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Simple Summary: Artificial intelligence (AI) is a field that combines computer science with robust
datasets to solve problems. AI in medicine uses machine learning and deep learning to analyze
medical data and gain insight into the pathogenesis of diseases. This study summarizes and inte-
grates our previous research and advances the analyses of macrophages. We used artificial neural
networks and several types of machine learning to analyze the gene expression and protein levels by
immunohistochemistry of several hematological neoplasia and pan-cancer series. As a result, the
patients’ survival and disease subtype classification were achieved with high accuracy. Additionally,
a review of the literature on the latest progress made by AI in the hematopathology field and future
perspectives are given.

Abstract: Artificial intelligence (AI) can identify actionable oncology biomarkers. This research
integrates our previous analyses of non-Hodgkin lymphoma. We used gene expression and immuno-
histochemical data, focusing on the immune checkpoint, and added a new analysis of macrophages,
including 3D rendering. The AI comprised machine learning (C5, Bayesian network, C&R, CHAID,
discriminant analysis, KNN, logistic regression, LSVM, Quest, random forest, random trees, SVM,
tree-AS, and XGBoost linear and tree) and artificial neural networks (multilayer perceptron and radial
basis function). The series included chronic lymphocytic leukemia, mantle cell lymphoma, follicular
lymphoma, Burkitt, diffuse large B-cell lymphoma, marginal zone lymphoma, and multiple myeloma,
as well as acute myeloid leukemia and pan-cancer series. AI classified lymphoma subtypes and pre-
dicted overall survival accurately. Oncogenes and tumor suppressor genes were highlighted (MYC,
BCL2, and TP53), along with immune microenvironment markers of tumor-associated macrophages
(M2-like TAMs), T-cells and regulatory T lymphocytes (Tregs) (CD68, CD163, MARCO, CSF1R,
CSF1, PD-L1/CD274, SIRPA, CD85A/LILRB3, CD47, IL10, TNFRSF14/HVEM, TNFAIP8, IKAROS,
STAT3, NFKB, MAPK, PD-1/PDCD1, BTLA, and FOXP3), apoptosis (BCL2, CASP3, CASP8, PARP,
and pathway-related MDM2, E2F1, CDK6, MYB, and LMO2), and metabolism (ENO3, GGA3). In
conclusion, AI with immuno-oncology markers is a powerful predictive tool. Additionally, a review
of recent literature was made.

Keywords: non-Hodgkin lymphoma; mature B-cell neoplasms; immune checkpoint; immuno-
oncology; immune microenvironment; 3D macrophages; artificial intelligence; machine learning;
artificial neural networks; deep learning
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1. Introduction

Lymphoid neoplasms are tumors of the hematopoietic system derived from immature
and mature B lymphocytes, T lymphocytes, and natural killer (NK) cells that evoke the
normal stages of cell differentiation. Nevertheless, some neoplasms (such as hairy cell
leukemia) show lineage heterogeneity and plasticity, and their normal counterparts cannot
be found [1–7]. The 2016 revision of the World Health Organization (WHO) classification of
lymphoid neoplasms [3] and the International Consensus Classification (ICC) [6] describe
around 45 different subtypes of mature lymphoid neoplasms [3,6,7]. In this research, we
analyzed the gene expression of some of the most relevant and frequent ones.

Chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) develops
from small mature CD5+ and CD23+ B-cells with mutated or unmutated IGHV genes [3,8].

Follicular lymphoma (FL) is a neoplasia of the germinal centers of follicles (centrocytes
and centroblasts), with a follicular (nodular) pattern, and is frequently associated with the
IGH/BCL2 translocation (t14;18)(q32;q21) that occurs in the bone marrow [3,9,10].

Extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue is an
extranodal lymphoma (MALT lymphoma) composed of a heterogeneous population of
small B-cells [3]. It originates in the marginal zones, but it extends into the interfollicular and
follicular regions and infiltrates the epithelium, forming the lymphoepithelial lesions [3,11].

Mantle cell lymphoma (MCL) is characterized by monomorphic small to medium-
sized lymphoid cells with irregular nuclei and the CCND1 translocation, originating from
peripheral B lymphocytes of the inner mantle zone, CD5+, and SOX11+ in the classical
form [3,12,13].

Diffuse large B-cell lymphoma (DLBCL) is a neoplasm of medium or large B lymphoid
cells that originate from the germinal center in the germinal center B-cell-like type, or from
the post-germinal center in the activated B-cell-like type [3,14,15]. According to the clinical,
morphological, and biological features, DLBCL can be subdivided into different subtypes;
the remaining ones are not otherwise specified (NOS).

Burkitt lymphoma is a highly aggressive but curable lymphoma that often appears at
extranodal sites or as acute leukemia. It is characterized by a monomorphic proliferation of
medium-size B-cells, mitotic figures, and the MYC translocation to the immunoglobulin
(IG) locus. It originates from the germinal centers. There are three epidemiological vari-
ants, with variable association with the Epstein-Barr virus (EBV): endemic, sporadic, and
immunodeficiency-associated [3,16–18].

Figure 1 shows the stages of the B-lymphocyte differentiation, and the relationship
with the different lymphoma subtypes [19].

Nowadays, there has been rapid advance in the field of artificial intelligence (AI), and
its role in medicine is gaining relevance. AI integrates computer science and datasets to
make predictions or classifications based on input data.

There are two types of artificial intelligence, weak and strong AI. Weak AI, also known
as narrow AI (NAI), is trained to perform specific tasks. Conversely, strong AI includes
artificial general intelligence (AGI) or artificial super intelligence (ASI), and it is expected
to surpass human abilities in the future [20–26].

In this research, we used weak artificial intelligence to predict the prognosis of the pa-
tients and to classify several subtypes of mature B-cell neoplasms (output). Gene expression
(transcriptomics) and protein immunohistochemical data were used as predictors (input
data). The research focused on artificial neural networks (mainly multilayer perceptron),
but also used other neural networks such as the radial basis function and other machine
learning techniques. Regarding the neural networks, “basic” but robust and reliable archi-
tectures were chosen as an elemental part of the analysis. Then, the “basic” networks were
combined in more complex, multivariate analysis algorithms. Figure 2 describes the basic
structure of the neural network.



Cancers 2022, 14, 5318 3 of 46Cancers 2022, 14, x FOR PEER REVIEW 3 of 55 
 

 

 
Figure 1. Postulated cell of origin of the non-Hodgkin lymphoma subtypes. In the current theory of 
the pathogenesis of hematopoietic and lymphoid tissues, B-cell neoplasms correspond to various 
stages of B-cell differentiation. For example, follicular lymphoma, Burkitt lymphoma, and diffuse 
large B-cell lymphoma develop (or have a stage of differentiation) from mature B lymphocytes from 
the germinal centers of follicles of peripheral lymphoid tissues. Of note, follicular lymphoma is 
characterized by the IGH/BCL2 translocation (t14;18)(q32;q21) that occurs in the bone marrow. Nev-
ertheless, this genetic alteration is not sufficient to generate lymphoma, and additional cumulative 
changes are necessary. 
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Figure 1. Postulated cell of origin of the non-Hodgkin lymphoma subtypes. In the current theory of
the pathogenesis of hematopoietic and lymphoid tissues, B-cell neoplasms correspond to various
stages of B-cell differentiation. For example, follicular lymphoma, Burkitt lymphoma, and diffuse
large B-cell lymphoma develop (or have a stage of differentiation) from mature B lymphocytes
from the germinal centers of follicles of peripheral lymphoid tissues. Of note, follicular lymphoma
is characterized by the IGH/BCL2 translocation (t14;18)(q32;q21) that occurs in the bone marrow.
Nevertheless, this genetic alteration is not sufficient to generate lymphoma, and additional cumulative
changes are necessary.

The immune checkpoints are regulators of the immune system that belong to the
self-tolerance pathways. Without them, the immune system would attach to cells indiscrim-
inately. Cancer uses several mechanisms to proliferate, including evading the host immune
response using immune checkpoint molecules. There are two types of immune checkpoint
molecules: stimulatory and inhibitory. Inhibitory checkpoint molecules inhibit the immune
response and include several markers such as B7-H3 (CD276), BTLA, CTLA-4, LAG3, PD-1,
TIM-3, and VISTA. Nowadays, immune checkpoints are important because they are the
basis of cancer immunotherapy. Currently approved checkpoint inhibitors are anti CTLA-4,
PD-1, and PD-L1 [19,27–35]. In this research, artificial intelligence was used to classify and
to predict the overall survival of different lymphoma subtypes using gene expression data,
all the genes of the arrays, and specific panels of the immune checkpoint.

This manuscript integrates our previous publications to provide a general view of the
results and adds new analysis on tumor-associated macrophages (TAMs).
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Figure 2. The basic structure of a neural network. The network is a function of predictors (also called
inputs or independent variables) that minimize the prediction error of target variables (outputs). In
the case of a multilayer perceptron, it is a feed-forward architecture because the connections flow
from the input to the output layer without loops. Here, four genes predict the overall survival of
patients. The input layer contains these genes. The hidden layer contains the unobservable nodes
(units). The output layer contains the responses; the overall survival is a categorical variable (dead
vs alive).

2. Materials and Methods
2.1. Machine Learning and Neural Networks

This research integrates all the previous analyses that were obtained using conven-
tional biostatistics, machine learning, and artificial neural networks. Machine learning
included Bayesian network, C&R tree, C5 tree, CHAID tree, discriminant analysis, KNN al-
gorithm, logistic regression, LSVM, Quest tree, random forest, random trees, SVM, tree-AS,
XGBoost linear, and XGBoost tree. Two types of artificial neural networks were used: the
multilayer perceptron and radial basis function. The digital image quantification of markers
was performed using the Waikato Environment for Knowledge Analysis (Weka), and the
training of the classifier included fast random forest. All the materials and methods were
thoroughly described in the previous publications [19,27–35].

2.2. Multilayer Perceptron Artificial Neural Network

The multilayer perceptron architecture was chosen in most cases. Several parameters
were chosen to optimize the neural network. The predictors were included in the input
layer, the unobservable nodes or units in the hidden layer, and the responses in the output
layer. Scale-dependent variables and covariates were rescaled to improve network training.
The method for rescaling of covariates was standardized: subtract the mean and divide by
the standard deviation, (x−mean)/s.

The series of cases were randomly partitioned into training (70%) and testing (30%)
datasets. The best performance was found using one hidden layer. The activation function
linked the weighted sums of units in a layer to the values of units in the succeeding layer.
The hyperbolic tangent was usually used. This function has the form γ(c) = tanh(c) = (ec

–e–c)/(ec +e−c). It takes real-valued arguments and transforms them into the range (–1, 1).
When automatic architecture selection is used, this is the activation function for all units in
the hidden layers. The number of units in each hidden layer was determined automatically
by an estimation algorithm.

The output layer contained the target (dependent) variables and the activation function
was softmax. This function has the form: γ(ck) = exp(ck)/Σjexp(cj). It takes a vector of
real-valued arguments and transforms it into a vector whose elements fall in the range (0,1)
and sum to 1. Softmax is available only if all dependent variables are categorical.
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The training type determines how the network processes the records; the training type
was batch. The training options were initial lambda (0.0000005), initial sigma (0.00005),
interval center (0), and interval offset (+/−0.5). The network performance was assessed by
the classification results, receiver operating characteristic (ROC) curve, cumulative gains chart,
lift chart, predicted by observed chart, and residual by predicted chart. Using a sensitivity
analysis, the independent variables were ranked according to their importance for predicting
the dependent variable and in determining the neural network (Figure 3).
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according to their importance for predicting the dependent variable and in determining the neu-
ral network.

The general architecture for a multilayer perceptron is as follows [34]:
Input layer: J0 = P units, a0:1, . . . , a0:J0; with a0:j = xj.

Hidden layer: Ji units, ai:1, . . . , ai:Ji; with ai:k = γi(ci:k) and ci:k = ∑Ji−1
j=0 wi:j,kai_1:j where

.ai−1:0 = 1
Output layer: JI = R units, aI:1, . . . , aI:Ji; with aI:k = γI(cI:k) and cI:k = ∑J1

j=0 wI:j,kai_ 1:j

where .ai−1:0 = 1
Notation [34]:

I Number of layers, discounting the input layer.
Ji Number of units in layer i. J0 = P,Ji = R, discounting the bias unit.
wi:j,k Weight leading from layer i–1, unit j to layer i, unit k. No weights connect am

i−1:j and
the bias am

i−j:0; that is, there is no wi:j,0 for any j.
γi(c) Activation function for layer i.
w Weight vector containing all weights (w1:0,1, w1:0,2, . . . , wI:JI−1,JI).

2.3. Differential Gene Expression Using the GEOR2 Software

The GEO2R 1.0 software was used to compare the differential gene expression between
subtypes simply. The Benjamini–Hochberg false discovery rate was applied to adjust the
p values. Log transformation was applied if necessary. Limma precision weights and
force normalization were not applied. The data were visualized using volcano and mean
difference (MA) plots, contrasted with a level of cut-off significance set a priori at 0.05.
This software runs in R 3.2.3, Biobase 2.30.0, GEOquery 2.40.0, limma 3.26.8. Webpage:
https://www.ncbi.nlm.nih.gov/geo/info/geo2r.html (accessed on 23 July 2022).

https://www.ncbi.nlm.nih.gov/geo/info/geo2r.html
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2.4. Gene Set Enrichment Analysis

The Gene Set Enrichment Analysis (GSEA) was used to determine if a pathway of
interest was associated with a particular biological state (for example, dead vs alive) [36,37].
The pathways were obtained from the Molecular Signatures Database (MSigDB 7.0 and
greater) or designed in-house. The software GSEA v4.2.3 was downloaded from the webpage
of UC San Diego, Broad Institute: http://www.gsea-msigdb.org/gsea/index.jsp (accessed
on 23 July 2022).

2.5. Conventional Statistical Analyses

Comparisons between groups were performed using crosstabulation with Pearson
Chi-Square and Fisher’s exact tests, and with nonparametric Mann–Whitney U (2 groups)
and Kruskal-Wallis H (≥3 groups) tests. Survival analyses used the Kaplan–Meier and
Log-rank tests, and the univariate and multivariate Cox Regression. The criteria of survival
and response were the standard [38]. Overall survival was calculated from the time of
diagnosis to the last contact with the patient (event recorded as alive vs dead).

2.6. Risk Groups

Risk groups were created using the risk score (prognostic index), which was calculated
by multiplying the beta coefficients of the Cox model by the gene expression values (Risk
score = B1X1 + B2X2 + . . . + BpXp, where xi is the expression value and BI is the beta value
of the Cox table). In the Cox, all the genes are included in a unique model [39].

2.7. Hardware

The analyses were performed on a desktop equipped with an AMD Ryzen 5 1600 and
NVIDIA GeForce GTX 1050 Ti [27], Ryzen 7 3700X and GeForce GTX 1650 [30,33,34], and a
Ryzen 9 5900X and GeForce GTX 3060 Ti [35], all with 16.0 GB of RAM.

Appendix A describes all the software that was used to perform the biostatistical
analyses, including machine learning and artificial neural networks [19,27–35].

2.8. Datasets and Immunohistochemical Procedures

We used publicly available datasets downloaded from the Gene Expression Omnibus
(GEO) repository, webpage: https://www.ncbi.nlm.nih.gov/geo/ (accessed on 23 July
2022) (Appendix B Table A1) [40–57], and own Tokai University Hospital gene expression
(transcriptomic) and immunohistochemical (proteomic) datasets for this research.

Several of the markers that were highlighted in the AI analyses (both machine learning
and artificial neural network) were validated by immunohistochemistry at the protein
level. The cases were selected from the lymphoma series of Tokai University Hospital.
The series of cases ranged from 100 to 293 cases, depending on the project. Immuno-
histochemistry was performed using a Leica Bond Max autostainer following the man-
ufacturer’s instructions (Leica K.K., Tokyo, Japan). Table 1 details the primary antibod-
ies that were used. The review section was made on the basis of PRISMA guidelines:
https://prisma-statement.org/ (accessed on 29 September 2022), Carreras, J. (20 October
2022). Systematic review. https://doi.org/10.17605/OSF.IO/436JQ. The manuscripts were
selected in PubMed using the keywords “lymphoma” and “artificial intelligence”, and
were organized according to the type of input data as PET/CT scan, histological images,
immunophenotype, clinicopathological variables, and gene expression, mutational, and
integrative analysis-based artificial intelligence.

http://www.gsea-msigdb.org/gsea/index.jsp
https://www.ncbi.nlm.nih.gov/geo/
https://prisma-statement.org/
https://doi.org/10.17605/OSF.IO/436JQ
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Table 1. Immunohistochemical markers used in lymphoma cases of Tokai University, School of
Medicine.

Marker Target/Pathway Primary Antibody Company

BCL2 Apoptosis bcl2/100/D5 Novocastra
BCL6 Germinal center LN22 Novocastra

cCASP3 Apoptosis Asp175, #9661 Cell Signaling
CASP8 Apoptosis active subunit p18, 11B6 Novocastra

CD3 T lymphocytes CD3 epsilon, LN10 Novocastra
CD5 T lymphocytes 4C7 Novocastra

CD10 Germinal center 56C6 Novocastra
CD16 M1-like macrophages 2H7 Novocastra
CD20 B lymphocytes L26 Novocastra
CD47 B lymphocytes D3O7P Cell Signaling
CD68 Pan-macrophages 514H12 Novocastra

CD85A/LILRB3 M2-like macrophages FRAS92B CNIO
CD163 M2-like macrophages 10D6 Novocastra
CDK6 Cell cycle 98D CNIO
CSF1 CSF1R pathway 2D10 LSBio

CSF1R M2-like macrophages 2D10 LSBio
Cyclin D1 Cell cycle P2D11F11 Novocastra

E2F1 Cell cycle Agro368V CNIO
EBER Epstein-Barr virus #PB0589, #AR0833 Novocastra

IKAROS Cytokine signaling D6N9Y Cell Signaling
IL10 M2c-like macrophages LS-B7432 Lifespan Bioscience
Ki67 Cell cycle MM1 Novocastra

LMO2 Proto-oncogene 299B CNIO
MARCO Macrophages HPA063793 Atlas antibodies
MDM2 p53 signaling IF2 Invitrogen
MITF M2-like macrophages C5/D5/MAB10775 Abnova

MUM1 Plasma cells IRF4, EAU32 Novocastra
MYC Proto-oncogene Y69 Abcam

NFKB p105/p50 NFKB pathway #3035 Cell Signaling
cPARP Apoptosis Asp214, D64E10 Cell Signaling
PD-L1 Immune checkpoint E1J2J Cell Signaling

p-p44/42 MAPK MAPK pathway Thr202/Tyr204, #4370 Cell Signaling
pSTAT3 STAT3 pathway Tyr705, D3A7 Cell Signaling

PTX3 M2c-like macrophages PPZ1228 Perseus Proteomics
RGS1 Signal transduction Rabbit polyclonal Thermo Fisher
SIRPA M2-like macrophages D6I3M Cell Signaling

TNFAIP8 Apoptosis #14559-MM01 Sino Biological
TP53 Cell cycle, apoptosis DO-7 Novocastra
RGS1 Signal transduction Rabbit polyclonal Thermo Fisher

CNIO, Centro Nacional de Investigaciones Oncológicas (Spanish National Cancer Research Center).

3. Results

The different subtypes of hematological neoplasia (mainly non-Hodgkin lymphomas)
were predicted using artificial neural networks, machine learning, and conventional bio-
statistics. The analysis used transcriptomic data and protein levels assessed by immunohis-
tochemistry. The results are summarized as a bulleted list.

3.1. Predictive Classification of Non-Hodgkin Lymphomas

• Using the whole array of 20,863 and a cancer transcriptome panel, the lymphoma
subtypes were predicted by a neural network with high accuracy [19].

• A set of 30 genes derived from the neural network also predicted the overall survival
of an independent series of diffuse large B-cell lymphoma, and a pan-cancer series of
7441 cases of The Cancer Genome Atlas (TCGA) [19] (Figure 4).
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(inputs) were the gene expression values of a pan-cancer transcriptome panel. The architecture of the network had 1769 nodes in the input layer, a hidden layer
of 16 nodes, and an output layer with 5 nodes (5 lymphoma subtypes). In this figure, the top 20 most relevant genes for predicting the lymphoma subtype are
shown, based on their average normalized importance for prediction. The most relevant gene was ARG1, followed by MAGEA3, AKT2, and IL1B. (B) This multilayer
perceptron had a high performance, as shown in the ROC curve that had an area under the curve near 1. (C–F) Interestingly, the top 30 genes of the neural network
not only predicted the lymphoma subtype but also managed to predict the overall survival of a large pan-cancer series from the TCGA of 7441 cases. Using a risk
score formula, the cases of each series were stratified into high- and low-risk groups. The risk scores were calculated by multiplying the beta values of the Cox
regression per gene expression values for each gene. The overall survival was calculated using the Kaplan–Meier and log-rank test and Cox regression analyses.
These top 30 genes belonged to a pan-cancer transcriptome panel. Therefore, this may explain why they have predictive value in a pan-cancer series, and points out
that there may be common cancer mechanisms in all human neoplasia.
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3.2. Follicular Lymphoma, Immune Response, and Microenvironment

• An algorithm combined two types of neural networks (multilayer perceptron and ra-
dial basis function) to predict the overall survival, in combination with other clinically
relevant variables [29].

• These variables were more than 60 years, the number of extranodal sites > 1, LDH-level
ratio > 1, stage > 2, IPI score 2−3, with translocation (14;18) positive, immune response
ratio 2:1 high (≥0.97), and overall survival up to 5 years vs alive from 10 years [29].

• As a result, new poor and favorable prognostic genes were identified, and were corre-
lated with the immune microenvironment (M2-like tumor-associated macrophages) [29]
(Figures 5 and 6).
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Figure 5. Prediction of the overall survival of follicular lymphoma using an algorithm based on
neural networks. The algorithm combined multilayer perceptron (MLP), radial basis function (RBF),
and COX regression to highlight 43 genes with prognostic relevance; finally, a correlation with
immuno-oncology genes was also performed. This figure shows the algorithm (method) that was
used to analyze the gene expression data of follicular lymphoma using artificial neural networks.
From an initial set of 22,215 genes, a strategy of dimensionality reduction highlighted 43 genes, of
which 18 were associated with poor and 25 with good overall survival of the patients. The first step
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consisted of several independent artificial neural networks. The network architecture included the
22,215 genes as predictors (inputs), a hidden layer, and an output layer with the predicted variable.
The predicted variables were the overall survival of the patients (outcome dead vs alive), and other
relevant clinicopathological variables of follicular lymphoma. The result of the neural network
ranked all the genes according to their normalized importance for predicting the target variable. The
results of the independent multiple neural networks were pooled resulting in 1005 genes, and the
most relevant ones were highlighted using univariate and multivariate Cox regression analyses. The
relevance of these genes was confirmed using gene set enrichment analysis (GSEA). Finally, these
genes were also correlated with several immuno-oncology genes. The 43 genes were the following: 18
were associated with a poor prognosis (FRYL, KIAA0100, CDC40, MED8, PTP4A2, BNIP2, TMEM70,
MED6, SLC24A2, KLK10, RANBP9, PRB1, EVA1B, CBFA2T2, ALDH1L1, KRT19, BTN2A3P, and TRPM4)
and 25 were associated with a good prognosis of the patients (HSF2, ATPAF2, SLC7A11, PTAFR,
TTLL3, TCP10L, DNAAF1, PRH1, NSDHL, TAF12, TSPAN3, AKIRIN1, ITK, TDRD12, LPP, BTD, SIRT5,
ZNF230, ABHD6, TOP2B, ARPC2, ASAP2, IDH3A, PSMF1, and ARFGEF1) (Supplementary Tables
S1–S5). LDH, lactate dehydrogenase; IPI, international prognostic index; IR ratio, immune response
ratio; 5-y, five years; MLP, multilayer perceptron; RBF, radial basis function.
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Figure 6. Prediction of the overall survival of follicular lymphoma using an algorithm based on neural
networks. This figure shows the GSEA results of Figure 4 in detail. Gene set enrichment analysis (GSEA)
was performed to confirm the results of the multivariate Cox regression for the overall survival analysis.
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The set of 43 was used in addition to genes of the immune response as well as oncogenes and tumor
suppressor genes related to the pathogenesis of follicular lymphoma. Of note, genes related to
macrophages were highlighted, such as CD163. NOM p–val, nominal p value (the nominal p value
estimates the statistical significance of the enrichment score for a single gene set); FDR q–val, false
discovery rate.

• Tridimensional (3D) analysis of tumor-associated macrophages (TAMs) of follicular
lymphoma and transformation to diffuse large B-cell lymphoma was associated with
increased numbers of TAMs, which created a network-like structure (Figure 7).
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Figure 7. Tridimensional analysis of tumor-associated macrophages (TAMs) in follicular lymphoma.
The analysis of M2-like TAMs in follicular lymphoma showed that the progression from low grade to
high grade, and the transformation to diffuse large B-cell lymphoma, were associated with increased
numbers of TAMs, which created a physical network-like structure. This result points out that
TAMs may contribute to the disease pathogenesis. In this figure, the macrophages are highlighted in
pale blue (right) and green (left). B and T lymphocytes are in dark blue and red. The images were
obtained using a LSM 700 laser scanning confocal microscope from Carl Zeiss (Carl-Zeiss-Strasse 22,
73447 Oberkochen, Germany), and Imaris software (version 8.4, Oxford Instruments, Belfast, United
Kingdom). FL, follicular lymphoma; DLBCL, diffuse large B-cell lymphoma.

3.3. Follicular Lymphoma, Random Number Generator-Based Strategy

• The random number generation created 120 independent multilayer perceptron so-
lutions and 22,215 gene probes were ranked according to their averaged normalized
importance for predicting the overall survival [35].



Cancers 2022, 14, 5318 12 of 46

• The analysis identified new predictor genes, which were related to cell adhesion and
migration, cell signaling, and metabolism. These genes were also correlated to the
immuno-oncology markers of CD163, CSF1R, FOXP3, PDCD1 (PD-1), TNFRSF14
(HVEM), and IL10 [35].

• A comparison with other machine learning techniques was also performed. Machine
learning included the following techniques: Bayesian network, C&R tree, C5 tree,
CHAID tree, discriminant analysis, KNN algorithms, logistic regression, LSVM, Quest
tree, random forest, random trees, SVM, tree-AS, XGBoost linear, and XGBoost tree.
A neural network analysis was also made [35] (Figure 8).
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3.4. Mantle Cell Lymphoma, Use of Immuno-Oncology Panels to Predict Survival

• An analysis algorithm included several analysis techniques such as neural networks
(both the multilayer perceptron artificial and radial basis function), GSEA, and con-
ventional statistics. In this analysis, 20,862 genes were correlated with 28 prognostic
genes of mantle cell lymphoma. After dimensionality reduction, the patients’ overall
survival was predicted, and new markers were highlighted (Figure 9) [34].
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Figure 9. Prediction of the overall survival of mantle cell lymphoma using an algorithm based on
neural networks. Two methods (A and B algorithms) were designed. Method 1 used as input 20,862
genes to predict the overall survival outcome (dead vs. alive) and other prognostic markers; because
of dimensionality reduction, a final set of 19 genes were highlighted. The analysis also included
testing the final 19 genes with other machine learning analysis, and conventional overall survival
with log-rank test. Method 2 used as input several gene panels to predict the overall survival. As
a result, 125 pan-cancer and immuno-oncology genes were highlighted. The association with the
patients overall survival was confirmed by GSEA and conventional overall survival with log-rank
test. OS, overall survival; MLP, multilayer perceptron; RBF, radial basis function; GSEA, gene set
enrichment analysis; D/A, dead/Alive; AUC, area under the curve; NI, normalized importance.
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• The highlighted genes were related to the cell cycle, apoptosis, and metabolism. The genes
not only predicted the survival of mantle cell lymphoma, but also of diffuse large
B-cell lymphoma and a large pan-cancer series of the TCGA [34].

• A neural network algorithm that combined 10 oncology and immuno-oncology panels
predicted overall survival (Figure 9) [34].

• Other machine learning techniques were used. Additionally, a correlation with the
MCL35 proliferation assay, which was created by the Lymphoma/Leukemia Molecular
Profiling Project, was made [34] (Figure 9).

3.5. Diffuse Large B-Cell Lymphoma, Identification of the 25 Genes Set

• A multilayer perceptron analysis predicted the overall survival of 100 cases using as
input 54,614 gene probes, and highlighted 25 genes with prognostic value [27].

• Correlation with known diffuse large B-cell lymphoma markers showed that high expres-
sion of MYC, BCL2, and ENO3 was associated with worse outcome [27] (Figures 10 and 11).
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Figure 10. A neural network predicted the overall survival of diffuse large B-cell lymphoma using
gene expression data. (A) A multilayer perceptron predicted the overall survival and highlighted the
most important 25 genes. (B) Using a risk score formula and the gene expression of the 25 genes, two
groups of patients with different overall survival were found; this figure shows the different gene
expression of the 25 genes between the two risk groups. (C) The two risk groups had different overall
survival. (D) Among the 25 genes, ENO3, MYC, and BCL2 were the most important, and only with
these 3 genes the survival of the patients could be determined.
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Figure 11. Immunohistochemical staining of ENO3, MYC, and BCL2 in diffuse large B-cell lymphoma.
This figure shows six different lymphoma cases, with high or low expression of the 3 markers. Original
magnification: 400× (scale bar = 50 um).

3.6. Diffuse Large B-Cell Lymphoma, Prognostic Value of the 25 Genes in Hematological Neoplasia,
and TNFAIP8 Validation

• The previously identified set of 25 genes not only predicted the prognosis of 741 cases
of diffuse large B-cell lymphoma, but also predicted other hematological neoplasia,
including chronic lymphocytic leukemia (n = 308), mantle cell lymphoma (n = 92), fol-
licular lymphoma (n = 180), multiple myeloma (n = 559), and acute myeloid leukemia
(n = 149) [28].

• The TNFAIP8 marker was highlighted in this analysis. Because of TNFAIP8’s impor-
tance in the apoptotic pathway, it was validated by immunohistochemistry (i.e., at
protein level) in an independent series of 97 cases from Tokai University. Digital image
quantification of TNFAIP8 was performed using an AI-based method. Correlations
with the prognosis of the patients showed that high TNFAIP8 is associated with poor
survival [28].

• TNFAIP8 correlated positively with high M2-like CD163-positive tumor-associated
macrophages (TAMs) and non-GCB cell of origin phenotype [28] (Figure 12).
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Figure 12. A set of 25 genes derived from a neural network predicted the overall survival of several
lymphoma subtypes and acute myeloid leukemia, and high protein expression of TNFAIP8 correlated
with poor survival of diffuse large B-cell lymphoma patients. (A) Using the gene expression values
of 25 genes, previously identified using artificial neural networks, and a risk score formula, it was
possible to predict the overall survival of several hematological neoplasia (lymphomas and acute
myeloid leukemia). All Kaplan–Meier analyses with log-rank tests were statistically significant and
had a p < 0.001. (B) Although all 25 genes were relevant, the strength and direction of the association
was different in each subtype of hematological neoplasia. For example, TNFAIP8 was more relevant
for the overall survival of diffuse large B-cell lymphoma and chronic lymphocytic leukemia, but less
relevant for acute myeloid leukemia and multiple myeloma. Nevertheless, TNFAIP8 contributed to
the survival of all these hematological neoplasia. (C) High TNFAIP8 protein expression, evaluated
by immunohistochemistry using both conventional digital image analysis and AI-based methods,
correlated with poor overall survival of diffuse large B-cell lymphoma patients. This figure shows
two cases of diffuse large B-cell lymphoma. The figure at the top express low TNFAIP8. On the
left, the hematoxylin (dark blue) and DAB-based (brown) immunohistochemical image is shown.
As shown in the inset, the TNFAIP8 staining was cytoplasmic. On the right, the AI-based digital
image analysis is shown for the same case and area. TNFAIP8 is highlighted in red, cellular structures
(B lymphocytes of the lymphoma, T lymphocytes, and macrophages) in pink, and intercellular
tissue in green. The figure at the bottom is characterized by high TNFAIP8 expression. After staining
procedures, the immunohistochemical slides were digitalized and visualized (NanoZoomer S360
scanner and NDP.view2 viewing software, Hamamatsu KK.). Original magnification: 200×. High
TNFAIP8 correlated with age > 60 years, high serum IL2RA, non-GCB phenotype, and high infiltration
of CD163+ M2-like tumor-associated macrophages (CD163+TAMs). TNFAIP8 also moderately
correlated with MYC (Spearman’s correlation coefficient 0.389, p = 0.009) and Ki67 (proliferation
index; Spearman’s correlation coefficient 0.48, p = 0.001). High TNFAIP8 was also associated (trend)
with worse progression-free survival (p = 0.052). Finally, a multivariate COX analysis between
TNFAIP8 (high vs low) and the international prognostic index (IPI) (low+low/intermediate vs
high/intermediate + high) showed that only TNFAIP8 retained the prognostic value (HR = 3.5,
p = 0.040). CLL, chronic lymphocytic leukemia; DLBCL, diffuse large B-cell lymphoma; FL, follicular
lymphoma; MM, multiple myeloma; MCL, mantle cell lymphoma; AML, acute myeloid leukemia.
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3.7. Diffuse Large B-Cell Lymphoma, Prediction of Survival by Caspase-8

• The protein expression of caspase-8 (which is inhibited by TNFAIP8) was analyzed by
immunohistochemistry in a series of 97 cases of diffuse large B-cell lymphoma, and
high expression correlated with a favorable overall and progression-free survival [31].

• Based on an immunohistochemical analysis, caspase-8 was correlated with other
markers of its pathway, including BCL2, caspase-3, CDK6, cleaved PARP, E2F1, Ki67,
LMO2, MDM2, MYB, MYC, TNFAIP8, and TP53 [31].

• The caspase-8 protein expression was also modeled using several machine learning
and artificial neural networks [31] (Figures 13 and 14).
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Figure 13. High caspase-8 correlated with favorable survival of diffuse large B-cell lymphoma
patients. The protein levels of caspase-8 (CASP8) were evaluated by immunohistochemistry, and
later correlated with the survival of the patients. Two types of immunohistochemical staining were
observed, low and high. In diffuse large B-cell lymphoma, high caspase-8 expression is associated
with a favorable overall survival (p = 0.005). Additionally, other markers of the capsase-8 pathway,
including caspase-3, cleaved PARP, BCL2, TP53, MDM2, MYC, Ki67, E2F1, CDK6, MYB, LMO2, and
TNFAIP8, were evaluated by immunohistochemistry and quantified using digital image analysis.
Caspase-8 was successfully predicted by the pathway markers, both using conventional statistics and
several machine learning techniques and artificial neural networks. Of note, after staining procedures,
the immunohistochemical slides were digitalized and visualized (NanoZoomer S360 scanner and
NDP.view2 viewing software, Hamamatsu KK.). Original magnification: 400× (scale bar = 50 um).
OS, overall survival; ROC curve, the receiver operating characteristic curve.
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in the protein–protein interaction analysis, were also analyzed by immunohistochemistry. After 
staining procedures, the immunohistochemical slides were digitalized and visualized (Nano-
Zoomer S360 scanner and NDP.view2 viewing software, Hamamatsu KK.). All the markers were 
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each marker. Original magnification: 400× (scale bar = 50 um).  

3.8. Diffuse Large B-Cell Lymphoma, CD274 (PD-L1) and IKAROS 

Figure 14. High caspase-8 correlated with favorable survival of diffuse large B-cell lymphoma patients.
This figure shows the immunohistochemical expression of active subunit p18 casp-8 (CASP8), which
correlated with good prognosis of the patients when high. Other related markers, as shown in the
protein–protein interaction analysis, were also analyzed by immunohistochemistry. After staining
procedures, the immunohistochemical slides were digitalized and visualized (NanoZoomer S360
scanner and NDP.view2 viewing software, Hamamatsu KK.). All the markers were quantified using
digital image analysis. This figure shows examples of low and high expressions for each marker.
Original magnification: 400× (scale bar = 50 um).

3.8. Diffuse Large B-Cell Lymphoma, CD274 (PD-L1) and IKAROS

• An algorithm included multilayer perceptron, radial basis function, GSEA, COX regres-
sion, and several machine learning techniques to predict the overall survival of 414 cases
of diffuse large B-cell lymphoma [30].

• The machine learning techniques were Bayesian network, C5.0 algorithm, chi-squared
automatic interaction detection CHAID tree, classification and regression (C&R) tree,
discriminant analysis, logistic regression, Quest tree, random trees, and tree-AS. The
neural network was the multilayer perceptron [30].

• The association of PD-L1 (CD274) and IKAROS with the overall survival was validated
in an independent series of 113 cases by immunohistochemistry. The quantification
included an AI-based method [30] (Figure 15).
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analysis is an artificial neural network (multilayer perceptron). In this analysis, 54,613 gene probes were used as predictors for the overall survival, but also for other
relevant clinicopathological variables. The basic neural network was composed of the input layer (predictors, 54,613 gene probes), a hidden layer (automatically
computed), and an output layer (predicted variable; for example, the overall survival outcome as a dichotomic variable dead vs alive, or the cell of origin classification
(GCB vs ABC), etc.). The dimensionality reduction included additional steps of machine learning, Cox regression, and GSEA. (B) Digital image quantification using
AI-based strategy for PD-L1 (CD274) and IKAROS. (C) High protein expression of PD-L1 correlated with poor survival of the patients. Conversely, high IKAROS
was associated with favorable survival. (D) AI-based quantification correlated well with conventional digital image quantification. Therefore, both techniques
provide comparable results. (E) Modeling of the overall survival using a Bayesian network. The Bayesian network builds a probability model, a graphical model that
shows variables (nodes) of the dataset, and the probabilistic (conditional) independences between them. The links of the network are called arcs and represent
the relationship between the variables, but do not necessarily mean cause and effect. Original magnification: 200×. OS, overall survival; NCCN IPI, National
Comprehensive Cancer Network International Prognostic Index; ECOG PS, Eastern Cooperative Oncology Group Performance Status; LDH, lactate dehydrogenase;
R-CHOP, rituximab, cyclophosphamide, doxorubicin hydrochloride, vincristine, and prednisolone; AI, artificial intelligence.
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3.9. Diffuse Large B-Cell Lymphoma, CSF1R

• The protein expression of CSF1R was analyzed by immunohistochemistry in 198 cases
of diffuse large B-cell lymphoma, and it was found that high CSF1R-positive TAMs
were associated with poor progression-free survival (Figure 16) [32].
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Figure 16. Role of CSF1R in the prognosis of diffuse large B-cell lymphoma. CSF1R was analyzed by
immunohistochemistry in a series of 198 cases, and two histological patterns were found. A CSF1R-
positive B-cell pattern was characterized by favorable progression-free survival; this pattern was
less frequent (around 30% of the cases). Conversely, the most frequent pattern was of CSF1R-
positive tumor-associated macrophages (TAMs) and was associated with an unfavorable outcome.
Additionally, the prediction of the immunohistochemical expression of CSF1R by other CSF1R-related
markers was performed using neural networks. The CSF1R-related markers were CSF1, STAT3, NFKB,
MYC, and Ki67. All markers were quantified using digital image analysis. Of note, the multilayer
perceptron network analyses were performed to predict both the TAM and the B-cell patterns. Our
data suggested that the use of a CSF1R inhibitor such as Pexidartinib could be used in the CSF1R +
TAM pattern. CSF1R, macrophage colony-stimulating factor 1 receptor; DLBCL, diffuse large B-cell
lymphoma; TAM, tumor-associated macrophage, PFS, progression-free survival.
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• Using a neural network, CSF1R protein expression was predicted by 10 CSF1R-related
markers (CSF1, STAT3, NFKB1, Ki67, MYC, PD-L1, TNFAIP8, IKAROS, CD163, and
CD68) (Figure 16) [32].

• The gene expression of CSF1R was predicted by all the genes, and by an immuno-
oncology pattern, and correlated with SIRPA and CD47 [32] (Figures 17 and 18).
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Figure 17. Correlation between expression levels of CSF1R and SIRPA/CD47 in diffuse large B-cell
lymphoma. The immunohistochemical pattern of CSF1R-positive tumor-associated macrophages
(TAMs) suggested a relationship with other makers such as SIRPA. SIRPA is a relevant immune
checkpoint marker that mediates negative regulation of phagocytosis. The histological pattern of
SIRPA was of TAMs, similar to PD-L1, CD85A, and MARCO. A ligand for SIRPA is CD47. In our
series, the histological pattern of CD47 was of B lymphocytes of the diffuse large B-cell lymphoma.
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Figure 18. Gene expression analysis of CD47 and SIRPA in the diffuse large B-cell lymphoma. In the
series of the Lymphoma/Leukemia Molecular Profiling Project (LLMPP), when analyzing only the
cases with R-CHOP-like treatment, high CD47 but low SIRPA correlated with poor overall survival of
the patients, and SIRPA positively correlated with CSF1R. CD47 is a ligand for SIRPA (SIRPα), a protein
expressed by macrophages and dendritic cells. These two markers belong to the immune checkpoint
pathway, and mediate a negative regulation of phagocytosis. R-CHOP, rituximab, cyclophosphamide,
doxorubicin hydrochloride, vincristine, and prednisolone; LLMPP, Lymphoma/Leukemia Molecular
Profiling Project; OS, overall survival.
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3.10. Diffuse Large B-Cell Lymphoma, Pan-Cancer Immuno-Oncology Panel

• An immuno-oncology panel of 730 genes predicted the overall survival and cell-of-
origin phenotype (Lymph2Cx assay) of a series of 106 diffuse large B-cell lymphoma
cases, using artificial neural networks and machine learning [33].

• The association of MAPK3 with the GCB phenotype was confirmed by immunohisto-
chemistry [33] (Figure 19).
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Figure 19. An artificial neural network predicted the overall survival of the diffuse large B-cell lym-
phoma patients, and the cell of origin subtype using a pan-cancer immuno-oncology gene expres-
sion panel. The analysis consisted of the multilayer perceptron. The cell of origin characterization 
was assessed with the NanoString Lymph2Cx assay. The performance of the network was high, 0.89 
for overall survival and 0.99 for the cell of origin phenotype. GSEA analysis confirmed enrichment 
toward the survival outcome of the dead and the cell of origin subtype of activated (ABC) + unspec-
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Figure 19. An artificial neural network predicted the overall survival of the diffuse large B-cell lym-
phoma patients, and the cell of origin subtype using a pan-cancer immuno-oncology gene expression
panel. The analysis consisted of the multilayer perceptron. The cell of origin characterization was
assessed with the NanoString Lymph2Cx assay. The performance of the network was high, 0.89 for
overall survival and 0.99 for the cell of origin phenotype. GSEA analysis confirmed enrichment to-
ward the survival outcome of the dead and the cell of origin subtype of activated (ABC) + unspecified.
Using a risk score formula, with 7 genes it was possible to predict the survival of diffuse large B-cell
lymphoma. The association of phospho-MAPK with the germinal center B-cell (GCB) phenotype
was also noted and confirmed by immunohistochemistry. GSEA, gene set enrichment analysis. ABC,
activated B-cell type; GCB, germinal center B-cell type.
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3.11. Diffuse Large B-Cell Lymphoma, Integrative Analysis of Macrophage Markers

Gene expression profiling of 233 DLBCL patients treated with chemotherapy plus
Rituximab was obtained from the series GSE10846, present in the NCBI Gene Expression
Omnibus database. The prognostic value for overall survival of the gene expression of
CD163 was first tested and 100 representative cases were selected, which contained high-risk
(i.e., high CD163) and low-risk cases (i.e., low CD163) (Figure 20).
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Figure 20. Analysis of macrophages in diffuse large B-cell lymphoma. The overall survival of
diffuse large B-cell lymphoma was assessed based on the expression of CD163, which is an M2-like
macrophage marker. High expression was associated with a poor prognosis of the patients. Then,
a protein–protein functional network association analysis was performed using the macrophage
markers of CD68 (pan-macrophages), CD16 (M1-like macrophages), CD163 (M2-like), PTX3 (M2c-
like), and MITF (M2-like), and the regulatory T lymphocytes (Tregs) marker of FOXP3. The network
created a macrophage pathway that was subsequently applied to a gene set enrichment analysis
(GSEA). The GSEA confirmed the association of the macrophage pathway with the high-risk group,
which was characterized by poor overall survival and high CD163-positive macrophages.
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A functional protein association network was created using the five macrophage and
one regulatory T lymphocyte (Treg) markers: CD68, CD16, CD163, PTX3, MITF, and FOXP3
as the initial nodes (identifies). Then, the resulting network (i.e., pathway) that contained 57
markers was tested for GSEA analysis in the GSE10846 series of gene expression of diffuse
large B-cell lymphoma. We identified the most relevant pathological markers (i.e., genes)
that are associated with the prognosis of the patients as follows: high-risk (bad prognosis,
and with high CD163 expression) vs low-risk (good prognosis, low CD163). We found
that this pathway was enriched in the high-risk phenotype with a NOM p-val < 0.001 and
FDR q-val < 0.001. In the enrichment score, we could identify the markers: CD163 (2nd in
the list with a rank metric score of 0.515), CD16 (FCGR3B, 4th), CD68 (10th), PTX3 (15th),
and MITF (23rd). Of note, FOXP3 was outside the enrichment set of genes so it was not
associated with the high-risk group. Importantly, at fifth position, IL10, was identified.
GSEA with markers belonging to the immune regulatory M2c-like TAM pathway was also
tested with similar results (Figure 20).

The macrophage markers were analyzed at protein level by immunohistochemistry in
the series of Tokai University (n = 132) (Figure 21). The distribution of the markers in the
normal reactive tonsil was also evaluated.
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like. CD68 is a pan-macrophage marker, CD16 is macrophage polarization M1-like, and CD163, 
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Figure 21. Immunohistochemical staining of macrophage markers and regulatory T lymphocytes
(Tregs) in diffuse large B-cell lymphoma. The expression of macrophage markers and Tregs was
evaluated using immunohistochemical procedures. The staining confirmed that when macrophages
are present at a high concentration in the tissues, their shape is more elongated and dendriform-like.
CD68 is a pan-macrophage marker, CD16 is macrophage polarization M1-like, and CD163, PTX3, and
MITF are M2-like. FOXP3 is a specific marker of Tregs. Original magnification: 400×.

The histological analysis in reactive tonsil, a secondary lymphoid organ, showed a dif-
ferent distribution of the different markers. CD68-positive and MITF-positive macrophages
were widely distributed in all areas. CD16-positive cells were scarce and only identified in
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the lympho-epithelium, the epithelial barrier. CD163-positive macrophages were mainly
present in the interfollicular regions and infrequently in the germinal centers of the follicles.
PTX3-positive cells were of macrophage morphology in all areas and in the germinal centers
PTX3-positive cells also had a morphology of B lymphocytes (mainly centroblasts). IL10-
positive macrophages were scarce but present in all areas. Double IHC showed mutually
exclusive distribution between CD163 and CD16 and partially exclusive with MITF.

The multilayer perceptron (MLP) procedure was performed to produce a predictive
model for one target variable, using the values of several predictors. The target was the dead or
alive variable for overall survival. The predictors were the same categorical variables used in
the COX multivariate analysis: CD163, PTX3 Total, MITF, FOXP3, and IL10. The independent
variables normalized importance were as follows: PTX3 Total (100%), IL10 (95.9%), FOXP3
(48.9%), MITF (35.8%), and CD163 (6.3%) (Figure 22). This result is compatible with COX.
The same procedure was performed to predict the Hans classifier and the importance
was IL10 (100%), PTX3 Total (67.1%), FOXP3 (44.8%), CD163 (39.8%), and MITF (32.8%)
(Figure 22).

Additional analysis consisted of validation the macrophage markers in an independent
series of cases of diffuse large B-cell lymphoma, from the Lymphoma/Leukemia Molecular
Profiling Project (LLMPP), the GSE10846 (webpage: https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE10846, accessed on 21 September 2022). Only the cases treated
with R-CHOP-like therapy were selected (n = 233). Several machine learning and artificial
neural networks (multilayer perceptron) were used. The dependent (target) variable was
the overall survival (outcome dead vs alive). As predictors, the macrophage genes of CD163,
CSF1R, PTX3, CD274 (PD-L1), and IL10 were used. Additional immuno-oncology predictors
were markers previously highlighted in the analyses, including MYC, BCL2, TP53, FOXP3,
CSF1, IL34, PDCD1 (PD-1), TNFRSF14, TNFAIP8, IKZF1, STAT3, NFKB1, MYD88, RELA,
CASP8, CASP3, PARP1, BCL2, MKI67, ENO3, and GGA3. In total, 25 genes were analyzed
and the overall survival was successfully predicted. Table 2 shows the machine learning
and neural network models, the number of predictors used in the models, and the overall
accuracy. Figure 16 shows the most relevant models and the most relevant genes. The
models confirmed the importance of the immuno-oncology markers (Figure 23).

Table 2. Machine learning and artificial neural network analysis using gene expression data.

Model No. of Predictors Overall Accuracy (%)

XGBoost Tree 25 100
Random Forest 25 98.3
Random Trees 25 97.1

Bayesian Network 25 89.3
SVM 25 84.5

KNN Algorithm 25 81.9
CHAID 6 79.8
LSVM 25 78.5

Logistic Regression 25 78.1
C5 Tree 3 75.9
Tree-AS 2 74.3

XGBoost Linear 25 74.3
Quest 25 74.3

C&R Tree 25 74.3
Neural Net 25 74.3

Discriminant 25 72.9

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10846
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10846
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Figure 22. Prediction of the overall survival of diffuse large B-cell lymphoma by M2c-like macrophages
using an artificial neural network. The overall survival of the patients was predicted using an artificial
neural network using the histochemical data of the tissue samples. The network confirmed that the
most relevant markers were PTX3 and IL10, which characterized the immune regulatory M2c-like
macrophages. A conventional survival analysis using the Kaplan–Meier with log-rank test confirmed
the association of high M2c-like macrophages with poor overall and progression-free survival of the
patients. Original magnification: 400×.
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Figure 23. Prediction of the overall survival of diffuse large B-cell lymphoma using immune check-
point and immuno-oncology markers. Using gene expression data of the GSE10846 dataset, the
association of markers of immune regulatory M2c-like tumor-associated macrophages and other
immune checkpoint markers was assessed. The methodology included several machine learning and
artificial neural networks. The overall accuracy of each method is shown in Table 2.

Using the random forest, the markers were ranked according to their significance
for predicting the patients’ overall survival. The random forest uses a tree model and a
bagging method.

The Bayesian network is a graphical model that shows variables (nodes) in a dataset
and the probabilistic, or conditional, independences between them. It constructs a probabil-
ity model by combining observed and recorded evidence. The network’s links (arcs) do not
always depict cause and effect.

The LSVM method permits the classification of data using a linear support vector
machine. With large datasets, or ones with numerous predictor fields, LSVM is an especially
adequate method. In this LSVM analysis, the predictors were ranked in order of relevance.

Nearest Neighbor Analysis classifies the cases based on the resemblance to others and
patterns; this chart is a lower-dimensional projection of the predictor space, which contains
25 predictors (genes).
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4. Discussion

Artificial intelligence (AI) is a recently developed field that integrates computer science
with datasets to perform out calculations. In medicine, both machine learning and deep
learning analyze medical data and gain insights on diseases. Artificial intelligence has many
applications, including diagnosis, disease classification, image analysis, etc. [20–24].

Machine learning is a specialty in artificial intelligence. By using statistics, algorithms
are trained to make classifications or predictions [20–23]. An algorithm of machine learning
is composed of three parts:

(1) Decision process. Based on the labeled or unlabeled input data, an estimated pattern
is produced by the algorithm.

(2) Error function, which evaluates the prediction of the model.
(3) Model optimization process. During the fitting, the weights are adjusted to reduce

discrepancy between the known and the estimates, and weights are updated au-
tonomously until a threshold of accuracy is met.

There are three categories of machine learning models:

(1) Supervised, which use labeled datasets, such as linear regression, logistic regression,
random forest, and support vector machine (SVM).

(2) Unsupervised, which use unlabeled datasets and discover hidden patterns or data
groupings without the need of human intervention, such as principal component
analysis (PCA), singular value decomposition (SVD), and k-means clustering.

A linear regression algorithm is used to predict numerical values based on a linear
relationship between predictors. Logistic regression is a type of supervised learning that predicts
a categorical variable (binary). The clustering analysis uses unsupervised learning and
identifies patterns to group the cases. Decision trees can be used to predict numerical values
or to classify the data into categories; they use a branching sequence of link decisions that
are represented in a tree diagram. Random forests predict a value or category by combining
the results of decision trees [20].Artificial neural networks (ANNs) are algorithms that,
in essence, mimic the human brain. Many data mining applications use neural networks
because they are flexible and powerful for complex processes [25].

A neural network is composed of an input layer, multiple hidden layers (deep neural
network), and an output layer. Most neural networks are feed-forward, which means that
the flow moves in one direction from the input to the output [20–24]. The “deep” term
refers to the number of layers (inclusive of input, hidden, and output layer); more than
three layers can be considered in a deep learning algorithm [21]. The multilayer perceptron
(MLP) and radial basis function (RBF) are used in predictive applications, and are supervised
because the results can be compared with the known values of the target variables [20–26].
The input layer contains the predictors (for example, the genes). The hidden layer contains
unobservable nodes (units). The value of each hidden unit is some function of the predictors.
The output layer contains the responses (Figure 2).

This research predicted the prognosis (mainly the overall survival) and classified
the different subtypes of mature B-cell neoplasms (non-Hodgkin lymphomas) with high
accuracy. Therefore, machine learning and artificial neural networks are useful biostatistical
tools in biomedical research, and it is expected that the importance of artificial intelligence
in medicine will increase in the future.

This research used basic types of neural networks to obtain reliable results. The single
neural networks created the basis for more complex algorithms, making the analysis similar
to a classical multivariate analysis. The neural networks were also complemented with other
conventional biostatistical analyses, such as gene set enrichment analysis (GSEA) and Cox
regression. Additionally, other machine learning techniques were used to complement the
results. Each type of machine learning has special uses, and in the results, the information
that is provided was complementary.

In the different algorithms, the input data comprised all the genes of the array or
specific panels. The panels that were used were carefully selected, and included cancer tran-
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scriptome, pan-cancer, cancer progression, and metabolic pathways that incorporate many
oncogenes and tumor suppressor genes, but also immune-related panels such as immune
exhaustion, human inflammation, host response, autoimmune, and immuno-oncology.
Nowadays, immuno-oncology panels are particularly relevant. This research highlighted
many important immuno-oncology markers such as CD163, CSF1R, CSF1, PD-L1, IL10, TN-
FRSF14, TNFAIP8, PD-1, and FOXP3 which are markers of tumor-associated macrophages
(TAMs), T lymphocytes, and regulatory T lymphocytes (Tregs). A complete discussion can
be found in the previous publications [19,27–35]. Most of these markers can be targeted
using inhibitors. In diffuse large B-cell lymphoma, the use of immunomodulatory drugs
and immune checkpoint inhibitors is a new and promising field for treating the patients
beyond the classical R-CHOP [58] (Table 3).

Table 3. Immuno-oncology and pathway-related markers that were highlighted in this research.

Marker Target Cell/Pathway Function/Prognostic Association

FOXP3 Tregs Immune tolerance and homeostasis of the immune system. High frequency associated
with a favorable prognosis of DLBCL.

PD-1 T lymphocytes Co-inhibition
BTLA B and T lymphocytes Co-inhibition
CD163 M2-like TAMs Pro-tumoral. High frequency is associated with poor prognosis of DLBCL and FL.

CSF1R M2-like TAMs Pro-tumoral. High CSF1R + TAMs associated with poor prognosis, but high CSF1R +
B-cells of DLBCL with favorable prognosis.

CSF1 B lymphocytes Ligand of CSF1R

PD-L1 M2c-like TAMs Pro-tumoral, immune regulatory macrophages (M2c-like). High expression associated
with poor prognosis of DLBCL.

SIRPA M2-like TAMs Limit phagocytosis
CD47 B lymphocytes Limit phagocytosis

IL10 M2c-like TAMs Pro-tumoral, immune regulatory macrophages (M2c-like). High expression associated
with poor prognosis of DLBCL and FL.

TNFRSF14 Antigen-presenting cells Ligand of BTLA, co-inhibitory pathway

IKAROS Pathway-related Transcription factor, chromatin remodeling, hemolymphopoietic system. High
expression associated with a favorable prognosis of DLBCL.

STAT3 Pathway-related Cell growth and apoptosis

NFKB1 Pathway-related
Activated by cytokines, oxidant-free radicals, ultraviolet irradiation, and bacterial or

viral products. Activated NFKB translocates into the nucleus and stimulates
expression multiple genes of wide variety of biological functions.

MAPK Pathway-related p44/42 MAPK (Erk1/2) signaling pathway. High expression associated with GCB
phenotype of DLBCL (and a favorable prognosis).

TNFAIP8 Pathway-related Anti-apoptosis. High expression associated with poor prognosis of DLBCL.
BCL2 Pathway-related Anti-apoptosis

CASP8 Pathway-related Pro-apoptosis. High expression associated with a favorable prognosis of DLBCL.
CASP3 Pathway-related Pro-apoptosis
PARP Pathway-related Pro-apoptosis

MDM2 Pathway-related TP53 in inhibitor
E2F1 Pathway-related Transcription factor, cell cycle, tumor suppressor

CDK6 Pathway-related Cell cycle
MYB Germinal center B-cells Transcriptional transactivator

LMO2 Germinal center B-cells Hematopoietic development

ENO3 Pathway-related Glycolysis and glycosaminoglycan metabolism. High expression associated with a
poor prognosis of DLBCL.

GGA3 Pathway-related Positive regulation of protein catabolic processes

Tregs, regulatory T lymphocytes; TAMs, tumor-associated macrophages; DLBCL, diffuse large B-cell lymphoma;
FL, follicular lymphoma. Information based on UniProt and GeneCards, and our results.

Interestingly, some of the identified markers were also relevant for the prognosis of
nonhematological neoplasia, which suggests that there are common pathogenic mecha-
nisms in all types of neoplasia.

AI analysis combined neural networks such as multilayer perceptron and radial basis
function, and several machine learning techniques such as Bayesian network, C&R tree,
C5 tree, CHAID tree, discriminant analysis, KNN algorithm, logistic regression, LSVM,
Quest tree, random forest, random trees, SVM, tree-AS, XGBoost linear, XGBoost tree. It is
impossible to decide which the best technique is because each method has some strengths
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and weaknesses, and its applicability depends on the type of data, number of cases, and
number of variables (inputs).

The term neural network refers to a family of loosely related models that are charac-
terized by large parameter spaces and flexible structures, derived from the study of brain
function. Neural networks are the tools of choice in many data mining applications because
of their power and flexibility, especially if the underlying process is complex [28].

Artificial neural networks used in prediction applications, such as multilayer perceptron
(MLP) and radial basis function (RBF) networks, are supervised in the sense that the results
predicted by the model are compared to known values of target variables. The choice between
the MLP and RBF methods depends on the type of data and the level of complexity of the
problem. The MLP method can find more complex relationships, while RBF is generally
faster [30]. Deep neural networks have been criticized for being opaque because their
predictions are incomprehensible to humans; their multi-layered nonlinear structure is a
“black box model” [31].

We recently modeled celiac disease and ulcerative colitis using AI [59,60]. In the case of
ulcerative colitis, we analyzed a series of 43 cases, including 13 healthy controls, 8 inactive
ulcerative colitis, 7 non-involved active ulcerative colitis, and 15 involved active ulcerative
colitis. As input, 734 genes were included. A total of 16 models were used to predict
ulcerative colitis. The overall accuracy was as follows: C5 decision tree (100%, 2 fields
used); logistic regression, discriminant analysis, LSVM, SVM, XGBoost linear, XGBoost tree,
and neural network (100%, 734 fields); CHAID (97.7%, 2 fields); random forest (97.7%, 734);
KNN algorithm (95.4%, 734); C&R tree (95.4%, 12); Quest (83.7%, 6); Bayesian network
(65.1%, 734); random trees (0%, 734). In this research, most of the machine learning methods
and neural networks had accuracy above 85%. Nevertheless, the number of fields that
were used was variable. As also observed in the data of mature B-cell neoplasms, decision
trees have difficulties in handling a large set of variables. Bayesian networks provide
acceptable results, but are not superior to neural networks. Logistic regression accuracy is
usually high and uses many variables. In the end, the most practical strategy is to test all
methods and select the ones that predict better. In Table 2, the same 16 models are applied
to our data of diffuse large B-cell lymphoma. Generally, the machine learning methods
successfully predicted the overall survival of patients with diffuse large B-cell lymphoma
using immuno-oncology and immune checkpoint markers. In this particular experiment,
neural networks did not have high accuracy.

In conclusion, artificial intelligence analysis is a useful tool for analyzing the prognosis
and classification of non-Hodgkin lymphomas.

5. Review of the Literature and Future Perspective in Hematological Neoplasia
Using AI

Other groups have also used artificial intelligence in the field of hematopathology
research. Table 4 provides precise updates on the latest progress made in hematological
malignancies using machine learning and neural networks. The manuscripts were selected in
PubMed using the keywords “lymphoma” and “artificial intelligence”. Among all articles
that were found within the past 3–4 years, a selection of the most recent research was made.
Because of limited space, not all relevant manuscripts are included in Table 4.
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Table 4. Update on the latest progress made in hematological malignancies using artificial intelligence.

Authors (Year) Journal Research Title Summary Technique Used Reference

(1) PET/CT scan-based AI

Lisson CS et al. (2022) Cancers (Basel)

Deep neural networks and machine
learning radiomics modeling for the
prediction of relapse in mantle cell

lymphoma

This research predicted the relapse of mantle cell
lymphoma (MCL) using baseline CT scans. The

accuracies of predictions ranged from 64% to 70%.

3D SEResNet50, 3D DenseNet,
optimized 3D CNN, K-nearest
Neighbor (KNN), and Random

Forest (RF)

[61]

Sadik M et al. (2021) Sci Rep.

Artificial intelligence could alert for
focal skeleton/bone marrow uptake in

patients with Hodgkin’s lymphoma
staged with FDG-PET/CT

Detection of focal skeleton/bone marrow uptake
(BMU) in patients with Hodgkin’s lymphoma (HL)
undergoing staging with FDG-PET/CT. Training set,

n = 153; validation set, n = 48.

Convolutional neural network
(CNN) [62]

Wang YJ et al. (2021) Eur J Nucl Med Mol Imaging

Artificial intelligence enables
whole-body positron emission

tomography scans with minimal
radiation exposure

Thirty-three diagnostic 18F-FDG PET images of
patients with pediatric cancer were generated from
ultra-low dose 18F-FDG PET input images using an

AI algorithm. Then, the AI-generated PET scans
were compared with clinical standard PET scans.

Convolutional neural network
(CNN) [63]

Pinochet P et al. (2021) Front Med (Lausanne)

Evaluation of an automatic
classification algorithm using

convolutional neural networks in
oncological positron emission

tomography

This research measured the efficiency and
performance in both clinical and research

environments of a system called positron emission
tomography (PET)-assisted reporting system (PARS)
(Siemens Healthineers). The method was based on a
convolutional neural network (CNN) that identified

suspected cancer sites in fluorine-18
fluorodeoxyglucose (18F-FDG) PET/computed

tomography. These data were correlated with the
survival of the patients. Two cohorts were

evaluated: 119 cases of DLBCL, and 430 cases of
DLBCL and other tumors.

Dice score [64]

(2) Histological images-based AI

El Hussein S et al. (2022) J Pathol.

Artificial intelligence strategy
integrating morphologic and

architectural biomarkers provide robust
diagnostic accuracy for disease

progression in chronic lymphocytic
leukemia

Cytologic and architectural features obtained from
whole-slides images were used to classify 125

samples into three subtypes: chronic lymphocytic
leukemia (CLL, n = 69), progression to accelerated
CLL (aCLL, n = 44), and transformation to diffuse
large B-cell lymphoma (Richter transformation; RT,

n = 80).

Hover-Net [65]

Swiderska-Chadaj Z et al.
(2021) Virchows Arch.

Artificial intelligence to detect MYC
translocation in slides of diffuse large

B-cell lymphoma

The H&E slides of 287 cases were evaluated using a
deep learning algorithm to identify MYC

rearrangement by DNA in situ hybridization (FISH).

Deep learning neural network
(U-Net) and classical machine

learning (random forest
classification)

[66]
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Table 4. Cont.

Authors (Year) Journal Research Title Summary Technique Used Reference

Steinbuss G et al. (2021) Cancers (Basel)
Deep learning for the classification of

non-Hodgkin lymphoma on
histopathological images

In this research, the training set included 84,139
image patches from 629 patients that were classified
as reactive lymph nodes, nodal small lymphocytic

lymphoma/chronic lymphocytic leukemia, and
nodal diffuse large B-cell lymphoma. The validation
set included 16,960 image patches from 125 patients.

The final model had an accuracy of 96%.

EfficientNet convolutional
neuronal network (CNN) [67]

Zhang X et al. (2021) Technol Health Care
Research on the classification of

lymphoma pathological images-based
on deep residual neural networks

The analysis used 374 pathological images,
including chronic lymphocytic leukemia, follicular

lymphoma, and mantle cell lymphoma.

BP neural network and BP neural
network optimized by genetic

algorithm (GA-BP), deep residual
neural network model

(ResNet50), softmax layer

[68]

Tang G et al. (2021) Acta Cytol.

A machine learning tool using digital
microscopy (Morphogo) for the

identification of abnormal lymphocytes
in the bone marrow

Morphological differentiation of abnormal
lymphocytes in bone marrow was evaluated in 53
cases of different subtypes of B-cell lymphomas,

using automated digital images.

“Morphogo” system [69]

Yu WH et al. (2021) Cancers (Basel)

Machine learning based on
morphological features enables the

classification of primary intestinal T-cell
lymphomas.

A total of 40 primary intestinal T-cell lymphomas
(PITL), including 26 monomorphic epitheliotropic
intestinal T-cell lymphoma (MEITL), 10 intestinal

T-cell lymphoma, not otherwise specified
(ITCL-NOS), and 4 borderline cases were analyzed.
The inputs were the morphological features and the

immunophenotypes (CD8 and CD56).

XGBoost and CNN (HTC-RCNN
with ResNet50) [70]

Zhou M et al. (2021) Front Pediatr.
Development and evaluation of a

leukemia diagnosis system using deep
learning in real clinical scenarios

A total of 1732 bone marrow, raw images of 89
children with leukemia were analyzed with

convolutional neural networks, with a performance
accuracy of 89%. Apart from detecting leukocytes,

the system also detected bone marrow metastasis of
lymphoma and neuroblastomas.

RetinaNet, VGG, Feature
Pyramid Network, ResNet,

convolutional neural network
(CNN)

[71]

Zhang J et al. (2020) Med Phys.

Classification of digital pathological
images of non-Hodgkin’s lymphoma

subtypes based on the fusion of transfer
learning and principal component

analysis

Digital pathology images of non-Hodgkin
lymphoma, including chronic lymphocytic leukemia

(CLL), follicular lymphoma (FL), and mantle cell
lymphoma (MCL) tumor were analyzed and

classified. The model had an overall accuracy of
98.9%.

Transfer learning (TL) and
principal component analysis

(PCA)
[72]

Mohlman JS et al. (2020) Am J Clin Pathol.

Improving augmented human
intelligence to distinguish Burkitt

lymphoma from diffuse large B-cell
lymphoma cases

A total of 10,818 H&E images from 34 cases of
Burkitt lymphoma and 36 cases of diffuse large

B-cell lymphoma were used to train and
differentiate the two lymphoma subtypes.

Convolutional neural network
(CNN) [73]
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Table 4. Cont.

Authors (Year) Journal Research Title Summary Technique Used Reference

Li D et al. (2020) Nat Commun.
A deep learning diagnostic platform for

diffuse large B-cell lymphoma with
high accuracy across multiple hospitals

This research used histological images of H&E to
classify diffuse large B-cell lymphoma (DLBCL) vs

non-DLBCL. Non-DLBCL included metastatic
carcinoma, melanoma, and other lymphomas

including small lymphocytic lymphoma/chronic
lymphocytic leukemia, mantle cell lymphoma,

follicular lymphoma, and classical Hodgkin
lymphoma. The GOTDP-MP-CNNs (with combined
17 CNNs) model had an accuracy of 99.7% to 100%.

17 types of CNN: AlexNet,
GoogLeNet (ImageNet),
GoogLeNet (Places365),

ResNet18, ResNet50, ResNet101,
Vgg16, Vgg19, Inceptionv3,

InceptionResNetv2, SqueezeNet,
DenseNet201, MobileNetv2,

ShuffleNet, Xception,
NasNetmobile, Nasnetlarge

[74]

Miyoshi H et al. (2020) Lab Invest.
Deep learning shows the capability of

high-level computer-aided diagnosis of
malignant lymphoma.

The H&E images of 388 cases, including 259 with
diffuse large B-cell lymphoma, 89 with follicular

lymphoma, and 40 with reactive lymphoid
hyperplasia, were analyzed using deep learning.

The accuracy of the model was 97%.

Convolutional neural network
(CNN) [75]

Zorman M et al. (2011) Wien Klin Wochenschr.

Classification of follicular lymphoma
images: a holistic approach with
symbol-based machine learning

methods.

Analysis of follicular lymphoma images, focusing
on the identification of follicles.

Decision trees (MtDeciT 3.1,
RSES 2.2, and Weka 3) and
artificial neural networks
(multilayer perceptron)

[76]

(3) Immunophenotype-based AI

Zhao M et al. (2020) Cytometry A.

Hematologist-level classification of
mature B-cell neoplasms using deep

learning on multiparameter flow
cytometry data

Information captured by multiparameter flow
cytometry (MFC) of 18,274 cases, including chronic
lymphocytic leukemia and its precursor monoclonal

B-cell lymphocytosis, marginal zone lymphoma,
mantle cell lymphoma, prolymphocytic leukemia,

follicular lymphoma, hairy cell leukemia,
lymphoplasmacytic lymphoma were analyzed; the
model was tested on a set of 2346 cases. The model

performance had an F1 score of 0.94.

Self-organizing maps and
convolutional neural networks [77]

Gaidano V et al. (2020) Cancers (Basel)

A clinically applicable approach to the
classification of B-cell non-Hodgkin

lymphomas with flow cytometry and
machine learning

The immunophenotype data from flow cytometry of
1465 B-cell non-Hodgkin lymphoma (NHL) cases

were analyzed. The cases included chronic
lymphocytic leukemia (CLL), diffuse large B-cell

lymphoma (DLBCL), Burkitt lymphoma (BL),
follicular cell lymphoma (FCL), hairy cell leukemia

(HCL), splenic lymphoma (SL), mantle cell
lymphoma (MCL), marginal zone lymphoma (MZL),

and lymphoplasmacytic lymphoma (LPL). The
accuracy of the classification ranged from 92% to

100%.

Classification trees [78]
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Table 4. Cont.

Authors (Year) Journal Research Title Summary Technique Used Reference

(4) Clinicopathological variables-based AI

Zhan M et al. (2021) Leuk Lymphoma

Machine learning to predict high-dose
methotrexate-related neutropenia and

fever in children with B-cell acute
lymphoblastic leukemia

A model included 57 SNPs of 16 genes and clinical
variables to predict neutropenia and fever in 139
pediatric cases of acute lymphoblastic leukemia

treated with high-dose methotrexate (MTX).

Random forest [79]

Buciński A et al. (2010) Eur J Cancer Prev.
Contribution of artificial intelligence to
the knowledge of prognostic factors in

Hodgkin’s lymphoma

A total of 31 variables from 114 patients with
Hodgkin’s lymphoma were used to predict the

prognosis of the patients.
Artificial neural network (ANN) [80]

(5) Gene expression, mutational, and integrative analysis-based AI

Carreras J et al. (2022) Healthcare (Basel)

Artificial intelligence analysis of gene
expression predicted the overall

survival of mantle cell lymphoma and a
large pan-cancer Series

The gene expression data of 123 cases of mantle cell
lymphoma (MCL) were analyzed with artificial

neural networks to predict the overall survival of
the patients with high accuracy. The survival of
diffuse large B-cell lymphoma (DLBCL), and a

pan-cancer series was also predicted.

Several machine learning
techniques, and artificial neural

networks
[34]

Carreras J et al. (2021) Cancers (Basel)

Artificial neural networks predicted the
overall survival and molecular
subtypes of diffuse large B-cell
lymphoma using a pan-cancer

immune-oncology panel

The gene expression of an immuno-oncology panel
of a series of 106 cases of diffuse large B-cell

lymphoma was analyzed using artificial intelligence
to predict the overall survival and the cell of origin
molecular subtypes. The model had a high accuracy

of classification.

Several machine learning
techniques, and artificial neural

networks
[33]

Carreras J et al. (2021) Tokai J Exp Clin Med.

Artificial intelligence analysis of gene
expression data predicted the prognosis

of patients with diffuse large B-cell
lymphoma

The gene expression of a series of 414 cases of
diffuse large B-cell lymphoma (DLBCL) was

analyzed to predict the overall survival, and was
correlated with other known pathogenic genes such

as BCL2 and MYC.

Artificial neural networks (ANN) [27]

Xu-Monette ZY et al. (2020) Blood Adv.

A refined cell of origin classifier with
targeted NGS and artificial intelligence

showed robust predictive value in
DLBCL

The series of diffuse large B-cell lymphoma of 418
cases included immunohistochemical, gene

expression, DNA in situ hybridization, array CGH,
and NGS sequencing. Using an autoencoder, the

cases were classified according to the cell of origin
and the survival (overall survival and

progression-free survival).

Autoencoder, logistic regression,
and CPH models [81]

Zhang W et al. (2020) BMC Cancer

Novel bioinformatic classification
system for genetic signature

identification in diffuse large B-cell
lymphoma

A total of 342 cases of diffuse large B-cell lymphoma
were analyzed using mutational data from a panel

of 46 genes by NGS.
Random forest [82]

Parodi S et al. (2018) Health Informatics J.

Logic learning machine and standard
supervised methods for Hodgkin’s
lymphoma prognosis using gene

expression data and clinical variables

The data of 130 patients diagnosed with Hodgkin’s
lymphoma, including a small set of clinical variables
and more than 54,000 gene features, were used to

predict the prognosis.

K-nearest neighbor (KNN),
artificial neural network (ANN),
support vector machine (SVM),

decision tree, and the innovative
logic learning machine method

[83]



Cancers 2022, 14, 5318 38 of 46

Table 4. Cont.

Authors (Year) Journal Research Title Summary Technique Used Reference

Schmitz R et al. (2018) N Engl J Med. Genetics and pathogenesis of diffuse
large B-cell lymphoma

The data of 574 diffuse large B-cell lymphoma cases,
which included exome and transcriptome

sequencing, array-based DNA copy-number
analysis, and targeted amplicon resequencing of 372

genes, were used to identify genetic subtypes.

Random forest [84]

H&E, hematoxylin and eosin. The publications were selected from PubMed using the keywords “artificial intelligence” and “lymphoma”.
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The manuscripts were organized according to the type of input data, i.e., PET/CT scan,
histological images, immunophenotype, clinicopathological variables, and gene expression,
mutational, and integrative analysis-based artificial intelligence [61–84].

Worth mentioning is the work of Schmitz R et al. published in the New England Journal
of Medicine in 2018. The genetics and pathogenesis of diffuse large B-cell lymphoma were
analyzed using random forest. The input data from 574 diffuse large B-cell lymphoma
cases included exome and transcriptome sequencing, whole-genome copy-number array-
based DNA analysis, and targeted amplicon resequencing of 372 genes to identify genetic
subtypes [84].

A similar work was published by Xu-Monette ZY et al. in 2020 in Blood Advances. Based
on targeted next-generation sequencing (NGS), a correlation with the cell of origin subtypes
was made using AI in diffuse large B-cell lymphoma. The series of 418 cases included
immunohistochemical, gene expression, DNA in situ hybridization, array CGH, and NGS
sequencing. Using autoencoders and CPH models, the cases were classified according to the
cell of origin and the patients’ survival (overall survival and progression-free survival) [81].

Li D et al. reported in 2020 in Nature Communications a deep learning diagnostic
platform for diffuse large B-cell lymphoma. The method included data from multiple
hospitals. This research used histological images of H&E to classify diffuse large B-cell
lymphoma (DLBCL) vs non-DLBCL. Non-DLBCL included cases of metastatic carcinoma,
melanoma, and other lymphomas. The lymphoma subtypes were chronic lymphocytic
leukemia, mantle cell lymphoma, follicular lymphoma, and classical Hodgkin lymphoma.
Seventeen types of convolutional neural networks were used, and the model had an
accuracy of 99.7–100% [74].

In the past five years, there has been a significant increase in the use of artificial
intelligence in cancer research, and many applications in hematological neoplasia have
been published [85]. Many studies have used convolutional neural networks to classify
digitalized histological images. Machine learning and artificial neural networks have also
been used to analyze gene expression and mutational data. It is expected that in the future,
artificial intelligence techniques will become a standard part of the biostatistical analysis,
and complementary to “conventional” bioinformatics.
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Appendix A

The analyses used several software applications, including EditPad Lite (version 8.4.0
x64, Just Great Software Co. Ltd.); Fiji (version ImageJ 1.53u, NIH); GSEA (version 4.3.2, Broad
Institute); GIMP (version 2.10.8, GNU); IBM SPSS 25 to 27; IBM modeler 18 (IBM); JMP Pro 14
(JMP Statistical Discovery LLC, SAS); Microsoft excel 2016 (version 16.0.5317.1000, Microsoft
Corporation); Minitab (version 21.1.0, Minitab, LLC); Morpheus matrix visualization and
analysis software (version 1, https://github.com/cmap/morpheus.js, Broad Institute)
(accessed date 25 October 2022); NSolver (version 4.0, NanoString); RapidMiner Studio
(version 9.10.011, RapidMiner); R (version 4.2.1) (http://cran.r-project.org) (accessed date
25 October 2022); RStudio (version 2022.07.2, Build 576, RStudio, PBC); STRING protein–
protein interaction networks (version 11.5, STRING Consortium 2022); and Xlstat (Premium
2018.1, Build 49320 x64, multilingual, Addinsoft).

Appendix B

Table A1. Publicly available datasets used in addition to the Tokai University series.

Diagnosis Dataset No. of Cases Reference

Non-Hodgkin lymphomas

GSE132929

290

[40]

Follicular lymphoma 65
Mantle cell lymphoma 43

Diffuse large B-cell lymphoma 100
Burkitt lymphoma 59

Marginal zone lymphoma 23

Chronic lymphocytic leukemia GSE22762 107 [41,42]
ICGC CLLE-ES 201

Diffuse large B-cell lymphoma

GSE10846 414 [43,44]
GSE23501 69 [45]
GSE4475 159 [46,47]

TCGA-DLBCL v.2016 47
E-TABM-346 52 [48]

Follicular lymphoma GSE16131 180 [49]

Mantle cell lymphoma LLMPP Rosenwald 2003 92 [50]
GSE93291 123 [51]

Multiple myeloma GSE2658 559 [52–57]
Acute Myeloid Leukemia TCGA-AML v.2016 149

Appendix C. Comments and Analysis Of breast Cancer Detection Using Deep
Neural Networks

Breast cancer is the second most frequent type of cancer in women, just before skin
cancer. Worldwide, breast cancer represents the 30% of all female cancers, and it has a mor-
tality of about 15%, but in emergent countries can reach up to 70% [86,87]. The worldwide
incidence ranges from 27 to 97 cases for 100,000 [87], and in about 10% of the cases, there is
a genetic predisposition or family history [87]. The most frequently associated germline
mutations affect the BRCA1 and BRCA2 genes [88,89].

The development of strategies for the early detection of breast cancer is necessary
to improve access to treatment and reduce the mortality rate. As described by Basurto-
Hurtado JA et al. [90], breast cancer detection includes four steps: image acquisition,
segmentation and pre-processing, feature extraction, and classification [90].

Image acquisition can be obtained through several methods, such as mammogra-
phy, ultrasound, magnetic resonance imaging (MRI), and other approaches, including
microwave, computed tomography (TC), and positron emission tomography (PET) [90].

The image processing and classification strategies include several steps: region of
interest (ROI) estimation, and feature extraction. The classifiers can be both unsupervised

https://github.com/cmap/morpheus.js
http://cran.r-project.org
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and supervised. Examples of unsupervised classifiers include K-means and hierarchical
clustering. Examples of supervised classifiers are decision trees, random forests, AdaBoost,
support vector machines, artificial neural networks, and convolutional neural networks [90].
Recently, new image generation techniques have developed, such as infrared thermography
(IRT). This technique has been successfully applied to breast cancer; the classification
methods included several machine learning and artificial neural networks, and the accuracy
ranged from 90% to 100% [90–101].

Recently, new classification algorithms have been developed, including autoencoders,
deep belief networks, ladder networks, and deep neural network (DNN)-based algorithms
such as the deep Kronecker neural network [90,102].

Gene expression profiling is a useful tool in medical research, both for diagnosis and
for the elucidation of the disease pathogenesis. Artificial neural networks can handle
gene expression profiling data successfully, and we recently described their usability in
hematological neoplasia [27–35]. In our research, we used conventional machine learning
techniques and artificial neural networks because the aim was to identify prognostic factors
in a reliable and systematic manner instead of developing new advanced mathematical
algorithms. Nevertheless, the performance of the artificial neural networks can be improved
with the use of adaptive activation functions (AAFs). Kronecker neural networks (KNNs)
are a new type of neural network with adaptive activation functions described by Jagtap
AD et al. [103]. Unlike the traditional neural network architecture, in a KNN, the output
of the neuron passes to more than one activation function [103]. The use of the Kronecker
product in the KNN made the network wide, while at the same time, the number of
trainable parameters remained low [103]. Recently, a multi-level KNN approach was used
in the analysis of MRI images of brain tumors (glioma) to develop an automated glioma
segmentation system [104].

The research in this manuscript focuses on immuno-oncology markers, as we have
recently described [85]. In relation to breast cancer, we tested the prognostic value of a set of
718 genes from a pan-cancer immune profiling panel on the overall survival of the patients.
A series of 1215 breast cancer patients from The Cancer Genome Atlas (TCGA) was selected.
Unfortunately, in this model, a multilayer perceptron analysis failed to properly predict the
overall survival of the patients (83.7% overall percent of correct classification, AUC = 0.61).
Next, the input was narrowed to 16 genes: macrophage markers (CD68, CSF1R, CD163,
CSF1R, CSF1, IL10, CD274 (PD-L1), and TNFAIP8), T helper cells (PDCD1/PD-1), Tregs
(FOXP3), apoptosis (BCL2, CASP3, and CASP8), NFKB pathway (STAT3), and metabolism
(ENO3, GGA3). The overall survival of breast cancer was predicted using 16 models,
namely C5, logistic regression, Bayesian network, discriminant analysis, KNN algorithm,
LSVM, random trees, SVM, tree-AS, XGBoost linear, XGBoost tree, CHAID, Quest, C&R
tree, random forest, and neural network (multilayer perceptron). Among all models, only
random forest provided suitable modeling (input = 16 fields, overall accuracy 98.4%). The
order of predictor importance was CD274, FOXP3, ENO3, IL10, CSF1R, CSF1, BCL2, GGA3,
TNFAIP8, CASP8, PDCD1, CASP3, CD163, TNFRSF14, CD68, and STAT3.

Noteworthy, further analysis was performed in the breast series of the TCGA and
the pan-cancer immune profiling panel. In addition to the overall survival, other survival
variables were tested, including the disease-specific survival, disease-free interval, and
progression-free interval. The multilayer perceptron analysis also failed to predict the sur-
vival of the patients with good performance. Additional analyses were performed. Different
types of training were tested: batch, online, and mini-batch. Two types of optimization algo-
rithms were also tested: scaled conjugate gradient, and gradient descent. The training options
for the scaled conjugate gradient were the following: initial lambda (0.0000005), initial sigma
(0.00005), interval center (0), and interval offset (±0.5). The training options for the gradient
descent were initial learning rate (0.4), momentum (0.9), interval center (0), and the interval
offset (±0.5). Of note, batch training can use both a scaled conjugate gradient and gradient
descent. However, online and mini-batch are restricted to gradient descent. The training
options of gradient descent in case of online and mini-batch were initial learning rate (0.4),
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lower boundary of learning rate (0.001), learning rate reduction, in epochs (10), momen-
tum (0.9), interval center (0), and interval offset (±0.5). We tried improving the network
performance by changing all the training parameters, but no significant improvement in
performance was achieved.
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