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Abstract
Purpose Microsurgical Aneurysm Clipping Surgery (MACS) carries a high risk for intraoperative aneurysm rupture. Auto-
mated recognition of instances when the aneurysm is exposed in the surgical video would be a valuable reference point
for neuronavigation, indicating phase transitioning and more importantly designating moments of high risk for rupture.
This article introduces the MACS dataset containing 16 surgical videos with frame-level expert annotations and proposes a
learning methodology for surgical scene understanding identifying video frames with the aneurysm present in the operating
microscope’s field-of-view.
Methods Despite the dataset imbalance (80% no presence, 20% presence) and developed without explicit annotations, we
demonstrate the applicability of Transformer-based deep learning architectures (MACSSwin-T, vidMACSSwin-T) to detect
the aneurysm and classify MACS frames accordingly. We evaluate the proposed models in multiple-fold cross-validation
experiments with independent sets and in an unseen set of 15 images against 10 human experts (neurosurgeons).
Results Average (across folds) accuracy of 80.8% (range 78.5–82.4%) and 87.1% (range 85.1–91.3%) is obtained for
the image- and video-level approach, respectively, demonstrating that the models effectively learn the classification task.
Qualitative evaluation of the models’ class activation maps shows these to be localized on the aneurysm’s actual location.
Depending on the decision threshold, MACSWin-T achieves 66.7–86.7% accuracy in the unseen images, compared to 82%
of human raters, with moderate to strong correlation.
Conclusions Proposed architectures show robust performance and with an adjusted threshold promoting detection of the
underrepresented (aneurysm presence) class, comparable to human expert accuracy. Our work represents the first step towards
landmark detection in MACS with the aim to inform surgical teams to attend to high-risk moments, taking precautionary
measures to avoid rupturing.
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Introduction

Neurosurgery is heavily reliant both on preoperative imaging
(CT/MRI) and microscopy for intraoperative visualization.
Neuronavigation using frameless stereotaxy is widely used
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in neurosurgical procedures, with considerable interest into
integrating augmented reality (AR) for injecting an over-
lay of anatomically useful information into the optics of a
microscope, tracked by the stereotaxy system [1,2]. As the
navigation system is unable to interpret the anatomical infor-
mation contained in the surgical scene itself, both systems
rely on manual registration of surface (patient’s head) land-
marks. However, neuronavigation becomes inaccurate as the
brain moves intraoperatively [3]. This limits the utility of AR
overlays for fine microsurgery such as neurovascular proce-
dures [4]. Automated recognition of anatomical landmarks
in Microsurgical Aneurysm Clipping Surgery (MACS) and
broadly within neurosurgery is particularly relevant as it has
the potential to recalibrate stereotactic registration.Detection
of critical anatomy enhances interpretation of the surgical
environment and can bridge the gap between preoperative
imaging and intraoperative surgical video [5]. Artificial Intel-
ligence (AI)-based detection of relevant anatomy has been
previously explored in abdominal, laparoscopic and neck
surgery [6–8].

This study focuses on the automated detection of the
aneurysm itself. This target is interesting for multiple rea-
sons. Firstly, because the part of the surgery when the
aneurysm is in view is recognized as being particularly high
risk of aneurysm rupture [9]. A system which can alert
the wider theatre team that they are entering a high-risk
phase of the procedure could facilitate a coordinated response
should rupture occurs. Secondly, because the aneurysm and
its associated vessels are typically the focus of the overlay in
AR-supported MACS, automated detection and localization
may determine which AR overlays would be of maximum
value to the surgeon.As themost relevant anatomical target in
MACS, it can also provide a reference landmark for recalibra-
tion of stereotaxy. Finally, the exposure of the aneurysm in the
field-of-view typically marks a phase transition from cister-
nal dissection into aneurysm neck dissection. Recognition of
the aneurysm could therefore contribute to automated oper-
ative workflow analysis [10]. Further innovations can also
focus on surgical education and operative planning/decision
making.

We collected and present a microsurgical aneurysm clip-
ping surgery (MACS) dataset comprising of 16 videos of
MACS procedures with aneurysm presence/absence anno-
tations at frame-level (∼350k frames) conducted by expert
neurosurgeons. The aneurysms’ size and appearance in the
video vary significantly among cases, also depending on
surgical approach, while its overall visual appearance is sim-
ilar to adjacent brain vasculature. Both these aspects pose
interesting challenges for vision-based classification in the
absence of precise annotations (i.e. bounding boxes) andwith
class labels only providing weak supervision.

We develop and evaluate two deep learning architec-
tures, an image-based (MACSSwin-T) and a video-based

(vidMACSSwin-T) for performing aneurysm detection and
classification, based on the lightweight version of the shifted-
windows Transformermodel (Swin-T) [11]. Attention-based
learning architectures have been previously adapted for sur-
gical video analysis and applied in tasks such as depth
estimation [12], phase recognition [13] and instruction gen-
eration [14].

Incorporating hierarchical, multi-scale self-attention [15,
16], the proposed Swin-T model extracts localized, repre-
sentations at different levels enabling the network to learn
features for detecting and distinguishing the aneurysm. Our
base model (MACSSwin-T) is a frame-level classification
Swin-T architecture, which is expanded to a video-based
model (vidMACSSwin-T), incorporating temporal informa-
tion by aggregating features frommultiple successive frames.
In multiple-fold cross-validation experiments with indepen-
dent sets covering the entire available dataset, MACSSwin-T
and vidMACSSwin-T achieve 80.8 and 87.1% average
classification accuracy, respectively, demonstrating the effi-
ciency of our approach.We further compare the performance
of MACSSwin-T against human evaluators (10 London-
based consultant neurosurgeons) on an external set of 15
microscopy images, with the MACSSwin-T having similar
performance (13/15—86.7%) to human experts (12.3/15—
82%), when lowering the decision threshold, without com-
promising false positives.

Methods

Themicrosurgical aneurysm clipping surgery (MACS)
Dataset

The MACS dataset is composed of FHD (1920× 1080) sur-
gical videos from the operative microscope of 16 patients
during surgical repair of intracerebral aneurysms. The study
was registered with the hospital’s (National Hospital for
Neurology and Neurosurgery, UCLH NHS) local audit com-
mittee and data sharing was approved by the information
governance lead. All patients provided written informed
consent for their videos to be collected for research. The
MACS dataset was blindly reviewed by two senior vascular
neurosurgeons in duplicate. Frames were classified as fol-
lows: Type-X: No aneurysm in microscope’s view, Type-Y :
Aneurysm in microscope’s view (including both visible and
clipped aneurysms), Type-Z: Frame excluded from analysis
due to one or more from the following (i) microscope not
pointing at patient, (ii) microscope moving, (iii) indocyanine
green angiography being run, (iv) ambiguous imagewith par-
tial view of the aneurysm making it inconclusive to assign
either Type-X or Type-Y label, (v) instruments crossing the
field-of-view resulting in the aneurysm rapidly entering and
exiting the field-of-view, (vi) rapid changing view within the
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Fig. 1 Excerpts from the MACS dataset. a, b Shows Type-X examples.
c–h are Type-Y examples with the yellow oval indicating the location
of the aneurysm (d shows a clipped aneurysm). f–h are examples of
challenging Type-Y frames where only a small part of the aneurysm is
visible

scene. Frames with conflicting labels from the senior review-
ers were also excluded from the dataset (Type-Z). Whilst
it can be difficult to identify an aneurysm from reviewing
just a single frame, over the course of the entire video each
aneurysmwas necessarily clearly identified to make clipping
possible. Annotating surgeons had not only been present at
the time of surgery but also had the entire video available to
contextualize each frame. Examples of Type-X and Type-Y,
labelled images are illustrated in Fig. 1.

We extract frames at 5 fps and establish a dataset of
356,165 images. Frames labelled as Type-Z are discarded,
keeping only Type-X and Type-Y. The distribution of labelled
images per video recording is shown in Fig. 2. The dataset
presents high imbalance between the Type-X and Type-Y
classes. This is expected since in practice during the MACS
procedure the aneurysm remains within the microscope’s
field-of-view for a limited amount of time typically when
aneurysm dissection is performed. The imbalanced distri-
bution of the two classes in the MACS dataset poses an
interesting challenge on developing learning methods to

detect short-duration but critical events (i.e. aneurysm in the
field-of-view) in image-guided surgical procedures.

Proposed learning architectures

Primary objective of our work is to develop a methodol-
ogy to automatically detect the presence of the aneurysm in
microscopy video frames,without any explicit location infor-
mation (i.e. bounding-boxes) about a visible aneurysm or
surgical tools (incl. clips) being available. The task presents
challenges due to three key reasons: (i) the short duration of
the aneurysm appearing in the microscope’s field-of-view,
resulting in an imbalanced distribution of Type-X and Type-Y
frames, (ii) intraclass difference between aneurysms leading
to limited common features and (iii) the variable, and in most
cases, small size and similar visual appearance (colour and
morphological texture) of the aneurysm, compared to the rest
of the brain vasculature which is also present in the surgical
scene.

We formulate our problem as a frame classification task
and adapt the tiny version of the Transformer model using
shifted-windows (Swin-T) [11] to tackle it. The proposed
architecture is illustrated in Fig. 3. The MACSSwin-T model
extracts features at 4 stages, where each stage consists of
multiple consecutive Swin Transformer blocks. Each block
is composed by a shifted-window multi-head self-attention
(MSA) layer and a 2-layer MLP with GELU activation func-
tions in between. Global average pooling is applied to the
feature maps, resulting in a 768-dimensional feature vector,
processed by a single-layer perceptron with softmax activa-
tion to predict the final class (aneurysm presence/absence).

We incorporate temporal frame sequences to formulate
aneurysm detection as a video classification task and propose
vidMACSSwin-T (shown also in Fig. 3), adapted from [17],
to address it. The vidMACSSwin-T model is a 3D version of
the MACSSwin-T model, which takes multiple frames (32)
as input. It maintains the general structure of MACSSwin-T,
while expanding the token to be a 3D patch. Accordingly,
we replace the standard MSA in the Swin-T block with the
3D-shifted window MSA module and keep the rest of the
components unchanged. We use the I3D head [18] to obtain
the output and use it as the prediction of the centre frame..

Weighted cross-entropy is the loss function to account for
the data imbalance in the dataset. In Eq. (1), ŷi and yi are
the predicted score and ground-truth label, respectively, of
sample i , and Nb is the number of batch samples. We set the
weights (wX ,wY ) for each class as the ratio of the number of
samples of the other class (NY , NX ) over the total samples
and normalize them to add to “1”. NX and NY is the total
number of Type-X and Type-Y samples in MACS.
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Fig. 2 Dataset distribution of the MACS dataset. Each video comprises two types of frames for analysis, namely Type-X and Type-Y

Lwbce = 1

Nb

Nb∑

i=1

[
wY yi log ŷi + wX (1 − yi ) log(1 − ŷi )

]

wX = NY

NX + NY
, wY = NX

NX + NY
(1)

Experiments and results

Implementation details

We initialize MACSSwin-T with a pretrained version of
Swin-T on ImageNet-21K. We then freeze the first 3 stages
and train the network, for 300 epochs, on our MACS dataset
using a batch size of 128. Input images are normalized and
resized to 224 × 224, due to memory and timing consider-
ations. We follow the data augmentation methods in [11].
AdamW is employed for optimization with a base learning
rate of 5e−4 and exponential decay rates β1 and β2 of 0.9 and
0.99. We warm up the training for 20 epochs with the warm-
up learning rate to be 5e−7. VidMACSSwin-T is initialized
with a pretrained Swin-T model on ImageNet-21K [17].
Hyperparameters were set according to [11,17], and exper-
imentation showed that their value has small effect on the
performance of the MACSSwin-T/vidMACSSwin-T mod-
els. Frames are resized to 224 × 224 without cropping. We
train the model with AdamW optimizer for 30 epochs, using
initial learning rates of 3e−5 and 3e−4, for the backbone net-
work and I3D prediction head, respectively. We use a cosine
decay learning rate scheduler and 3 epochs of linear warm-
up. The batch size is 64. Because the MACS videos in our
dataset are long (10k–50k frames), we divide each video into
multiple samples. Following a similar approach to [17], for
training vidMACSSwin-T, we group 64 consecutive frames
of the same class as one sample and from each sample, uni-
formly extract a sequence of 32 frames as the input to the

network. During inference, for all extracted frames, we group
64×4 consecutive frames to define a single sample. We then
uniformly sample these (64 × 4) consecutive frames to for-
mulate 4 sequences of 32 frames, perform predictions on all
4 sequences and average them to produce the final classifica-
tion label. Models and experimentation took place with the
PyTorch (v1.12.1) framework. We develop the models on an
NVIDIARTXA6000GPU. TrainingMACSSwin-T requires
about 6417MB of memory and inference time is 10.67msec
(97.3 fps).

Multiple-fold cross-validation

We carry out multiple-fold cross-validation and split the
dataset into fourfold on the basis of the 16 available videos
creating independent training (12 videos) and validation (4
videos) sets in each fold. This partitioning allows us to eval-
uate the model’s performance and consistency on the entire
MACS dataset. The training/validation splits are selected to
have a similar class ratio (ranging between 3.82:1 and 4.17:1)
for both the training and validation sets, shown in Fig. 4.
Loss weights are set toWX = 0.2 andWY = 0.8, in all folds
according to the overall MACS dataset distribution.

Results are listed in Table 1 for both models in each
fold. For the single-frame MACSSwin-T model, the vali-
dation accuracy ranges from 78.5 to 82.4% with a mean
accuracy of 80.8%. The mean precision and recall rates
are 51.3 and 63.8%, respectively, resulting in a mean F1-
score of 56.8%. The results are promising to indicate that the
MACSSwin-T architecture learns to correctly recognize the
presence/absence of the aneurysm. The model avoids intro-
ducing significant bias towards the dominant Type-X class,
since the recall rate is significantly higher than the precision
rate. Experiments with different initialization seeds demon-
strate robust model behaviour (std < 0.1 on all 4 metrics).
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Fig. 3 a The proposed vidMACSSwin-T architecture for aneurysm
detection. Features extracted from the 4 stages are fed to the aneurysm
classification head, to produce the final prediction (i.e. Type-X or Type-

Y ); b, c Detailed structures for Swin Transformer blocks and Video
Swin Transformer Blocks

Fig. 4 Number of training and validation samples for each cross-validation fold
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Table 1 Results from fourfold
cross-validation experiments

Model Fold Accuracy (%) Precision (%) Recall (%) F1 score (%)

MACSSwin-T 1, 2 81.3, 78.5 51.3, 45.5 66.5, 55.3 58.0, 49.9

3, 4 80.9, 82.4 51.5, 56.9 70.0, 63.4 59.4, 60.0

Mean – 80.8 51.3 63.8 56.8

vidMACSSwin-T 1, 2 86.2, 85.1 65.1, 66.4 61.0, 42.3 63.0, 51.7

3, 4 91.3, 85.8 93.0, 93.0 59.5, 32.8 72.5, 48.4

Mean – 87.1 79.4 48.9 58.9

The vidMACSSwin-T model using temporal informa-
tion achieves a significantly higher mean accuracy at 87.1%
compared to MACSSwin-T. Average precision increases to
79.4%, while the recall is 48.9%. Across folds, the F1 score
of vidMACSSwin-T is higher than that ofMACSSwin-T.We
argue that the result (85.8%) of the fourth fold is not due to
the model being biased to negatives. Although the recall is
low (32.8%), the proportion of negatives is 79.2%, while the
accuracy is higher (85.8%—exceeding the highest accuracy
82.4% of MACSSwin-T), which means vidMACSSwin-T
still has the ability to recognize positives samples. Overall,
the cross-fold validation experiments with independent sets
justify the selection of the Swin-T architecture and proposed
models development strategy for the intended aneurysm clas-
sification task.

Visualizing the class activationmaps

Figure5 illustrates the class activation maps for 5 Type-Y
input frames, using Grad-CAM [19], obtained at the final
normalization layer after the completion of training in each
fold. By comparing neurosurgeons’ annotations (provided
independently for these 5 input images) of the aneurysm
location (top row) to the generated activation maps (bot-
tom row), we conclude that the self-attention mechanism on
the MACSSwin-T drives the model to focus on the desired
location of the image and correctly localizes the exposed
aneurysms. We also highlight that this is achieved in the
presence of adjacent vasculature with similar appearance and

without providing to the network, any information on the
aneurysms’ location.

Comparison against humans (neurosurgeons)

To demonstrate the performance of our method against a
gold standard and establish a preliminary baseline, 10 consul-
tant neurosurgeons, 2 females and 8 males (age 35–64) from
London-based NHS trusts were surveyed. Human assessors
were asked to classify, after visual inspection, 15 frames (8
Type-Xand7Type-Y) selected frommicroscopyvideos from
4 MACS procedures not included in the 16 ones, we used
for model development. Specifically, frames were extracted
from the 4 operative videos, unseen to the models at a rate of
5 fps. Fifty frames (50) were initially selected randomly and
underwent blinded senior review by two vascular neurosur-
geons in duplicate, where frames were classified as Type-X
(aneurysm not in-frame), Type-Y (aneurysm in-frame), or
Type-Z (excluded). The final dataset of 15 images shared
to the 10 expert neurosurgeons was randomly selected from
images with concordant reviews from the pool of 50 images.
Human assessors reviewed and labelled the 15 test images as
still frames, without access to the videos of the procedures.
A total of 150 individual frame-level reviews (80 Type-X:
no aneurysm, 70 Type-Y: aneurysm present) was obtained.
Human classifications were tested against the outputs of the
MACSSwin-T model, that makes an inference based on a
single frame. For completeness we report results with the
vidMACSSwin-T, but do not perform a direct comparison as
the human assessors reviewed individual images, instead of

Fig. 5 Activation maps of the
Swin-T model from Type-Y
input images. The first row
shows the aneurysm areas as
annotated by the expert
neurosurgeons. The second row
shows the activation maps of the
final normalization layer after
training is completed. The
model’s activation is localized in
the same areas as the manual
annotations
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Table 2 Comparison against
consultant neurosurgeons

Method Accuracy (%) Precision (%) Recall (%) F1 score (%)

MACSSwin-T (0.5) 66.7 (10/15) 100.0 (2/2) 28.6 (2/7) 44.4

MACSSwin-T (0.4) 73.3 (11/15) 100.0 (3/3) 42.9 (3/7) 60.0

MACSSwin-T (0.3) 86.7 (13/15) 100.0 (5/5) 71.4 (5/7) 83.3

vidMACSSwin-T 73.3 (11/15) 100.0 (3/3) 42.9 (3/7) 60.0

Human 82.0 (123/150) 81.2 (56/69) 80.0 (56/70) 80.6

Fig. 6 Challenging image samples (from the set of 15) yielding detec-
tion errors for both neurosurgeons and AI (MACSSWin-T) models. a
Is negative (Type-X), however, the vessel the bipolar forceps points to,
is probably misinterpreted by humans as the aneurysm leading to low
detection rate (40%). AI consistently detects it as Type-X. b–d Are
positive (Type-Y), but only a tiny part of the aneurysms is visible and
also they visually blend (overlay) over adjacent vessels which possibly
makes it difficult to distinguish. Humans achieve (50, 50 and 100%)
while AI initially fails with DT = 0.5, but correctly classifies (b), (d)
with DT = 0.3. Videos of atherosclerosed (white dome) aneurysms

like in (e) and with indocyanine green like in (f) are rarely seen dur-
ing training. Due to the largely different visual appearance, AI initially
(DT = 0.5) fails to recognize these two aneurysms. Setting DT = 0.4,
gives correct classification for (f) showing that the clip (blue colour),
typically an indication of exposure, provides a strong enough visual
cue for AI to correctly identify the aneurysm. Humans assisted by the
presence of the white dome and clip achieve very good performance in
these two cases (90, 100%). c, e are the ones AI fails to detect correctly

videos. Models were retrained on the entire MACS dataset
and tested only on the 15 images.

Neurosurgeon and model results are listed in Table 2. In
total, 123/150 (82%) of human reviewswere correct in identi-
fying or excluding the presence of an aneurysm. For Type-X

images, 67/80 (84%) reviews correctly excluded the pres-
ence of an aneurysm, while for Type-Y frames, 56/70 (80%)
reviews correctly identified the presence of an aneurysm
in the image. Neurosurgeons’ individual accuracy ranged
from 68.7%(10/15) to 100%(15/15) with 11/15 (73.3%) and
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13/15(86.7%) observed in most cases (3 each). Due to the
significant class imbalance in the MACS dataset, we expect
our models to be biased towards Type-X (negative) samples.
In order to promote prediction of Type-Y (positive) samples,
we reduce the decision threshold (DT) of the output softmax
layer, in MACSSwin-T from 0.5 (initial) to 0.3, and inves-
tigate the model’s behaviour when encouraged to classify
Type-Y samples with lower confidence. We have experi-
mentally verified in CV experiments that smaller than 0.3
threshold values donot further promote the detectionofType-
Y samples. MACSSwin-T accuracy ranges between 66.7%
and 86.7%, with excellent precision (100%).We observe that
the recall rate improves with reduced thresholds (0.3, 0.4)
and the model correctly recognizes up to 3 Type-Y samples
previously classified as Type-X. We also remark that none
of the Type-X images is wrongly classified with decreased
DT. Overall, lowering the DT is beneficial for the model as it
correctly classifies previously missed Type-Y samples albeit
with lower confidence. Different to our model that always
(for all DTs) classifies Type-X frames correctly, humans find
this challenging and sometimes misdetect them, probably
because of tool presence or adjacent vasculature being per-
ceived as the aneurysm. Figure 6 shows challenging samples
where misclassifications are observed from both humans and
the MACSSWin-T model.

Inter-rater agreement, between the 10 human assessors,
was found to be moderate with Fleiss Kappa value 0.502 (p-
value = 0, agreement is not accidental). Strong agreement
is seen in 8 samples (5 negatives and 3 positives) with 9 or
more similar classifications, while 1 negative (4neg–6pos,
Fig. 6a) and 2 positives (5neg–5pos, Fig. 6b, c) have very
weak agreement. The agreement between the MACSSwin-T
model and humans is evaluated with the Matthews correla-
tion coefficient (MCC), which for binary classification tasks
equals the Pearson correlation.We provide the range ofMCC
for MACSSwin-T (for DT = 0.3 and DT = 0.5) and the
10 assessors. For DT = 0.5 the MCC ranges 0.08–0.48
and shows moderate (0.3–0.5) positive correlation with the
majority (8) of raters. For DT = 0.3, the MCC ranges 0–
0.75, showing strong (0.5–0.7) and very strong (> 0.7),
positive correlationwith 7 raters. There is only one rater (who
achieves 10/15 accuracy)with low correlation. This rater also
has very low MCC (< 0.3) with the remaining 9. Overall,
MACSSwin-T presents moderate correlation against human
raters for DT = 0.5 and strong for DT = 0.3.

Conclusion

This article introduced a dataset of 16 MACS videos, with
frame-level annotations on aneurysm presence/absence, and
proposed Transformer-based models for automated frame-
level aneurysm detection. In addition to having a small size,

aneurysm exposure in MACS is a critical but short-term
event occurring only during a particular procedural phase
(aneurysm dissection). This results in the aneurysm anno-
tated as visible, only in a fraction (ratio approximately 1:4 in
our dataset) of video frames.

We develop our models (MACSSwin-T, vidMACSSwin-
T), with frame-level annotations and weakly supervise them
using cross-entropy loss with weights adjusted for the
class imbalance in the MACS dataset. The self-attention
module produces meaningful localized representations even
in the absence of localized training signals (i.e. bound-
ing boxes), enabling the models to efficiently detect the
aneurysm and distinguish it from adjacent brain vascula-
ture with similar appearance. We achieve consistent results
with an average accuracy of 80.8% (precision 51.3%, recall
63.8%) and 87.1% (precision 79.4%, recall 48.9%), for the
MACSSwin-T and vidMACSSwin-T models, respectively,
in multiple-fold cross-validation, with independent train-
ing/validation sets. Although the task challenges are reflected
in the obtained accuracy, our models achieve similar results
to human assessors (86.7–82%), in an independent test set,
with an adjusted detection threshold.

Future work will focus on three directions: (i) pre-
processing, (ii) temporal information aggregation and (iii)
weakly supervision, to optimize model development.
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