
 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

28
 M

ar
ch

 2
02

3 
royalsocietypublishing.org/journal/rsos
Review
Cite this article: Jørgensen ACS et al. 2023
Data-driven spatio-temporal modelling of

glioblastoma. R. Soc. Open Sci. 10: 221444.
https://doi.org/10.1098/rsos.221444
Received: 8 November 2022

Accepted: 23 February 2023
Subject Category:
Mathematics

Subject Areas:
computational biology/mathematical modelling

Keywords:
agent-based modelling, glioblastoma, reaction–

diffusion equations, Bayesian inference, data-

driven modelling
Authors for correspondence:
Andreas Christ Sølvsten Jørgensen

e-mail: a.joergensen@imperial.ac.uk

Vahid Shahrezaei

e-mail: v.shahrezaei@imperial.ac.uk
© 2023 The Authors. Published by the Royal Society under the terms of the Creative
Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits
unrestricted use, provided the original author and source are credited.
Data-driven spatio-temporal
modelling of glioblastoma
Andreas Christ Sølvsten Jørgensen1, Ciaran Scott Hill2,3,

Marc Sturrock4, Wenhao Tang1, Saketh R. Karamched5,

Dunja Gorup5, Mark F. Lythgoe5, Simona Parrinello3,

Samuel Marguerat6 and Vahid Shahrezaei1

1Department of Mathematics, Faculty of Natural Sciences, Imperial College London, London
SW7 2AZ, UK
2Department of Neurosurgery, The National Hospital for Neurology and Neurosurgery, London
WC1N 3BG, UK
3Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK
4Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin
D02 YN77, Ireland
5Division of Medicine, Centre for Advanced Biomedical Imaging, University College London
(UCL), London WC1E 6BT, UK
6Genomics Translational Technology Platform, UCL Cancer Institute, University College
London, London WC1E 6DD, UK

ACSJ, 0000-0003-2276-5779; CSH, 0000-0002-4488-4034;
MS, 0000-0002-7435-5256; WT, 0000-0002-4063-0846;
SRK, 0000-0003-4031-5915; DG, 0000-0002-3756-7452;
MFL, 0000-0002-4945-0171; SP, 0000-0003-0820-6292;
SM, 0000-0002-2402-3165; VS, 0000-0002-4013-5458

Mathematical oncology provides unique and invaluable insights
into tumour growth on both the microscopic and macroscopic
levels. This review presents state-of-the-art modelling techniques
and focuses on their role in understanding glioblastoma, a
malignant form of brain cancer. For each approach, we
summarize the scope, drawbacks and assets. We highlight the
potential clinical applications of each modelling technique and
discuss the connections between the mathematical models and
the molecular and imaging data used to inform them. By doing
so, we aim to prime cancer researchers with current and
emerging computational tools for understanding tumour
progression. By providing an in-depth picture of the different
modelling techniques, we also aim to assist researchers who seek
to build and develop their own models and the associated
inference frameworks. Our article thus strikes a unique balance.
On the one hand, we provide a comprehensive overview of the
available modelling techniques and their applications, including
key mathematical expressions. On the other hand, the content is
accessible to mathematicians and biomedical scientists alike to
accommodate the interdisciplinary nature of cancer research.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsos.221444&domain=pdf&date_stamp=2023-03-22
mailto:a.joergensen@imperial.ac.uk
mailto:v.shahrezaei@imperial.ac.uk
http://orcid.org/
http://orcid.org/0000-0003-2276-5779
http://orcid.org/0000-0002-4488-4034
http://orcid.org/0000-0002-7435-5256
http://orcid.org/0000-0002-4063-0846
http://orcid.org/0000-0003-4031-5915
http://orcid.org/0000-0002-3756-7452
http://orcid.org/0000-0002-4945-0171
http://orcid.org/0000-0003-0820-6292
http://orcid.org/0000-0002-2402-3165
http://orcid.org/0000-0002-4013-5458
http://creativecommons.org/licenses/by/4.0/


royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:221444
2

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

28
 M

ar
ch

 2
02

3 
1. Introduction
Glioblastoma (GBM) is a malignant hierarchically organized brain cancer. It is both the most common
and most aggressive type of primary brain cancer in adults [1]. Not only does the diffusive invasion
of glioma cancer cells into healthy tissue impede complete resection, but also GBM harbours a sub-
population of highly therapy-resistant stem-like cells [2]. Tumour recurrence is inevitable, resulting in
a median survival time of 15 months for patients despite maximal treatment [3]. The current gold
standard of treatment is the Stupp protocol, which consists of maximal safe surgical resection,
followed by radiotherapy and chemotherapy with temozolomide, an alkylating agent [4,5].

Mathematical cancer models have provided a deeper understanding of this immensely complex
disease by unveiling the underlying mechanisms and offering quantitative insights [6–9]. Such models
have entered all areas of GBM research, ranging from the classification and detection of brain tumours
to therapy [10,11].

This review provides the reader with an overview of existing mathematical and computational
models that aim to simulate spatially resolved tumour growth. We discuss three main paradigms that
have emerged for such in silico experiments. In §2, we introduce the so-called continuum models that
treat variables, such as the tumour cell density, as continuous macroscopic quantities based on
conservation laws. Alternatively, one might represent each cell as an individual agent. Such discrete
models are discussed in §3. Section 4 deals with hybrid multi-scale and multi-resolution models that
merge and bridge different approaches.

Each of the three methods has its advantages and shortcomings. One must choose between them based
on computational limitations and the level of detail required to answer the research questions of interest.
With this review, we aim to assist researchers in choosing between the different methods by highlighting
the drawbacks and assets of each approach and by showing how the different methods can complement
each other. Moreover, we summarize the main concepts and the key mathematical expressions that lie at
the core of each approach. We hereby aim to strike a balance between providing a brief overview and
showing the mathematics involved. In contrast, many other recent reviews of cancer modelling limit the
mathematical details in favour of providing a very concise overview of the literature [12–14].

Mathematical models of GBM draw on a wide variety of molecular and imaging data:
histopathological data, computerized tomography (CT), positron emission tomography (PET), single-
photon emission computerized tomography (SPECT) and magnetic resonance imaging (MRI), such as
T1 weighted (+/− gadolinium contrast), T2 weighted, T2-FLAIR, diffusion-weighted imaging, and
most recently spatial and single-cell transcriptomics. The models have thus been employed to shed
light on patient-specific data in vivo and ex vivo, as well as on data from animal models and in vitro
experiments. These analyses have provided invaluable insights and deepened our understanding of
glioma on molecular and structural levels. We address this issue in more detail in §5. The section also
discusses the computational challenges posed by systematic inference of model parameters. Finally,
§§6 and 7 provide a short overview of some clinical applications of these models and an overall
summary, respectively. By including the topics addressed in §§5 and 6, we give our article a more
holistic scope with which we aim to set our article apart from other recent reviews on cancer modelling.

Whilewediscuss the differentmethods in light ofGBM,wenote that the samemodels are applied to other
types of cancers. Indeed, the models build on concepts that are broadly used to study tissues. Therefore, we
not only cite sources that dealwithGBMbut alsooccasionally refer the reader to illustrative papers fromother
areas of oncology and biology [15,16]. It is worth noting that the models are, in a broader sense, actually
widely used across scientific disciplines. Throughout the article, we thus present ideas and concepts that
are also employed in other fields, ranging from statistical mechanics to solid-state physics. For instance,
the cellular Potts model (CPM) presented in §3.1.3 builds on the so-called Ising model used to describe
ferromagnetism. We hence encourage the reader to ‘think outside the box’ when exploring the literature,
and, in this spirit, we provide a few citations to areas outside the realm of biology.

Before commencing, we would like to point the reader towards other reviews and papers for further
details. Lowengrub et al. [17] provide a detailed account of continuum models. For an elaborate
discussion on discrete models, we refer the reader to Van Liedekerke et al. [18]. Both Metzcar et al.
[12] and Weeransinghe et al. [13] give a brief overview of the topic and include a list of recent
references. For insights into hybrid multi-scale modelling, we recommend Deisboeck et al. [19], and
Chamseddine and Rejniak [20]. Falco et al. [21] present a concise overview highlighting their clinical
implications. Ellis et al. [22] focus on mathematical models that address intratumour heterogeneity and
tumour recurrence based on next-generation sequencing techniques. Alfonso et al. [23] highlight the
challenges that mathematical models face when dealing with glioma invasion. Finally, for an overview
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of the biology of the GBM from a clinical perspective, we refer the reader to the recent reviews by Finch
et al. [11] and McKinnon et al. [24].
oyalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:221444
2. Continuum models
When dealing with cancer treatment, we face questions related to tumour size, shape and composition.
These questions all address cancer on a macroscopic scale. While macroscopic tumour dynamics emerge
from interactions on a cellular level, it is possible to construct informative mathematical models without
tracking individual cancer cells. Instead, the tumour and its environment can be represented as
continuous variables that are governed by partial differential equations (PDEs). Such continuum
models capture many aspects of cancer in vitro, in vivo and in patients. They can account for the
impact of heterogeneous brain tissue on tumour growth, for different invasive tumour morphologies
and, to some extent, even for potential tumour recurrence [25,26]. Moreover, they have successfully
been applied in studies on the impact of chemotherapy and repeated immunosuppression treatment
[27,28]. Continuum models have thus been employed in diagnosis and treatment planning based on
patient-specific data [29–33].

However, PDEs smooth out small-scale fluctuations, which implies that continuum models do not
apply to small cell populations, such as those found in the tumour margin. For such small cell
numbers, stochastic events play a crucial role, and the applicability and predictive power of
continuum models are limited. To properly understand cancer invasion, we must track individual
cells. But to do so comes at a high or currently insurmountable computational cost (see §3). Thus, the
use of continuum models represents a trade-off that enables and supports scalability and
mathematical insights. As a result, continuum models are widely used in the community [13,17,34].

This section introduces the basic mathematical concepts of continuum models and their biological
motivation. Any such model in the literature builds on reaction–diffusion equations, describing
variables such as the tumour cell density, tumour volume fraction, nutrient (oxygen, glucose)
concentration, neovasculature, enzyme concentration, or other properties of the extracellular matrix
(ECM) [28,35–38]. Considering any such variable, ψ(x, t), which is a function of position x and time t,
we have for its rate of change with time

@c

@t
¼ �r�Jþ S, ð2:1Þ

where J is the flux of the considered variable, and S is the sources and sinks for this variable. Thus,
equation (2.1) constitutes a conservation law. The exact expression for J and S, as well as the
boundary conditions, will depend on the variable in question. For instance, when dealing with the
quasi-steady diffusion of nutrients, equation (2.1) generally takes the following form [39–43]:

0 ¼ Dr2nþ S: ð2:2Þ
Here, D denotes a diffusion coefficient, while n(x) is the relevant nutrient concentration at the location x
within the considered n-dimensional domain, which is often denoted by V.

Alternatively, let’s consider the (normalized) cancer cell density, ρ(x, t), at a time t and location x.
Many authors assume that the diffusion of cancer cells can be well approximated by Fick’s first law

J ¼ �Drr, ð2:3Þ
where D denotes a diffusion coefficient, which we discuss in detail in §2.1. As regards the sources and
sinks of the cancer cell density, it is commonly assumed that cell proliferation, i.e. tumour growth, is well
described by a logistic growth term [44,45]. So, equation (2.1) takes the following form:

@r

@t
¼ r�ðDrrÞ þ lrð1� rÞ, ð2:4Þ

where λ is the growth rate of the tumour cell population. Other authors assume exponential tumour
growth, substituting the second term on the right-hand side by λρ [29]. Of course, more than one
term might be necessary to summarize the relevant sources and sinks. Several more complex terms
are needed, for instance, when considering differentiation between different interdependent tumour
sub-populations (cf. §2.2).

It is worth stressing that equation (2.1) cannot stand on its own. Other relations and constraints,
including (Neumann) boundary conditions, are needed. One might, for instance, naturally require that
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there is no flux at the boundary of the brain domain, i.e. that the tumour does not penetrate the patient’s
skull [45–47]. This being said, equation (2.1) is the backbone of any continuum model that spatially
resolves the tumour (see also §4.1.1).

While we focus on spatio-temporal cancer models in this review, it is worth noting that equation (2.1)
can be seen as a natural extension to non-spatial models for tumour growth. Indeed, if we drop any
spatial dependence in equation (2.1), including the diffusion term, we end up with an ordinary
differential equation (ODE) for the tumour cell density of the form

dr
dt

¼ S: ð2:5Þ

Depending on the source term, S, equation (2.5) might describe exponential, logistic or Gompertz tumour
growth laws that serve as the foundation for non-spatial cancer models. Building on equation (2.5), one
might thus construct a sophisticated network of coupled ODEs (or delay differential equations) that
might differentiate between different tumour cell sub-populations, or account for immune responses
or the effect of cancer treatment (e.g. [48–51] and the references therein). Non-spatial ODEs are thus
widely used in mathematical oncology [52]. While such models do not spatially resolve the tumour,
they have successfully been used to study the response to drugs and radiation treatments, recovering
experimental constraints on the overall growth pattern [53,54]. Here, however, we only intend to
mention equation (2.5) in passing to put equation (2.1) into perspective; any further exploration of
non-spatial models lies beyond the scope of this review.

2.1. Anisotropic diffusion
By using a scalar for the diffusion coefficient in equation (2.4), we assume isotropic tumour growth.
However, GBM spreads anisotropically, primarily expanding along pre-existing structures, such as
blood vessels and white matter tracks [55–61]. To take the heterogeneous structure of the brain into
account, Swanson et al. [29] hence proposed to adopt different values for the diffusion coefficients in
grey and white matter. Concretely, on the basis of CT scans by Tracqui et al. [62], Swanson et al. [29]
found the diffusion coefficient in white matter to be more than five times larger than in grey matter.

Taking the idea of heterogeneous diffusion further by including anisotropy, other authors [47,58,63–
65] substitute the diffusion coefficient with an n-dimensional diffusion tensor, Dðx, tÞ [ Rn�n. To
evaluate D(x, t), Painter and Hillen [47] deploy diffusion tensor imaging (DTI) data. DTI is an MRI
technique that measures the anisotropic diffusion of water molecules and hereby maps highly
structured tissue. This technique provides the diffusion tensor for water molecules, DPðx, tÞ,
throughout the brain. Of course, due to the size difference, the movement of cancer cells is more
restricted than that of water molecules, which means that DPðx, tÞ does not adequately describe
glioma growth, i.e. Dðx, tÞ = DPðx, tÞ. However, on the basis of a transport equation for individual
cell movement, Painter and Hillen [47] establish a relation between D(x, t) and DPðx, tÞ expressed in
terms of the fractional anisotropy that is commonly used to quantify DTI data [66]. They do so based
on a set of simplifying assumptions and parabolic scaling to a macroscopic model (see [67] for further
details). Their final macroscopic model takes the following form:

@r

@t
¼ rr : ðDrÞ þ lrð1� rÞ, ð2:6Þ

where the colon denotes a contraction [26]. The diffusion tensor D [ Rn�n is symmetric and positive-
definite, as it is related to the variance–covariance matrix of the probability distribution function that
describes the velocity changes of individual cells [47,67]. In other words, when dealing with three-
dimension data, D(x, t) is a symmetric and positive-definite 3 × 3 matrix that incorporates the impact
of the local environment on cell migration. The model by Painter and Hillen [47] has been extended
and applied by other authors [26,68,69].

Note that equation (2.6) is subtly different from equation (2.4). Apart from D denoting an n × n
tensor rather than a scalar, equation (2.6) includes an additional advective-type term since
rr : ðDrÞ ¼ r�ðDrrÞ þ r�ððrTDÞrÞ [26]. Models of the form of equation (2.6) are referred to as
Fokker–Planck models, while equation (2.4) is an example of a Fickian model. The additional
advection term of the Fokker–Planck model has a demonstrable impact on the solution [70]. We also
note that equation (2.6) would correspond to the Fisher’s equation if the first term on the right-hand
side was substituted by Dr2r. Indeed, some authors employ a diffusion term of this kind to describe
the cancer cell density [71].
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2.2. Mechanical interactions, cell types, lineage and feedback
Tumours are hierarchically organized. GBMs harbour stem-like cells (GSCs) as well as proliferating
(GCP) and differentiating (GTP) sub-populations (cf. [2,61,72,73]). Since these three cell types exhibit
very different behaviours, it is insightful to differentiate between these sub-populations, even when
dealing with continuum models.

Models that distinguish between viable and necrotic tumour tissue are the first step in this direction.
Examples of such models can be found in the papers by Wise et al. [74,75] and Frieboes et al. [76,77]. Their
work is based on reaction–diffusion equations of the form

@ri
@t

þr�ðuiriÞ ¼ �r�Jmec,i þ Si, ð2:7Þ

where the index i runs over all sub-populations, ui denotes the velocity of the considered cell species and
Jmec,i is the flux that arises from mechanical interactions as follows:

Jmec,i ¼ Ji � riui: ð2:8Þ

Note that while equation (2.7) appears to differ from the other reaction–diffusion equations listed
earlier, this is merely a matter of notation. It is a Fickian model that can be derived by inserting
equations (2.3) and (2.8) into equation (2.1). The advantage of phrasing the problem in this manner is
that the mechanical flux reflects the mechanical interaction energy that can be obtained from an
understanding of the underlying cell biology (see also [25,78–80]). By introducing Jmec,i, it is thus
possible to inform the model about the properties of the tumour and host without the need to
construct a suitable diffusion tensor.

In articles that employ equation (2.8), ui is computed by imposing relations similar to Darcy’s law that
links the velocity to a gradient in pressure [25]. For glioma, the relevant expression often takes the form
ui ¼ �rpþ Fi, where p is the solid pressure arising from the tumour proliferation, while Fi reflects
mechanical interactions.

We exemplify the source functions that enter equation (2.7) by listing the relevant terms for the
necrotic tissue according to Wise et al. [74], for which

Sd ¼ lArv þ lNHðnN � nÞrv � lCrd: ð2:9Þ
Here, the indices ‘d’ and ‘v’ refer to the dead and viable cancer cells, respectively, while λA, λN and λC
denote the rates of apoptosis, necrosis and the clearance of dead cells, respectively. Moreover, H is a
Heaviside step function and nN is a viability limit for the nutrient concentration below which cells
die—biologically speaking, this term encodes cell death through starvation and the use of the
Heaviside step function is a simplifying assumption. For comparison, the source function for the
viable tissue takes a similar form:

Sv ¼ �lArv � lNHðnN � nÞrv þ lM
n
n1

rv, ð2:10Þ

where λM denotes the rate of mitosis and n∞ is the far-field nutrient level.
By distinguishing between GSCs, GCPs and GTPs, Kunche et al. [81] and Yan et al. [82–84] have

incorporated the GBM lineage and hereby taken the discussed models one step further. Kunche et al.
[81] use this to investigate feedback regulation of cell lineage progression. Furthermore, while
previous articles only consider adhesion when computing the mechanical interactions, Chen et al. [85–
87] include the impact of elastic membranes and the implications of the calcification of dead tumour cells.

2.3. Modelling the macroscopic environment
Understanding the microenvironment is essential for understanding GBM since the brain region and
other properties, such as the patient’s age, have been shown to play a key role in tumour
development and heterogeneity [61,88].

The concentrations of different chemicals, including (but not limited to) nutrients, drugs, matrix-
degrading enzymes and ECM macromolecules, are commonly modelled using reaction–diffusion
equations. The associated diffusion is often in the form Dr2c, but other second-order spatial
derivatives can be found in the literature [89–91]. The source terms reflect the processes at play. For
instance, the rate of oxygen consumption is often assumed to be proportional to the local oxygen
concentration and might be proportional to the local cell density.
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Overall, the use of continuum models to model, say, nutrient flows is justified through the different
scales that define cancer. Continuummodels reliably capture the spatial gradients and temporal variation
of nutrients in a way that allows us to assess the behaviour of tumour cells. For some purposes, it might
even be adequate to assume that the nutrient levels stay constant over time since cell proliferation takes
place on a much longer time scale than nutrient diffusion (cf. equation (2.2)).

Initially, tumours do not possess their own vasculature but rather rely on the diffusion of nutrients
and waste products. During this so-called avascular phase, the tumour may lack some features of
malignancy and appear more benign. But beyond a certain size (1–3mm in radius), the nutrient
inflow can no longer sustain the growing cell population [92]. Hypoxia, i.e. oxygen shortage, sets in.
Without stimulating angiogenesis, i.e. recruiting vasculature, tumour growth will stagnate. However,
in response to the hypoxic conditions, the cancer cells release tumour angiogenic factors (TAFs),
which stimulates the migration and proliferation of endothelial cells (ECs). New blood vessels sprout
towards the tumour, and tumour growth resumes. Understanding the transition from avascular to
vascular tumour growth is essential since it is a critical step towards malignancy. To study
angiogenesis, many authors model both the diffusion of TAFs and ECs using reaction–diffusion
equations [17,30,92–96]. As regards the ECs, we again encounter logistic or exponential source terms.
Meanwhile, the gradient of the TAF concentration and that of adhesive molecules (e.g. fibronectin)
enter through a flux term encapsulating chemotaxis and haptotaxis:

J ¼ �DrrEC þ
X
i

xirECrci, ð2:11Þ

where ρEC denotes the EC cell density and the sum runs over all relevant diffusive components, including
TAFs. The concentration of and sensitivity to the ith components are denoted as ci and χi, respectively
[92].

Like continuum models for tumour cells, continuum models for ECs cannot capture the behaviour of
individual cells. Some authors, therefore, rely on agent-based models to study the ECs during
angiogenesis [97–101]. We refer to §3 for a detailed discussion of agent-based models [102]. Table 1
summarizes the properties of all continuum models discussed in this section.
3. Discrete (agent-based) models
Continuum models are based on the assumption that the behaviour of tumour cells is well approximated
by macroscopic averages. However, this assumption breaks down for small cell populations since
stochastic events dominate these. Therefore, continuum models cannot reliably capture the onset of
tumour growth and they do not give a complete picture of the invasive tumour front or margin, i.e.
the tumour–host interface, where the cancer cell density is low—although it is possible to address
this drawback by linking different scales, as shown by Trucu et al. [103] (see also §4). Due to the
aggressive invasion of healthy tissue by GBM, this shortcoming is especially problematic for
understanding brain tumours. Moreover, continuum models cannot adequately deal with
heterogeneity among cells of the same type. To address these issues, one needs to model cancer on a
mesoscopic scale following individual tumour cells or cell clusters [104]. Mathematical models that do
so are referred to by various names: discrete models, agent-based models, individual-based models or
cell-based models. In all cases, cells or cell clusters are modelled as autonomous agents that follow a
set of (stochastic) rules prescribing cell movement, death, division and growth. By doing so, discrete
models capture the variability among cells that might, for instance, arise as a response to the
microenvironment [89]. Note that while discrete models treat cells as autonomous quantities,
continuum models are commonly used to depict the microenvironment (cf. §4.1). PDEs hence still
come into play when dealing with, e.g., nutrient and drug concentrations [17,105].

Discrete models that describe spatial tumour growth or other cell populations, such as ECs (cf. §2.3),
fall into two categories: lattice-based and off-lattice methods. While the former operates on a fixed lattice,
the latter does not impose the same restrictions. Lattice-based models can be divided into three
sub-categories [12,18]. Firstly, there exists a group of the so-called cellular automata (CA) models that
treat all processes, including cell movement, as stochastic processes (cf. §3.1.1). For these models, each
lattice site (e.g. pixel or voxel) can be occupied by at most either a single cell or a population of a
limited size [106–109]. Each cell or cell cluster is thus characterized by its position on the grid.
Secondly, there exist so-called lattice gas cellular automata (LGCA). While these models consider
single cells and are conceptually very similar, they differ from other CA models by attributing a
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velocity to each cell (cf. §3.1.2). After accounting for stochastic events, these models thus include a
deterministic evaluation of cell propagation at every time-step. Thirdly, there are so-called CPMs that
phrase cell interactions using concepts from statistical mechanics (cf. §3.1.3). CPMs attribute several
lattice points to each cell, whereby these models capture cell morphologies. Off-lattice models, also
known as lattice-free models, come in two flavours. Centre-based models (CBMs) describe cells as
simple particles whose interactions can be expressed as physical forces. Deformable cell models
(DCMs) or vertex models (VMs) extend this picture by resolving the cells using several nodes. Like
CPMs, DCMs can thereby account for cell morphologies.

One drawback of discrete models is their relatively high computational expense due to the large
number of cells that typically need to be simulated. After all, tumours reach 105−106 cells per mm3.
However, one benefit of discrete models is their ability to capture emergent properties. The simple
rules that govern the (nonlinear) interactions between individual agents will naturally give rise to the
dynamics of macroscopic tumour growth. As discussed in §3.1.2, reaction–diffusion equations might
thus naturally follow from up-scaling agent-based models [110–113]. Due to the ability of discrete
models to capture emergent properties, agent-based models can be calibrated based on patient-specific
data and used to predict macroscopic parameters [114,115].

Concerning the implementation of discrete models, it is worth mentioning that some software tools are
publicly available. There is no need for a research group to start from scratch. Examples of open-source
tools include CHASTE [116], PHYSICELL [117] and COMPUCELL3D [118]. For a recent overview of open-
source toolkits, we kindly refer the reader to table 1 in the article by Metzcar et al. [12]. In this
connection, we note that one must always select and adapt the numerical approach based on the
problem at hand. For instance, not all problems require the same geometry. While colon cancer cells
and cells in vitro move in two dimensions, GBM tumour growth in vivo is intrinsically three
dimensional, which affects the growth pattern [119]. In the following two sections, we will discuss
lattice-based models in more depth (§3.1) and then turn to a detailed discussion of off-lattice models (§3.2).

3.1. Lattice-based models
In lattice-based models, we follow a population of cells on a rigid grid. If a regular (e.g. Cartesian) lattice
is chosen, artefacts in the established tumour growth pattern might arise, reflecting the lattice symmetries
[18]. While unstructured meshes are harder to implement and combine with existing PDE solvers, they
do not suffer from this shortcoming [120].

3.1.1. Cellular automata with one or several cells per lattice site

In this section, we discuss two types of CA models: those with at most one and those with multiple cells
per lattice site. Both approaches have their advantages and drawbacks. Below, we will start by discussing
the single-cell CA models and then continue to frameworks that include many cells per lattice site.

When considering single tumour cells, we follow each of these through a sequence of time-steps.
During every time-step (t→ t + Δt), a cell might migrate to a neighbouring lattice site, it might die, it
might divide or it might grow, whereby it temporally occupies two sites before dividing. All of these
events can be modelled as stochastic processes or be imposed through deterministic conditional
statements that encompass our knowledge about cancer—additional parameters, such as age,
mutation or phenotype, might be included in these rules [121]. For instance, while cells might die
spontaneously, external factors can make cell death increasingly likely. Thus, tumours develop a
necrotic core due to nutrient deprivation. One might, therefore, set the probability for individual cell
death to depend on the distance to the tumour front [109], the local nutrient concentration or the local
level of toxic metabolites [108].

Tumour cell migration is also affected by the location of the cell within the tumour. If we consider a
cell that is deeply buried within the tumour, all surrounding lattice sites are already occupied and there is
nowhere to migrate. This notion also plays a role in cell proliferation. To divide, a cell deep within the
tumour must push its neighbours away to make space for the daughter cell, which becomes
increasingly difficult as the distance to the tumour edge increases. For simplicity, many authors
account for this notion by introducing a sharp cut-off: if there are no free sites within a certain
distance, the cell will be unable to divide [122]. Other models assume a smooth decline in
proliferation with depth [112,123]. On a macroscopic level, this suppression of cell division leads to a
proliferative rim of constant width, below which we encounter a quiescent cell population
surrounding a hypoxic region with a necrotic core at its centre. In accordance with data, this model
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predicts that a tumour spheroid enters linear growth after initially growing exponentially [124]. As
regards cell division, we also note that experiments suggest that the cell cycle time follows a G-like
distribution, e.g. an Erlang distribution [125]. The rules imposed on the individual cells can account
for a broad range of cell properties. For instance, if the CA model accounts for the hierarchical nature
of tumour cells (GSCs, GCPs and GTPs), the probability of cell proliferation will also depend on the
attributed cell type [121].

When solving the system numerically, one must choose a suitable time-step, Δt. For this purpose, it is
helpful to consider the cell population as a whole. Every time a cell dies, moves, divides or grows, the
system as a whole will transition into a new state. The time-step should be chosen accordingly such
that only one event is likely to occur within Δt, and thus Δt is itself a function of time. To achieve this,
one might distil the temporal dynamics of the system into a master equation and employ kinetic
Monte Carlo algorithms [112,126–128]. Moreover, the order in which the individual cells are updated
should be random to avoid grid artefacts [17].

Rather than considering individual cells, one might track cell clusters of a limited size, keeping track
of the number of cells at each lattice site. The underlying concepts stay the same. The advantage of
reducing the resolution in this manner is the reduced computational cost, which allows for modelling
tumours of centimetre size [125,129]. Meanwhile, a coarser resolution might lead to artefacts affecting
the predicted tumour growth. Another drawback of both single- and multiple-cell CA models is the
fact that they do not properly account for cell morphologies. For models that address this issue, see §3.1.3.

3.1.2. Lattice gas cellular automata models

Like the models in §3.1.1, LGCA models follow a set of stochastic rules to determine whether individual
cells die, grow or divide. But in addition to specifying the location of the cells on the lattice, LGCA
models attribute a discrete set of velocity channels to each spatial location. Hence, the cells roam a
discretized phase space.

Analogously to migration in the CA models presented earlier, cells might stochastically migrate in
phase space: they can move to neighbouring velocity channels following probabilistic rules. At most,
one cell can occupy any given velocity channel at a given location. This restriction is not to say that
these channels are unique, i.e. at each location there might be one or more channels with the same
velocity, including channels at which the cell is at rest.

When using LGCA models, the time evolution of the system is split into two distinct steps. Firstly, the
model allows for a number of stochastic events that correspond to the number of cells—they can die,
grow, divide or change velocity channel. Afterwards, the model updates the position of every cell
based on its individual velocity complying with momentum and mass conservation. In this manner,
the model alternates between accounting for probabilistic interactions and deterministic cell
movement. These basic concepts of LGCA models are summarized in figure 1.

Within the mean-field approximation, Hatzikirou and Deutsch [110] show that the Boltzmann
equation governs the macroscopic dynamics of LGCA models. (The Boltzmann equation can be used
to describe the evolution of thermodynamic systems that are out of equilibrium. Applications range
from quantum mechanics over cosmology to MRI [130].) Furthermore, through Taylor expansions and
scaling, they arrive at a reaction–diffusion equation with a logistic growth term, giving a microscopic
justification for the success of the models presented in §2.

LGCA models offer an intuitive implementation of cell migration. By comparing model predictions to
experimental data, several studies have thus used such models to gain insights into cell–cell interactions
and mechanisms that underlie tumour invasion [111,131,132]. In particular, the cited articles focus on the
so-called ‘Go or Grow’ (GoG) hypothesis. This hypothesis addresses the fact that glioma cells exhibit an
inverse correlation between cell migration and proliferation [133]. It states that migration and
proliferation are mutually exclusive events, i.e. that moving cells cannot divide. This dichotomy stems
from shared signalling pathways [134]. Since the transition from benign to malignant tumour growth
is coupled with a transition from a highly proliferative to a highly migrative phenotype, it is
paramount to understand the link between these two phenomena. Specifically, Monteiro et al.
investigate the role of hypoxia [135].

3.1.3. Cellular Potts models

CPMs define a Hamiltonian function, H, to incorporate cell movement and growth, interactions between
adjacent cells, and interactions between cells and their microenvironment (see [136] for a detailed
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Figure 2. Schematic overview of CPMs. Each cell (and the ECM) has a unique identifier. Here, we consider cells 1, 2 and 3 and the
ECM denoted by 0. Each cell occupies several lattice sites. Randomly selected sites at the cell borders (asterisks) might swap
affiliation depending on the energy change associated with this swap, allowing the cells to grow and move.
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Figure 1. Schematic overview of the concepts behind LGCA models. (a) The cell dynamics that are handled as stochastic processes in
the single-cell CA models discussed in §3.1.1: cell migration, death (and lysis), growth and cell division. Filled (orange) circles denote
occupied sites, while there are no cells in the empty circles. (b) LGCA models attribute a set of velocity channels to each location,
subdividing each site. The cells can shift between these channels following stochastic rules. Again, filled (orange) circles denote
occupied channels, while empty channels are indicated by empty circles. Here, there are five velocity channels per location:
four channels that lead to migration and one channel at which the cell is at rest. For LGCA models, the time evolution takes
place in two steps. First, cell death, growth, division and migration between velocity channels occur as stochastic events. Cell
migration between lattice sites, however, is no longer included in this step. Instead, cell migration takes place in the second
step based on the velocity channels that the cells occupy. In this second step, cell migration complies with momentum and
mass conservation.
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discussion of Hamiltonian mechanics). Moreover, CPMs attribute multiple lattice sites to each cell, which
allows the models to account for cell morphology. Again, CPMs do so via the Hamiltonian function. The
basic concepts are illustrated in figure 2.

For simplicity, let’s consider a Hamiltonian of the following form [97,137]:

H ¼
X
ðx,x0Þ

EðtðsðxÞÞ, tðsðx0ÞÞÞ(1� d(sðxÞ, sðx0Þ))þ lV
X
s

ðVðsÞ � VTÞ2: ð3:1Þ
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The first term on the right-hand side of equation (3.1) summarizes the contact energy at the cell interfaces.
The sum runs over all pairs of adjacent lattice sites (x, x0). Each cell (and the ECM) has a unique identifier
σ, i.e. lattice sites with the same value of σ are associated with the same cell (or the ECM). Moreover, each
cell has a type τ (e.g. GSC, GCP or GTP; see [138]). E(τ(σ(x)), τ(σ(x0))) denotes the contact energy per unit
surface area (in 3D) between a cell of type τ(σ(x)) and a cell of type τ(σ(x0)). The Kronecker delta, δ(σ(x),
σ(x0)), is needed since we only encounter an interface if σ(x)≠ σ(x0), while there will be a contact energy
associated with cells of the same type. The second term on the right-hand side of equation (3.1)
represents a penalty for deviations between the volume, V(σ), of a cell and its target size, VT. Here,
the sum runs over all cells.

At every time-step, the CPM selects a random set of lattice sites at the cell boundaries and attempts to
overwrite their cell affiliations (σ) with those of neighbouring sites: σ(x)→ σ(x0). In this manner, cells grow
and move by hijacking adjacent sites, whereby they might have to push other cells aside. Whether these
proliferation and growth attempts are successful or not is decided by a Metropolis algorithm based on
the associated change in the Hamiltonian function (see [139] for a discussion of such algorithms). The
proposed change in cell affiliation is accepted with the probability

PðsðxÞ ! sðx0ÞÞ ¼ min 1, exp �DH
b

� �� �
, ð3:2Þ

where the motility of the cells increases with the increasing Boltzmann temperature, β (cf. [137]).
One can include additional terms in equation (3.1) to add more information about cell biology. For

instance, in analogy to the volume constraint, Ouchi et al. [140] suggest including constraints on the
surface area of the cell (in 3D) [141]. Other authors include chemotaxis, motility, haptotaxis and
haptokinesis in this manner [98,142–146]. One immediate drawback of CPMs is that they are limited
to phenomena and cell properties that can be formulated as terms in a Hamiltonian.

Meanwhile, when accounted for, cell division and death are treated as stochastic events or occur
when certain conditions are met. For instance, Gao et al. [138] let cells attempt division when V(σ) >
2VT and impose apoptosis for proliferating glioma cells after a pre-determined number of division
attempts. Other authors impose (probabilistic) conditions on apoptosis and necrosis based on nutrient
levels or overcrowding [97,141].
3.2. Off-lattice models
One of the main drawbacks of lattice-based models is that the lattice introduces a lower length scale. Off-
lattice models overcome this problem at the expense of increased computational cost. We give a
schematic overview of the two different types of off-lattice models in figure 3.
3.2.1. Center-based models

CBMs treat cancer cells as physical particles whose trajectories can be deduced from their equations of
motion [136]. The cells themselves are usually represented as spheres (in 3D) or viscoelastic ellipsoids
that deform when subjected to external forces [147]. During mitosis, the mother cells are often
modelled as dumb-bells, consisting of two overlapping spherical cells [148].

The equations of motion can be derived within an energy-based picture or by modelling the relevant
interactions as physical forces that act on the particles. In the latter approach, the models draw on
Newton’s second law and commonly assume that inertial forces and any average acceleration can be
neglected (cf. Brownian dynamics). Put another way, we are dealing with friction-dominated
overdamped motion, which means that friction forces balance out all the other forces [18,122,124]. For
cell i on a substrate, we can then write (cf. [18])

Gcs
i
dxi
dt

þ
X
j=i

Gcc
ji

dxi
dt

� dx j

dt

� �
¼ Fsubi þ Fmig

i þ
X
j

ðFadhji þ Frepji Þ: ð3:3Þ

The first term on the left-hand side expresses cell–substrate friction forces, while the second term deals
with friction between cells. Here, Gcs

ji and Gcc
ji are tensors that account for anisotropies and

inhomogeneities. For instance, for spherical cells in a homogeneous and isotropic environment,
Gcs

ji ¼ gI, where γ is a damping coefficient and I is the identity matrix [122]. Thus, the drag force that
acts on a cell in an isotropic viscous environment is proportional to the cell’s velocity [149].
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lattice-free models

cell 2

cell 3

cell 1
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Figure 3. Schematic overview of off-lattice models. (a) Spherical cells in a CBM, highlighting forces on cell 1. Due to the overlap
(δ21) between cells 1 and 2, cell 1 is repulsed by cell 2. Overlapping cells forming a dumb-bell also occur during cell division. F31
exemplifies an adhesive force occurring without direct contact. In an isotropic environment, the drag force will be proportional to the
velocity, v1. (b) A cell made of multiple nodes in a DCM. Node i at the cell membrane is subject to forces from the surrounding
nodes (Fji). Constraints on areas and volumes might lead to additional forces (F4i), while the movement of the node (vi) gives rise
to viscous forces. The cell has a cytoskeleton (CSK, dashed lines).
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On the right-hand side of equation (3.3), Fsubi denotes forces that emerge from adhesion and repulsion
between cell i and the substrate. Fmig

i describes the migration forces. For instance, chemotaxis might
introduce a preferred direction for migration [122]. One might account for the memory of cells, i.e. the
persistence of a cell to move in a given direction. Some authors do so using inertial forces. In
addition, some authors include cell polarity, giving the cell a preferred direction of motion. Fmig

i
becomes a noise term that describes a random movement in the absence of such forces and
assumptions. The last term on the right-hand side summarizes the adhesion and repulsion between
cell i and all other cells. These forces will typically depend upon the distance between the cell centres
or the amount of overlap, δji. Contact mechanics offers different approaches to model these cell–cell
interactions, including Hertzian formulations and the Johnson–Kendall–Roberts model of elastic
contact (cf. [110,148]). Some authors simply assume that all forces involved in cell–cell interactions are
well approximated by linear springs, generalized linear springs or polynomial expressions (e.g.
[43,149,150] and the references therein).

To exemplify the use of equation (3.3), let’s consider spherical cells, whose movement is dominated
by isotropic friction on the substrate and cell–cell interactions. Meineke et al. [150] and Drasdo [122] use
this model to describe cellular mono-layers in the intestinal crypt and in vitro. For mono-layers, we might
assume that all cells have roughly the same velocity, which leaves us with the first term on the left-hand
side and the last term on the right-hand side of equation (3.3):

g
dxi
dt

¼
X
j

ðFadhji þ Frepji Þ, ð3:4Þ

which amounts to a set of coupled ODEs that can be solved using explicit or implicit schemes, such as a
forward Euler scheme [149,150]. In general, equation (3.3) can be written as a set of linear equations and
be solved using matrix manipulation, for which standard software packages are available.

The computational challenge of CBMs is twofold. Firstly, all interacting cell pairs must be identified.
Secondly, the relevant interactions take place on chemical and dynamic time scales that are much shorter
than the time scale that governs tumour growths. Besides their high computational cost, it should be
noted that CBMs might suffer from artefacts when cells are densely packed [18]. Despite these
shortcomings, CBMs have widely and successfully been applied to study tumour-related issues, such
as drug response [151,152].
3.2.2. Deformable cell (vertex) models

DCMs are conceptually similar to CBMs: cell dynamics are distilled into equations of motion. However,
rather than representing each cell by simple geometrical objects, DCMs depict cells as a number of
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connected nodes (cf. figure 3). In contrast to CBMs, DCMs hereby capture cell morphology and
intracellular mechanics. The nodes within a cell are connected by viscoelastic elements that are part of
either the cell membrane or the cytoskeleton. It is essential to include a cytoskeleton since the
modelled cells might buckle without an internal scaffolding structure [153].

Assuming that inertial forces can be neglected, the equation of motion for any given node takes the
same form as that of a single cell in CBMs (cf. equation (3.3)). Thus, frictional forces balance out all other
forces acting on the node (see also [154]). Node–node interactions can be modelled by letting the
viscoelastic elements, i.e. parts of the cell membrane or the cytoskeleton, act as damped linear springs.
To better depict the behaviour of biopolymers, one might model the elements using nonlinear forces
[155,156]. Besides node–node interactions, we must introduce forces that express area and volume
constraints on the cell as a whole or on subdivisions spanned by several nodes. By considering
subdivisions of the cell membrane, we might furthermore introduce forces that express the resistance
of the cortex to bend [156].

Simulating realistic cell dynamics requires a large number of nodes per cell and the models can
become rather complex. Due to the resulting high computational cost, it is often only feasible to
simulate single cells or small cell populations on short time scales.

For completeness, it should be mentioned that there is a subgroup of DCMs called VMs. In such
models, the cells are represented as polygons spanned by a grid of nodes, i.e. adjacent cells share
vertices and edges. There is no space between cells. VMs are useful when dealing with densely
packed cells and have thus found applications in tissue mechanics but have not been applied to GBM
[157–159].

Table 2 gives an overview of all discrete methods discussed earlier.
4. Hybrid multi-scale models
In the literature, the term hybrid or multi-scale model might denote any combination of the different
methods discussed earlier. A large variety of approaches thus fall into this category. Adopting the
nomenclature from Deisboeck et al. [19], we distinguish between three types: composite hybrid models,
adaptive hybrid models and calibrated models, such as continuum models with functional parameters.
However, we note that the literature generally does not explicitly distinguish between these three types.

Composite hybrid models track and connect phenomena across various scales while keeping the scale
associated with each individual aspect fixed (cf. §4.1). Thus, all tumour cells are treated on an equal
footing but not in the same way as their environment. Since the coupling between a tumour and its
environment must be considered in real-world applications, and since the environment can be
modelled using PDEs, the agent-based models discussed in §3 are consequently often referred to as
components of composite hybrid models when they are encountered in the literature.

In contrast, adaptive hybrid models dynamically adjust the local resolution based on the required
level of detail (cf. §4.2). That is to say that not all tumour cells are represented in the same manner.
Finally, the third type of hybrid model denotes, for instance, continuum models, whose parameters
have been calibrated based on agent-based models, or biophysical considerations of microscopic or
mesoscopic phenomena (cf. §4.3).

4.1. Composite hybrid models
When using a discrete model to represent tumour cells, the extracellular biochemical players, such as
oxygen, are commonly modelled as continuous fluids [91,164–166]. Moreover, intracellular changes,
i.e. processes on a sub-cellular scale, might be tracked for each individual cell using ODEs as
discussed in §4.1.1. These different microscopic, mesoscopic and macroscopic mechanisms are all
coupled. For instance, the nutrient levels both depend on the cell density and impact the probabilities
that are used to predict cell actions. When this interdependence is taken into account, the discrete
tumour cell model becomes one of many components in a larger framework that spans and links
multiple temporal and spatial scales. The framework as a whole then constitutes a composite hybrid
model (cf. [20,65,89,151,167–174]). Such hybrid frameworks have been used to study a wide variety of
phenomena, including drug resistance [152,175]. In each case, the focus of the study prescribes the
resolution of different features. For instance, in some studies, discrete models of the vasculature are
combined with continuum models of the tumour to better understand angiogenesis or drug delivery
[101]. As another example, May et al. [176] couple discrete tumour models with biomechanical
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calculations of stresses and strains to arrive at a more accurate prediction of the tumour shape. Finally, we
note that composite hybrid models have been employed in Bayesian inferences to establish posterior
probability distributions for relevant model parameters [123] (see also §5).

4.1.1. Ordinary differential equations

When dealing with agent-based hybrid models, some authors include sub-cellular dynamics, modelling
molecular networks, pathways and reactions [167,168,172,177]. Such processes are governed by a system
of coupled nonlinear ODEs that represent mass balance equations and rely on the stoichiometry of the
underlying biochemical reactions. If we consider N molecular species, the rate at which the
concentration (Xi) of the ith species changes is thus a function (fi) of the concentrations of the N
different species such that we have a set of coupled differential equations of the following form:

dXi

dt
¼ fiðX1, . . . , XNÞ: ð4:1Þ

The right-hand side of equation (4.1) depends on the system in question but typically contains linear
terms, quadratic terms, Michaelis–Menten terms or other nonlinear functions such as Hill function
terms (see also [178] for an introduction to Michaelis–Menten kinetics). It is beyond the scope of the
present paper to go into any further details. Rather, we kindly refer the reader to the references listed
at the beginning of this section.

ODEs thus play a vital role in some composite hybrid models. In general, ODEs are a common tool in
mathematical biology and oncology. For instance, they can capture global tumour growth patterns as
briefly mentioned in §2.

4.2. Adaptive hybrid models
Detailed modelling of individual cells is required to capture tumour growth at low cell numbers. Agent-
based models thus give unique insights into glioma invasion. However, at high cell densities, a lower
resolution suffices. Continuum models realistically capture all relevant aspects of large chunks of bulk
tumours. Adaptive hybrid models take advantage of this notion by describing different parts of the
tumour tissue using distinct modelling approaches. Thereby, it becomes possible to draw on the
strengths of discrete models when depicting centimetre-sized tumours without the insurmountable
computational cost that would otherwise be involved.

The hybrid model presented by the groups of Kim and Stolarska [172,179,180] treats necrotic tumour
zones, quiescent tumour tissue and the surrounding microenvironment as continuous fluids. The
relevant PDEs are solved on a regular grid. The cells in the proliferative tumour rim (100−200 μm), on
the other hand, are modelled using a CBM. They are represented as autonomous ellipsoids. At the
boundary between the cell-based and continuous components, interpolation is used to communicate
the forces that individual agents exert on the continuous component and vice versa (see also [181] for
a related example from molecular dynamics).

Bearer et al. [182] and Frieboes et al. [183] couple an off-lattice approach with the continuum models
by Wise et al. [74] discussed in §2.2. To study glioma invasion, they include dynamic transitions between
the continuum and cell-based representations based on the microenvironment. In their model, both
mutations and hypoxia might induce the development of a migratory phenotype [184].

The adaptive hybrid models discussed earlier allow for mass transfer between the different
components and are carefully constructed to obey laws, such as mass conservation. However, it is
worth noting that the continuum models are pre-assumed without guaranteeing that the imposed
functional form emerges from up-scaling the cell-based representation (cf. §4.3). Moreover, due to the
assumptions that enter the continuum and agent-based models, single-cell measurements might lead
to different parameter values than those required for continuum models to fit patient-specific data [185].

Rather than coupling agent-based and continuum models, other authors [18,186,187] combine agent-
based models with different resolutions. Such approaches are known as multi-scale agent-based
modelling. For instance, one might couple CA models that consider single cells with models that deal
with cell clusters at a coarser lattice resolution (see also [188] for a multi-resolution study of polymers).

It is an intricate task to couple models that represent the tumour on different scales. After all, the
models might rely on very different paradigms—e.g. one might seek to create an interface between a
stochastic and a deterministic model. As a result, a variety of approaches can be found in the
literature. For a recent review, we refer the reader to the article by Smith and Yates [189]. But as a
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final example, it is worth mentioning the article by Yates et al. [190] that demonstrates how to construct a
transition region where the two models in question coexist with spatially varying contributions to the
predicted dynamics.

4.3. Calibrated models
Various authors encode information from cell-based models or biophysical considerations into
heterogeneous and time-varying parameters of continuum models. This goal can be achieved in
different ways. As briefly discussed in §3.1.2, one might up-scale agent-based models using the mean-
field approximation (cf. [110]). Other authors draw on the emergent macroscopic properties of agent-
based models to derive phenomenological relationships (cf. [17,114]).

Each method mentioned earlier relies on simplifying approximations to derive an analytical
expression, which might limit their predictive power. To circumvent the need to explicitly state
expressions for the macroscopic variables altogether, Kavousanakis et al. [191] use a form of equation-
free modelling called coarse projective integration [192]. This method invokes the so-called coarse
time-stepper that consists of four phases: lifting, simulation, restriction and extrapolation. These four
phases are repeated for every macroscopic time-step. In the lifting step, an ensemble of cell
distributions is drawn from the macroscopic tumour cell density. Each cell distribution is then evolved
over a short time span using an agent-based model—Kavousanakis et al. use a CA model. In the
restriction step, the macroscopic density is updated by computing the ensemble average of the agent-
based simulations. Under the assumption that the macroscopic cell density evolves more slowly than
the microscopic variables, the observed change in the cell density yields an estimate of its time
derivative. Using the forward Euler method, this information can be employed to project the cell
density further into the future without considering individual cells.

We note that the general idea of calibrating coarse models based on more resolved representations is
not only limited to continuum models. Recently, Van Liedekerke et al. [193] have thus calibrated the
mechanical interaction forces of CBMs based on DCMs.
5. Data-driven modelling
Researchers draw on a wide range of experimental data to inform their mathematical models of GBM and
do so following several different approaches. One can use data to select the underlying mechanism or
inform the model parameters. For example, as discussed earlier, some researchers use DTI MRI data
to determine the diffusion properties of cancer cells. Moreover, data allow for qualitative comparisons
and constraints on the simulations. For instance, most models are set to recover generic properties of
cancer, such as spherical avascular tumour growth. Finally, one can use data to infer model parameter
values using a statistical framework, either maximum likelihood estimation or a Bayesian approach.
Systematic incorporation of imaging and molecular data into the mathematical models of cancer via
statistical inference is a promising and timely area of future development. This area of development is
bolstered by the latest progress in imaging and omics approaches, which are producing quantitative
data on an unprecedented scale. Furthermore, the latest progress in computational power, simulation-
based inference methods and machine learning make this task computationally feasible. Several
modelling studies aim to fit specific data from patients, animal models or in vitro experiments. Here,
we provide a list of illustrative examples and summarize our perspective on important areas of future
research. We also refer the reader to some recent reviews on the topic [14,194].

Two decades ago, Stamatakos et al. [195,196] used agent-based models to investigate the impact of
chemotherapy in vivo based on patient-specific PET, SPECT, T1-weighted MRI, histopathologic and
genetic data. They reduced the computational cost by clustering the cells into macroscopic (1mm2)
regions rather than simulating individual cells. More recently, Gallaher et al. [151] published a study
in which they fit MRI and ex vivo cell-tracking data from rats to off-lattice agent-based models,
simulating individual cells. They accomplish this fit by using random sampling because many fitting
algorithms struggle with the stochastic nature of the agent-based models [197,198]. However, due to
the high computational cost, agent-based models are most commonly found in studies focusing on
small cell populations. For instance, Oraiopoulou et al. [199] use agent-based models to recreate the
invasive morphologies of GBM observed in vitro. Meanwhile, many articles on agent-based models do
not include a fit to real-world data but rather perform in silico experiments to make qualitative and
quantitative predictions. For instance, on the basis of such analyses, Perez-Velazquez and Rejniak
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[152] addressed the development of drug resistance, Kim et al. [171,172] investigated the key mechanisms
behind molecular switches, and Schmitz et al. [109] studied growth patterns.

The parameters used in state-of-the-art continuum models [185] to capture the migration and
proliferation of GBM are derived from MRI and CT images, and the application of continuum models
to patient-specific data in vivo is widespread in the literature. Thus, Swanson et al. [27,29] already
used such data to inform their models 20 years ago [200]. Later studies that build on their work have
included further imaging data, such as PET [30,32,201]. Isotropic diffusion reaction equations yield a
detailed picture based on T1Gd and T2-FLAIR MRI images [31]. Other studies have employed
histopathology [25]. The anisotropic continuum models discussed in §2.1 likewise built on MRI data,
drawing on DTI images to compute the diffusion matrix [26,47,63,68,202].

Due to the relatively low computational cost of continuum models, they can be employed in Bayesian
sampling schemes as illustrated by Lipkova et al. [203], who infer model parameters based on MRI and
PET images using a Markov Chain Monte Carlo algorithm. Based on a clinical study conducted on eight
patients, Lipkova et al. demonstrate that their Bayesian approach can be used to design personalized
radiotherapy plans that harm less healthy tissue than the standard treatment protocol while achieving
the same efficiency in terms of tumour recurrence within a predefined volume.

Ezhov et al. [204] address the same inverse problem using machine learning in tandem with
continuum models. Ezhov et al. construct a library of 100 000 simulations with different parameter
values and use their atlas to train a neural network. The trained neural network can infer the patient-
specific model parameters based on MRI images within minutes, allowing for effortless model
personalization. Today, continuum models are thus at the point where they have the potential to enter
clinical settings and contribute to personalized treatments. While the same does not yet hold for
agent-based models due to their high computational cost, machine learning might likewise help to
overcome this obstacle in the future, as discussed by Jørgensen et al. [198]. Machine-learning
algorithms would play the same role as they do in continuum models by circumventing the need to
produce further simulations once a surrogate model or inference algorithm has been trained. Similar
strategies are applied when dealing with agent-based models outside of cancer research [205].

Like imaging data, molecular data offer unique insights into GBM [206,207]. In particular, different
sequencing techniques, including bulk RNA-seq [208], scRNA-seq [209–214] (recently reviewed in
[215,216]) and spatial RNA-seq [217], have helped researchers to uncover different aspects of brain
tumours. Sequencing data have thus contributed to our understanding of important cell types, the
nature of the invasive tumour front, the spatial cellular organization of the tumours and the molecular
basis of the heterogeneity of GBM. For instance, Ravi et al. [217] recently identified spatially distinct
clusters of genes via spatial transcriptomics, and Neftel et al. [209] identified four main cellular states
among malignant tumour cells by analysing data at the single-cell level. Furthermore, Neftel et al.
demonstrated that the relative frequency of these four states varies between GBM samples. On the one
hand, such information on the heterogeneity of GBM is valuable in its own right and can help to
inform the underlying assumptions used in the mathematical models. As exemplified in §2.2,
mathematical models thus present a unique tool to investigate the implications of such information on
the tumour phenotype. On the other hand, the vast number of spatial GBM sequencing data that is
becoming available can directly be used in parameter inference, model selection or validation of
model predictions. Thus, mathematical models might be applied to fit the cell-type distributions that
spatial GBM sequencing data uncover.
6. Clinical application of spatio-temporal modelling in GBM
GBM is a biologically complex and dynamic tumour that exists within the intricate and responsive brain
environment. Parcelling and modelling discreet aspects of these biological processes and systems holds
the potential for numerous direct clinical care applications and has the potential to address several areas
of unmet need.

Mathematical diffusion tensor modelling is currently widely used in the context of MRI diffusion
tensor-based tractography for the modelling of white matter tracts. Understanding patient-specific
anatomy, and anatomico-pathological relationships, is critical for effective surgical planning and
avoidance of iatrogenic injury [218]. Future refinements in data modelling can be expected to
improve spatial resolution and reliability, which would directly translate to improved validity of
neuro-imaging with direct clinical applications—as exemplified in the study by Lipkova et al.
discussed in §5.



Table 3. Overview of how different model types can deal with properties that define GBM growth.

phenomenon continuum models agent-based models

invasion of

healthy tissue

diffusion (and advection) terms are included

in the PDE.

stochastic (and deterministic) rules dictate the

migration of individual cells.

anisotropies in

tumour growth

e.g. anisotropic diffusion tensor is used

based on brain structure.

by allowing for feedback between the cells

and environment, one can introduce

preferential migration, leading to anisotropic

growth along structures.

cell hierarchy and

lineage

a set of coupled PDEs described sub-

populations with different properties.

individual cells underlie rules that are affected

by cell type.

mitosis and

apoptosis

e.g. logarithmic or exponential source terms

are included in the PDE. These might link

different sub-populations and be associated

with properties of the environment.

both phenomena underlie stochastic or

deterministic rules that are invoked for each

agent.
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A key concern in clinical practice is the prediction of tumour growth patterns, sites of progression and
the location of tumour recurrence. This triad is important for both therapeutic planning and
prognostication [219]. Mathematical models have the potential to refine these facets of care and hence
to offer highly tailored conformal radiation dosing and targeted surgical supra-marginal resection
[220,221]. These therapeutic adaptations might maximize the prognostic benefits and lead to the
destruction of the tumour while sparing normal neural tissue. Similarly, when combined with the
modelling of growth rates, this information could be assimilated to generate more accurate prognostic
maps with the prediction of anatomico-pathological functional deficits and overall prognosis.

Recent years have been characterized by increasing recognition of GBM’s molecular intra- and inter-
tumoural heterogeneity and its functional consequences. This is exemplified in the evolution of the WHO
classification of tumours from a purely histopathological to a fully integrated molecular classification
[222]. As we have summarized, mathematical models of GBM hold the potential to illustrate novel
prognostic aspects of tumour biology and the microenvironment not currently captured. These might
include structural metrics, such as tissue density and cellular lineage, or functional ones, including
oxygenation, nutrient supply and metabolism.

The potential for applying spatio-temporal mathematical modelling of GBM in clinical care is
substantial but thus far remains largely unrealized. As summarized in this review, the foundation of
knowledge in this area is now considerable. The stage is set for those who wish to advance the field
from theoretical models to practical applications.
7. Summary and discussion
This article presents an overview of mathematical models that provide means to scrutinize and predict
the spatial and temporal evolution of tumours. While we focus on models for GBM and highlight
characteristics of this aggressive cancer type, we also attempt to give a rounded picture of state-of-the-
art approaches across the field of mathematical oncology.

Spatially resolved tumour models fall into two main categories: they either treat the tumour cell
density as a continuous variable (cf. §2), or deal with autonomous agents representing individual cells
or cell clusters (cf. §3).

The computational cost associated with continuous models is relatively low. This property allows for
the modelling of the entire tumour volume and the application to a wide variety of (patient-specific)
data. Furthermore, continuous models can capture many of the characteristics of GBM. We summarize
how continuous models achieve this goal in table 3. GBM spreads anisotropically following existing
structures in the brain, including white matter tracks and blood vessels. On a macroscopic level, this
behaviour is well described by reaction–diffusion equations when including an anisotropic diffusion
term (cf. §2.1).
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Moreover, by including source terms that couple a set of such reaction–diffusion equations,
continuous models can link different cell sub-populations and account for interactions with the
environment (cf. §2.3). Continuous models are hereby able to encapsulate the hierarchical nature that
is a defining feature of GBM (cf. §2.2). The models also show great versatility: by including additional
biologically motivated terms into the reaction–diffusion equations, continuous models can be
painlessly extended to include phenomena ranging from immune responses to the impact of
radiotherapy.

Tumour cells must always be understood in relation to their surroundings. In this connection, aspects such
as nutrition flows, the ECM or the vasculature are often (if not always) represented using continuous models.
Even when using agent-based models, continuous models thus play a vital role. However, continuous models
have their drawbacks. They do not account for the stochastic events that dominate at low tumour cell densities.
Consequently, they are not ideal for addressing some questions regarding the invasive tumour front or tumour
recurrence that is a prevalent obstacle in treating GBM.

At low cell densities, agent-based models have an edge. Such models come in many different
flavours. Some agent-based models borrow from the description of other phenomena. They thus lean
on theoretical models, e.g. from solid-state physics, posing biological events in terms of physical forces
and potentials (cf. §§3.1.3, 3.2.1 and 3.2.2). Other models rely on purely stochastic rules to encode
biological information (cf. §§3.1.1 and 3.1.2). Moreover, agent-based models differ in the details that
they encompass. While some models address aspects of cell morphology, others do not. While some
models define a lower threshold for their spatial resolution by employing a lattice on which the
agents move, others do not.

Like continuous models, agent-based models are able to capture the essential properties of GBM
(table 3). Anisotropic diffusion along existing structures can be included by altering the rules that
govern cell migration based on the environment. Moreover, by altering these rules based on the cell
type, the hierarchical organization of GBM can be incorporated into the model.

The high computational expense of agent-based models constitutes their main drawback. It can be a
significant stumbling block on the way to unleashing their full potential. However, this shortcoming can
be partly circumvented. One might thus combine different approaches into a hybrid model bridging
across the scales involved (cf. §§4.1 and 4.2). Alternatively, one might study small cell populations to
derive emergent macroscopic properties that can be used to calibrate models on a coarser scale (cf.
§4.3). Indeed, one of the main assets of agent-based models is their ability to link an understanding of
individual cells to macroscopic events. To further lower the computational cost when confronting the
models with data, one might use sophisticated statistical techniques or machine-learning methods that
demonstrably reduce the number of models that need to be constructed [198,223], as discussed in §5.

Each of the available mathematical models has its strengths and weaknesses. Which model to employ
will hence be dictated by the research question and the available data. Firstly, some approaches are better
suited for depicting certain phenomena than other methods are. One might drastically simplify the work
associated with the practical implementation by choosing the method wisely. Secondly, not all models are
equally informative. The question is whether the additional information can be exploited and for what
purpose [224]. On the one hand, the chosen model sets limits on the insights that one might gain.
This notion favours more complex models. On the other hand, one should avoid cracking nuts with a
sledgehammer. To exemplify this, it is thus worth noting that non-spatial models make full use of
certain types of (patient-specific) data while being unable to address any questions on tumour
morphology. They are undoubtedly very valuable tools in their own right. The same holds for each
spatio-temporal cancer model presented earlier. With this in mind, we hope that our review provides
a useful guide and helps the reader select a suitable mathematical model for their research.

This article aims to give an extensive overview of state-of-the-art modelling techniques. However, we
left out some ideas and concepts that go beyond the scope of this review. For instance, one could use
agent-based models incorporating evolutionary dynamics [225] or even evolutionary game theory [226].

Mathematical models are only useful if they describe and relate to experimental data. Our review thus
ends with a summary and discussion of the application of mathematical models to experimental data and
its clinical relevance. A wealth of imaging and molecular data is becoming available, particularly due to
advances in single-cell and spatial transcriptomics. At the same time, researchers have begun to
implement spatial models into statistical frameworks to perform systematic inference based on these
data. While few such inference analyses have yet been published, advances in machine learning and
computing power promise to further enable the systematic incorporation of imaging and molecular data
into the spatial models of GBM. We thus envision a greater impact of mathematical modelling in
unravelling the basic biology of GBM and its applications in clinical treatment in the near future.



royalsocietypublishing.org/journal/rsos
R.Soc.Ope

20

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

28
 M

ar
ch

 2
02

3 
Data accessibility. This article has no additional data.
Authors’ contributions. A.C.S.J.: conceptualization, investigation, project administration, visualization, writing—original
draft and writing—review and editing; C.S.H.: investigation, project administration and writing—review and editing;
M.S.: investigation, project administration and writing—review and editing; W.T.: investigation and writing—review
and editing; S.R.K.: writing—review and editing; D.G.: writing—review and editing; M.F.L.: funding acquisition,
project administration and writing—review and editing; S.P.: funding acquisition, project administration and
writing—review and editing; S.M.: funding acquisition, project administration and writing—review and editing;
V.S.: conceptualization, investigation, project administration, supervision and writing—review and editing.

All authors gave final approval for publication and agreed to be held accountable for the work performed therein.
Conflict of interest declaration. We declare we have no competing interests.
Funding. This work was supported by The Oli Hilsdon Foundation through The Brain Tumour Charity (grant no.
GN-000595), in connection with the program ‘Mapping the Spatio-temporal Heterogeneity of Glioblastoma
Invasion’. Work at the Cancer Institute Genomics Translational Technology Platform was supported by the Cancer
Research UK (CRUK) City of London Centre Award (C7893/A26233). C.S.H. was supported by a CRUK Pioneer
Award (C70568/A29787), an AMS Starter Grant (SGL021\1034), a National Brain Appeal Innovation Award
(NBA/NSG/BTB) and UCLH BRC NIHR funding. S.R.K. was supported by The Edinburgh-UCL CRUK Brain
Tumour Centre of Excellence award (C7893/A27590). M.F.L. was supported by the Rosetrees Trust and the John
Black Charitable Foundation (grant no. A2200). S.P. was supported by CRUK (awards C55501/A21203 and 7550844).
n
Sci.10:22
References
1444
1. Davis M. 2016 Glioblastoma: overview of disease
and treatment. Clin. J. Oncol. Nurs. 20, S2–S8.
(doi:10.1188/16.CJON.S1.2-8)

2. Lan X et al. 2017 Fate mapping of human
glioblastoma reveals an invariant stem cell
hierarchy. Nature 549, 227–232. (doi:10.1038/
nature23666)

3. Wang M, Dignam J, Won M, Curran W, Mehta
M, Gilbert M. 2015 Variation over time and
interdependence between disease progression
and death among patients with glioblastoma
on RTOG 0525. Neuro Oncol. 17, 999–1006.
(doi:10.1093/neuonc/nov009)

4. Stupp R et al. 2005 Radiotherapy plus
concomitant and adjuvant temozolomide for
glioblastoma. N Engl. J. Med. 352, 987–96.
(doi:10.1056/NEJMoa043330)

5. Stupp R et al. 2009 Effects of radiotherapy with
concomitant and adjuvant temozolomide versus
radiotherapy alone on survival in
glioblastoma in a randomised phase III study: 5-
year analysis of the EORTC-NCIC trial. Lancet
Oncol. 10, 459–466. (doi:10.1016/S1470-
2045(09)70025-7)

6. Anderson ARA, Quaranta V. 2008 Integrative
mathematical oncology. Nat. Rev. Cancer 8,
227–234. (doi:10.1038/nrc2329)

7. Altrock PM, Liu LL, Michor F. 2015 The
mathematics of cancer: integrating quantitative
models. Nat. Rev. Cancer 15, 730–745. (doi:10.
1038/nrc4029)

8. Anderson ARA, Maini PK. 2018 Mathematical
oncology. Bull. Math. Biol. 80, 945–953.
(doi:10.1007/s11538-018-0423-5)

9. Cranmer K, Brehmer J, Louppe G. 2020 The
frontier of simulation-based inference. Proc. Natl
Acad. Sci. USA 117, 30 055–30 062. (doi:10.
1073/pnas.1912789117)

10. Zadeh Shirazi A, Fornaciari E, McDonnell MD,
Yaghoobi M, Cevallos Y, Tello-Oquendo L, Inca
D, Gomez GA. 2020 The application of deep
convolutional neural networks to brain cancer
images: a survey. J. Per. Med. 10, 224. (doi:10.
3390/jpm10040224)
11. Finch A, Solomou G, Wykes V, Pohl U, Bardella
C, Watts C. 2021 Advances in research of adult
gliomas. Int. J. Mol. Sci. 22, E924. (doi:10.3390/
ijms22020924)

12. Metzcar J, Wang Y, Heiland R, Macklin P. 2019 A
review of cell-based computational modeling in
cancer biology. JCO Clin. Cancer Inf. 3, 1–13.

13. Weerasinghe WMH, Burrage P, Burrage K,
Nicolau D. 2019 Mathematical models of cancer
cell plasticity. J. Oncol. 2019, 1–14. (doi:10.
1155/2019/2403483)

14. Falco J et al. 2021 In silico mathematical
modelling for glioblastoma: a critical review and
a patient-specific case. J. Clin. Med. 10, 2169.
(doi:10.3390/jcm10102169)

15. Jarrett AM, Lima EA, Hormuth DA, McKenna MT,
Feng X, Ekrut DA, Resende AC, Brock A,
Yankeelov TE. 2018 Mathematical models of
tumor cell proliferation: a review of the
literature. Expert Rev. Anticancer Ther. 18,
1271–1286. (doi:10.1080/14737140.2018.
1527689)

16. Karolak A, Markov DA, McCawley LJ, Rejniak KA.
2018 Towards personalized computational
oncology: from spatial models of tumour spheroids,
to organoids, to tissues. J. R. Soc. Interface 15,
20170703. (doi:10.1098/rsif.2017.0703)

17. Lowengrub JS, Frieboes HB, Jin F, Chuang YL, Li
X, Macklin P, Wise SM, Cristini V. 2010 Nonlinear
modelling of cancer: bridging the gap between
cells and tumours. Nonlinearity 23, R1–R9.
(doi:10.1088/0951-7715/23/1/R01)

18. Liedekerke P, Palm M, Jagiella N, Drasdo D. 2015
Simulating tissue mechanics with agent-based
models: concepts, perspectives and some novel
results. Comput. Particle Mech. 2, 401–444.

19. Deisboeck T, Wang Z, Macklin P, Cristini V. 2010
Multiscale cancer modeling. Annu. Rev. Biomed.
Eng. 13, 127–55. (doi:10.1146/annurev-bioeng-
071910-124729)

20. Chamseddine I, Rejniak K. 2019 Hybrid
modeling frameworks of tumor development
and treatment. Wiley Interdiscip. Rev.: Syst. Biol.
Med. 12, e1461.
21. Falco J et al. 2021 In silico mathematical
modelling for glioblastoma: a critical review and
a patient-specific case. J. Clin. Med. 10, 2169.
(doi:10.3390/jcm10102169)

22. Ellis H, Greenslade M, Powell B, Spiteri I,
Sottoriva A, Kurian K. 2015 Current challenges
in glioblastoma: intratumour heterogeneity,
residual disease, and models to predict disease
recurrence. Front. Oncol. 5, 251. (doi:10.3389/
fonc.2015.00251)

23. Alfonso JC, Talkenberger K, Seifert M, Klink B,
Hawkins-Daarud A, Swanson KR, Hatzikirou H,
Deutsch A. 2017 The biology and mathematical
modelling of glioma invasion: a review.
J. R. Soc. Interface 14, 20170490. (doi:10.1098/
rsif.2017.0490)

24. McKinnon C, Nandhabalan M, Murray SA, Plaha P.
2021 Glioblastoma: clinical presentation, diagnosis,
and management. BMJ (Clinical research ed) 374,
n1560. (doi:10.1136/bmj.n1560)

25. Frieboes HB, Lowengrub JS, Wise S, Zheng X,
Macklin P, Bearer EL, Cristini V. 2007 Computer
simulation of glioma growth and morphology.
NeuroImage 37(Suppl 1), S59–S70. (doi:10.
1016/j.neuroimage.2007.03.008)

26. Swan A, Hillen T, Bowman JC, Murtha AD. 2018
A patient-specific anisotropic diffusion model for
brain tumour spread. Bull. Math. Biol. 80,
1259–1291. (doi:10.1007/s11538-017-0271-8)

27. Swanson K, Alvord E, Murray J. 2002 Virtual
brain tumours (gliomas) enhance the reality of
medical imaging and highlight inadequacies of
current therapy. Br. J. Cancer 86, 14–18.
(doi:10.1038/sj.bjc.6600021)

28. Frieboes HB, Zheng X, Sun CH, Tromberg B,
Gatenby R, Cristini V. 2006 An integrated
computational/experimental model of tumor
invasion. Cancer Res. 66, 1597–1604. (doi:10.
1158/0008-5472.CAN-05-3166)

29. Swanson K, Alvord E, Murray J. 2000 A
quantitative model for differential motility of
gliomas in grey and white matter. Cell Prolif.
33, 317–329. (doi:10.1046/j.1365-2184.2000.
00177.x)

http://dx.doi.org/10.1188/16.CJON.S1.2-8
http://dx.doi.org/10.1038/nature23666
http://dx.doi.org/10.1038/nature23666
http://dx.doi.org/10.1093/neuonc/nov009
http://dx.doi.org/10.1056/NEJMoa043330
http://dx.doi.org/10.1016/S1470-2045(09)70025-7
http://dx.doi.org/10.1016/S1470-2045(09)70025-7
http://dx.doi.org/10.1038/nrc2329
http://dx.doi.org/10.1038/nrc4029
http://dx.doi.org/10.1038/nrc4029
http://dx.doi.org/10.1007/s11538-018-0423-5
http://dx.doi.org/10.1073/pnas.1912789117
http://dx.doi.org/10.1073/pnas.1912789117
http://dx.doi.org/10.3390/jpm10040224
http://dx.doi.org/10.3390/jpm10040224
http://dx.doi.org/10.3390/ijms22020924
http://dx.doi.org/10.3390/ijms22020924
http://dx.doi.org/10.1155/2019/2403483
http://dx.doi.org/10.1155/2019/2403483
http://dx.doi.org/10.3390/jcm10102169
http://dx.doi.org/10.1080/14737140.2018.1527689
http://dx.doi.org/10.1080/14737140.2018.1527689
http://dx.doi.org/10.1098/rsif.2017.0703
http://dx.doi.org/10.1088/0951-7715/23/1/R01
http://dx.doi.org/10.1146/annurev-bioeng-071910-124729
http://dx.doi.org/10.1146/annurev-bioeng-071910-124729
http://dx.doi.org/10.3390/jcm10102169
http://dx.doi.org/10.3389/fonc.2015.00251
http://dx.doi.org/10.3389/fonc.2015.00251
http://dx.doi.org/10.1098/rsif.2017.0490
http://dx.doi.org/10.1098/rsif.2017.0490
http://dx.doi.org/10.1136/bmj.n1560
http://dx.doi.org/10.1016/j.neuroimage.2007.03.008
http://dx.doi.org/10.1016/j.neuroimage.2007.03.008
http://dx.doi.org/10.1007/s11538-017-0271-8
http://dx.doi.org/10.1038/sj.bjc.6600021
http://dx.doi.org/10.1158/0008-5472.CAN-05-3166
http://dx.doi.org/10.1158/0008-5472.CAN-05-3166
http://dx.doi.org/10.1046/j.1365-2184.2000.00177.x
http://dx.doi.org/10.1046/j.1365-2184.2000.00177.x


royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:221444
21

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

28
 M

ar
ch

 2
02

3 
30. Gu S et al. 2012 Applying a patient-specific bio-
mathematical model of glioma growth to
develop virtual [18F]-FMISO-PET images. Math.
Med. Biol.: A J. IMA 29, 31–48. (doi:10.1093/
imammb/dqr002)

31. Corwin D, Holdsworth C, Rockne RC, Trister AD,
Mrugala MM, Rockhill JK, Stewart RD, Phillips
M, Swanson KR. 2013 Toward patient-specific,
biologically optimized radiation therapy plans
for the treatment of glioblastoma. PLoS ONE 8,
e79115. (doi:10.1371/journal.pone.0079115)

32. Neal ML et al. 2013 Discriminating survival
outcomes in patients with glioblastoma using a
simulation-based, patient-specific response
metric. PLoS ONE 8, e51951. (doi:10.1371/
journal.pone.0051951)

33. Jackson PR, Juliano J, Hawkins-Daarud A,
Rockne RC, Swanson KR. 2015 Patient-specific
mathematical neuro-oncology: using a simple
proliferation and invasion tumor model to
inform clinical practice. Bull. Math. Biol. 77,
846–856. (doi:10.1007/s11538-015-0067-7)

34. Wang Z, Deisboeck TS. 2009 Computational
modeling of brain tumors: discrete, continuum or
hybrid?, pp. 381–393. Netherlands: Springer.

35. Zheng X, Wise S, Cristini V. 2005 Nonlinear
simulation of tumor necrosis, neo-
vascularization and tissue invasion via an
adaptive finite-element/level-set method. Bull.
Math. Biol. 67, 211–259. (doi:10.1016/j.bulm.
2004.08.001)

36. Dattoli G, Licciardi S, Guiot C, Deisboeck TS.
2014 Capillary network, cancer and kleiber law.
(http://arxiv.org/abs/1403.4443).

37. Powathil G, Kohandel M, Milosevic M,
Sivaloganathan S. 2012 Modeling the spatial
distribution of chronic tumor hypoxia:
implications for experimental and clinical
studies. Comput. Math. Methods Med. 2012,
410602. (doi:10.1155/2012/410602)

38. Gerlee P, Nelander S. 2012 The impact of
phenotypic switching on glioblastoma growth
and invasion. PLoS Comput. Biol. 8, e1002556.
(doi:10.1371/journal.pcbi.1002556)

39. Cristini V, Lowengrub J, Nie Q. 2003 Nonlinear
simulation of tumor growth. J. Math. Biol. 46,
191–224. (doi:10.1007/s00285-002-0174-6)

40. Sinek J, Frieboes H, Zheng X, Cristini V. 2004
Two-dimensional chemotherapy simulations
demonstrate fundamental transport and tumor
response limitations involving nanoparticles.
Biomed. Microdevices 6, 297–309. (doi:10.1023/
B:BMMD.0000048562.29657.64)

41. Cristini V, Frieboes HB, Gatenby R, Caserta S, Ferrari
M, Sinek J. 2005 Morphologic instability and cancer
invasion. Clin. Cancer Res. 11(19 Pt 1), 6772–6779.
(doi:10.1158/1078-0432.CCR-05-0852)

42. Mahlbacher G, Curtis LT, Lowengrub J, Frieboes
HB. 2018 Mathematical modeling of tumor-
associated macrophage interactions with the
cancer microenvironment. J. Immunother. Cancer
6, 10. (doi:10.1186/s40425-017-0313-7)

43. Bull JA, Mech F, Quaiser T, Waters S, Byrne H.
2020 Mathematical modelling reveals cellular
dynamics within tumour spheroids. PLoS
Comput. Biol. 16, e1007961. (doi:10.1371/
journal.pcbi.1007961)

44. Suarez C, Maglietti F, Colonna M, Breitburd K,
Marshall G. 2012 Mathematical modeling of
human glioma growth based on brain
topological structures: study of two clinical
cases. PLoS ONE 7, e39616. (doi:10.1371/
journal.pone.0039616)

45. Rutter E et al. 2017 Mathematical analysis of
glioma growth in a murine model. Sci. Rep. 7,
1–6. (doi:10.1038/s41598-017-02462-0)

46. Giatili S, Stamatakos G. 2012 A detailed
numerical treatment of the boundary conditions
imposed by the skull on a diffusion–reaction
model of glioma tumor growth. Clinical
validation aspects. Appl. Math. Comput. 218,
8779–8799.

47. Painter K, Hillen T. 2013 Mathematical
modelling of glioma growth: the use of
diffusion tensor imaging (DTI) data to predict
the anisotropic pathways of cancer invasion. J.
Theor. Biol. 323, 25–39. (doi:10.1016/j.jtbi.
2013.01.014)

48. Eftimie R, Bramson J, Earn D. 2010 Interactions
between the immune system and cancer: a brief
review of non-spatial mathematical models.
Bull. Math. Biol. 73, 2–32. (doi:10.1007/
s11538-010-9526-3)

49. Murphy H, Jaafari H, Dobrovolny HM. 2016
Differences in predictions of ODE models of tumor
growth: a cautionary example. BMC Cancer 16,
163. (doi:10.1186/s12885-016-2164-x)

50. Barros LRC, Paixão EA, Valli AMP, Naozuka GT,
Fassoni AC, Almeida RC. 2021 CART-T math-a
mathematical model of CAR-T immunotherapy in
preclinical studies of hematological cancers.
Cancers 13, 2941. (doi:10.3390/cancers13122941)

51. Yu VY, Nguyen D, O’Connor D, Ruan D, Kaprealian
T, Chin R, Sheng K. 2021 Treating glioblastoma
multiforme (GBM) with super hyperfractionated
radiation therapy: implication of temporal dose
fractionation optimization including cancer stem
cell dynamics. PLoS ONE 16, e0245676. (doi:10.
1371/journal.pone.0245676)

52. Sachs R, Hlatky L, Hahnfeldt P. 2001 Simple ODE
models of tumor growth and anti-angiogenic or
radiation treatment. Math. Comput. Modell. 33,
1297–1305. (doi:10.1016/S0895-7177(00)00316-2)

53. Simeoni M, Magni P, Cammia C, De Nicolao G,
Croci V, Pesenti E, Germani M, Poggesi I,
Rocchetti M. 2004 Predictive pharmacokinetic-
pharmacodynamic modeling of tumor growth
kinetics in xenograft models after administration
of anticancer agents. Cancer Res. 64, 1094–101.
(doi:10.1158/0008-5472.CAN-03-2524)

54. Koziol J, Falls T, Schnitzer J. 2020 Different ODE
models of tumor growth can deliver similar
results. BMC Cancer 20, 226. (doi:10.1186/
s12885-020-6703-0)

55. Scherer HJ. 1938 Structural development in
gliomas. Am. J. Cancer 34, 333–351.

56. Giese A, Westphal M. 1996 Glioma invasion in
the central nervous system. Neurosurgery 39,
235–250. (doi:discussion 250–2)

57. Rao JS. 2003 Molecular mechanisms of glioma
invasiveness: the role of proteases. Nat. Rev.
Cancer 3, 489–501. (doi:10.1038/nrc1121)

58. Konukoglu E, Clatz O, Bondiau PY, Delingette H,
Ayache N. 2010 Extrapolating glioma invasion
margin in brain magnetic resonance images:
suggesting new irradiation margins. Med. Image
Anal. 14, 111–125. (doi:10.1016/j.media.2009.
11.005)
59. Gritsenko PG, Ilina O, Friedl P. 2012 Interstitial
guidance of cancer invasion. J. Pathol. 226,
185–199. (doi:10.1002/path.3031)

60. Cuddapah VA, Robel S, Watkins S, Sontheimer H.
2014 A neurocentric perspective on glioma
invasion. Nat. Rev. Neurosci. 15, 455–465.
(doi:10.1038/nrn3765)

61. Brooks LJ et al. 2020 The white matter is a pro-
differentiative microenvironment for
glioblastoma. bioRxiv. Available from: https://
www.biorxiv.org/content/early/2020/11/16/
2020.11.14.379594.

62. Tracqui P, Cruywagen G, Woodward D, Bartoo G,
Murray J, Alvord E. 1995 A mathematical model
of glioma growth: the effect of chemotherapy on
spatio-temporal growth. Cell Prolif. 28, 17–31.
(doi:10.1111/j.1365-2184.1995.tb00036.x)

63. Jbabdi S, Mandonnet E, Duffau H, Capelle L,
Swanson KR, Pélégrini-Issac M, Guillevin R,
Benali H. 2005 Simulation of anisotropic growth
of low-grade gliomas using diffusion tensor
imaging. Magn. Reson. Med. 54, 616–624.
(doi:10.1002/mrm.20625)

64. Hogea C, Davatzikos C, Biros G. 2008 An image-
driven parameter estimation problem for a
reaction–diffusion glioma growth model with
mass effects. J. Math. Biol. 56, 793–825.
(doi:10.1007/s00285-007-0139-x)

65. Antonopoulos M, Dionysiou D, Stamatakos G,
Uzunoglu N. 2019 Three-dimensional tumor
growth in time-varying chemical fields: a
modeling framework and theoretical study. BMC
Bioinf. 20, 442. (doi:10.1186/s12859-019-2997-9)

66. Beppu T, Inoue T, Shibata Y, Kurose A, Arai H,
Ogasawara K, Ogawa A, Nakamura S, Kabasawa
H. 2003 Measurement of fractional anisotropy
using diffusion tensor MRI in supratentorial
astrocytic tumors. J. Neurooncol. 63, 109–116.
(doi:10.1023/a:1023977520909)

67. Hillen T, Painter KJ. 2013 Transport and
anisotropic diffusion models for movement in
oriented habitats, pp. 177–222. Berlin,
Heidelberg: Springer. (doi:10.1007/978-3-642-
35497-7_7)

68. Engwer C, Hillen T, Knappitsch M, Surulescu C.
2015 Glioma follow white matter tracts: a
multiscale DTI-based model. J. Math. Biol. 71,
551–582. (doi:10.1007/s00285-014-0822-7)

69. Engwer C, Knappitsch M, Surulescu C. 2016 A
multiscale model for glioma spread including
cell-tissue interactions and proliferation. Math.
Biosci. Eng.: MBE 13, 443–460. (doi:10.3934/
mbe.2015011)

70. Belmonte-Beitia J, Woolley T, Scott J, Maini P,
Gaffney E. 2013 Modelling biological invasions:
individual to population scales at interfaces. J.
Theor. Biol. 334, 1–12. (doi:10.1016/j.jtbi.2013.
05.033)

71. Lee M, Chen GT, Puttock E, Wang K, Edwards
RA, Waterman ML, Lowengrub J. 2017
Mathematical modeling links Wnt signaling to
emergent patterns of metabolism in colon
cancer. Mol. Syst. Biol. 13, 912. (doi:10.15252/
msb.20167386)

72. Singh SK, Hawkins C, Clarke ID, Squire JA,
Bayani J, Hide T, Henkelman RM, Cusimano MD,
Dirks PB. 2004 Identification of human brain
tumour initiating cells. Nature 432, 396–401.
(doi:10.1038/nature03128)

http://dx.doi.org/10.1093/imammb/dqr002
http://dx.doi.org/10.1093/imammb/dqr002
http://dx.doi.org/10.1371/journal.pone.0079115
http://dx.doi.org/10.1371/journal.pone.0051951
http://dx.doi.org/10.1371/journal.pone.0051951
http://dx.doi.org/10.1007/s11538-015-0067-7
http://dx.doi.org/10.1016/j.bulm.2004.08.001
http://dx.doi.org/10.1016/j.bulm.2004.08.001
http://arxiv.org/abs/1403.4443
http://dx.doi.org/10.1155/2012/410602
http://dx.doi.org/10.1371/journal.pcbi.1002556
http://dx.doi.org/10.1007/s00285-002-0174-6
http://dx.doi.org/10.1023/B:BMMD.0000048562.29657.64
http://dx.doi.org/10.1023/B:BMMD.0000048562.29657.64
http://dx.doi.org/10.1158/1078-0432.CCR-05-0852
http://dx.doi.org/10.1186/s40425-017-0313-7
http://dx.doi.org/10.1371/journal.pcbi.1007961
http://dx.doi.org/10.1371/journal.pcbi.1007961
http://dx.doi.org/10.1371/journal.pone.0039616
http://dx.doi.org/10.1371/journal.pone.0039616
http://dx.doi.org/10.1038/s41598-017-02462-0
http://dx.doi.org/10.1016/j.jtbi.2013.01.014
http://dx.doi.org/10.1016/j.jtbi.2013.01.014
http://dx.doi.org/10.1007/s11538-010-9526-3
http://dx.doi.org/10.1007/s11538-010-9526-3
http://dx.doi.org/10.1186/s12885-016-2164-x
http://dx.doi.org/10.3390/cancers13122941
http://dx.doi.org/10.1371/journal.pone.0245676
http://dx.doi.org/10.1371/journal.pone.0245676
http://dx.doi.org/10.1016/S0895-7177(00)00316-2
http://dx.doi.org/10.1158/0008-5472.CAN-03-2524
http://dx.doi.org/10.1186/s12885-020-6703-0
http://dx.doi.org/10.1186/s12885-020-6703-0
http://dx.doi.org/discussion 250&ndash;2
http://dx.doi.org/10.1038/nrc1121
http://dx.doi.org/10.1016/j.media.2009.11.005
http://dx.doi.org/10.1016/j.media.2009.11.005
http://dx.doi.org/10.1002/path.3031
http://dx.doi.org/10.1038/nrn3765
https://www.biorxiv.org/content/early/2020/11/16/2020.11.14.379594
https://www.biorxiv.org/content/early/2020/11/16/2020.11.14.379594
https://www.biorxiv.org/content/early/2020/11/16/2020.11.14.379594
http://dx.doi.org/10.1111/j.1365-2184.1995.tb00036.x
http://dx.doi.org/10.1002/mrm.20625
http://dx.doi.org/10.1007/s00285-007-0139-x
http://dx.doi.org/10.1186/s12859-019-2997-9
http://dx.doi.org/10.1023/a:1023977520909
http://dx.doi.org/10.1007/978-3-642-35497-7_7
http://dx.doi.org/10.1007/978-3-642-35497-7_7
http://dx.doi.org/10.1007/s00285-014-0822-7
http://dx.doi.org/10.3934/mbe.2015011
http://dx.doi.org/10.3934/mbe.2015011
http://dx.doi.org/10.1016/j.jtbi.2013.05.033
http://dx.doi.org/10.1016/j.jtbi.2013.05.033
http://dx.doi.org/10.15252/msb.20167386
http://dx.doi.org/10.15252/msb.20167386
http://dx.doi.org/10.1038/nature03128


royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:221444
22

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

28
 M

ar
ch

 2
02

3 
73. Venere M, Fine HA, Dirks PB, Rich JN. 2011
Cancer stem cells in gliomas: identifying and
understanding the apex cell in cancer’s
hierarchy. Glia 59, 1148–1154. (doi:10.1002/
glia.21185)

74. Wise S, Lowengrub J, Frieboes H, Cristini V.
2008 Three-dimensional multispecies nonlinear
tumor growth–I model and numerical method.
J. Theor. Biol. 253, 524–543. (doi:10.1016/j.jtbi.
2008.03.027)

75. Wise S, Lowengrub J, Cristini V. 2011 An
adaptive multigrid algorithm for simulating
solid tumor growth using mixture models.
Math. Comput. Modell. 53, 1–20. (doi:10.1016/j.
mcm.2010.07.007)

76. Byrne HM, Chaplain M. 1996 Growth of necrotic
tumors in the presence and absence of
inhibitors. Math. Biosci. 135, 187–216. (doi:10.
1016/0025-5564(96)00023-5)

77. Frieboes HB, Smith BR, Chuang YL, Ito K,
Roettgers AM, Gambhir SS, Cristini V. 2013 An
integrated computational/experimental model
of lymphoma growth. PLoS Comput. Biol. 9,
e1003008. (doi:10.1371/journal.pcbi.1003008)

78. Kim J, Kang K, Lowengrub J. 2004 Conservative
multigrid methods for ternary Cahn-Hilliard
systems. Commun. Math. Sci. - COMMUN. MATH.
SCI. 2, 53–77.

79. Wise S, Lowengrub J, Kim J, Johnson W. 2004
Efficient phase-field simulation of quantum dot
formation in a strained heteroepitaxial film.
Superlattices Microstruct. 36, 293–304. (doi:10.
1016/j.spmi.2004.08.029)

80. Kim J, Lowengrub J. 2005 Phase field modeling
and simulation of three-phase flows. Interfaces
Free Boundaries 7, 435–466. (doi:10.4171/IFB/132)

81. Kunche S, Yan H, Calof AL, Lowengrub JS,
Lander AD. 2016 Feedback, lineages and self-
organizing morphogenesis. PLoS Comput. Biol.
12, e1004814. (doi:10.1371/journal.pcbi.
1004814)

82. Yan H, Romero-Lopez M, Frieboes HB, Hughes
CCW, Lowengrub JS. 2017 Multiscale modeling
of glioblastoma suggests that the partial
disruption of vessel/cancer stem cell crosstalk
can promote tumor regression without
increasing invasiveness. IEEE Trans. Biomed. Eng.
64, 538–548.

83. Yan H, Romero-López M, Benitez LI, Di K,
Frieboes HB, Hughes CC, Bota DA, Lowengrub
JS. 2017 3D mathematical modeling of
glioblastoma suggests that transdifferentiated
vascular endothelial cells mediate resistance to
current standard-of-care therapy. Cancer Res.
77, 4171–4184. (doi:10.1158/0008-5472.CAN-
16-3094)

84. Yan H, Konstorum A, Lowengrub JS. 2018
Three-dimensional spatiotemporal modeling of
colon cancer organoids reveals that multimodal
control of stem cell self-renewal is a critical
determinant of size and shape in early stages of
tumor growth. Bull. Math. Biol. 80, 1404–1433.
(doi:10.1007/s11538-017-0294-1)

85. Chen Y, Wise SM, Shenoy VB, Lowengrub JS.
2014 A stable scheme for a nonlinear,
multiphase tumor growth model with an elastic
membrane. Int. J. Numer. Methods Biomed. Eng.
30, 726–754. (doi:10.1002/cnm.2624)
86. Chen Y, Lowengrub JS. 2014 Tumor growth in
complex, evolving microenvironmental
geometries: a diffuse domain approach. J.
Theor. Biol. 361, 14–30. (doi:10.1016/j.jtbi.
2014.06.024)

87. Chen Y, Lowengrub JS. 2019 Tumor growth and
calcification in evolving microenvironmental
geometries. J. Theor. Biol. 463, 138–154.
(doi:10.1016/j.jtbi.2018.12.006)

88. Ravi VM et al. 2021 Spatiotemporal
heterogeneity of glioblastoma is dictated by
microenvironmental interference. bioRxiv.
https://www.biorxiv.org/content/early/2021/02/
17/2021.02.16.431475.

89. Anderson ARA, Weaver AM, Cummings PT,
Quaranta V. 2006 Tumor morphology and
phenotypic evolution driven by selective
pressure from the microenvironment. Cell 127,
905–915. (doi:10.1016/j.cell.2006.09.042)

90. Jiang Y, Pjesivac-Grbovic J, Cantrell C, Freyer J.
2006 A multiscale model for avascular tumor
growth. Biophys. J. 89, 3884–3894. (doi:10.
1529/biophysj.105.060640)

91. Powathil GG, Gordon KE, Hill LA, Chaplain MA. 2012
Modelling the effects of cell-cycle heterogeneity on
the response of a solid tumour to chemotherapy:
biological insights from a hybrid multiscale cellular
automaton model. J. Theor. Biol. 308, 1–19.
(doi:10.1016/j.jtbi.2012.05.015)

92. Mantzaris N, Webb S, Othmer H. 2004
Mathematical modeling of tumor-induced
angiogenesis. J. Math. Biol. 49, 111–87.
(doi:10.1007/s00285-003-0262-2)

93. Chaplain MAJ. 1996 Avascular growth,
angiogenesis and vascular growth in solid
tumours: the mathematical modelling of the
stages of tumour development. Math. Comput.
Modell. 23, 47–87. (doi:10.1016/0895-
7177(96)00019-2)

94. Orme M, Chaplain M. 1997 Two-dimensional
models of tumour angiogenesis and anti-
angiogenesis strategies. IMA J. Math. Appl. Med.
Biol. 14, 189–205. (doi:10.1093/imammb/14.3.
189)

95. Scianna M, Bell CG, Preziosi L. 2013 A review of
mathematical models for the formation of
vascular networks. J. Theor. Biol. 333, 174–209.
(doi:10.1016/j.jtbi.2013.04.037)

96. Flegg JA, Menon SN, Byrne HM, McElwain DLS.
2020 A current perspective on wound healing
and tumour-induced angiogenesis. Bull. Math.
Biol. 82, 23. (doi:10.1007/s11538-020-00696-0)

97. Shirinifard A, Gens J, Zaitlen B, Popławski N,
Swat M, Glazier J. 2009 3D multi-cell simulation
of tumor growth and angiogenesis. PLoS ONE 4,
e7190. (doi:10.1371/journal.pone.0007190)

98. Daub J, Merks R. 2013 A cell-based model of
extracellular-matrix-guided endothelial cell
migration during angiogenesis. Bull. Math. Biol. 75,
1377–1399. (doi:10.1007/s11538-013-9826-5)

99. Xu J, Vilanova G, Gomez H. 2016 A
mathematical model coupling tumor growth
and angiogenesis. PLoS ONE 11, 1–20. (doi:10.
1371/journal.pone.0149422)

100. Pillay S, Byrne HM, Maini PK. 2017 Modeling
angiogenesis: a discrete to continuum
description. Phys. Rev. E 95, 012410. (doi:10.
1103/PhysRevE.95.012410)
101. Chamseddine IM, Frieboes HB, Kokkolaras M.
2018 Design optimization of tumor vasculature-
bound nanoparticles. Sci. Rep. 8, 17768. (doi:10.
1038/s41598-018-35675-y)

102. Anderson A, Chaplain M. 1998 Continuous and
discrete mathematical models of tumor-induced
angiogenesis. Bull. Math. Biol. 60, 857–899.
(doi:10.1006/bulm.1998.0042)

103. Trucu D, Lin P, Chaplain M, Wang Y. 2013 A
multiscale moving boundary model arising in
cancer invasion. Multiscale Model. Simul. 11,
309–35. (doi:10.1137/110839011)

104. Hanahan D, Weinberg R. 2011 Hallmarks of
cancer: the next generation. Cell 144, 646–74.
(doi:10.1016/j.cell.2011.02.013)

105. Macklin P, Frieboes HB, Sparks JL, Ghaffarizadeh A,
Friedman SH, Juarez EF, Jonckheere E, Mumenthaler
SM. 2016 Progress towards computational 3-D
multicellular systems biology, vol. 936, pp. 225–246.
United States of America: Springer.

106. Kansal A, Torquato S, Harsh IV G, Chiocca E,
Deisboeck T. 2000 Cellular automaton of
idealized brain tumor growth dynamics. Bio.
Systems 55, 119–127. (doi:10.1016/s0303-
2647(99)00089-1)

107. Kansal A, Torquato S, Harsh GR I, Chiocca E,
Deisboeck T. 2000 Simulated brain tumor
growth dynamics using a three-dimensional
cellular automaton. J. Theor. Biol. 203,
367–382. (doi:10.1006/jtbi.2000.2000)

108. Mansury Y, Kimura M, Lobo J, Deisboeck TS.
2002 Emerging patterns in tumor systems:
simulating the dynamics of multicellular clusters
with an agent-based spatial agglomeration
model. J. Theor. Biol. 219, 343–370. (doi:10.
1006/jtbi.2002.3131)

109. Schmitz JE, Kansal AR, Torquato S. 2002 A
cellular automaton model of brain tumor
treatment and resistance. J. Theor. Med. 4,
223–239. (doi:10.1080/1027366031000086674)

110. Hatzikirou H, Deutsch A. 2010 Lattice-gas
cellular automaton modeling of emergent
behavior in interacting cell populations, vol.
2010, pp. 301–331. Germany: Springer.

111. Hatzikirou H, Basanta D, Simon M, Schaller K,
Deutsch A. 2012 ‘Go or Grow’: the key to the
emergence of invasion in tumour progression?
Math. Med. Biol.: A J. IMA 29, 49–65. (doi:10.
1093/imammb/dqq011)

112. Jagiella N, Müller B, Müller M, Vignon-
Clementel IE, Drasdo D. 2016 Inferring growth
control mechanisms in growing multi-cellular
spheroids of NSCLC cells from spatial-temporal
image data. PLoS Comput. Biol. 12, e1004412.
(doi:10.1371/journal.pcbi.1004412)

113. Pillay S, Byrne HM, Maini PK. 2018 The impact
of exclusion processes on angiogenesis models.
J. Math. Biol. 77, 1721–1759. (doi:10.1007/
s00285-018-1214-1)

114. Macklin P, Edgerton ME, Thompson AM, Cristini
V. 2012 Patient-calibrated agent-based
modelling of ductal carcinoma in situ (DCIS):
from microscopic measurements to
macroscopic predictions of clinical progression. J.
Theor. Biol. 301, 122–140. (doi:10.1016/j.jtbi.
2012.02.002)

115. Hyun AZ, Macklin P. 2013 Improved patient-
specific calibration for agent-based cancer

http://dx.doi.org/10.1002/glia.21185
http://dx.doi.org/10.1002/glia.21185
http://dx.doi.org/10.1016/j.jtbi.2008.03.027
http://dx.doi.org/10.1016/j.jtbi.2008.03.027
http://dx.doi.org/10.1016/j.mcm.2010.07.007
http://dx.doi.org/10.1016/j.mcm.2010.07.007
http://dx.doi.org/10.1016/0025-5564(96)00023-5
http://dx.doi.org/10.1016/0025-5564(96)00023-5
http://dx.doi.org/10.1371/journal.pcbi.1003008
http://dx.doi.org/10.1016/j.spmi.2004.08.029
http://dx.doi.org/10.1016/j.spmi.2004.08.029
http://dx.doi.org/10.4171/IFB/132
http://dx.doi.org/10.1371/journal.pcbi.1004814
http://dx.doi.org/10.1371/journal.pcbi.1004814
http://dx.doi.org/10.1158/0008-5472.CAN-16-3094
http://dx.doi.org/10.1158/0008-5472.CAN-16-3094
http://dx.doi.org/10.1007/s11538-017-0294-1
http://dx.doi.org/10.1002/cnm.2624
http://dx.doi.org/10.1016/j.jtbi.2014.06.024
http://dx.doi.org/10.1016/j.jtbi.2014.06.024
http://dx.doi.org/10.1016/j.jtbi.2018.12.006
https://www.biorxiv.org/content/early/2021/02/17/2021.02.16.431475
https://www.biorxiv.org/content/early/2021/02/17/2021.02.16.431475
http://dx.doi.org/10.1016/j.cell.2006.09.042
http://dx.doi.org/10.1529/biophysj.105.060640
http://dx.doi.org/10.1529/biophysj.105.060640
http://dx.doi.org/10.1016/j.jtbi.2012.05.015
http://dx.doi.org/10.1007/s00285-003-0262-2
http://dx.doi.org/10.1016/0895-7177(96)00019-2
http://dx.doi.org/10.1016/0895-7177(96)00019-2
http://dx.doi.org/10.1093/imammb/14.3.189
http://dx.doi.org/10.1093/imammb/14.3.189
http://dx.doi.org/10.1016/j.jtbi.2013.04.037
http://dx.doi.org/10.1007/s11538-020-00696-0
http://dx.doi.org/10.1371/journal.pone.0007190
http://dx.doi.org/10.1007/s11538-013-9826-5
http://dx.doi.org/10.1371/journal.pone.0149422
http://dx.doi.org/10.1371/journal.pone.0149422
http://dx.doi.org/10.1103/PhysRevE.95.012410
http://dx.doi.org/10.1103/PhysRevE.95.012410
http://dx.doi.org/10.1038/s41598-018-35675-y
http://dx.doi.org/10.1038/s41598-018-35675-y
http://dx.doi.org/10.1006/bulm.1998.0042
http://dx.doi.org/10.1137/110839011
http://dx.doi.org/10.1016/j.cell.2011.02.013
http://dx.doi.org/10.1016/s0303-2647(99)00089-1
http://dx.doi.org/10.1016/s0303-2647(99)00089-1
http://dx.doi.org/10.1006/jtbi.2000.2000
http://dx.doi.org/10.1006/jtbi.2002.3131
http://dx.doi.org/10.1006/jtbi.2002.3131
http://dx.doi.org/10.1080/1027366031000086674
http://dx.doi.org/10.1093/imammb/dqq011
http://dx.doi.org/10.1093/imammb/dqq011
http://dx.doi.org/10.1371/journal.pcbi.1004412
http://dx.doi.org/10.1007/s00285-018-1214-1
http://dx.doi.org/10.1007/s00285-018-1214-1
http://dx.doi.org/10.1016/j.jtbi.2012.02.002
http://dx.doi.org/10.1016/j.jtbi.2012.02.002


royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:221444
23

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

28
 M

ar
ch

 2
02

3 
modeling. J. Theor. Biol. 317, 422–424. (doi:10.
1016/j.jtbi.2012.10.017)

116. Cooper FR et al. 2020 Chaste: cancer, heart and
soft tissue environment. J. Open Sourc. Softw. 5,
1848. (doi:10.21105/joss.01848)

117. Ghaffarizadeh A, Heiland R, Friedman SH,
Mumenthaler SM, Macklin P. 2018 PhysiCell: an
open source physics-based cell simulator for 3-D
multicellular systems. PLoS Comput. Biol. 14,
e1005991. (doi:10.1371/journal.pcbi.1005991)

118. Graner F, Glazier JA. 1992 Simulation of
biological cell sorting using a two-dimensional
extended Potts model. Phys. Rev. Lett. 69,
2013–2016. (doi:10.1103/PhysRevLett.69.2013)

119. Ghaffarizadeh A, Heiland R, Friedman S,
Mumenthaler S, Macklin P. 2018 PhysiCell: an
open source physics-based cell simulator for 3-D
multicellular systems. PLoS Comput. Biol. 14,
e1005991. (doi:10.1371/journal.pcbi.1005991)

120. Block M, Schöll E, Drasdo D. 2008 Classifying
the expansion kinetics and critical surface
dynamics of growing cell populations. Phys. Rev.
Lett. 99, 248101. (doi:10.1103/PhysRevLett.99.
248101)

121. Poleszczuk J, Macklin P, Enderling H. 2016
Agent-based modeling of cancer stem cell driven
solid tumor growth, vol. 1516, pp. 335–346.
United States of America: Springer.

122. Drasdo D. 2005 Coarse graining in simulated cell
populations. Adv. Complex Syst. (ACS) 8,
319–363. (doi:10.1142/S0219525905000440)

123. Jagiella N, Rickert D, Theis FJ, Hasenauer J.
2017 Parallelization and high-performance
computing enables automated statistical
inference of multi-scale models. Cell Syst. 4,
194–206.e9. (doi:10.1016/j.cels.2016.12.002)

124. Hoehme S, Drasdo D. 2010 Biomechanical and
nutrient controls in the growth of mammalian
cell populations. Math. Popul. Stud. 17,
166–187. (doi:10.1080/08898480.2010.491032)

125. Radszuweit M, Block M, Hengstler J, Schöll E,
Drasdo D. 2009 Comparing the growth kinetics
of cell populations in two and three
dimensions. Phys. Rev. E 79, 051907. (doi:10.
1103/PhysRevE.79.051907)

126. Gillesple DT, Gillespie DT. 1977 Exact stochastic
simulation of coupled chemical reactions. J.
Phys. Chem. 81, 2340–2361.

127. Bonabeau E. 2002 Agent-based modeling:
methods and techniques for simulating
human systems. Proc. Natl Acad. Sci. USA
99(Suppl 3), 7280–7287. (doi:10.1073/pnas.
082080899)

128. Gibson MA, Bruck J. 2000 Efficient exact
stochastic simulation of chemical systems with
many species and many channels. J. Phys.
Chem. A 104, 1876–1889. (doi:10.1021/
jp993732q)

129. Spill F, Guerrero P, Alarcon T, Maini PK, Byrne
HM. 2015 Mesoscopic and continuum modelling
of angiogenesis. J. Math. Biol. 70, 485–532.
(doi:10.1007/s00285-014-0771-1)

130. Dodelson S. 2003 Modern cosmology. San Diego,
CA: Academic Press.

131. Chopard B, Ouared R, Deutsch A, Hatzikirou H,
Wolf-Gladrow D. 2010 Lattice-gas cellular
automaton models for biology: from fluids to
cells. Acta Biotheor. 58, 329–40. (doi:10.1007/
s10441-010-9118-5)
132. Tektonidis M, Hatzikirou H, Chauvière A, Simon
M, Schaller K, Deutsch A. 2011 Identification of
intrinsic in vitro cellular mechanisms for glioma
invasion. J. Theor. Biol. 287, 131–147. (doi:10.
1016/j.jtbi.2011.07.012)

133. Giese A, Bjerkvig R, Berens M, Westphal M. 2003
Cost of migration: invasion of malignant gliomas
and implications for treatment. J. Clin. Oncol. 21,
1624–36. (doi:10.1200/JCO.2003.05.063)

134. Godlewski J et al. 2010 MicroRNA-451 regulates
LKB1/AMPK signaling and allows adaptation to
metabolic stress in glioma cells. Mol. Cell 37,
620–632. (doi:10.1016/j.molcel.2010.02.018)

135. Monteiro A, Hill R, Pilkington G, Madureira P.
2017 The role of hypoxia in glioblastoma
invasion. Cells 6, 45. (doi:10.3390/cells6040045)

136. Taylor JR. 2005 Classical mechanics. United
States of America: University Science Books.

137. Turner S, Sherratt J. 2002 Intercellular adhesion
and cancer invasion: a discrete simulation using
the extended Potts model. J. Theor. Biol. 216,
85–100. (doi:10.1006/jtbi.2001.2522)

138. Gao X, McDonald J, Hlatky L, Enderling H. 2012
Acute and fractionated irradiation differentially
modulate glioma stem cell division kinetics.
Cancer Res. 73, 1481–1490. (doi:10.1158/0008-
5472.CAN-12-3429)

139. Gregory P. 2005 Bayesian logical data analysis
for the physical sciences: a comparative approach
with mathematica® Support. Cambridge, UK:
Cambridge University Press.

140. Ouchi NB, Glazier J, Rieu J, Upadhyaya A,
Sawada Y. 2003 Improving the realism of the
cellular Potts model in simulations of biological
cells. Phys. A: Stat. Mech. Appl. 329, 451–458.
(doi:10.1016/S0378-4371(03)00574-0)

141. Boghaert E, Radisky DC, Nelson CM. 2014
Lattice-based model of ductal carcinoma in situ
suggests rules for breast cancer progression to
an invasive state. PLoS Comput. Biol. 10,
e1003997. (doi:10.1371/journal.pcbi.1003997)

142. Savill NJ, Hogeweg P. 1997 Modelling
morphogenesis: from single cells to crawling
slugs. J. Theor. Biol. 184, 229–235. (doi:10.
1006/jtbi.1996.0237)

143. Szabó A, Merks RMH. 2013 Cellular potts
modeling of tumor growth, tumor invasion, and
tumor evolution. Front. Oncol. 3, 87.

144. Li JF, Lowengrub J. 2014 The effects of cell
compressibility, motility and contact inhibition
on the growth of tumor cell clusters using the
cellular Potts model. J. Theor. Biol. 343, 79–91.
(doi:10.1016/j.jtbi.2013.10.008)

145. Rens EG, Edelstein-Keshet L. 2019 From energy
to cellular forces in the cellular potts model: an
algorithmic approach. PLoS Comput. Biol. 15,
1–23. (doi:10.1371/journal.pcbi.1007459)

146. Tsingos E, Bakker BH, Keijzer KAE, Hupkes HJ,
Merks RMH. 2022 Modelling the mechanical
cross-talk between cells and fibrous extracellular
matrix using hybrid cellular Potts and molecular
dynamics methods. bioRxiv. Available from
https://www.biorxiv.org/content/early/2022/07/
07/2022.06.10.495667.

147. Dallon J, Othmer H. 2004 How cellular
movement determines the collective force
generated by the Dictyostelium discoideum
slug. J. Theor. Biol. 231, 203–22. (doi:10.1016/
j.jtbi.2004.06.015)
148. Drasdo D, Hoehme S. 2005 A single-cell-based
model of tumor growth in vitro: Monolayers
and spheroids. Phys. Biol. 2, 133–47. (doi:10.
1088/1478-3975/2/3/001)

149. Mathias S, Coulier A, Bouchnita A, Hellander A.
2020 Impact of force function formulations on
the numerical simulation of centre-based
models. bioRxiv. Available from https://www.
biorxiv.org/content/early/2020/03/18/2020.03.
16.993246.

150. Meineke F, Potten C, Loeffler M. 2001 Cell
migration and organization in the intestinal crypt
using a lattice–free model. Cell Prolif. 34,
253–266. (doi:10.1046/j.0960-7722.2001.00216.x)

151. Gallaher JA et al. 2020 From cells to tissue: how
cell scale heterogeneity impacts glioblastoma
growth and treatment response. PLoS Comput.
Biol. 16, e1007672. (doi:10.1371/journal.pcbi.
1007672)

152. Perez-Velazquez J, Rejniak K. 2020 Drug-induced
resistance in micrometastases: analysis of spatio-
temporal cell lineages. Front. Physiol. 11, 319.

153. Buenemann M, Lenz P. 2008 Elastic properties
and mechanical stability of chiral and filled viral
capsids. Phys. Rev. E, Stat. Nonlin. Soft Matter
Phys. 78(5 Pt 1), 051924. (doi:10.1103/
PhysRevE.78.051924)

154. Van Liedekerke P, Neitsch J, Johann T, Warmt E,
Gonzàlez-Valverde I, Hoehme S, Grosser S, Kaes
J, Drasdo D. 2020 A quantitative high-resolution
computational mechanics cell model for
growing and regenerating tissues. Biomech.
Model. Mechanobiol. 19, 189–220. (doi:10.
1007/s10237-019-01204-7)

155. Liedekerke P, Tijskens E, Ramon H, Ghysels P,
Samaey G, Roose D. 2010 Particle-based model
to simulate the micromechanics of biological
cells. Phys. Rev. E, Stat. Nonlin. Soft Matter Phys.
81, 061906.

156. Odenthal T, Smeets B, Van Liedekerke P,
Tijskens E, Van Oosterwyck H, Ramon H. 2013
Analysis of initial cell spreading using
mechanistic contact formulations for a
deformable cell model. PLoS Comput. Biol. 9,
e1003267. (doi:10.1371/journal.pcbi.1003267)

157. Osborne J et al. 2010 A hybrid approach to
multi-scale modelling of cancer. Phil. Trans. Ser.
A, Math., Phys., Eng. Sci. 368, 5013–5028.
(doi:10.1098/rsta.2010.0173)

158. Alt S, Ganguly P, Salbreux G. 2017 Vertex
models: from cell mechanics to tissue
morphogenesis. Phil. Trans. R. Soc. B 372,
20150520. (doi:10.1098/rstb.2015.0520)

159. Osborne JM, Maini PK, Gavaghan DJ. 2017
Comparing individual-based approaches to
modelling the self-organization of multicellular
tissues. PLoS Comput. Biol. 13, e1005387.
(doi:10.1371/journal.pcbi.1005387)

160. Wang Z, Butner JD, Kerketta R, Cristini V,
Deisboeck TS. 2015 Simulating cancer growth
with multiscale agent-based modeling. Semin.
Cancer Biol. 30, 70–78. (doi:10.1016/j.
semcancer.2014.04.001)

161. Harris L, Beik S, Murobushi Ozawa PM, Jimenez
L, Weaver A. 2019 Modeling heterogeneous
tumor growth dynamics and cell-cell
interactions at single-cell and cell-population
resolution. Curr. Opin. Syst. Biol. 17, 24–34.
(doi:10.1016/j.coisb.2019.09.005)

http://dx.doi.org/10.1016/j.jtbi.2012.10.017
http://dx.doi.org/10.1016/j.jtbi.2012.10.017
http://dx.doi.org/10.21105/joss.01848
http://dx.doi.org/10.1371/journal.pcbi.1005991
http://dx.doi.org/10.1103/PhysRevLett.69.2013
http://dx.doi.org/10.1371/journal.pcbi.1005991
http://dx.doi.org/10.1103/PhysRevLett.99.248101
http://dx.doi.org/10.1103/PhysRevLett.99.248101
http://dx.doi.org/10.1142/S0219525905000440
http://dx.doi.org/10.1016/j.cels.2016.12.002
http://dx.doi.org/10.1080/08898480.2010.491032
http://dx.doi.org/10.1103/PhysRevE.79.051907
http://dx.doi.org/10.1103/PhysRevE.79.051907
http://dx.doi.org/10.1073/pnas.082080899
http://dx.doi.org/10.1073/pnas.082080899
http://dx.doi.org/10.1021/jp993732q
http://dx.doi.org/10.1021/jp993732q
http://dx.doi.org/10.1007/s00285-014-0771-1
http://dx.doi.org/10.1007/s10441-010-9118-5
http://dx.doi.org/10.1007/s10441-010-9118-5
http://dx.doi.org/10.1016/j.jtbi.2011.07.012
http://dx.doi.org/10.1016/j.jtbi.2011.07.012
http://dx.doi.org/10.1200/JCO.2003.05.063
http://dx.doi.org/10.1016/j.molcel.2010.02.018
http://dx.doi.org/10.3390/cells6040045
http://dx.doi.org/10.1006/jtbi.2001.2522
http://dx.doi.org/10.1158/0008-5472.CAN-12-3429
http://dx.doi.org/10.1158/0008-5472.CAN-12-3429
http://dx.doi.org/10.1016/S0378-4371(03)00574-0
http://dx.doi.org/10.1371/journal.pcbi.1003997
http://dx.doi.org/10.1006/jtbi.1996.0237
http://dx.doi.org/10.1006/jtbi.1996.0237
http://dx.doi.org/10.1016/j.jtbi.2013.10.008
http://dx.doi.org/10.1371/journal.pcbi.1007459
https://www.biorxiv.org/content/early/2022/07/07/2022.06.10.495667
https://www.biorxiv.org/content/early/2022/07/07/2022.06.10.495667
http://dx.doi.org/10.1016/j.jtbi.2004.06.015
http://dx.doi.org/10.1016/j.jtbi.2004.06.015
http://dx.doi.org/10.1088/1478-3975/2/3/001
http://dx.doi.org/10.1088/1478-3975/2/3/001
https://www.biorxiv.org/content/early/2020/03/18/2020.03.16.993246
https://www.biorxiv.org/content/early/2020/03/18/2020.03.16.993246
https://www.biorxiv.org/content/early/2020/03/18/2020.03.16.993246
http://dx.doi.org/10.1046/j.0960-7722.2001.00216.x
http://dx.doi.org/10.1371/journal.pcbi.1007672
http://dx.doi.org/10.1371/journal.pcbi.1007672
http://dx.doi.org/10.1103/PhysRevE.78.051924
http://dx.doi.org/10.1103/PhysRevE.78.051924
http://dx.doi.org/10.1007/s10237-019-01204-7
http://dx.doi.org/10.1007/s10237-019-01204-7
http://dx.doi.org/10.1371/journal.pcbi.1003267
http://dx.doi.org/10.1098/rsta.2010.0173
http://dx.doi.org/10.1098/rstb.2015.0520
http://dx.doi.org/10.1371/journal.pcbi.1005387
http://dx.doi.org/10.1016/j.semcancer.2014.04.001
http://dx.doi.org/10.1016/j.semcancer.2014.04.001
http://dx.doi.org/10.1016/j.coisb.2019.09.005


royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:221444
24

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

28
 M

ar
ch

 2
02

3 
162. Jiao Y, Torquato S. 2013 Evolution and
morphology of microenvironment-enhanced
malignancy of three-dimensional invasive solid
tumors. Phys. Rev. E, Stat., Nonlinear, Soft
Matter Phys. 87, 052707. (doi:10.1103/
PhysRevE.87.052707)

163. Rejniak K, Dillon R. 2007 A single cell-based
model of the ductal tumour microarchitecture.
Comput. Math. Methods Med. 8, 51–69. (doi:10.
1080/17486700701303143)

164. Powathil GG, Swat M, Chaplain MA. 2015
Systems oncology: towards patient-specific
treatment regimes informed by multiscale
mathematical modelling. Semin. Cancer Biol. 30,
13–20. (doi:10.1016/j.semcancer.2014.02.003)

165. Powathil GG, Adamson DJ, Chaplain MA. 2013
Towards predicting the response of a solid
tumour to chemotherapy and radiotherapy
treatments: clinical insights from a
computational model. PLoS Comput. Biol. 9,
e1003120. (doi:10.1371/journal.pcbi.1003120)

166. Kim Y, Kang H, Powathil G, Kim H, Trucu D, Lee
W, Lawler S, Chaplain M. 2018 Role of
extracellular matrix and microenvironment in
regulation of tumor growth and LAR-mediated
invasion in glioblastoma. PLoS ONE 13, e0204865.
(doi:10.1371/journal.pone.0204865)

167. Athale C, Mansury Y, Deisboeck TS. 2005
Simulating the impact of a molecular ‘decision-
process’ on cellular phenotype and multicellular
patterns in brain tumors. J. Theor. Biol. 233,
469–481. (doi:10.1016/j.jtbi.2004.10.019)

168. Athale CA, Deisboeck TS. 2006 The effects of
EGF-receptor density on multiscale tumor
growth patterns. J. Theor. Biol. 238, 771–779.
(doi:10.1016/j.jtbi.2005.06.029)

169. Wang Z, Zhang L, Sagotsky J, Deisboeck TS.
2007 Simulating non-small cell lung cancer
with a multiscale agent-based model. Theor.
Biol. Med. Modell. 4, 50. (doi:10.1186/1742-
4682-4-50)

170. Kim Y, Stolarska MA, Othmer HG. 2011 The role
of the microenvironment in tumor growth and
invasion. Prog. Biophys. Mol. Biol. 106, 353–379.
(doi:10.1016/j.pbiomolbio.2011.06.006)

171. Kim Y, Roh S. 2013 A hybrid model for cell
proliferation and migration in glioblastoma.
Discrete Continu. Dyn. Syst. Ser. B 4, 969–1015.

172. Kim Y, Powathil G, Kang H, Trucu D, Kim H,
Lawler S, Chaplain M. 2015 Strategies of
eradicating glioma cells: a multi-scale
mathematical model with miR-451-AMPK-mTOR
control. PLoS ONE 10, e0114370. (doi:10.1371/
journal.pone.0114370)

173. Caiazzo A, Ramis-Conde I. 2015 Multiscale
modelling of palisade formation in gliobastoma
multiforme. J. Theor. Biol. 383, 145–156.
(doi:10.1016/j.jtbi.2015.07.021)

174. Szabó A, Merks RMH. 2017 Blood vessel
tortuosity selects against evolution of
aggressive tumor cells in confined tissue
environments: a modeling approach. PLoS
Comput. Biol. 13, e1005635. (doi:10.1371/
journal.pcbi.1005635)

175. Engblom S, Wilson DB, Baker RE. 2018 Scalable
population-level modelling of biological cells
incorporating mechanics and kinetics in
continuous time. R. Soc. Open Sci. 5, 180379.
(doi:10.1098/rsos.180379)
176. May C, Kolokotroni E, Stamatakos G, Büchler P.
2011 Coupling biomechanics to a cellular level
model: an approach to patient-specific image
driven multi-scale and multi-physics tumor
simulation. Prog. Biophys. Mol. Biol. 107,
193–9. (doi:10.1016/j.pbiomolbio.2011.06.007)

177. Zhang L, Strouthos CG, Wang Z, Deisboeck TS.
2009 Simulating brain tumor heterogeneity
with a multiscale agent-based model: linking
molecular signatures, phenotypes and
expansion rate. Math. Comput. Modell. 49,
307–319. (doi:10.1016/j.mcm.2008.05.011)

178. Chen WW, Niepel M, Sorger PK. 2010 Classic
and contemporary approaches to modeling
biochemical reactions. Genes Dev. 24, 1861–75.
(doi:10.1101/gad.1945410)

179. Kim Y, Stolarska M, Othmer H. 2007 A hybrid
model for tumor spheroid growth in vitro i:
theoretical development and early results. Math.
Models Methods Appl. Sci. 17, 1773–1798.
(doi:10.1142/S0218202507002479)

180. Stolarska MA, Kim Y, Othmer HG. 2009 Multi-
scale models of cell and tissue dynamics. Phil.
Trans. Ser. A, Math., Phys., Eng. Sci. 367,
3525–3553.

181. Erban R. 2016 Coupling all-atom molecular
dynamics simulations of ions in water with
Brownian dynamics. Proc. R. Soc. London, Ser. A
472, 20150556.

182. Bearer EL, Lowengrub JS, Frieboes HB, Chuang
YL, Jin F, Wise SM, Ferrari M, Agus DB, Cristini
V. 2009 Multiparameter computational
modeling of tumor invasion. Cancer Res. 69,
4493–4501. (doi:10.1158/0008-5472.CAN-08-
3834)

183. Frieboes HB, Jin F, Chuang YL, Wise SM,
Lowengrub JS, Cristini V. 2010 Three-
dimensional multispecies nonlinear tumor
growth-II: tumor invasion and angiogenesis.
J. Theor. Biol. 264, 1254–1278. (doi:10.1016/j.
jtbi.2010.02.036)

184. Rocha HL, Godet I, Kurtoglu F, Metzcar J,
Konstantinopoulos K, Bhoyar S, Gilkes DM,
Macklin P. 2021 A persistent invasive phenotype
in post-hypoxic tumor cells is revealed by novel
fate-mapping and computational modeling.
iScience 24, 102935. (doi:10.1016/j.isci.2021.
102935)

185. Klank R, Rosenfeld S, Odde D. 2018 A Brownian
dynamics tumor progression simulator with
application to glioblastoma. Convergent Sci.
Phys. Oncol. 4, 015001. (doi:10.1088/2057-
1739/aa9e6e)

186. Zhang L, Chen LL, Deisboeck TS. 2009 Multi-
scale, multi-resolution brain cancer modeling.
Math. Comput. Simul. 79, 2021–2035. (doi:10.
1016/j.matcom.2008.09.007)

187. Zhang L, Jiang B, Wu Y, Strouthos C, Sun PZ, Su
J, Zhou X. 2011 Developing a multiscale, multi-
resolution agent-based brain tumor model by
graphics processing units. Theor. Biol. Med.
Modell. 8, 46. (doi:10.1186/1742-4682-8-46)

188. Rolls E, Erban R. 2017 Multi-resolution polymer
Brownian dynamics with hydrodynamic
interactions. J. Chem. Phys. 148, 194111.
(doi:10.1063/1.5018595)

189. Smith CA, Yates CA. 2018 Spatially extended
hybrid methods: a review. J. R Soc. Interface 15,
20170931. (doi:10.1098/rsif.2017.0931)
190. Yates CA, George A, Jordana A, Smith CA,
Duncan AB, Zygalakis KC. 2020 The blending
region hybrid framework for the simulation of
stochastic reaction–diffusion processes. J. R. Soc.
Interface 17, 20200563. (doi:10.1098/rsif.2020.
0563)

191. Kavousanakis ME, Liu P, Boudouvis AG,
Lowengrub J, Kevrekidis IG. 2012 Efficient
coarse simulation of a growing avascular tumor.
Phys. Rev. E, Stat., Nonlinear, Soft Matter Phys.
85(3 Pt 1), 031912. (doi:10.1103/PhysRevE.85.
031912)

192. Aviziotis I, Kavousanakis M, Bitsanis I, Boudouvis
A. 2015 Coarse-grained analysis of stochastically
simulated cell populations with a positive
feedback genetic network architecture. J. Math.
Biol. 70, 1457–1484. (doi:10.1007/s00285-014-
0799-2)

193. Van Liedekerke P, Neitsch J, Johann T,
Alessandri K, Nassoy P, Drasdo D. 2019
Quantitative cell-based model predicts
mechanical stress response of growing tumor
spheroids over various growth conditions and
cell lines. PLoS Comput. Biol. 15, e1006273.
(doi:10.1371/journal.pcbi.1006273)

194. Martínez AH, Madurga R, García-Romero N,
Ayuso-Sacido Á. 2022 Unravelling
glioblastoma heterogeneity by means of
single-cell RNA sequencing. Cancer
Lett. 527, 66–79. (doi:10.1016/j.canlet.2021.12.
008)

195. Stamatakos GS, Antipas VP, Uzunoglu NK. 2006
A spatiotemporal, patient individualized
simulation model of solid tumor response to
chemotherapy in vivo: the paradigm of
glioblastoma multiforme treated by
temozolomide. IEEE Trans. Biomed. Eng. 53,
1467–1477. (doi:10.1109/TBME.2006.873761)

196. Stamatakos G, Antipas V, Uzunoglu N, Dale R.
2006 A four-dimensional computer simulation
model of the in vivo response to radiotherapy of
glioblastoma multiforme: studies on the effect
of clonogenic cell density. Br. J. Radiol. 79,
389–400. (doi:10.1259/bjr/30604050)

197. Lee JS et al. 2015 The complexities of agent-
based modeling output analysis. J. Artif. Soc.
Soc. Simul. 18, jasss2897.

198. Jørgensen ACS, Ghosh A, Sturrock M, Shahrezaei
V. 2022 Efficient Bayesian inference for
stochastic agent-based models. PLoS Comput.
Biol. 18, e1009508. (doi:10.1371/journal.pcbi.
1009508)

199. Oraiopoulou ME, Tzamali E, Tzedakis G, Liapis E,
Zacharakis G, Vakis A, Papamatheakis J, Sakkalis
V. 2018 Integrating in vitro experiments with in
silico approaches for glioblastoma invasion: the
role of cell-to-cell adhesion heterogeneity. Sci.
Rep. 8, 16200. (doi:10.1038/s41598-018-34521-5)

200. Harpold HLP, Alvord EC, Swanson KR. 2007
The evolution of mathematical modeling of
glioma proliferation and invasion.
J. Neuropathol. Exp. Neurol. 66, 1–9. (doi:10.
1097/nen.0b013e31802d9000)

201. Wang C et al. 2009 Prognostic significance of
growth kinetics in newly diagnosed
glioblastomas revealed by combining serial
imaging with a novel biomathematical model.
Cancer Res. 69, 9133–40. (doi:10.1158/0008-
5472.CAN-08-3863)

http://dx.doi.org/10.1103/PhysRevE.87.052707
http://dx.doi.org/10.1103/PhysRevE.87.052707
http://dx.doi.org/10.1080/17486700701303143
http://dx.doi.org/10.1080/17486700701303143
http://dx.doi.org/10.1016/j.semcancer.2014.02.003
http://dx.doi.org/10.1371/journal.pcbi.1003120
http://dx.doi.org/10.1371/journal.pone.0204865
http://dx.doi.org/10.1016/j.jtbi.2004.10.019
http://dx.doi.org/10.1016/j.jtbi.2005.06.029
http://dx.doi.org/10.1186/1742-4682-4-50
http://dx.doi.org/10.1186/1742-4682-4-50
http://dx.doi.org/10.1016/j.pbiomolbio.2011.06.006
http://dx.doi.org/10.1371/journal.pone.0114370
http://dx.doi.org/10.1371/journal.pone.0114370
http://dx.doi.org/10.1016/j.jtbi.2015.07.021
http://dx.doi.org/10.1371/journal.pcbi.1005635
http://dx.doi.org/10.1371/journal.pcbi.1005635
http://dx.doi.org/10.1098/rsos.180379
http://dx.doi.org/10.1016/j.pbiomolbio.2011.06.007
http://dx.doi.org/10.1016/j.mcm.2008.05.011
http://dx.doi.org/10.1101/gad.1945410
http://dx.doi.org/10.1142/S0218202507002479
http://dx.doi.org/10.1158/0008-5472.CAN-08-3834
http://dx.doi.org/10.1158/0008-5472.CAN-08-3834
http://dx.doi.org/10.1016/j.jtbi.2010.02.036
http://dx.doi.org/10.1016/j.jtbi.2010.02.036
http://dx.doi.org/10.1016/j.isci.2021.102935
http://dx.doi.org/10.1016/j.isci.2021.102935
http://dx.doi.org/10.1088/2057-1739/aa9e6e
http://dx.doi.org/10.1088/2057-1739/aa9e6e
http://dx.doi.org/10.1016/j.matcom.2008.09.007
http://dx.doi.org/10.1016/j.matcom.2008.09.007
http://dx.doi.org/10.1186/1742-4682-8-46
http://dx.doi.org/10.1063/1.5018595
http://dx.doi.org/10.1098/rsif.2017.0931
http://dx.doi.org/10.1098/rsif.2020.0563
http://dx.doi.org/10.1098/rsif.2020.0563
http://dx.doi.org/10.1103/PhysRevE.85.031912
http://dx.doi.org/10.1103/PhysRevE.85.031912
http://dx.doi.org/10.1007/s00285-014-0799-2
http://dx.doi.org/10.1007/s00285-014-0799-2
http://dx.doi.org/10.1371/journal.pcbi.1006273
http://dx.doi.org/10.1016/j.canlet.2021.12.008
http://dx.doi.org/10.1016/j.canlet.2021.12.008
http://dx.doi.org/10.1109/TBME.2006.873761
http://dx.doi.org/10.1259/bjr/30604050
http://dx.doi.org/10.1371/journal.pcbi.1009508
http://dx.doi.org/10.1371/journal.pcbi.1009508
http://dx.doi.org/10.1038/s41598-018-34521-5
http://dx.doi.org/10.1097/nen.0b013e31802d9000
http://dx.doi.org/10.1097/nen.0b013e31802d9000
http://dx.doi.org/10.1158/0008-5472.CAN-08-3863
http://dx.doi.org/10.1158/0008-5472.CAN-08-3863


royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:221444
25

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

28
 M

ar
ch

 2
02

3 
202. Angeli S, Emblem KE, Due-Tonnessen P,
Stylianopoulos T. 2018 Towards patient-specific
modeling of brain tumor growth and formation
of secondary nodes guided by DTI-MRI.
NeuroImage Clin. 20, 664–673. (doi:10.1016/j.
nicl.2018.08.032)

203. Lipkova J et al. 2019 Personalized radiotherapy
design for glioblastoma: integrating
mathematical tumor models, multimodal scans,
and Bayesian inference. IEEE Trans. Med.
Imaging 38, 1875–1884. (doi:10.1109/TMI.
2019.2902044)

204. Ezhov I et al. 2021 Learn-Morph-Infer: a new
way of solving the inverse problem for brain
tumor modeling. (http://arxiv.org/abs/2111.
04090).

205. Reiker T, Golumbeanu M, Shattock A, Burgert L,
Smith TA, Filippi S, Cameron E, Penny MA. 2021
Emulator-based Bayesian optimization for efficient
multi-objective calibration of an individual-based
model of malaria. Nat. Commun. 12, 7212. (doi:10.
1038/s41467-021-27486-z)

206. Brennan C et al. 2013 The somatic genomic
landscape of glioblastoma. Cell 155, 462–477.
(doi:10.1016/j.cell.2013.09.034)

207. McLendon R et al. 2008 Comprehensive
genomic characterization defines human
glioblastoma genes and core pathways. Nature
455, 1061–1068. (doi:10.1038/nature07385)

208. Brooks LJ et al. 2021 The white matter is a pro-
differentiative niche for glioblastoma. Nat.
Commun. 12, 1–14.

209. Neftel C et al. 2019 An integrative model of
cellular states, plasticity, and genetics for
glioblastoma. Cell 178, 835–849. (doi:10.1016/j.
cell.2019.06.024)

210. Bhaduri A et al. 2020 Outer radial glia-like
cancer stem cells contribute to heterogeneity of
glioblastoma. Cell Stem Cell 26, 48–63. (doi:10.
1016/j.stem.2019.11.015)

211. Couturier CP et al. 2020 Single-cell RNA-seq
reveals that glioblastoma recapitulates a normal
neurodevelopmental hierarchy. Nat. Commun.
11, 1–19.

212. White K et al. 2020 New hints towards a
precision medicine strategy for IDH wild-type
Glioblastoma. Ann. Oncol.: Offic. J. Europ. Soc.
Med. Oncol. 31, 1679–1692. (doi:10.1016/j.
annonc.2020.08.2336)

213. Xie Y et al. 2021 Key molecular alterations in
endothelial cells in human glioblastoma
uncovered through single-cell RNA sequencing.
JCI Insight 6, e150861. (doi:10.1172/jci.insight.
150551)

214. Richards LM et al. 2021 Gradient of
developmental and injury response
transcriptional states defines functional
vulnerabilities underpinning glioblastoma
heterogeneity. Nat. Cancer 2, 157–173. (doi:10.
1038/s43018-020-00154-9)

215. Kaminska B, Ochocka N, Segit P. 2021 Single-
cell omics in dissecting immune
microenvironment of malignant gliomas–
challenges and perspectives. Cells 10, 2264.
(doi:10.3390/cells10092264)

216. Karaayvaz M et al. 2018 Unravelling subclonal
heterogeneity and aggressive disease states in
TNBC through single-cell RNA-seq. Nat. Commun.
9, 3588. (doi:10.1038/s41467-018-06052-0)

217. Ravi VM et al. 2022 Spatially resolved multi-
omics deciphers bidirectional tumor-host
interdependence in glioblastoma. Cancer Cell
40, 639–655. (doi:10.1016/j.ccell.2022.05.009)

218. Wende T, Hoffmann KT, Meixensberger J. 2020
Tractography in neurosurgery: a systematic
review of current applications. J. Neurol. Surg.
Part A, Central Europ. neurosurg. 81, 442–455.
(doi:10.1055/s-0039-1691823)

219. Jiang H, Yu K, Li M, Cui Y, Ren X, Yang C, Zhao
X, Lin S. 2020 Classification of progression
patterns in glioblastoma: analysis of predictive
factors and clinical implications. Front. Oncol.
10, 590648. (doi:10.3389/fonc.2020.590648)

220. Nie S et al. 2021 Determining optimal clinical
target volume margins in high-grade glioma
based on microscopic tumor extension and
magnetic resonance imaging. Radiat. Oncol.
(London, England) 16, 97. (doi:10.1186/s13014-
021-01819-0)

221. Vivas-Buitrago T et al. 2022 Influence of
supramarginal resection on survival outcomes
after gross-total resection of IDH-wild-type
glioblastoma. J. Neurosurg. 136, 1–8. (doi:10.
3171/2020.10.JNS203366)

222. Louis DN et al. 2021 The 2021 WHO
classification of tumors of the central nervous
system: a summary. Neuro Oncol. 23,
1231–1251. (doi:10.1093/neuonc/noab106)

223. Lueckmann JM, Boelts J, Greenberg DS,
Gonçalves PJ, Macke JH. 2021 Benchmarking
simulation-based inference. (http://arxiv.org/
abs/2101.04653).

224. Enderling H, Wolkenhauer O. 2020 Are all
models wrong? Comput. Syst. Oncol. 1. (doi:10.
1002/cso2.1008)

225. Jiménez-Sánchez J et al. 2021 A mesoscopic
simulator to uncover heterogeneity and evolutionary
dynamics in tumors. PLoS Comput. Biol. 17,
e1008266. (doi:10.1371/journal.pcbi.1008266)

226. Coggan H, Page KM. 2022 The role of
evolutionary game theory in spatial and non-
spatial models of the survival of cooperation in
cancer: a review. J. R. Soc. Interface 19,
20220346. (doi:10.1098/rsif.2022.0346)

http://dx.doi.org/10.1016/j.nicl.2018.08.032
http://dx.doi.org/10.1016/j.nicl.2018.08.032
http://dx.doi.org/10.1109/TMI.2019.2902044
http://dx.doi.org/10.1109/TMI.2019.2902044
http://arxiv.org/abs/2111.04090
http://arxiv.org/abs/2111.04090
http://dx.doi.org/10.1038/s41467-021-27486-z
http://dx.doi.org/10.1038/s41467-021-27486-z
http://dx.doi.org/10.1016/j.cell.2013.09.034
http://dx.doi.org/10.1038/nature07385
http://dx.doi.org/10.1016/j.cell.2019.06.024
http://dx.doi.org/10.1016/j.cell.2019.06.024
http://dx.doi.org/10.1016/j.stem.2019.11.015
http://dx.doi.org/10.1016/j.stem.2019.11.015
http://dx.doi.org/10.1016/j.annonc.2020.08.2336
http://dx.doi.org/10.1016/j.annonc.2020.08.2336
http://dx.doi.org/10.1172/jci.insight.150551
http://dx.doi.org/10.1172/jci.insight.150551
http://dx.doi.org/10.1038/s43018-020-00154-9
http://dx.doi.org/10.1038/s43018-020-00154-9
http://dx.doi.org/10.3390/cells10092264
http://dx.doi.org/10.1038/s41467-018-06052-0
http://dx.doi.org/10.1016/j.ccell.2022.05.009
http://dx.doi.org/10.1055/s-0039-1691823
http://dx.doi.org/10.3389/fonc.2020.590648
http://dx.doi.org/10.1186/s13014-021-01819-0
http://dx.doi.org/10.1186/s13014-021-01819-0
http://dx.doi.org/10.3171/2020.10.JNS203366
http://dx.doi.org/10.3171/2020.10.JNS203366
http://dx.doi.org/10.1093/neuonc/noab106
http://arxiv.org/abs/2101.04653
http://arxiv.org/abs/2101.04653
http://dx.doi.org/10.1002/cso2.1008
http://dx.doi.org/10.1002/cso2.1008
http://dx.doi.org/10.1371/journal.pcbi.1008266
http://dx.doi.org/10.1098/rsif.2022.0346

	Data-driven spatio-temporal modelling of glioblastoma
	Introduction
	Continuum models
	Anisotropic diffusion
	Mechanical interactions, cell types, lineage and feedback
	Modelling the macroscopic environment

	Discrete (agent-based) models
	Lattice-based models
	Cellular automata with one or several cells per lattice site
	Lattice gas cellular automata models
	Cellular Potts models

	Off-lattice models
	Center-based models
	Deformable cell (vertex) models


	Hybrid multi-scale models
	Composite hybrid models
	Ordinary differential equations

	Adaptive hybrid models
	Calibrated models

	Data-driven modelling
	Clinical application of spatio-temporal modelling in GBM
	Summary and discussion
	Data accessibility
	Authors' contributions
	Conflict of interest declaration
	Funding
	References


