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Abstract: Asthma is one of the most common and lifelong and chronic inflammatory diseases
characterized by inflammation, bronchial hyperresponsiveness, and airway obstruction episodes.
It is a heterogeneous disease of varying and overlapping phenotypes with many confounding
factors playing a role in disease susceptibility and management. Such multifactorial disorders will
benefit from using systems biology as a strategy to elucidate molecular insights from complex,
quantitative, massive clinical, and biological data that will help to understand the underlying disease
mechanism, early detection, and treatment planning. Systems biology is an approach that uses
the comprehensive understanding of living systems through bioinformatics, mathematical, and
computational techniques to model diverse high-throughput molecular, cellular, and the physiologic
profiling of healthy and diseased populations to define biological processes. The use of systems
biology has helped understand and enrich our knowledge of asthma heterogeneity and molecular
basis; however, such methods have their limitations. The translational benefits of these studies are
few, and it is recommended to reanalyze the different studies and omics in conjugation with one
another which may help understand the reasons for this variation and help overcome the limitations
of understanding the heterogeneity in asthma pathology. In this review, we aim to show the different
factors that play a role in asthma heterogeneity and how systems biology may aid in understanding
and deciphering the molecular basis of asthma.

Keywords: asthma; systems biology; multi-omics

1. Introduction

Asthma is a common and lifelong chronic inflammatory disease characterized by
inflammation, bronchial hyperresponsiveness, and airway obstruction episodes [1,2]. In
2019, the Lancet reported 262 million cases of asthma, with 0.461 million deaths [3].

The complexity of the disease, the unexplained heterogeneity in clinical presentation,
and the involvement of various environmental and genetic determinants in asthma affect
our understanding of the mechanisms involved in the disease process and the interaction
between the different determinants [4–6]. There is a compelling picture of unmet needs
in the prevention, treatment, and curing of asthma that needs to be addressed in a more
systematic and collaborative approach [7].

Recently, systems biology was introduced as a possible approach to addressing the
complexity of the many underlying disease mechanisms through the analysis of complex,
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quantitative, massive clinical and biological data [8]. This approach uses the comprehensive
understanding of living systems through bioinformatics, mathematical, and computational
techniques to model diverse high-throughput molecular, cellular, and physiologic profiling
of healthy and diseased populations to define biological processes [9]. Such an approach
was shown to have great potential in deciphering the complexity and heterogeneity of
allergic diseases, including asthma, by understanding the variable interaction between
environmental perturbations and genetic predisposition. In this review, we aimed to review
the variable factors involved in asthma etiology, its complex phenotypes, and the role of
systems biology in providing answers for asthma research.

2. Etiology of Asthma
2.1. Genetic Factors

There was an important progression in the discovery of genetic factors involved
in asthma susceptibility. Various studies identified approximately 18 genomic regions,
and 100 genes were found to be linked with asthma and allergic diseases in different
populations [10]. Moreover, these genetic variations were found to be responsible for
50% of asthma development risk, especially in childhood-onset asthma [11]. Many of
the identified asthma susceptibility risk loci were found to be associated with immune
cell function. Additionally, these are shared with other autoimmune and inflammatory
diseases such as Th2 cell homeostasis, activation genes, and innate immunity and regulatory
genes [12,13]. Recently, bioinformatics analyses have prioritized candidate causal genes
at 52 loci carrying asthma-associated variants enriched in regions of open chromatin in
immune cells [14]. However, asthma heritability is incomplete and not fully understood yet.

2.2. Environmental and Toxicogenomic Factors

There have been increased concerns about what and how different environmental ex-
posures might trigger asthma exacerbations and how they play a role in increasing the rate
of asthma incidences [15]. These factors include drugs, toxins, chemicals, and infections,
although their role and mechanisms in asthma development and exacerbations are not yet
fully understood [16]. Other environmental factors include allergens, occupational sensitiz-
ers, and outdoor and indoor pollution [17,18]. While air pollution’s adverse effects on lung
function are well documented in asthmatics, there is still a debate on how these air particles
can trigger asthma [19,20]. Food is an external or modulated asthma initiator, with children
having food allergies being more prone to food-induced episodes of asthma that can result
in anaphylaxis [21]. Drug-induced asthma is another well-defined and relatively common
and often-under-diagnosed asthma phenotype, especially aspirin-induced asthma [22,23].

2.3. The Immune System in Asthma

The pathophysiology of asthma relies on multiple types of cells, mediators, and
pathways prompted by molecular and cellular events that lead to the development and pro-
gression of asthma (Figure 1). Cells that play a role in asthma include neutrophils, dendritic
cells, basophils, and eosinophils, each present at different stages of asthma progression.



Life 2022, 12, 1562 3 of 18Life 2022, 12, 1562 3 of 18 
 

 

 
Figure 1. IgE and its mediators play a role in both early stage and late-stage responses in asthma 
upon exposure to allergens. These responses rely on multiple cells, including dendritic cells, ILC 
cells, Th2 cells, B cells, eosinophils, basophils, and mast cells. Such cells release many mediators, 
including histamines, leukotrienes, and various cytokines, such as IL3, IL4, IL5, and IL13. The types 
of cells and mediators present during an asthma episode are dependent on the subtype, and not all 
cells illustrated above might be involved. 

Figure 1. IgE and its mediators play a role in both early stage and late-stage responses in asthma
upon exposure to allergens. These responses rely on multiple cells, including dendritic cells, ILC
cells, Th2 cells, B cells, eosinophils, basophils, and mast cells. Such cells release many mediators,
including histamines, leukotrienes, and various cytokines, such as IL3, IL4, IL5, and IL13. The types
of cells and mediators present during an asthma episode are dependent on the subtype, and not all
cells illustrated above might be involved.

3. Diagnosis and Management

The diagnosis of asthma is not as clear-cut in comparison to other diseases due to
its reliance on the clinical judgment of patient history, symptoms, measures of airflow
obstruction, and respiratory inflammation. The absence of a single diagnostic test or a
series of tests to confirm asthma or accurately label its phenotype has highlighted the need
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to identify reliable biomarkers to accurately diagnose asthma and define the underlying
pathophysiological pathways of different clinical asthma presentations [24,25].

In terms of asthma management, managing both short and long-term respiratory and
other health outcomes is a must [26]. The primary endpoints include the control of symp-
toms, fewer exacerbations, improved lung function, and the minimizing of adverse events
(A.E.s) caused by the use of therapeutics (Figure 2) [27]. In 90–95% of patients with asthma,
symptoms are well controlled with inhaled therapy used to prevent exacerbations, while a
minority of patients who fail to respond are categorized as having severe asthma [28].
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Figure 2. Asthma diagnosis and management involve a multi-step plan that begins with (A) proper
diagnosis for the disease followed by (B) the 6-step plan that aims to control symptoms, reduce
exacerbations, and any adverse event that is a product of the therapeutics used. (C) Alternative
treatments, including biologics, are administered to patients whose asthma is uncontrollable by
standard treatment methods and is dependent on endotyping and clinical biomarkers. Omalizumab
is the first biological treatment for allergic asthma and targets IgE.

Inhaled corticosteroids (ICS) are the most common asthma treatment method, with
other quick-relief and rescue medicines used in an adjustable severity-based six-step man-
agement plan [29,30]. Another cornerstone in asthma management is controlling environ-
mental factors, including allergen mitigation and intervention [30].
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A new approach was proposed with the increasing understanding of molecular path-
ways in severe asthma phenotypes. This includes the use of biological therapies that target
components that were found to drive asthma symptoms, which have been investigated
and approved (Figure 2C). Some of these biologics include monoclonal antibodies such
as Omalizumab that target IgE or IL5 targets such as Mepolizumab, Reslizumab, and
Benralizumab [27]. Patients with childhood asthma have been found to respond better to
IgE-targeted therapeutics, while adult-onset asthma patients respond better to anti-IL5 an-
tibodies and therapies [31]. However, choosing the necessary biological treatment depends
on the asthma endotype, clinical biomarkers, and patient-focused aspects [32].

4. Systems Biology

Systems biology refers to the systemic investigation of living systems through bioin-
formatics, mathematical, and computational techniques to model diverse high-throughput
molecular, cellular, and physiologic profiling of healthy and diseased populations to define
biological processes (Figure 3) [9]. This process involves using various omics data such as
genome, epigenome, transcriptome, proteome, metabolome, and microbiome and incorpo-
rating high-throughput methods such as machine learning to explore the heterogeneity of
the diseases, as well as to correlate, discriminate, and predict between disease phenotypes.
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Figure 3. The application of systems biology involves (A) identifying the disease associations using
various techniques from various omics such as genomics and transcriptomics. (B) Studying the
interactions between the various omics, such as metagenomic sequencing, involves transcriptomics
and the microbiome, and is affected by environmental factors; (C) Machine learning uses the data
generated from large omics datasets to create new sets of classification or predictive models. (D)
Network analysis uses omics data to discover and visualize the relationship between various disease
components, which is then (E) used to create a mathematical model to identify biomarkers and an
in-silico model for studying disease mechanisms.
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4.1. Why Systems Biology Approach Is Needed in Asthma?

Asthma and other multifactorial diseases represent an ideal candidate for systems
biology approaches. In the context of such diseases, approaching the condition from a
system’s biology perspective might help extract new insights from complex, quantitative,
massive clinical, and biological data to understand the underlying mechanisms of diseases
and aid early detection and treatment [8,33] through identifying the biomolecular networks
driving the disease and the construction of regulatory networks and biological pathway
models [33–35].

Currently, severe asthma patients have no effective treatment to control the disability
and mortality of asthma, and they may not respond to steroids due to the relative gluco-
corticoid insensitivity [36,37]. Therefore, there is a need for a continuous effort to refine
the current phenotypes to improve patients’ classifications, allowing for more precise and
personalized therapeutic options [38].

In addition, there are no asthma risk assessment tools for food, drugs, occupational and
household chemicals. The use of systems biology and multi-omics to analyze the response
of all genes to such chemical exposures can be examined to understand the potential
hazards of such irritants and toxicants [39]. It has been shown that by using the in silico
gene expression data and linking it to toxicogenomic data, differentially expressed genes
can be used to explain and predict the effect of toxicity on an asthmatic epithelium [40].

4.2. Multi-Omics

Multi-omics approaches involve the interaction between different omics to decipher
the mechanisms of asthma. There has been an increase in evidence in the role of epige-
netic and environmental regulation on asthma phenotypes. Thus, the use of epigenetic-
modifying tools such as histone modification techniques to target the various hallmarks
of asthma is of interest as it aids in developing novel therapeutics [41]. Additionally, the
use of multi-omics in tandem with genome-wide association studies (GWAS) through an
upper airway epithelial cell (AEC) culture model to assess transcriptional and epigenetic
responses to rhinovirus (R.V.) reveal a specific genetic mechanism found at the risk lo-
cus of childhood-onset asthma [42]. Such revelations provide context-specific functional
annotations to variants that were discovered in the GWASs of asthma [42].

However, integrating data omics requires specific tools and pipelines; an example
is the Merged Affinity Network Association Clustering (MANAclust). It is a pipeline
that integrates categorical and numeric data that span clinical and multi-omic profiles for
unsupervised clustering. This clinical and molecular distinct clustering is then used to
identify disease subsets to a phenotypic asthma cohort, including heterogeneous groups
and subsets of healthy controls and asthmatic subjects [43].

5. Systems Biology Findings and Applications in Asthma
5.1. Asthma Classification, including Phenotyping and Genotyping

In asthma, several sub-phenotypes of asthma have been implemented, with the most
common phenotype being allergic asthma and patients showing exaggerated responses to
nonharmful agents [44]. A newer approach to classifying asthma is cellular phenotyping,
where the type and quantity of inflammatory cells in the airway are used to guide the selec-
tion of ideal biological treatments [45]. Asthma can be broadly classified as eosinophilic
or non-eosinophilic (NEA) based on airway or peripheral blood cellular profiles [46]. For
example, differentiating between non-eosinophilic and eosinophilic asthma is essential
in terms of using corticosteroids, the mainstay therapy in asthma [47] as NEA is gener-
ally poorly responsive to corticosteroid treatment, which could potentially worsen the
disease [46].

Molecular phenotyping involves quantitating proteins, posttranslational modifications,
metabolites, and nucleic acids using high-throughput analytics [47]. Among the various
omics, the bronchial epithelium transcriptomics-driven phenotyping of asthmatic patients
revealed the potential to discover gene expression profiles characteristic of asthma [48].
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Furthermore, bronchial epithelium transcriptomics can identify different molecular mecha-
nisms underlying divergent asthmatic phenotypes and have the power to identify novel
clinically efficient biomarkers [49,50]. An example would be using transcriptomic data to
determine the differentially expressed gene JMJD2B/KDM4B in asthmatic airway fibrob-
lasts, expressed upon IL-13 exposure [41].

Recently, a combined approach that includes genomic, molecular biology, and a
comprehensive phenotyping approach called phenomics was introduced to identify disease
subtypes, including asthma [51]. Such an approach might be essential to improve our
characterization of severe asthma heterogeneity by implementing evidence-based criteria.
Indeed, this might help in the adoption of more individualized therapeutic options for
asthmatic patients, including patients with the severe form [51]. Moreover, the extraction
of information from the electronic health record (EHR) systems, including clinical history,
risk factors, and history of exposure to various materials and allergens and combining
them with information obtained from biospecimen collection that involves genetic variants
led to the development of new types of studies called phenome-wide association studies
(PheWASs) [52]. In addition to its role in exploring novel asthma-related genetic variants
and risk loci, it is also essential to identify risk factors and comorbidities [52]. In addition,
PheWAS was also found to play a role in identifying new therapeutic candidates and
predicting adverse drug effects. For example, one report highlighted asthma as a possible
adverse event when using PNPLA3 inhibitors to manage liver diseases [53].

5.2. Systems Biology Enables the Identification of Biomarkers

Identifying novel markers that can help in a patient’s classification and clinical out-
come prediction and response to therapy was and will remain the ultimate goal for many
research projects [54,55]. These markers should have precise specifications and criteria
such as reliability, ease of collection, and measurement—and not be invasive. For example,
using reliable biomarkers to predict asthma patients’ response to steroid therapy early in
the disease is particularly important and necessary to achieve optimal response and avoid
undesirable side effects [56].

Testing biomarkers is not routinely requested for severe asthma patients, and the most
extensively studied biomarkers are those that are related to the T2 phenotype [57,58]. For
biomarkers to be ideal, they should be reliably quantifiable, easy to obtain, cost-effective,
and can be produced in different clinical settings [59].

PBMCs containing the significant sources of allergic response mediators in asthma can
serve as an excellent alternative to the costly and challenging method of obtaining airway
samples in severe asthma [60]. Furthermore, the integrative phenotype–genotype approach
is a novel, simple, and powerful tool for identifying clinically relevant potential biomarkers.
This approach was been recently used to identify clinically essential biomarkers in com-
plex and heterogeneous diseases such as diabetes [61]. Several genes such as SERPINE1,
GPRC5A, SFN, ABCA1, MKI67, and RRM2 have been found to be downregulated in se-
vere uncontrolled asthma using PBMCs and, therefore, potential biomarkers [62]. These
biomarkers were initially identified from a list of genes using in silico techniques such as
GWAS and methylomes and were further validated using in vitro studies [62].

5.3. Genomics and Their Role and Applications in Asthma

The genetic component is a significant factor contributing to asthma etiology, with
estimated heritability varying from 35% to 95% [63]. For that reason, significant efforts
were made to identify the genetic map associated with asthma and led to the discovery
of potential contributory genes [64]. Recently, genome-wide association analyses (GWAS)
analysis led to the identification of genetic loci that were shown to be found across many
allergic phenotypes, including hay fever/allergic rhinitis, atopic dermatitis, food allergy
and asthma [33]. Some of those genes were related to the human leukocyte antigen (HLA)
locus, including HLA-DQ/DRB1, HLA-DQA1/2, and HLA-B/C [65]. Others were linked
to immune function, including thymic stromal lymphopoietin (TSLP), IL13, IL4, and IL33,
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which were shown to be associated with the promotion of Th2-type cytokine synthesis
and T2 immune response [66]. While some of the discovered genes were linked to asthma
pathophysiology, the role of other genes such as WDR36 and CLEC16A is still uncertain and
needs further investigation [33]. Other promising asthma candidate genes include the beta-
2 adrenergic receptor gene (ADRB2). The role of this gene in the risk of asthma is further
supported by the efficacy of inhaled β2-adrenergic receptor agonists in the management of
asthma [67]. Other frequently investigated genes include FCER1B (MS4A2), which encode
the beta subunit of the high-affinity IgE receptor, TNFA, a proinflammatory cytokine, and
the CD14 surface antigen gene [64].

Some genes were linked to specific asthma phenotypes, including ORMDL3/GSDMB/
LRRC3C (17q21.1), which is linked with childhood asthma [68]. Other genes showed
ethnicity-specific patterns, including PYHIN1, that were associated with asthma but only
in persons of African ancestry [69].

5.4. Transcriptomics and Its Applications in Asthma

This approach includes various types of RNA transcripts profiling, including mRNA,
noncoding RNA (ncRNA), and microRNA. Using DNA microarrays and RNA-sequencing
(RNA-Seq) in the last decade, many genes and pathways were discovered, improving our
understanding of asthma’s molecular mechanisms [70]. Variable cells were suitable for tran-
scriptomic studies in asthma, including whole blood cells, peripheral blood mononuclear
cells, and lymphoblastoid B cells. Other transcriptomic analysis sources are the sputum and
other epithelial cells obtained from nasal epithelia and bronchial brushing. Bronchoalveolar
lavage (BAL) was another source of cells as it might reflect the internal environment present
in the lower respiratory tract [71].

White blood cell differential expression analysis between healthy individuals, con-
trolled asthma, and therapy-resistant severe asthma revealed the increment in TAS2R
pathways in severe asthma [72]. Another study also revealed a reduction in glucocorticoid
receptor signaling and the upregulation of mitogen-activated protein kinase and JNK cas-
cade activity in children with severe asthma compared with those with controlled ones [48].
PBMCs gene expression profiling in asthmatic children revealed a strong association be-
tween the high neutrophil count and inadequate treatment control in Th1/Th17-mediated
asthma [73]. Our lab also identified ten genes involved in cell cycle and proliferation,
including ABCA1, GPRC5A, KRT8, SFN, TOP2A, SERPINE1, ANLN, MKI67, NEK2, and
RRM2 to derange in the bronchial epithelium and fibroblasts of severe asthmatic patients
compared to healthy individuals. SERPINE1, GPRC5A, SFN, ABCA1, MKI67, and RRM2
were also downregulated in the PBMCs of severely uncontrolled asthmatic patients [74].

Other studies across multiple tissue types revealed the differential expression of genes
and pathways involved in inflammatory and repair responses and epithelial integrity,
in addition to genes involved in innate and adaptive immunity [33]. Some reports also
highlighted a strong association between distinct transcriptomic profiles and inflammatory
asthma subtypes. For example, elevated periostin (POSTN), CLC, CLCA1, SERPINB2,
DNASE1L3, and CPA3 were found to be associated with eosinophilic or T2-driven airway
inflammation; in contrast, the expression of DEFB4B, CXCR2, IL1B, ALPL, and other
chemokines were linked to neutrophilic or Th17-linked inflammation [75].

5.5. Microbiome and Asthma

While many multi-omic studies focus on genomic and transcriptomic approaches,
there has been an increase in using omics technologies in assessing the effect of the environ-
ment on the disease [76]. Current research data suggest that environmental factors such as
microbiome and diet interact with genetic and epigenetic factors, leading to disturbance in
immune development and the balance of vital inflammatory pathways.

Several studies link changes in the gut microbiome and early life risk factors for
diseases such as asthma, though they have focused on one risk factor impacting individuals
rather than populations [77,78]. Therefore, a systems biology approach via microbiome
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analysis can provide an understanding of asthma and its complexity and improve patient
classification methods, status monitoring, and therapeutic choices [79].

Microbial products are one of the candidates for primary asthma prevention as expo-
sure to them or their products results in the reprogramming of innate immunity as well as
protection against allergies and asthma development in children [80]. An example would
be neutrophilic asthma, which involves airway microbiota [81]. Refractory neutrophilic
asthma has been associated with specific microbial signatures using microbiome data along-
side host multi-omic data [79]. Such signatures include predominant pathogenetic bacteria,
including Gammaproteobacteria, especially species from Haemophilus and Moraxella [79].

Chronic cough caused by persistent bacterial bronchitis (PBB) has been previously mis-
diagnosed as asthma, and patients have incorrectly prescribed asthma therapies, resulting
in an escalation of their symptoms. Previously PBB consisted of a single diagnosis, but it is
now divided into several subtypes (Table 1), indicating the utmost importance of the need
for extended endotyping. Furthermore, such extensive subtyping signals a move towards
omics and systems biology due to the similar responses in phenotypes across different
diseases and conditions—such is the case of neutrophilic airway disease [82].

Table 1. Different subtypes of persistent bacterial bronchitis.

Subtypes Definition

PBB—micro History of chronic cough; positive BAL cultures; 2-week
amoxicillin–clavulanic acid course

PBB—clinical History of chronic cough; 2-week amoxicillin–clavulanic acid course
PBB—extended PBB-micro or PBB extended; 4-week antibiotic course
PBB—recuring More than 3 attacks of PBB-micro or PBB-clinical annually

PBB = persistent bacterial bronchitis; BAL = bronchoalveolar.

5.6. Metabolomics and Breathomics in Asthma Research

Metabolomics is one of the systems biology studies that usually involve a compre-
hensive measurement of metabolites, including quantifying and assessing low molecular
weight compounds in various biological samples [83]. The wide range of biospecimens that
can be used in metabolism, including several other non-invasive techniques such as plasma,
serum, and exhaled breath, highlighted the potential benefits of using such techniques
in asthma research [84]. Such an approach might be essential for discovering potential
pathogenic pathways involved in asthma pathogenesis and novel biomarkers discovery, in
addition to therapy response prediction [85]. A recent study using metabolomics identi-
fied a distinct metabolic profile in asthma that could precisely differentiate between mild,
moderate, and severe forms of asthma [85]. Their report highlighted a modest systemic
metabolic shift in a severity-dependent manner in asthmatic patients [85]. While exogenous
metabolites, including elevated dietary lipids, represent a primary metabolic shift in mild
asthma, the moderate and severe asthmatic patients showed a distinct, abundant metabolite
including sphingosine-1-phosphate (S1P), OEA as well as N-palmitoyltaurine [85]. Other
reports also showed a distinct metabolic profile of severe asthma compared to mild-to-
moderate asthma, including amino acids metabolism, which usually showed elevation
in β-alanine or lysine levels [86,87]. Several lipid mediators were also shown to correlate
positively with asthma severity, including sphingolipids, free fatty acids, and eicosanoids
(LTE4) [85,88]. Another report also highlighted serum glycerophospholipid metabolic
profile as a marker that was able to differentiate between eosinophilic and non-eosinophilic
asthma [89]. Another important application of metabolomics in asthma is the prediction
of resistance to steroid therapy. Higher levels of linoleic acid metabolite were found to be
responsible for steroid resistance through the NF-κB pathway [90].

Recently, breathomics, an evolving branch of metabolomics that includes the anal-
ysis of exhaled breath condensate, was found to be beneficial in the characterization of
asthmatic subjects, including asthma endotyping. A novel study revealed that the use of
15 volatile organic compounds in exhaled breath samples was able to stratify asthmatic
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patients into eosinophilic (>2% sputum eosinophilia) endotype and neutrophilic (≥40%
sputum neutrophilia) endotype [91]. Moreover, the evaluation of volatile organic com-
pounds (VOCs) might predict the body’s chemistry changes and be found to be able to
monitor the pharmacodynamics and pharmacokinetics of many drugs used in asthma
management [92,93]. For example, one report highlighted that exhaled breath volatile
organic compound levels could predict the responsiveness of steroids in mild/moderate
asthma with accuracy greater than sputum eosinophils and FeNO [94].

5.7. Epigenome, Environment, and Asthma

Epigenomics includes heritable biochemical modifications that cause changes in gene
expression without changes in the DNA sequence. Those modifications include DNA
methylation, histone modifications, and microRNAs (miRNAs) [95]. Epigenetic changes
were proposed to play a role in the pathogenesis of asthma. For example, one report showed
that exposure to a high methyl donor diet in utero might cause an increment in airway
inflammation and an increase in the serum IgE that might facilitate the T2 phenotype in
lymphocytes as well as the hypermethylation of Runx [96].

A methylation array-based report performed on bronchial brushings and mucosal
biopsy revealed a novel methylation mark that can differentiate between asthmatic and
atopic individuals compared to healthy controls [97]. Moreover, other epigenetic mecha-
nisms were shown to be involved in the regulation of cytokines and transcription factors
involved in T cell differentiation [98]. One report highlighted the role of the global DNA
demethylation agent (5-AZA) in allergic airway disease by preventing Th2 skewing, and
Th1/Th2 rebalance [99].

A study focused on genome-wide histone modification profiles in a group of cells,
including naive, TH1, and TH2 cells obtained from the blood of asthmatic patients com-
pared to healthy individuals which identified enhancers associated with the TH2 memory
cell that showed distinct histone H3 Lys4 dimethyl (H3K4Me2) enrichment, which differs
according to the status of asthma [100].

Reports also highlighted the presence of up-and-down-regulated miRNAs in asthmatic
patients compared to healthy individuals. Those miRs were found to be associated with
epithelium development, homeostasis, and inflammatory pathways [101]. This includes
let-7f, miR-181c, and miR-487b, which were found to be elevated in mild asthma patients
compared to normal. In contrast, miR-203 was shown to be reduced in those patients
compared to the healthy control [101]. In addition, some miRNAs were also found to be
associated with allergy risk. For example, both miR-155 and miR-146 were found to play
an essential role in T cells skewed towards Th2 versus Th1/Th17 [102].

Epigenomic changes may also appear as a response to interaction with endogenous or
exogenous environment factors [103]. Moreover, reports also showed evidence of a possible
role of environment-gene interactions in determining asthmatic phenotypes [104]. For
example, one report showed an increment in protocadherin-20 (PCDH20) methylation in
asthmatic patients who smoke. This change was evident even after environmental factors
were adjusted [105]. Evidence also emerged about a possible synergistic interaction between
genetic and epigenetic variations in the modulation of gene expression. Examples include
DNA methylation interaction with SNPs variations in T-helper 2 pathway, interleukin-4
receptor gene [106].

6. Limitations of Systems Biology in Asthma
6.1. Limitations

In recent years, there has been an increase in the use of a systems biology approach to
asthma and allergy, which has provided great results [33]. However, although they have
provided extraordinary details and enriched our knowledge about asthma heterogeneity
and its molecular basis, these techniques gave no conclusive and even contradictory results
in asthma [107,108].
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While transcriptomic data and transcriptomics provide more dynamic details that are
essential in understanding active heterogeneous diseases such as asthma and can help in its
“prediction” and “diagnosis” [109], in several well-designed transcriptomic studies, there
was no link between the identified transcriptomic data and clinical findings, indicating
missing biological relevance which can be identified if more comprehensive designs and
data analysis are tried [70,110].

Asthma genome-wide SNP association studies is a hypothesis-free approach that relies
on data gathering, analysis, and interpretation to identify susceptibility genes; however,
mutation analysis can only explain 2.5% of the variation and is inconsistent between ethnic
groups [111,112].

Many publicly available transcriptomic datasets were made through arrays; however,
microarray technology can carry noise and errors due to intra-cellular heterogeneity, which
in turn can shift gene expression readings based on the examined conditions [113–115].
A shift can be seen in the extreme method-to-method variation in the results of the sig-
nificant differentially expressed genes (DEGs) in many studies [116]. Such experimental
process variability can mask the investigated biological effects, affecting the proper identi-
fication of truly DEGs from genes that are equally expressed between disease states and
controls [117,118].

This relatively expensive approach can be more informative if a large number of
samples are combined to extract meaningful information by using a large number of
datasets available in public databases [119]. However, such an approach has not yet been
performed in a broader range of patients, so these omics studies have only provided a
partial view of the disease due to their focus on specific subtypes rather than the disease as a
whole [76,120]. For example, “Systems Pharmacology Approach to Uncontrolled Pediatric
Asthma” is a study that uses systems-wide omics in a layered manner to identify the
pathophysiological mechanisms, specifically in moderate-to-severe uncontrolled pediatric
asthma, rather than assessing across populations [121].

The translational benefit of asthma genomic studies is sparse, and known asthma
susceptibility genes can marginally increase the disease risk due to the genetic and pheno-
typic heterogeneity of asthma [122]. Thus, a deeper understanding of the novel regulatory
mechanisms that might affect the function of susceptibility genes might overcome this
limitation in understanding the heterogeneous manifestations of asthma pathology [123].

While omics, data science, and systems biology have better enhanced our understand-
ing of the molecular mechanisms in asthma and allergic diseases pathology, the use of
omics testing in these diseases is not considered the standard of care. Several factors must
be addressed before the use of these technologies can be effectively implemented in clinical
practice. An example would be integrating these systems with the use of clinical decision
support systems within electronic medical records for this technology to be used in clinical
settings [76]. However, combining and integrating systems medicine and omics data into
clinical practice may enable a more precise and personalized way of effectively managing
asthma [33].

6.2. Confounding Factors Are a Limitation of Systems Biology

Another limitation that blocks the proper utilization of transcriptomic datasets is the
countless elusive experimental factors called ‘confounding factors’ [124]. These factors
can be biological or non-biological, and their identification is essential for accurate tran-
scriptomic analysis; however, they are hidden and difficult to detect [124–126]. Biologists
often accept or ignore such factors, considering them an inevitable part of any biological
experiment. However, if these factors are considered confounding, they could result in a
systematic bias that can affect the results [127]. An example of the effect of systemic bias
would be the inconsistency of epidemiological, experimental, or clinical findings that are
due to local and regional variations in both the environment and population genetics [128].
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6.3. Data Integration Strategies, Such as Machine Learning, Dimension Reduction, Clustering,
and Network Analysis in Asthma

The integration of multi-omics data is still considered the main challenge in fulfilling
the potential of comprehensive systems biology to create a workflow capable of simultane-
ously modeling and investigating the interactions between multiple-omics data blocks [129].
Multi-omics analyses considering genetic, epigenetic, and functional data should be used
to create an effective systems biology-based approach to developing accurate risk profiles
for disease [130]. Machine learning approaches explore asthma heterogeneity to determine
endotypes that correlate with the sub-phenotypes of asthma and allergy using mathemati-
cal models on genomic, transcriptomic, and proteomic data [33]. There is a great potential
to maximize a single omics approach utilization by integrating them with other omics [131].
For example, recently, merged affinity network association clustering (MANAclust), a
coding-free automated pipeline enabling the integration of categorical and numeric data
spanning clinical and multi-omic profiles for unsupervised clustering to identify disease
subsets was applied to a clinically and multi-omically phenotyped asthma cohort and was
able to identify clinically and molecularly distinct clusters, including heterogeneous groups
of “healthy controls” and viral and allergy-driven subsets of asthmatic subjects [43]. Addi-
tionally, an exposome study profiling joint lifestyle and environmental factors in integrated
lung function in adults with asthma using a cluster-based approach revealed significant
associations that did not have any direct meaning when considered independently [132].
Another promising approach is using “Development of ALLergy” that integrates the epi-
demiologic, clinical, and in vivo and in vitro models of 44,010 participants and 160 cohort
follow-ups between pregnancy and age 20 years to integrate personalized, predictive,
preventative, and participatory approaches in allergic diseases [133].

7. Summary of The Issues of Asthma

Throughout this review, we showed the various factors that play a role in the hetero-
geneity of asthma and the importance of understanding this variation to classify and better
understand this disease. For example, asthma susceptibility risk loci have been identified
to be related to immune cells; however, assessing the heritability of asthma has not been
fully deciphered yet. Additionally, many environmental factors play a role in asthma
development, with increased concerns over how different environmental exposure might
trigger asthma exacerbations. Some of the complex gene-environment interactions that
lead to asthma development include obesity, vitamin D deficiency, and the gut microbiome.

The diagnosis of asthma relies on several factors, making it challenging to properly
diagnose asthmatic patients. Additionally, the correct diagnosis plays a role in managing
this disease; however, choosing the correct treatment depends on the asthma endotype,
clinical markers, and patient-focused aspects. The different asthma phenotypes can be
characterized by the molecular and cellular events that drive the development and progres-
sion of asthma. Such events or biomarkers rely on systems biology and its various omics.
The most common systems biology method used in asthma is transcriptomics, with many
microarray datasets available in publicly available repositories. However, these datasets
revealed extreme method-to-method variation due to the different experimental processes,
which affects the identification of proper DEGs. Additionally, confounding factors appear
to limit the benefits of transcriptomic studies on asthma, as these can create a bias in the
experimental design. PBMCs were identified as a potential source of biomarkers as it
includes many different allergic response mediators, and they are currently used to identify
clinically essential biomarkers in diabetes [61].

8. Conclusions

To conclude, asthma is a heterogeneous disease of varying and overlapping pheno-
types with many confounding factors in the disease susceptibility and management. The
use of systems biology has helped us understand and enrich our knowledge of asthma
heterogeneity and molecular basis; however, such methods have their limitations. Thus, the
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translational benefits of these studies are few, and it is recommended to reanalyze the dif-
ferent studies and omics in conjugation with one another to understand the reasons for this
variation, which might help overcome the limitations of understanding the heterogeneity
in asthma pathology.
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