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Abstract
I discuss the assumptions needed for identification of average treatment effects
and local average treatment effects in instrumented difference-in-differences
(IDID), and the possible trade-offs between assumptions of standard IV and
those needed for the new proposal IDID, in one- and two-sample settings. I also
discuss the interpretation of the estimands identified under monotonicity. I con-
clude by suggesting possible extensions to the estimation method, by outlining
a strategy to use data-adaptive estimation of the nuisance parameters, based on
recent developments.
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I congratulate the authors on their work, instru-
mented difference-in-differences (IDID), which extends
difference-in-difference (DID) estimation to situations
where there is unobserved confounding, but nevertheless
there is a valid instrumental variable (IV) for the exposure
trend, in settings with binary exposure and repeated
cross-sectional data. After establishing identification of
the average treatment effect (ATE) and local average
treatment effects (LATE), the authors also provide us
with several estimators, including a multiple-robust
estimator based on semi-parametric theory and prove that
this is consistent asymptotically normal under the usual
regularity conditions.
Here, I discuss (i) the assumptions needed for identifi-

cation and their plausibility, as well as possible trade-offs
between standard IV and this new proposal and (ii)
extensions to the estimationmethod based on recent devel-
opments.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2022 The Authors. Biometrics published by Wiley Periodicals LLC on behalf of International Biometric Society.

I follow the same notation as Ye et al. (2022), where
𝐷 denotes the exposure, 𝑌 the outcome, 𝐗 the measured
covariates, and𝑍 the instrument. Let𝑂 denote (𝑍, 𝐗, 𝐷, 𝑌),
the observed data. A subscript 𝑡 ∈ {0, 1} will be used for 𝐷
and 𝑌 to indicate the variable at that time point.

1 ASSUMPTIONS AND
INTERPRETATION OF THE ESTIMANDS

While the authors provide some insights on the inter-
pretation of the necessary assumptions as well as their
plausibility, I believe that the readers might benefit from
a deeper discussion.
The authors state that the IDID method “relaxes” both

the assumptions of standard IV and standardDID (i.e., par-
allel trends). I believe that it is more accurate to say that
IDID replaces some aspects of the standard assumptions
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of each by adding supplementary assumptions drawn from
the other method.
Let us take standard IV identification assumptions as

a starting point. IDID inherits the core IV assumptions,
but applied to the trends instead of a single time point,
in the following sense. Instrument relevance (Assump-
tion 2a) says that the instrument is associated with the
exposure trend, while Assumption 2b, explicitly the exclu-
sion restriction part (ER), states that the instrument 𝑍 and
the outcome trend 𝑌1 − 𝑌0 are conditionally independent
given𝐗 and𝐷1 − 𝐷0 (as can be seen in theDAG included in
Ye et al. 2022). This subtle change allows for the IV to have
a direct effect (not through𝐷) on the outcome𝑌1, thus vio-
lating the standard IV ER assumption. The trade-off is that
to satisfy this ER assumption on the trend, the IV 𝑍 will
now need to satisfy (i) 𝑌(11)

1
− 𝑌

(01)
0

|𝐗 ∼𝑑 𝑌
(10)
1

− 𝑌
(00)
0

|𝐗,
and a further assumption, (ii) 𝑌(01)

1
− 𝑌

(01)
0

|𝐗 ∼𝑑 𝑌
(00)
1

−

𝑌
(00)
0

|𝐗, where following Ye et al. (2022), ∼𝑑 denotes hav-
ing the same distribution, and 𝑌

(𝑑𝑧)
𝑡 denotes the potential

outcome at time 𝑡 if exposed to 𝑑 and𝑍 had been externally
set to 𝑧.
The first part (i) equates to requiring that 𝑍 does not

modify the treatment effect, as the authors mention. The
assumption (ii) above is, however, a “parallel trends” type
assumption: it says that the outcome trend in the untreated
potential outcomes is the same on the encouraged (those
where 𝑧 = 1) and not encouraged groups (𝑧 = 0), respec-
tively. This is analogous to the standardDID assumption of
parallel trends, which requires the untreated potential out-
comes among the exposed and the unexposed (with respect
to 𝐷) to be the same.
Let us continue using standard IV as our template.

Recall that the three core IV assumptions (relevance, ER,
and unconfoundedness) are not sufficient to point identify
a causal effect (Hernán & Robins, 2006). An extra assump-
tion is required. In the case of standard (one-time point)
IV estimation, the ATE can be point-identified by requir-
ing that there is no effect modification by 𝑍 among the
treated and untreated population. Note that this is indeed
similar to assumption 2b(i). However, 2b(i) is not sufficient
for point identification of theATE in IDID. Indeed, this “no
effect modification by 𝑍” assumption arose in this setting
as part of the ER for outcome trends.
The IDID settings require a stronger assumption to point

identify the ATE, namely assumption 2c, “no unmeasured
common effect modifier”. This assumption has been pro-
posed in standard IV settings as an alternative to “no
effect modification by 𝑍”(Cui & Tchetgen, 2021). It is this
alternative assumption (2c) that can be replaced by the
monotonicity assumption, 𝐷(1)

𝑡 ≥ 𝐷
(0)
𝑡 with probability 1,

where 𝐷
(𝑧)
𝑡 denotes the potential exposure for time 𝑡 ∈

{0, 1}, leading to identification of the LATE. Note that

unlike relevance (which needs to hold for the exposure
trend), the monotonicity assumption needs to hold at
both time points, and therefore, it could be considered
a stronger set of assumptions than those required for
standard IV.

1.1 Interpretation of the LATE
estimand

The identified LATE can be interpreted as the causal effect
in the “compliers” stratum, 𝐷(1)

𝑡 − 𝐷
(0)
𝑡 = 1, that is, those

who receive 𝐷𝑡 = 1 when 𝑍 = 1 but not otherwise at both
time points, only when the IV is causally related to the
exposure (Swanson&Hernán, 2018). Establishingwhether
the relationship between 𝑍 and the exposure trend is
causal would typically vary from application to applica-
tion. Thus, the interpretation of the LATE will depend
on the type of “encouragement” instrument used when
applying IDID.
Even with a causal IV, LATE is controversial in clinical

and epidemiological applications, as the compliers stratum
always remains unobserved.

1.2 Extra assumptions for the
two-sample estimator

Following Ye et al. (2022), for 𝐶 ∈ {𝐷, 𝑌}, let
𝜇𝐶(𝑡, 𝑧, 𝐱) = 𝐸[𝐶|𝑇 = 𝑡, 𝑍 = 𝑧,𝐗 = 𝐱] and 𝛿𝐶(𝐗) =

𝜇𝐶(1, 1, 𝐗) − 𝜇𝐶(0, 1, 𝐗) − 𝜇𝐶(1, 0, 𝐗) + 𝜇𝐶(0, 0, 𝐗), and
let𝜇𝐶(𝑡, 𝑧) and 𝛿𝐶 denote the analogous quantities without
observed covariates.
Suppose that we have two cross-sectional samples,

where we have only measured either the exposure or
the outcome, correspondingly denoted by 𝑏 and 𝑎 (for
before and after). Just like in standard two-sample IV, we
can use (𝑍𝑏, 𝐷𝑏, 𝑋𝑏) to estimate the relationship between
the exposure and the instrument, 𝐷 ∼ 𝑍 (or in this
case the exposure trend), and use the second sample
(𝑍𝑎, 𝑋𝑎, 𝑌𝑎) to estimate the relationship between the out-
come and the instrument, 𝑌 ∼ 𝑍 (or in our settings, the
outcome trend). Now, the ATE is identified by a two-
sampleWald estimand𝛽0 =

𝛿𝑌𝑎

𝛿𝐷𝑏

, so long as𝐸(𝑌𝑎|𝑇𝑎, 𝑍𝑎) =

𝐸(𝑌𝑏|𝑇𝑏, 𝑍𝑏), and 𝐸(𝐷𝑎|𝑇𝑎, 𝑍𝑎) = 𝐸(𝐷𝑏|𝑇𝑏, 𝑍𝑏).
Such “structural stability” assumptions rule out covari-

ate shifts across the two samples for the outcome and
the exposure in the strata defined by 𝑍, and therefore
seem implausible, especially in situationswherewe seek to
apply them, where we do not have access to the same indi-
viduals in the two time periods. It would be of interest to
explore relaxing this, and allow covariate shifts for the two
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DIAZORDAZ 3

time periods, perhaps by adapting techniques developed by
Nie et al. (2019).
Moreover, using two-sample Wald estimand in con-

junction with monotonicity has implications for what the
estimand corresponds to. By analogy to the standard IV
(Zhao et al., 2019), we can see that for identification of
the LATE, we also need to assume “structural invari-
ance” for the compliers class at time 𝑡, that is, 𝑃(𝐷(1)

𝑡 −

𝐷
(0)
𝑡 = 1|𝑇𝑎, 𝑍𝑎) = 𝑃(𝐷

(1)
𝑡 − 𝐷

(0)
𝑡 = 1|𝑇𝑏, 𝑍𝑏). Without this

assumption, in general the estimand corresponding to the
two sampleWald estimator will be a scaling of the LATE in
the outcome sample 𝑎, 𝛽𝑎

late, which is the one we are really
interested in. Just as in standard IV, the scaling will be the
ratio of the trend in proportions of compliers in the two

samples 𝑃(𝐷
(1)
1

−𝐷
(0)
1

=1|𝑇𝑎,𝑍𝑎)−𝑃(𝐷
(1)
0

−𝐷
(0)
0

=1|𝑇𝑎,𝑍𝑎))

𝑃(𝐷
(1)
1

−𝐷
(0)
1

=1|𝑇𝑏,𝑍𝑏)−𝑃(𝐷
(1)
0

−𝐷
(0)
0

=1|𝑇𝑏,𝑍𝑏))
. For this to

have the same sign as 𝛽𝑎
late we also need to assume that this

scaling factor is positive.
Finally, assumption 2d, that the CATE is constant in

time, also seems implausible in this two-sample cross-
sectional setting, even when the study period spans only
a short time, as it is more likely that the two samples
correspond to slightly different populations. This assump-
tion seems more plausible in one-sample, longitudinal
settings, where the same individuals are followed up
in time.

2 DATA-ADAPTIVE ESTIMATION

After establishing identification, the authors propose sev-
eral estimators. As well as the Wald estimator, analogous
to the Wald estimator in standard IV, the authors derive
several estimators that target the estimand 𝜓0 resulting
from a projection of the true CATE 𝛽0(𝑣) function onto a
parametric working model 𝛽(𝑣; 𝜓).
Here, I primarily discuss the so-called “multiply robust

estimator” 𝜓mr. This is an estimating equations estimator,
based on the efficient influence function, EIF, 𝜑(𝑂, 𝜓0) of
the (projection) estimand 𝜓0.
As in Ye et al. (2022), for 𝐶 ∈ {𝐷, 𝑌}, denote by

𝜋(𝑡, 𝑧, 𝐱) = 𝑃(𝑇 = 𝑡, 𝑍 = 𝑧|𝐗 = 𝐱),𝑚𝐶𝑍(𝐱) = 𝜇𝐶(0, 1, 𝐱) −

𝜇𝐶(0, 0, 𝐱), 𝑚𝐶𝑇(𝐱) = 𝜇𝐶(1, 0, 𝐱) − 𝜇𝐶(0, 0, 𝐱),
𝚫𝐶 = (𝜇𝐶(0, 0, 𝐱),𝑚𝐶𝑍(𝐱),𝑚𝐶𝑇(𝐱)) and 𝛿 =

𝛿𝑌

𝛿𝐷
.

The authors prove that the estimator 𝜓𝑚𝑟 is multi-
ple robust, and is consistent and asymptotically normal
(CAN), under an appropriate Donsker condition (Assump-
tion 3) and either: (i) models for 𝛿(𝐱), 𝚫𝐷(𝐱) and 𝚫𝑌(𝐱)

are correct; or (ii) models for 𝜋(𝑡, 𝑧, 𝐱) and 𝛿𝐷(𝐱) are
correct; or (iii) models for 𝜋(𝑡, 𝑧, 𝐱) and 𝛿(𝐱) are cor-
rect. While the multiple-robust property means that not

all the nuisance models have to be correctly specified,
in practice, most parametric models are probably wrong,
so a multiple robust property is of limited practical
utility.
Nevertheless, recent advances in semiparametric effi-

ciency theory have shown that EIF-based estimators can
converge at fast parametric rates to the true 𝜓0 and
thus be asymptotically normal, even when the nuisance
functionals are estimated non-parametrically at slower
rates, for example, via flexible data-adaptive (machine
learning) methods.
Since 𝜓𝑚𝑟 is an EIF-based estimating equation esti-

mator, it is suitable for using data-adaptive methods for
nuisance parameter estimation. As discussed by Ye et al.
(2022), under empirical process conditions, for example,
Donsker class assumptions (which can be avoided via sam-
ple splitting, see below), the error term is (to first-order
approximations) the product of the errors of the nuisance
models (Theorem 2 of Ye et al. 2022). This allows us to use
flexible, machine learning plug-in estimators for the nui-
sance functionals, which typically converge at slower rates.
Then, as long as each data-adaptive estimator converges to
their respective truth (denoted by a subscript 0) at a suffi-
ciently fast rate such that the condition of Theorem2holds,
that is,

‖‖‖𝛿 − 𝛿0
‖‖‖2
(‖‖𝜋 − 𝜋0

‖‖2 + ‖‖‖𝛿𝐷 − 𝛿𝐷0
‖‖‖2
)
+

‖‖𝜋 − 𝜋0
‖‖2
(‖‖‖𝚫̂𝑌 − 𝚫𝑌0

‖‖‖2 + ‖‖‖𝚫̂𝐷 − 𝚫𝐷0
‖‖‖2
)

= 𝑜𝑝
(
𝑛−1∕2

)
,

then the estimator that results from plugging in these data-
adaptive nuisance estimators is CAN and Equation (5) of
Ye et al. (2022) holds. The variance can be obtained based
on the variance of the EIF 𝜑.
I remark that, in general, using machine learning plug-

in nuisance estimators on estimators based on inverse
probability weighting or “outcome regression” leads to
biased estimators, because of the slower convergence rates.
Moreover, constructing confidence intervals with valid
coverage is difficult. It is important to note that generic
nonparametric bootstrap arguments are no longer justified
in conjunction with data-adaptive plug-in estimators for
nuisance parameters (Bickel et al., 1997; Coyle & van der
Laan, 2018).
Finally, I would like to discuss the Donsker condition on

the class of functions that contains the estimated EIF. To
understand why this is often required, we need to take a
step back and briefly discuss the error term between a typ-
ical plug-in estimator 𝜓(𝑃𝑛), an estimator that replaces 𝑃0

with 𝑃𝑛, where the sub-index 𝑛 denotes the sample size of
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4 DIAZORDAZ

the data, and the value of the estimand𝜓 at𝑃0, the true data
distribution. This is characterized by how 𝜓 changes when
the data distribution changes from 𝑃0 to a different distri-
bution𝑃 in a small neighborhood. This change is described
by the so-called vonMisses expansion, a functional-version
of the Taylor expansion, with the EIF 𝜑 playing the role
of the usual derivative. Using this expansion, the error
term of many plug-in estimators, can be decomposed
into

𝜓(𝑃𝑛) − 𝜓(𝑃0) =
1

𝑛

∑𝑛

𝑖=1
𝜑(𝑂𝑖, 𝑃0) −

1

𝑛

∑𝑛

𝑖=1
𝜑(𝑂𝑖, 𝑃𝑛)

+(𝑃𝑛 − 𝑃0)
{
𝜑
(
𝑂, 𝑃𝑛

)
− 𝜑(𝑂, 𝑃0)

}
+ 𝑅2,

where𝑅2 is a second-order term, and𝑃𝑛 denotes the empir-
ical distribution function. The first term is well understood
and converges to a normal,mean zero variable. The second
term is known as the drift or plug-in bias term. This term
is zero by construction in estimating equation estimators
(see, e.g., Hines et al. 2022). The third term is known as the
empirical process term.
Donsker conditions are typically required to control the

asymptotic behavior of the empirical process term. This
assumption can be relaxed by adopting sample splitting,
or cross-fitting, as done in the de-biased machine learning
and cross-validated TMLE literature (Chernozhukov et al.,
2018; Zheng & van der Laan, 2011). While cross-fitting can
be used in conjunction with parametric nuisance models
to avoid assuming Donsker conditions, the use of sample
splitting or cross-fitting is preferable to Donsker condi-
tions when using machine learning nuisance parameter
estimation, as certain data-adaptivemethods (e.g., random
forests) may give rise to plug-in influence function based
estimators which do not satisfy the Donsker condition
(Chernozhukov et al., 2018).
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