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ABSTRACT

Straw is a general term for the stem and leaf parts of mature crops, and is a multi-purpose renewable biomass
energy resource in the agricultural ecosystem. The prospect of comprehensive utilization of straw has become
broad with the development of agricultural production, the advancement of science and technology, and the
improvement of the level of agricultural mechanization. The comprehensive utilization of straw plays an impor-
tant role in enhancing the sustainable development ability of agricultural economy and improving the current
situation of comprehensive utilization of agricultural resources in my country. This paper briefly combs the devel-
opment history of straw and the prospect and current situation of comprehensive utilization, and expounds the
separation technology of straw components, straw man-made panels, straw concrete, straw returning technology
and oyster mushroom cultivation. It focuses on the description of the component separation technology of straw
and the manufacturing process of straw-based panels. The different separation methods and separation effects of
cellulose, hemicellulose and lignin were introduced in detail, and the static yield strength (MOR), internal bond-
ing strength (IB) and water absorption thickness of several common straw-based panels were compared and stu-
died (TS). Finally, it summarizes the benefit analysis of the comprehensive utilization of straw by scholars from
the perspective of economics, and summarizes the corresponding measures based on their own views.
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1 Introduction

The growing shortage of materials used in furniture production (wood) forces us to look for alternative
sources [1–4]. New trends in material management are based on the principles of a circular economy, and
concepts such as recycling, eco-design, bioeconomy and upcycling are being increasingly implemented in
production processes [5,6]. There is a whole range of materials that combine these concepts. Some
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companies monitor the condition of these materials and allow them to stay in the life cycle by finding a
suitable application for them [7–9]. This way, new types of materials whose properties are significantly
different from those of original materials (wood) are entering production systems. Here it is necessary to
focus attention on the correct identification and quantification of material characteristics [10–14].

Crop straw usually refers to the remaining part of wheat, rice, corn, rape, cotton, reed and other crops
after harvesting the fruit. It is mainly divided into two categories: grain crop straw and economic crop straw
[15]. The corn straw bundle is shown in Fig. 1. China is a big agricultural country with abundant agricultural
crop resources. China’s rice output was 213 million tons in 2021, and the planting area accounted for about
25.44% of the worlds [16]. At the same time, China is also the largest rapeseed producer in the world, with
rapeseed planting area and total output value accounting for 30% of the world [17]. The world’s crop straw
production is also huge, and it is an important biomass raw material. The estimated global supply was
4.41 billion tons in 2019, and by 2025 it is expected to provide 4.8 billion tons of supply per year [18].

Straw can be absorbed and utilized by livestock such as cattle and sheep due to the high crude fiber
content (30%–40%) and nutrient-rich cellulose, hemicellulose and lignin [19–22]. Physical treatment,
chemical treatment and biological treatment [23–26] are usually used to treat crop straw to improve the
nutritional value of straw and reduce the waste of straw feed resources, so as to achieve the goal of green
economy and sustainable development. At the same time, straw-based wood-based panels also have good
mechanical properties, and have received extensive attention in the use of building materials. The
comprehensive utilization of crop straw resources is of great significance for promoting farmers’ income
increase, environmental protection, resource conservation and sustainable development of the world’s
agricultural economy [27]. More and more scholars have carried out comprehensive and in-depth research
on the comprehensive utilization of straw.

This paper summarizes the comprehensive utilization and prospects of straw, and focuses on the
performance of straw-based panels. The comprehensive utilization of straw is mainly concentrated in
agriculture, and the industrial application is still relatively scarce at this stage. It is hoped that this will
provide help and reference for the research and application of straw industrialization, and will be
popularized in building structures as soon as possible.

Figure 1: Corn straw bundle [15]
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2 Status of Comprehensive Utilization of Straw

China is a big grain producing country, producing more than 500 million tons of grain every year. At the
same time, a large amount of straw is also produced. More than 200 million tons of straw rot or burn in vain
in China every year because of people’s different consumption concepts and lifestyles [28]. According to
relevant reports [29], the average annual output of agricultural straw reaches 1.14 billion tons. Most of
the straw resources are used in abandoned or incinerated in situ except for a small part used in
papermaking and board processing. Burning straw not only occupies land, but also produces a lot of dust
and carbon dioxide. It will cause serious damage to the local ecological environment. How to learn from
the practice and experience of comprehensive utilization of straw in other countries and do a good job in
the utilization of crop straw in China has become an urgent agricultural development problem to be solved.

As the world’s energy shortage and environmental pollution problems have become increasingly
prominent, the direct combustion of straw to obtain thermal energy has been banned. The Chinese
government has issued a series of policies to guide the people to comprehensively utilize straw, including
straw feed [30], straw returning to fields [31,32], straw energy use [33] (direct combustion power
generation and bio gasification use) and straw papermaking [34], and have achieved remarkable results.
The percentage of straw consumed by various straw utilization methods to the total straw is shown in
Fig. 2. Shahryari et al. [35] conducted solid fermentation of wheat straw, and the experimental results
showed that the fermented wheat straw could remove part of hemicellulose, phytic acid and lignin, which
is beneficial to be used as animal feed.

3 Component Separation Technology of Crop Straw

The component separation of crop straw [36,37] is the premise to realize the high-value utilization of
each component. Sun et al. [38] summarized their phased achievements in the separation and high-value
utilization of wood and non-wood components, including the conversion of cellulose into fuel ethanol
and the separation and modification of hemicellulose. Zhao et al. [39] summarized the research status and
development of straw component separation technology from cellulose, hemicellulose, lignin and total
component separation. There are differences in the proportion of the three components in different plant
fiber raw materials. Even in the same plant, the differences in the three main components will be caused
by the different growth stages and growing environments. In general, the cellulose content of wood is
higher than the hemicellulose and lignin content of wood, while the content of hemicellulose in corn
stover is relatively high [40]. Chen et al. [41] used a combination of steam explosion and ethanol
extraction to effectively separate components from wheat straw and prepare regenerated cellulose
membranes.
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Figure 2: Distribution of straw utilization ratio
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3.1 Cellulose Separation
The application of cellulose in straw is mostly for pulping and papermaking or for producing fuel

ethanol [42]. Researchers begin to explore the ways to improve the utilization value of plant cellulosic
biomass and tried to convert it into fuel or various high value-added chemicals through combustion
technology, bioconversion technology and thermochemical conversion technology [43]. The separation of
cellulose generally adopts physical methods with relatively simple principles and will not cause damage
to the environment. However, physical methods generally have high energy consumption and poor
separation effect, so they are rarely used alone [44]. The treatment of cellulose with organic alcohols or
organic acids such as methanol and ethanol are called the organic solvent method. In order to obtain a
better treatment effect during the treatment process, a small amount of acid or alkali is often added as a
catalyst [45,46].

As one of the most promising green reagents in recent years, ionic liquids have been widely used in the
dissolution, separation and regeneration of cellulose. However, the high toxicity of ionic liquids has been
criticized [47]. Therefore, deep eutectic solvents (DES) with the advantages of low toxicity,
biodegradability, low price, and easy preparation are favored by many researchers. Francisco et al. [48]
took the lead in treating wheat straw with DES, and found that DES has good solubility for lignin and
hardly dissolves cellulose, so the selective separation of cellulose and lignin can be achieved according to
the difference in solubility.

3.2 Separation of Hemicellulose
The separation method of hemicellulose is relatively complicated. The traditional separation method is

the alkaline method, which has the advantage of less damage to cellulose and can be used for the extraction of
pulp and paper and other high value-added chemicals [49]. Some scholars [50] adopted the environmental
protection method of alkaline hydrogen peroxide to separate hemicellulose on the basis of the traditional
alkaline method. The principle of this type of method is that the free radicals in cellulose can oxidize the
lignin structure, thereby forming hydrophilic groups to break the chemical bonds between the lignin
molecular units, and finally realize the separation of cellulose. The decomposition of hemicellulose also
includes hot water pretreatment [51] and mixed organic solvent extraction [52]. Most of the mixed
organic solvent extraction methods are used with the aid of steam explosion to obtain high yields of
hemicellulose [53]. Yan et al. [54] isolated hemicellulose by microwave-assisted acid hydrolysis and
boiling method using cooked rice straw as raw material, and found that there are abundant xylem
structures in hemicellulose. Hemicellulose is mostly used to produce xylose or xylitol.

3.3 Separation of Lignin
The most commonly used method for lignin separation in the market is the thioamide hydrolysis method

proposed by Lapierre et al. [55], which can better improve the degradation selectivity of lignin.

Some researchers [56] also proposed a method for the direct separation of lignin by virtue of the
environmentally friendly, efficient and specific characteristics of biotechnology. Chistyakov et al. [57]
pointed out that hydrolyzed lignin can produce activated carbon, and used lignin to prepare carbon
adsorption materials. Such methods are widely used in various fields such as water and air treatment,
pharmaceuticals and solvent recovery.

Table 1 summarizes the separation methods of the three types of elements and the corresponding
separation effects of each method.
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According to the basic skeleton of lignin (as shown in Fig. 3) [58], some scholars proposed to use high-
boiling alcohols such as ethylene glycol, 1,3-butanediol, and 1,4-butanediol as solvents to separate lignin.
This method can obtain high yield of lignin without using catalyst, and the solvent can be recycled [59].
Scholars [60] summarized the separation methods of lignin, and the results are shown in Table 2.

Table 1: Component separation of straw

Types Methods Characteristics

Cellulose Physical [44] Simple operation, high energy consumption and poor separation

Organic solvent [45,46] The purity of cellulose is 97.49%, and the removal rate of
hemicellulose is 76.42%

Ionic liquid treatment [47] Green environmental protection, strong separation effect, high price

DES processing [48] Low toxicity, degradability, low price, easy preparation

Hemicellulose Alkaline [49] Less damage to hemicellulose and low efficiency

Alkaline hydrogen peroxide
[50]

High lignin removal rate and high hemicellulose recovery rate

Hot water pretreatment [51] Less loss of hemicellulose, the isolate contains impurities

Mixed organic solvent
[52–54]

High separation purity and adjustable range

Lignin Thioacidolysis [55] Simple operation, big environmental pollution, non-degradable waste

Direct separation [56] Environmentally friendly and efficient, complex operation

High boiling alcohol
solvent [57]

High yield of lignin, solvent can be recycled

Figure 3: Basic skeleton of lignin [58]

Table 2: The separation method of lignin [60]

Methods Types Characteristic

Acid method Klason lignin Great structural change

Phosphagen
lignin

The conditions are moderate, the lignin changes are small, and
there is a certain polymerization

HF lignin Great structural change, and Wiesner color reaction does not
occur

Willstatter
lignin

Little structural change

Periodic acid
lignin

Oxidation occurs

(Continued)
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To sum up, crop straw is rich in resources, and the traditional treatment method pollutes the environment
and wastes resources. Combining with the actual situation of crop straws in various places, a corresponding
comprehensive utilization plan is adopted to develop an efficient and low-cost separation method to realize
the separation of cellulose, hemicellulose and lignin, which has attracted much attention. The various
utilizations of straw in the following are based on three main components, so as to realize the high-value
utilization of each component.

4 Straw-Based Panels

Studies have shown that the composition of straw is similar to that of bamboo [61–64] and wood
[65,66]. Therefore, it can be considered as an alternative raw material for wood and bamboo [67–69].
Straw products mainly include wheat straw particleboard, straw MDF, wheat straw fiberboard, grass-
wood composite MDF, soft straw board, lightweight composite wall material, straw charcoal, straw
plastic composite material [70]. The industrial production of straw-based panels started in the late 1990s
[71], which can be used in furniture, decoration and other building materials, and can effectively solve
the contradiction between wood supply and demand and the problems caused by waste and incineration
of agricultural straws.

Straw-based panels are made of straw or wood and straw mixed in a certain proportion as raw materials,
adding resin adhesive, and integrating physical, chemical, electrical, mechanical, hydraulic and other
technical principles. Plate products obtained through paving, pre-pressing, hot-pressing, post-sawing
treatment, curing treatment, surface treatment and other processes [72,73]. The two kinds of straw-based
panels are shown in Fig. 4.

Table 2 (continued)

Methods Types Characteristic

Alkaline method Alkaline
method

Lignin is easily degraded under alkaline high temperature
conditions and undergoes structural changes

Alkali fused
lignin

Lignin is easily degraded under alkaline high temperature
conditions and undergoes structural changes

organic solvent method organic
solvent lignin

Structural change occurs
and organic solvent binds to lignin
(Except dioxane)

High boiling alcohol
solvent method

HBS lignin High reactivity

Figure 4: Two kinds of straw-based panels [72]
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With the joint efforts of some scientists in the United States and Europe at the beginning of the 20th
century, the production of wood-based panels using economic crops such as bagasse and hemp stalks as
raw materials has been developed to varying degrees [74]. Then in 1970, the symposium on non-wood
wood-based panels hosted by the United Nations Industrial Development Organization officially opened
the curtain of research on straw-based panels [75].

Rowell [76] of the Madison Forest Products Laboratory in the United States conducted chemical
composition analysis and performance comparison of the fibers of 20 kinds of straw plants, and believed
that it is feasible to use them to composite with other materials to manufacture wood-based panels.
Loxton et al. [77] conducted an in-depth study on the properties of particleboards made from agricultural
residues using UF, PF and MDI, respectively. The results show that the waxy and siliceous layers on the
surface will affect the bonding performance of the adhesive, so the surface should be pretreated and the
manufacturing process should be improved. Jin [78] used corn stalk as raw material to conduct
experimental research on the adhesive ratio and preparation process parameters of straw-based panels,
which provided a reference for improving the performance of straw-based panels and improving the
production process. The filling and forming process of corn stover wood-based panels are shown in Fig. 5.

Sören et al. [79] used wheat straw as raw material and a mixture of urea melamine formaldehyde (UMF)
and urea melamine benzaldehyde (UMPF) resin as binder to prepare high-performance medium density
fiberboard (MDF). Its preparation process is shown in Fig. 6.

Figure 5: Pressing process of straw-based panel [78]
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Figure 6: Schematic diagram of straw fiber preparation in MDF test workshop [79]
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In the figure: (1) hammer mill; (2) dry screen; (3) pretreatment screw; (4) conveyor belt; (5) feed screw;
(6) preheater (distiller); (7) fiber separator (refiner); (8) discharge pipe; (9) dryer; (10) fiber discharge port
(cyclone).

Straw-based panels have the characteristics of light weight, high strength, thermal insulation, sound
insulation, excellent fire resistance and no pollution to the environment, and are widely used in furniture,
flooring [80] (as shown in Fig. 7), interior decoration and building walls and other fields.

Halvarsson et al. [81] also tried to make fiberboard by a method without adding binder, which is roughly
the same as the above method. The straw is subjected to steam, hot water and sulfuric acid treatment before
fiber separation, and the fiber is added during the fiber separation process. Ferric chloride and hydrogen
peroxide are used to oxidize and activate wheat straw fibers, so that the performance of fiberboard can be
improved.

Straw-based panels can be mainly divided into three categories: straw particleboard, straw fiberboard
and straw oriented board. A series of physical and chemical treatments such as grinding, hot pressing and
adding anti-corrosion materials [82] are applied to the raw straw and finally processed into furniture, floor
and building materials and applied to life. The manufacturing properties and applications of straw-based
panels are shown in Fig. 8.

Figure 7: Veneer reinforced double straw core composite structure [80]

Smash

Adhesive

Organic: UF, EP, MDI…

Inorganic: MOC, PC…

Hot pressing Cold pressing

Application

Furniture materials Floor materials Building materials

Crushed strawStraw

Straw-based 

panels

Figure 8: Manufacturing properties and applications of straw-based panels [82]
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Naima et al. [83] designed a single-board reinforced double-straw core composite structural floor
substrate. The floor leather material of this composite structure can not only endow the floor with good
surface properties, but also prevent edge chipping during processing. Zhang et al. [84] studied the
influence of the hot-pressing process of wheat straw particleboard on the basic properties of the finished
product. The test results show that when the hot-pressing temperature is 150 degrees Celsius, and the
pressed wheat straw particleboard with a density of 0.75 g/cm3 can meet the requirements of class A
particleboard superior quality. The hot pressing process curve is shown in Fig. 9. Zhang et al. [85] used
wheat straw as raw material and modified UF as adhesive to produce homogeneous particleboard. The
test results show that this method is feasible. Within a certain range, the MOR and IB values of wheat
straw homogeneous particleboard increase with the increase of its density, and the mechanical properties
can meet the requirements.

Mo et al. [86] used isocyanate (MDI), urea-formaldehyde (UF), soy protein isolate (SPI) and soy flour
(SF) to chemically treat wheat straw to study its mechanical properties. The test results show that MDI
particleboard has the best mechanical properties and water resistance among the four adhesives. Although
the mechanical properties of soy-based adhesive are not as good as MDI resin, it is environmentally
friendly and can be used in places where mechanical strength requirements are not strict. Table 3 shows
the mechanical properties of several adhesive-treated wheat straw boards.

Xu et al. [87,88] used modified isocyanate adhesives to press straw particleboards in the laboratory and
tested the static bending strength, elastic modulus, internal bonding strength and water absorption thickness
expansion ratio of the boards. The results show that the flexural performance of straw particleboard meets the
requirements of wood particleboard when the density exceeds 0.75 g/cm3. The straw particleboard will
deform obviously under the action of water when the amount of glue is 5%. Density can effectively
control short-term water swelling, but only an increase in water repellent and sizing amount can give the
board long-term dimensional stability. Xu et al. [89] also used isocyanate (MDI) to make single-layer
(KPB1) and three-layer (KPB3) kenaf stalk particleboards to explore the related mechanical properties of

Figure 9: Hot pressing process curve [85]

Table 3: Mechanical properties of wheat straw boards with different adhesives

Parameter MOR (MPa) IB (MPa) TS (%)

MDI 18.1 0.64 11.4

UF 6.36 0.11 3.96

SF 5.08 0.10 3.36

SPI 5.26 0.12 4.21
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the two types of straw-based panels. The test results show that the static yield strength, internal bonding
strength and elastic modulus of KPB3 are higher than those of KPB1, and the three-layer structure of the
wood-based panel optimizes the end-face density distribution of the board and has the best
comprehensive performance.

Xing et al. [90] used UF glue to make lightweight soybean straw particleboard, and analyzed the
influence of board density, glue amount, hot pressing time and other factors on board performance.
The test results show that the static yield strength and internal bonding strength of the board reach the
maximum, and the thickness expansion rate of water absorption is the minimum when the temperature
reaches 160 degrees Celsius. The mechanical properties of the light bean straw particleboard under
different conditions are shown in Table 4.

Zhang et al. [91] studied the effect of fly ash content in cement on the performance of wheat straw board.
The results showed that the main properties of the cement-wheat straw board decreased with the increase of
fly ash content. The reason is that silicon and aluminum in fly ash can react with calcium hydroxide released
from Portland cement under the action of water to form cementitious materials such as calcium silicate and
calcium aluminate. However, if the amount of fly ash is large, it will affect the coagulation and hardening
reaction of cement, thereby affecting the performance of cement wheat straw board.

Wang et al. [92] studied the effect of different cement additions on the properties of isocyanate (MDI)
and urea-formaldehyde resin (UF) straw particleboard, especially the effect on the water absorption thickness
expansion rate of the board. The results show that with the increase of cement addition, the water absorption
thickness expansion rate of the board decreases. The water absorption thickness expansion rate of the straw
particle board made of urea-formaldehyde resin adhesive reaches the highest when the cement addition
amount reaches 10%.

Table 5 lists the mechanical performance parameters of different types of straw-based panels, including
construction technology, density (ρ), static yield strength (MOR), internal bond strength (IB), and two-hour
water absorption thickness swelling ratio (TS). The following conclusions can be drawn based on these
statistical results:

(1) The main pressing method of straw-based panels is hot pressing, and the temperature of hot pressing
also has a certain influence on the mechanical properties of the panels.

Table 4: Mechanical properties of plates under different test conditions [90]

Group Process condition Mechanical properties

Density
(g/cm3)

Sizing amount
(%)

Hot pressing time
(min)

MOR (MPa) IB (MPa) TS (%)

1 0.4 8 3 2.05 0.083 14.8

2 0.4 10 4 2.31 0.085 12.8

3 0.4 12 5 4.61 0.105 9.7

4 0.45 8 4 5.62 0.105 13.5

5 0.45 10 5 6.07 0.114 10.6

6 0.45 12 3 6.83 0.148 9.7

7 0.5 8 5 5.64 0.155 12.4

8 0.5 10 3 6.94 0.196 11.7

9 0.5 12 4 8.27 0.221 8.6
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(2) The static yield strength and internal bonding strength of wheat straw particleboard are significantly
higher than those of straw particleboard and kenaf straw particleboard under the same density. And
the static yield strength of wheat straw particleboard reaches 31.2 MPa, which is much higher than
the international standard of 14 MPa. The two-hour water absorption thickness swelling ratio is
similar, and both are lower than the international standard 8. It shows that these types of straw-
based panels all meet the requirements of high-quality products.

(3) Several mechanical property parameters of the light bean straw particleboard are lower than the
international standard. This type of straw-based board solves the shortcomings of using a lot of
materials and being self-heavy, but the mechanical properties cannot meet the requirements, and
the specific application has limitations.

(4) The properties of cement straw particle board and cement wheat straw board are very different.
Because the construction process of cement wheat straw board is cold pressing, the parameters in
all aspects are relatively low. Therefore, the optimization and innovation of the hot-pressing
process can be considered in the production process of straw-based panels.

To sum up, some progress has been made in the research and application of straw-based wood-based
panels, and its production cost has gradually approached that of ordinary wood-based panels. Therefore,
its application prospect in construction is considerable. However, the research on the preparation and
modification mechanism of straw-based panels and their popularization and application is not deep
enough. Author believes that there is still a lot of room for improvement in the research of straw-based
wood-based panels in view of this.

5 Application in Concrete

Plant straw is rich in cellulose, hemicellulose and lignin, and its fiber structure is compact and has good
toughness and tensile strength. Fig. 10 shows the microstructure of straw fibers. The unique material

Table 5: Performance comparison of straw-based panels

Types Technology ρ (g/cm3) MOR
(MPa)

IB
(MPa)

TS
(%)

Wheat straw particle board [83] Hot pressing
(150 degrees Celsius)

0.75 31.2 0.52 5.4

Modified UF wheat straw
homogeneous particle board

Hot pressing
(180 degrees Celsius)

0.75 [84]
0.65 [85]

22.29
18.81

0.19
0.11

3.4
3.96

Modified isocyanate straw
Particleboard

Hot pressing
(190 degrees Celsius)

<0.75 [86]
>0.75 [87]

13.66
28.45

0.22
0.42

4.2
3.6

Kenaf stalk particleboard [88] Hot pressing
(180 degrees Celsius)

0.70
single layer

15 0.765 4.3

0.85
three layers

19.72 1.019 3.8

Lightweight bean straw particle board
[89]

Hot pressing
(160 degrees Celsius)

0.5 8.27 0.221 8.6

Cement wheat straw board [90] cold pressing 1.15 9.7 0.45 1.85

Cement straw particle board [91] Hot pressing
(170 degrees Celsius)

0.8 25.94 0.42 4.62

Notes: Among them, MOR > 14, IB > 0.35, TS < 8 (2 h) under international standards.
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composition and microstructure of plant straw is a good choice for the development of functional building
materials [93–96].

Wei [93] explored the influencing factors of the thermal diffusivity of magnesium phosphate cement-
based straw concrete through experiments. The test results show that the increase of the content of straw
fiber can greatly reduce the thermal diffusivity and improve the thermal insulation performance. The
increase of fly ash content can also improve the thermal insulation performance of straw concrete. The
thermal diffusivity in wet and dry conditions is shown in Fig. 10.

Fig. 11 shows the microstructure of jute stalk fiber.

Figure 10: Effect of various factors on thermal diffusivity in moist and dry state [94]

Figure 11: Microstructure of jute stalk fiber [94]
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Parviz et al. [97] found that the gray matter obtained by incinerating rice husks contained relatively high
activity of free silicon, and defined the activity of gray matter as a kind of gray matter that does not have or
has less adhesiveness. But it will react with calcium hydroxide to form a sticky gel under certain conditions.

Biricik et al. [98] found that if the processed straw powder and straw strips (as shown in Fig. 12) were
incinerated under low temperature conditions, the ash content of silica could reach 73%, and it had a certain
pozzolanic activity. Adding it into concrete can improve the compression resistance of concrete. At the same
time, different straw particle sizes have different effects on the mechanical properties of concrete.

Some scholars have found that injecting carbon dioxide gas during the mixing process can better
improve the compatibility of fibers and cement, and improve the durability of concrete [99]. Farooqi et al.
[100] found that centrifugal accelerated treatment of straw fibers can effectively improve the
compatibility with cement and improve the internal structure of concrete. There have been many
advances in the research of straw concrete, but the key point that hinders the development of straw
concrete is that the plant straw contains a lot of hemicellulose, sugar and other substances, which are easy
to be precipitated during the concrete mixing process.

Sun et al. [101] used corn straw to prepare a new type of energy-saving and environmentally friendly
concrete, and designed mulching pretreatment. The test showed that the precipitation of sugar in the straw
was effectively blocked after the treatment, and the molding of the concrete was ensured. Saraswathy
et al. [102] pointed out that the compressive strength of concrete increased with the increase of the
content of rice husk ash through the experimental study of rice husk ash concrete. The tensile strength of
rice husk ash concrete showed a downward trend when the content of rice husk ash exceeded.

Feng et al. [103] studied the mechanical properties of concrete by adding highland barley straw ash
(HBSA) to the concrete. The test results show that the content of HBSA affects the compressive strength
of concrete by affecting the microstructure of concrete. The concrete with 15% HBSA had the strongest
mechanical properties because the addition of HBSA changed the composition of hydration products and
optimized the pore structure of the concrete.

Zhang et al. [104] carried out the incorporation of straw ash into reinforced concrete structures to study
the compressive strength and corrosion resistance of concrete. The schematic diagram of the test is shown in
Fig. 13.

Figure 12: Straw powder and straw strips [98]
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The test results show that the bonding ability of steel bar and concrete will increase with the increase of
straw ash content, and the compressive strength will also increase. The corrosion resistance of concrete will
also increase. The straw ash concrete under the microscope structure is shown in Fig. 14.

To sum up, the key to the development of straw concrete is to solve the problem of compatibility
between straw fibers and cement. Although certain treatment methods have been proposed at present,
there are still problems such as complicated processes, labor-intensive and material-intensive, unsuitable
for large-scale production and certain toxic and side effects of the added chemicals. How to improve the
compatibility of fiber and cement will still be the focus and difficulty of straw concrete research in the future.

6 Application of Oyster Mushroom Cultivation

Making full use of crop straw can not only realize the recycling of agricultural resources, but also reduce
the degree of environmental pollution in rural areas. The straw fungus industry has obvious economic
benefits, social benefits and ecological benefits, and also has the advantages of high efficiency, quick
effect, low technical requirements and low cost. It is an important model of circular agriculture [105].

Nikolay et al. [106] found that adding straw powder to a petri dish can accelerate the absorption of
selenium by mushrooms, thereby improving the vitality and yield of mushroom species. The growth
process of oyster mushroom can be divided into four stages, which are the growth stage, the coral stage,
the forming stage and the mature stage.

Luo et al. [107] used grape cuttings as the main raw material for cultivating oyster mushrooms, and used
the method of bottle planting to prepare 7 formulas for cultivating oyster mushrooms by changing the
proportion of grape cuttings in the medium. The test results showed that the different contents of grape

Figure 13: Schematic diagram of the test [104]

Figure 14: Microstructure of straw ash concrete [104]
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twigs had different effects on the growth rate and biological efficiency of oyster mushroom mycelium. The
mushrooms cultivated have the best taste, the highest yield, and the biological efficiency can reach 89.5%
when the raw materials are 78% grape branches, 20% bran, 1% gypsum and 1% superphosphate.
Therefore, it is feasible to cultivate oyster mushrooms with grape branches as the main raw material.

Singh et al. [108] designed to study its effect on mushroom yield by adding different kinds of straw raw
materials to the petri dish. The specific test process is shown in Fig. 15. The test results show that the wheat
straw added with wheat bran is the best substrate for the growth of oyster mushroom, the highest yield per
pack can reach 91.9%, and the growth cycle and ripening time are also shortened.

Che et al. [109] used pepper stalks as the raw material for cultivating oyster mushrooms. The result
showed that oyster mushrooms cultivated with pepper stalks had the advantages of fast mycelium growth,
short production cycle, low bacterial bag pollution rate and high biological efficiency. It shows that the
pepper stalk can completely replace the sawdust for the production of oyster mushroom, and it will be an
ideal new material for the production of oyster mushroom.

Zhang et al. [110] studied the yield of oyster mushroom grown on rice straw and wheat straw. The test
results showed that the yield of oyster mushrooms grown on wheat straw was 10% higher than that of rice
straw. At the same time, the ground straw material can reduce the growth cycle of mushrooms, but the yield
of mushrooms will decrease when the straw is crushed into too small particles.

To sum up, the traditional culture medium for oyster mushroom cultivation has high quality and high
biological efficiency, but the production cost is also high. Predecessors have done a lot of exploration in
combination with the characteristics of crop straw to improve agricultural economic benefits. The
cultivation of oyster mushrooms using different types of crop straws as medium raw materials has
achieved certain results, but this is far from enough. Whether more different types of crop straws can be
excavated and utilized or several kinds of crop straws with different textures can be mixed to replace the
traditional culture material needs further research and discussion in the future.

Figure 15: Production of mushrooms [108]. (a) Saw dust + Wheat Bran (b) Wheat straw + Wheat Bran (c)
Paddy straw + Wheat Bran (d) Saw dust (e) Wheat straw (f) Paddy straw
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7 Straw Returning Technology

7.1 The Main Ways of Returning Straw to the Field
Straw returning technology is an effective means to maintain soil organic matter content, increase

biological activity, improve soil physical properties, and increase nutrient availability [111,112].

There are two ways of straw returning to the field, including direct returning and indirect returning [113].
The direct return to the field is relatively simple, convenient and fast, which can greatly reduce the labor and
the effect of increasing production is also good. In recent years, farmers have mainly returned straw directly
to the field. The commonly used methods of returning straw to the field include mulching and no-tillage,
crushing and pressing, and direct cover. In some areas, straw is indirectly returned to the field through
high-temperature composting, belly-crossing, and circle-returning. Turning and returning to the field [114]
means that the crop straws are mechanically pulverized, spread evenly in the field, and then ploughed,
and directly pressed into the soil, so that the nutrients of the straw can be fully retained in the soil. Straw
mulching refers to crushing the straw and covering it directly on the surface, which can reduce the
evaporation of soil water and increase the content of soil organic matter after rotting, but this will bring
inconvenience to irrigation and seriously affect the planting of crops. Fig. 16 shows straw particles.

7.2 Effect of Straw Returning to the Field
Wu et al. [115] found that the degradation of organic pollutants in paddy fields was affected by water-

soluble soil organic matter (WSOM). It was concluded that the photosensitive effect of WSOM could be
adjusted by straw returning technology through spectral and steady-state photodegradation tests, thereby
increasing the concentration of WSOM to degrade organic pollutants.

Zhang et al. [116] conducted a straw returning experiment in the Loess Plateau. The experiment was
divided into three groups. The schematic diagram of the specific test is shown in Fig. 17. The first group
had no straw at the bottom, the second group had full straw laying at the bottom, and the third group had
half straw laying at the bottom. Each group had nitrogen fertilizer at the bottom of the experimental
farmland. The experimental results show that the combination of laying straw at the bottom and nitrogen
fertilizer can improve the soil water and heat conditions, and improve the water use efficiency, nitrogen
absorption efficiency and corn yield. It can be concluded that straw returning technology is an effective
measure for the sustainable development of farmland in semi-arid areas.

Figure 16: Straw particles [114]
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Liu et al. [117] took rape straw as the research object and targeted the rice yield in the current season, and
found that the rice yield of all treatments with rape straw was increased. Liu found that straw returning to the
field can significantly increase the yield of rice and wheat by taking the rice-wheat double-cropping system as
the research object, and using Meta analysis to collect and organize the literature for nearly 20 years.
Returning rice straw to the field significantly reduced wheat yield in the lower reaches of the Yangtze
River, while in the middle and upper reaches of the Yangtze River, returning rice straw to the field
significantly increased wheat yield. In the Yangtze River Basin, the return of wheat straw to the field
significantly increased rice yield [118].

Studies have shown that returning straw to the field can increase the sequestration of soil organic carbon.
The research of Mitchell et al. [119] believed that the return of straw to the field leads to the excitation effect
of existing soil organic carbon, which offsets the soil organic carbon derived from straw. Zhang et al. [120]
believed that although straw returning to the field would increase the loss of the original organic carbon in the
soil through the excitation effect of organic carbon, and the straw returning to the field played an important
role in increasing the soil organic carbon storage. Straw-derived SOC gains outweighed SOC losses, and
leading to an increase in the net accumulation of SOC after straw addition [121]. The net effect of straw
returning on soil organic carbon sequestration was closely related to fertilization. Organic carbon
sequestration was highest in NPK-fertilized soils and lowest in unfertilized soils [122].

In summary, straw returning to the field can not only promote the nutrient absorption of crops, but also
improve the nutrient structure of the soil and reduce the loss of soil water and increase the organic matter in

Figure 17: Three types of farmlands [116]
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the soil. Straw returning to the field can also provide better breeding conditions for microorganisms.
Improving the biological activity of the soil by increasing the number of microorganisms in the soil, but
also pay attention to the prevention of diseases and insect pests. There will be some differences in the
thinking of straw returning to the field according to different soil environments, but the overall impact on
crop yield is still positive.

8 Summary and Outlook

Straw is the stem and leaf part of mature crops, most of which are discarded and burned at will. Such
behavior not only causes air pollution, but also wastes the effective use of renewable resources and affects the
ecological environment. In response to this problem, various scholars have carried out a lot of research and
exploration from the aspects of technology and application, and the effect is remarkable. Cellulose,
hemicellulose and lignin are separated from the fractional technology of straw and these substances are
reused. Straw is used in combination with agriculture, industry and construction, which not only protects
the environment but also effectively solves the problem of energy shortage. At the same time, it can also
alleviate the problem of energy shortage in rural areas, and crop straw can further promote agricultural
development as a fertilizer. The maturity of straw-based wood-based panel technology provides a new
industrial development idea for reducing the deforestation of forest wood resources and protecting the
ecological environment. The construction of civilization system has played a positive role.

In general, scholars attach great importance to the research on the comprehensive utilization of straw,
and have continuously achieved corresponding results. This also points out the direction for the
comprehensive utilization of straw, and also allows us to see the broad prospects for the utilization of
straw resources.

However, scholars’ research on comprehensive utilization of straw has not yet formed a systematic and
complete system. The research mainly focuses on agriculture, and the economic aspect is relatively small,
and the knowledge of other disciplines is not well combined with the comprehensive utilization of straw.
In general, the analysis is not systematic and complete. Therefore, we can consider in-depth
understanding of the characteristics and mechanical properties of different crop straws, and optimize more
scientific and reasonable straw crushing and returning devices or straw recycling devices. According to
the internal elements of straw, straw-based wood-based panels with better performance are manufactured,
and strive to be applied to building structures as soon as possible. Providing economic support and
hardware environment for the comprehensive utilization and sustainable development of crop straw.
Promoting the application of the results actively, and constantly update and improve in practice.
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