented by higher powers in E/E0 and TdLd+1H/E0, which
may be regarded as non-perturbative corrections due to strong coupling and strong electric
fields, and away from the infinitely thin shell regime.

5 Conclusion

In this article we computed the nucleation rates of spherical membranes in flat and de
Sitter backgrounds at strong coupling using AdS/CFT. This was accomplished using
instanton techniques by computing the on-shell actions describing the worldvolume of
membranes ending on a cutoff surface in the AdSd+2 bulk. In the case of nucleation rates
in flat space, we considered empty AdSd+2 with a flat conformal boundary, and coupled a
bulk (p+ 1)-dimensional membrane (p ≤ d) to an antisymmetric tensor field with a field
strength tensor of constant field magnitude, a higher dimensional analog of the holographic
Schwinger effect. Importantly, the cutoff surface was taken to be at a finite distance of the
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conformal boundary of AdS so, via the standard UV/IR connection of AdS/CFT, the dual
p-dimensional membranes being nucleated at the boundary are thus finite width membranes.
Similarly, by considering dSd+1 foliations of AdSd+2, such that the conformal boundary of
AdS was de Sitter space, we analytically computed the nucleation rate of d-dimensional
membranes in dSd+1.11 Via holography, our findings are inherently at strong coupling. In
either set-up, we found exact agreement with prior nucleation rate computations in the
weak coupling limit. Beyond the weak coupling limit, we found the nucleation rates to be
corrected non-perturbatively, in which higher powers in the field strength and the coupling
constant appear, analogous to the holographic Schwinger effect at strong coupling.

There are a number of future research directions worth pursuing. Firstly, as membranes
nucleate, there will be a finite probability for these membranes to collide. Such membrane
collisions provide a toy model for bubble collisions arising during vacuum decay [70, 71],
for which there exist exact solutions, e.g., [72, 73] and may have observational signatures
(cf. [74–76]). It would be straightforward to extend our analysis to the case of spherical
membrane collisions using the solutions found in [77]. Second, it would be interesting to
study the nucleation of strings and membranes in other spacetimes, e.g., AdS black hole
backgrounds, by considering a different foliation of bulk AdSd+2, along the lines of [31, 60].

Thirdly, in this article we only focused on the exponential contribution to the nucleation
rate, Γ = Ae−SE , ignoring the details of the prefactor A. The prefactor encodes bulk
quantum fluctuations about the instantons, and follows from an evaluation of one-loop
functional determinants. It would be interesting to study the influence of the quantum
fluctuations about the instanton solutions in the holographic model uncovered here, for
which the analysis given in [15] would be of use. On general grounds, we expect the
contributions of these quantum fluctuations to be relevant if we depart from the strict
infinite-Nc limit.

Lastly, the creation of membranes considered here may be seen as a toy model for
vacuum decay. This follows due to the fact we treated both the antisymmetric tensor
field and gravitational field as external, neglecting the effects of backreaction. It would
therefore be very interesting to consider full fledged vacuum decay, e.g., the Coleman-De
Luccia mechanism [3], in the context of AdS/CFT, where gravity is allowed to be dynamical.
There have been a plethora of previous studies on understanding false vacuum decay via
AdS/CFT, e.g., [78–90]. One way of introducing dynamical gravity is through braneworld
holography,12 where one considers a bulk AdS spacetime with a brane inside with its own
induced dynamical gravity (for a recent review see [92]). A similar set-up was analyzed
in [87], where a Minkowski false vacuum decays into AdS, where the decay geometry contains
only a portion of AdS, a Coleman-De Luccia AdS bubble. Then, via AdS/CFT, this portion
of AdS is dual to a well defined CFT with a cutoff such that the CFT lives on a domain
wall, and is spiritually similar to decays due to end of world branes [93]. Alternatively, one
could consider a set-up in which dynamical gravity exists on the conformal boundary of
AdS. Such a scenario was developed in [94, 95], where boundary counterterms in the bulk

11Crucially, in dS space, a constant electric field E can be supported without charges only for p = d.
12The study of the Coleman-De Luccia mechanism on a flat Randall-Sundrum braneworld without a

holographic description was considered in [91].
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gravity action lead to a class of boundary conditions which render the boundary metric
dynamical. The boundary gravitational dynamics is then induced by the holographic CFT.
It would be interesting to push this further to study false vacuum decay á la Coleman-De
Luccia. Further, a setting with dynamical gravity would allow one to test the quantum
nature of dS spacetime, e.g., the imprint of the (possibly) finite dimensional Hilbert space
of dS on nucleation rates [96–104].
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A Nucleation at weak coupling

Here we review the computation of nucleation rates of membranes in de Sitter space at weak
coupling [15] without the employ of holography. These results act as a useful consistency
check with the strong coupling calculations performed in the main text.

A.1 Membranes in flat space

It is illustrative to first consider the creation of spherical membranes in (d+ 1)-dimensional
flat space. Analogous to Schwinger pair production, membranes may be created in (d+ 1)-
dimensional flat or de Sitter space via an external antisymmetric tensor field A = A[µ...ρ]dx

µ∧
. . . ∧ dxρ of rank d coupled to a d-dimensional worldvolume Σ of a charged membrane [11].
The total Lorentzian action S of the membrane is given by the sum of a generalization of
the Nambu-Goto action for a string action coupled to the external tensor field A,

S =M
∫

Σ
ddξ

√
detγij + q

∫
Σ
A . (A.1)

Here ξi for i = 0, . . . , d−1 denote a collection of coordinates parametrizing the worldvolume,
M is a constant representing the tension of the membrane, and q is the membrane charge.
The field strength associated with A, denoted by F = dA, has only a single independent
component, such that F = −Eε̃, where E is the analog of the constant electric field in
Schwinger pair production, and ε̃ is the spacetime volume form. For d = 1, the above action
simply characterizes a spinless particle of massM and charge q interacting with a Maxwell
field A, with Σ being the particle’s worldline.
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One can relate the parameter M to the (rest) energy E0 of the membrane. To see
this, we embed the worldvolume into Minkowski space with embedding coordinates Xµ =
(t, r(t), ~Ωd−1), where ~Ωd−1 represents the collection of angular coordinates, and parametrize
the worldvolume with coordinates ξi = (t, ~Ωd−1). The Lorentzian membrane action then is

S =MΩd−1

∫
Σ
dtrd−1

√
−gµνẊµẊν , (A.2)

where Ẋµ ≡ ∂Xµ

∂t . The momentum Πµ then is

Πµ = ∂Ld
∂Ẋµ

= −Mrd−1Ωd−1
Ẋµ√

−gµνẊµẊν
, (A.3)

for which the energy E

E ≡ Πt =MΩd−1
rd−1
√

1− ṙ2
. (A.4)

The Lorentzian solution for a spherical membrane is given by a worldvolume of radius R

r(t) =
√
R2 + t2 , (A.5)

for any d. Substituting this into Πt yields the energy

E = MΩd−1
R

(
R2 + t2

)d/2
. (A.6)

The ‘rest’ energy E0 = E(t = 0) is then

E0 =MΩd−1R
d−1 . (A.7)

Instantons. The nucleation rate Γ of these spherical membranes are described by in-
stantons, solutions to the Euclidean action, such that Γ ∼ e−SE , where SE is the on-shell
Euclidean action. The total Euclidean action SE of the membrane follows from Wick
rotating t→ −itE the Lorentzian action13 (A.1),

SE =M
∫

Σ
ddξ

√
detγij + q

∫
Σ
A . (A.8)

Since the membrane is closed, by Stokes’ theorem the Euclidean action (A.8) becomes

SE =M
∫

Σ
ddξ

√
detγ − qE

∫
V
ε̃ . (A.9)

Directly from the action SE (A.9), the Euclidean equations of motion of the action (A.9)
were computed in [105, 106] and are characterized by the extrinsic curvature Kij of the
Euclidean worldvolume,

γijKij = −qE
M

. (A.10)

13One also uses that the field strength F is unchanged under Wick rotation, which requires Wick rotating
the spatial components of the gauge field A.
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Spherical worldvolumes of radius R with solution r(tE) =
√
R2 − t2E , where

R = dM
qE

=
(

dE0
qEΩd−1

)1/d
, (A.11)

follows from extremizing the Euclidean action. Upon Wick rotating back to Lorentzian
signature, one recovers the solution (A.5). Consequently, the on-shell Euclidean action
for spherical membranes in (d+ 1)-dimensional flat space follows from substituting r(tE)
into (A.9) where tE ∈ [−R,R] for the integration range, leading to:

SE =MSd(R)− qEVd = ΩdMRd

(d+ 1) = Ωd

(d+ 1)

[
d

qE

( E0
Ωd−1

)(d+1)
]1/d

. (A.12)

Here Sd is the surface area of Σd of radius R

Sd(R) = ΩdR
d = 2π(d+1)/2

Γ
(
d+1

2

) Rd , (A.13)

and Vd is the (Euclidean) spacetime volume enclosed by Σd,

Vd = 2π(d+1)/2

Γ
(
d+1

2

) Rd+1

(d+ 1) . (A.14)

In particular, substituting R (A.11) into the on-shell action (A.12) we find

S
(d=1)
E = M

2π

qE
= πE2

0
4qE ,

S
(d=2)
E = 16M3π

3q2E2 = 2
3
E3/2

0√
πqE

,

S
(d=3)
E = 27M4π2

2q3E3 =
(

3π2

4qE

)1/3 E4/3
0
8 .

(A.15)

When multiplied by an overall winding number n, the d = 1 Euclidean action is precisely the
factor which appears in Schwinger’s formula for the producton rate of a particle-antiparticle
pair in a constant electric field background.

A.2 Membranes in de Sitter space

We now review the nucleation of charged spherical membranes in (d+ 1)-dimensional de
Sitter space analyzed in [15]. One starts with the action (A.1), however, where now it is
understood the membrane is embedded in the ambient de Sitter background. This will
alter the form of the solution and the rest energy relation to the parameterM. Specifically,
the Lorentzian solution for a spherical membrane in (d+ 1)-dimensional de Sitter space in
static patch coordinates is

r (t) = sech (Ht)
H

√
sinh2 (Ht) +H2R2 , (A.16)
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such that the energy E is

E = Πt =MΩd−1r
d−1

(
1−H2r2)3/2√

(1−H2r2)2 − ṙ2 . (A.17)

Consequently, the rest energy E0 is

E0 =MΩd−1R
d−1
√

1−H2R2 , (A.18)

consistent with (A.7) in the flat space limit H → 0.
Upon Euclideanization, spherical worldvolumes were found to be extrema of the

Euclidean action (A.9) such that the on-shell action for spherical membranes in de Sitter
space is [15]

SE =MSd(R)− qEVd(α) . (A.19)

This is nearly identical to the flat space case (A.12), however, now the worldvolume is
of radius R = H−1 sinα, with H−1 being the radius of the (d + 1)-dimensional sphere
found upon Wick rotating Lorentzian de Sitter, and α its polar angle, and, further, Vd is
the volume

Vd(α) = ΩdH
−(d+1)

∫ α

0
dθ sind θ . (A.20)

The volume Vd may be cast in terms of hypergeometric functions for any positive integer d.
Extremizing the on-shell action (A.19) with respect to α fixes the radius R to be

R = dM√
d2H2M2 + q2E2 =

( E0d

qEΩd−1

)1/d
, (A.21)

where the point out the second equality is equivalent to the flat space radius (A.11). From
the first equality it is easy to verify qE tan(α) = dMH . Further, when H → 0 one recovers
the circular worldline solution of radius R =M/qE in (1 + 1)-dimensions, which is exactly
equal to the distance between two charged particles whose electric potential energy balances
their rest mass. Substituting R (A.21) into the on-shell action (A.19) yields, for example,

S
(d=1)
E = 2π

H2

[√
M2H2 + q2E2 − qE

]
,

S
(d=2)
E = 4π

H3

[
MH − qE

2 arctan
(2HM

qE

)]
,

S
(d=3)
E = 2π2

3H4

[
9H2M2 + 2q2E2

(9H2M2 + q2E2)1/2 − 2qE
]
.

(A.22)

We can easily reexpress the on-shell action in terms of E0, however, it is generally more
cumbersome. For example, for d = 1, substituting (A.18) and (A.21) in forM leads to

S
(d=1)
E = 2π

H2
qE√

1−
(
E0H
2qE

)2

1−

√
1−

(E0H

2qE

)2
 . (A.23)
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Regardless, notice that in the flat space limit, for the screening configuration14 (q > 0), the
Euclidean action is finite, and is consistent with (A.15). Finally, in the limit E → 0, such
that the coupling to the antisymmetric tensor field is turned off and R = H−1, the on-shell
action remains finite (contrasting the flat space limit), and one recovers the instanton
solutions describing spontaneous nucleation of defects during inflation [20, 69].

B De Sitter foliations of Anti de Sitter space

Here we list several de Sitter (dSd+1) foliations of AdSd+2. Specifically, following [32, 61, 62],
we write the AdSd+2 line element as

ds2
d+2 = L2

z2

(1− H2z2

4

)2

ds2
dS + dz2

 , (B.1)

where ds2
dS is a (d + 1)-dimensional line element for de Sitter in any coordinate system,

with H being the Hubble constant. Redefining the bulk z coordinate via

z = 2
H
e−2arctanh(u) = 2

H

(1− u)
(1 + u) , (B.2)

where u ∈ [0, 1], with u = 0 corresponding to the acceleration horizon (z = 2/H) and u = 1
the conformal boundary of AdS (z = 0), leads to

ds2
d+2 = 4L2

(1− u2)2

[
H2u2ds2

dS + du2
]
. (B.3)

Let us now explore such foliations of AdSd+2 due to various coordinate frames of dSd+1.

Global foliations. First consider when the AdS metric is foliated by dS in global
coordinates,

ds2
dS = −dτ2 + 1

H2 cosh2(Hτ)dΩ2
d , (B.4)

where τ is time coordinate and dΩ2
d is the line element for the d-dimensional sphere; explicitly,

dΩ2
d = dφ2 + sinφ2dψ2

1 + sin2 φ sin2 ψ1dψ
2
2 + . . . = dφ2 + sin2 φdΩ2

d−1 . (B.5)

In the context of cosmology, dS in global coordinates is sometimes called the ‘closed slicing’
as it represents a closed FRW cosmology for an isotropic, homogeneous universe, with a
scale factor a(τ) = H−1 cosh(Hτ).

The Euclidean dS spacetime, which is achieved by Wick rotating τ → −iτE/H (such
that τE is dimensionless), yields

ds2
dS = 1

H2dτ
2
E + 1

H2 cos2(τE)(dφ2 + sin2 φdΩ2
d−1) . (B.6)

With the Euclidean coordinate system (B.6), the Euclidean AdSd+2 line element is

ds2
d+2 = 4L2

(1− u2)2

(
du2 + u2[dτ2

E + cos2(τE)(dφ2 + sin2 φdΩ2
d−1)]

)
. (B.7)

This line element for Euclidean AdS is known as the Poincaré ball, where the boundary is a
Sd+1 sphere, and τE is a polar angle.

14The flat space limit has infinite action for the anti-screening configuration.
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Static patch foliations. In static patch coordinates, one commonly writes the dSd+1
line element as

ds2
dS = −

(
1−H2r2

)
dt2 +

(
1−H2r2

)−1
dr2 + r2dΩ2

d−1 , (B.8)

for radial coordinate 0 < r < H−1. The transformation which moves us from global
coordinates to static patch coordinates is

τ = H−1arcsinh
[
−
√

1−H2r2 sinh(Ht)
]
, φ = arctan

[
− Hr√

1−H2r2
sech(Ht)

]
.

(B.9)
The static patch line element manifestly has a timelike Killing symmetry ∂t, and describes
the geometry of a single geodesic observer in causal contact with only a portion of the full de
Sitter geometry, due to the presence of a cosmological horizon r = H−1. The cosmological
horizon behaves similar to a black hole horizon, having a Gibbons-Hawking temperature
TdS = H

2π . Since this foliation only covers a portion of the full spacetime geometry, such
that with respect to this foliation one only describes the hyperbolic patch of AdS2, in which
the Killing horizon z = 2/H is identified with a Rindler horizon.15

It is useful to introduce an angular coordinate θ

Hr = sin θ , (B.10)

for 0 < θ < π/2, where the cosmological horizon appears at θ = π/2. Then, the static patch
line element becomes

ds2
dS = − cos2 θdt2 + 1

H2

(
dθ2 + sin2 θdΩ2

d−1

)
. (B.11)

Wick rotating such that t → −itE/H, we have Euclidean dS in static patch coordinates
become

ds2
dS = 1

H2

(
cos2 θdt2E + dθ2 + sin2 θdΩ2

d−1

)
. (B.12)

To avoid a conical singularity at θ = π/2, one periodically identifies the Euclidean time
coordinate, tE ∼ tE+2π, an azimuthal angle. Cast in this way, the line element is manifestly
a Sd+1 sphere in Hopf-like coordinates (cf. [108]).

Substituting (B.12) into the AdS metric (B.3) yields

ds2
d+2 = 4L2

(1− u2)2 [du2 + u2
[
cos2 θdt2E + dθ2 + sin2 θdΩ2

d−1

]
. (B.13)

Since the static patch observer in Lorentzian coordinates only has access to a portion of the
full de Sitter geometry, this should be reflected in the Euclidean geometry (B.13). Indeed,
the topology of the Euclidean static patch is a hemisphere as opposed to the whole sphere,
such that each static patch observer has a different analytic continuation which amounts to
rotating the hemipshere around the sphere.

15Consequently, a pure state from the point of view global AdS will appear mixed due to entanglement
between degrees of freedom inside and outside of the acceleration, providing a bulk description of thermality
in the boundary (see, e.g., [107].
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Poincaré cylinder. Another useful set of coordinates is to express Euclidean AdS as a
solid cylinder. To accomplish this one performs the following coordinate transformation
from AdSd+2 foliated in static patch coordinates16

P = 2u
1− u2

√
1− cos2 tE cos2 θ ,

Z = arccosh

 1 + u2√
(1 + u2)2 − 4u2 cos2 tE cos2 θ

 ,

ϕ = arccos
( cos θ sin tE√

1− cos2 tE cos2 θ

)
.

(B.14)

Thus, the Euclidean AdSd+2 line element (B.13) becomes

ds2
d+2 = L2

[
dP 2

1 + P 2 + (1 + P 2)dZ2 + P 2dΩ2
d

]
, (B.15)

where now
dΩ2

d = dϕ2 + sin2 ϕdΩ2
d−1 . (B.16)

In these coordinates the boundary of the cylinder appears at P →∞ (u = 1), and ϕ ∈ [0, π].
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