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ABSTRACT
The response of Newtonian liquids to small perturbations is usually considered to be fully described by homogeneous transport coefficients
like shear and dilatational viscosity. However, the presence of strong density gradients at the liquid/vapor boundary of fluids hints at the
possible existence of an inhomogeneous viscosity. Here, we show that a surface viscosity emerges from the collective dynamics of interfacial
layers in molecular simulations of simple liquids. We estimate the surface viscosity to be 8–16 times smaller than that of the bulk fluid at the
thermodynamic point considered. This result can have important implications for reactions at liquid surfaces in atmospheric chemistry and
catalysis.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0141971

I. INTRODUCTION

The concept of surface (shear or dilatational) viscosity has a
long history, dating back to Marangoni and Boussinesq,1–3 but is
usually connected to fluids with complex rheology, where it is a
key transport property in processes such as liquid film formation,4
droplet deformation and breakup,5 foam drainage6,7 cell transport,8
or electro-osmosis.9 The possibility of observing a surface viscosity
in Newtonian fluids like water was briefly considered in the 1980s.10

However, initial experimental evidence11 was later dismissed,12 the
rationale behind this being that the employed experimental tech-
niques probed micrometer-sized interfacial regions, whereas any
possible effect is expected at the molecular scale. Recently, computer
simulations gave some indication that this might indeed be the case,
as the single particle diffusion coefficient of interfacial molecules can
be up to four times larger than in bulk.13 The high surface mobility
hints at the possible existence of markedly different surface viscosity
in simple liquids but calls for more direct measurement. The pres-
ence of a reduced surface viscosity could have profound implications
for our understanding of reactions at liquid surfaces,14 particularly
for diffusion-limited reactions, as the corresponding acceleration
would be unrelated to the presence of hydrogen bonding or dipolar

effects.15–17 Here, we estimate the viscosity of the surface layers of
liquid argon (see Fig. 1) by comparing the capillary waves dispersion
law obtained from molecular dynamics simulations data with the
numerical solutions of the linearized compressible Navier–Stokes
equations in the presence of a free boundary surface. The results
show that the propagation of surface modes is compatible with the
presence of modes with a very low surface viscosity, about one-tenth
of the bulk one, and that bulk-like acoustic modes develop as soon
as the second interfacial layer is reached.

II. METHODS
We model the liquid/vapor interface of argon using the

Lennard-Jones potential U(r) = 4ε[(σ/r)12 − (σ/r)6]with the para-
meters reported in Table I. The characteristic time scale is given
by τ = σ/

√
ε/m. The slab configuration with N = 9807 atoms is

arranged in a Lx × Ly × Lz = 18 × 6 × 15 nm3 simulation cell with
periodic boundary conditions and interface normal along z. The
width of the liquid slab is about 4.7 nm, and vapor fills the remain-
ing part of the simulation box. We simulated the system for 54 ns,
storing the configurations to disk for the analysis. Further technical
details are reported in the supplementary material, including details
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FIG. 1. Detail of the liquid/vapor interface in slab configuration (cut through the
x − z plane, surface normal along z). Light gray: vapor; purple: first layer; yellow:
second layer; and dark gray: other liquid phase atoms.

TABLE I. Summary of model parameters and physical properties.

Quantity Units Reduced units

ε 0.996 41 kJ/mol 1
σ 0.34 nm 1
m 39.948 amu 1
τ 2.148 950 6 ps 1
T 93 K 0.776
pvap 1.44(1) bar 0.002 38(1)
ρ 34.0(1) mol/l 0.805(3)
η 227.0(5) μPa s 2.497(4)
ηb 66.1(3) μPa s 0.727(4)
γ 13.98(4) mN/m 0.977(6)
c 790(30) m/s 5.0(2)

on all the algorithms employed.13,18–30 The values of the physical
quantities appearing in this work (e.g., γ, η, ηb, and c) are those of liq-
uid argon obtained from the simulation and reported in Table I. In
the supplementary material, we provide detail on how we calculated
these quantities in the slab system because the procedure is slightly
different from the bulk case.

III. RESULTS AND DISCUSSION
To estimate the effective surface viscosity from the molecular

dynamics simulations, we compare the molecular dynamics results
for the capillary waves dispersion law with the analytical result from
continuum hydrodynamics. In the framework of linearized hydro-
dynamics, the dispersion law for the modes of wavevector q = ∣q∣ and
frequency ω of a viscous, compressible but thermally nonconducting
fluid in the presence of a free boundary surface, is determined28,31–33

by the zeros of

D(q, ω) = −γq2

ρm
qρ + ω2 + 4iω

ρm
ηq2 − 4

η2

ρ2
m

q2(q2 − qvqρ). (1)

Here, ρm = mρ, with ρ being the number density and m being the
molecular mass, γ is the surface tension, η is the dynamic shear
viscosity,

q2
v = q2 − iωρm/η, (2)

and

(q2 − q2
ρ)[c2/g − iω(ηb + 4η/3)/ρm] = ω2. (3)

The heat capacity ratio is g = cp/cv and ηb is the bulk or dilatational
viscosity. Note that, in literature, the completely equivalent form that
uses a different definition of the Fourier transform is often used and
can be recovered by changing the sign of ω in Eq. (1). For simple
liquids far from the critical point, the deviations from the conducting
case are minimal.31 Therefore, one can safely disregard the presence
of thermal conductivity.

Away from the hydrodynamic limit of vanishing ω and q, the
perturbations sooner or later reach the characteristic length and time
scales of molecular processes. If these changes are smooth enough,
it is possible to extend the description to include molecular correla-
tions while retaining the general structure of hydrodynamics25 but
introducing, for example, wavevector-dependent transport proper-
ties. This is the case for the wavevector-dependent shear viscosity
η(q) in bulk liquids24,34,35 or surface tension γ(q) in interfacial
systems.36–39

Here, we do not concern ourselves with the region of large
wavevectors but are interested in the macroscopic, hydrodynamic
limit of q→ 0. In bulk simple liquids, the effects of correlations do
not show up in the dispersion before qσ ≃ 2,24,25 where σ identi-
fies the molecular diameter. At lower values of q, it is usually safe
to interpret the results of molecular simulations in terms of contin-
uum hydrodynamics, and our analysis is restricted to this regime,
even though, for completeness, we show also the behavior at larger
wavevectors.

Furthermore, it should be noted that at small scales nonlocal
effects can arise.40,41 Even though we are considering the q→ 0 limit
along the surface plane, the strong anisotropy along z implies that,
in principle, close to the surface one cannot neglect nonlocality. In
fact, it should be kept in mind that by using a continuum model
of hydrodynamics with constant (and local) transport coefficients
to fit the simulation results, we are indeed calculating an effective
viscosity.

The first step that is needed to interpret any results of molec-
ular simulations in the low-q region is to obtain the solution of
the linearized hydrodynamic equations, which allows us to compare
the particle-based simulation results with the continuum theory.
We solved Eq. (1) numerically and obtained a family of dispersion
curves by rescaling homogeneously the shear and dilatational viscos-
ity from the value of the atomistic model of liquid argon toward zero.
All other physical parameters were kept fixed at the corresponding
values of the atomistic model, reported in Table I. The dispersion
curves are shown in Fig. 2 in linear and double-logarithmic scales.
All curves’ real parts follow an initial growth that is similar to the
inviscid case, ω(q) = q3/2√γ/ρm, and then drop abruptly to zero at
a critical value qc(η). The vanishing of the real part of the disper-
sion law means that, for q > qc, signals do not propagate anymore.
In correspondence of qc, the imaginary part of the dispersion curve
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FIG. 2. Real (ωτ) and imaginary (Γτ) parts of the dispersion law ω(q) obtained
from the numerical solutions of the zeros of Eq. (1). The physical parameters cor-
respond to those reported in Table I, with a scaling factor (1, 1/2, 1/4, 1/16) applied
to the shear and dilatational viscosities. Top two panels: linear scale; bottom two
panels: logarithmic scale. The code for the calculation of the dispersion curves is
available on Zenodo.42

has a branching point,28 after which it splits into two. Note that the
ideal solution of the inviscid fluid has no absorption. In addition to
these solutions, non-hydrodynamic branches can develop at higher
values of q. Here, we disregard these solutions as we are interested
only in those that reach the macroscopic, hydrodynamic limit q = 0,
and in all figures, we report only the branches stemming from the
origin.

Obtaining the numerical solutions of the dispersion law as pre-
sented in Fig. 2 represents the first step for the interpretation of
the microscopic model obtained by molecular dynamics simula-
tions. To access the dispersion law ω(q) of the surface layer from
the molecular dynamic simulations, we looked at the spectra of the
hydrodynamic modes fluctuations,25 restricting their calculation to
the set of atoms belonging to the surface layer. To select a mode, we
choose the associated wavevector q as pointing along x and compute
the time series of the collective currents,

Jα
k (t) =∑

i
vα

i exp(iqkxi), (4)

and height modes,

hk(t) =∑
i

zi exp(iqkxi), (5)

where α = x, y or z. The index i labels the atoms belonging to either
the surface or the second layer. The wavevectors compatible with
the periodic boundary conditions are in the form qk = 2πk/Lx, with
k ∈ {1, 2, . . .}. The molecular layers are determined using the Iden-
tification of Truly Interfacial Molecules (ITIMs) analysis.43,44 This
technique has already proven helpful to bridge between the molec-
ular and continuum description of free surface hydrodynamics.45 In
a nutshell, the method identifies surface atoms as those which are
exposed to the vapor phase, thereby taking into account the fluc-
tuations induced by thermal capillary waves. Once all the atoms
in the first layer are identified, the same procedure can be applied
to the successive molecular layer. More detail is available in the
supplementary material.

Unlike single particle dynamical properties such as the diffu-
sion coefficient, collective ones like the currents, Eqs. (4) and (5),
can be defined without problem on a set of particles that changes
with time, so even if particles are leaving and joining the layer. This
is the core idea behind the approach that we propose here and that
allows us to compute collective properties for a subset of the atoms
in the simulation box, thereby giving access, in the present case, to
the position-dependent equivalent of the shear viscosity, which we
can now calculate on a layer-by-layer basis.

From the time series Jα
k (t) and hk(t), we compute the

autocorrelation functions,

Cα
J (qk, t) = ⟨Jα

k (0)Jα
k (t)⟩, (6)

Ch(qk, t) = ⟨hk(0)hk(t)⟩, (7)

and the respective spectra,

C̃α
J (qk, ω) = ∫

∞

−∞

dt exp(iωt)Cα
J (qk, t), (8)

C̃h(qk, ω) = ∫
∞

−∞

dt exp(iωt)Ch(qk, t). (9)

Note that in bulk hydrodynamics, the symmetry of the problem
reduces the number of currents and the respective modes to two:
a longitudinal one (q ⋅ v = 0) and two degenerate transverse modes
(q × v = 0). Bulk longitudinal and transverse modes decouple, and
the latter, in continuum hydrodynamics, cannot propagate. The
presence of the boundary surface (normal along z) removes this
degeneracy, and three types of collective current modes emerge.
Two, Cx

J and Cz
J , are coupled. The third one, Cy

J , is decoupled
from the previous two and, in continuum hydrodynamics, has a
purely imaginary dispersion relation, i.e., no surface shear modes
can exist.31 Sample spectra are reported in Figs. S1–S5 in the
supplementary material. Here, to characterize the real part of the
dispersion relation ω(q), we computed the frequency of the maxi-
mum of the collective currents spectra, ωmax(q), a typical proxy for
this quantity.25

In Fig. 3, we report ωmax(q) of the first two molecular layers for
components x and z. To interpret the propagating modes, we com-
pare the molecular dynamics results to the analytical solutions of
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FIG. 3. ωmax for the spectra of Cx
J(ω, q) (left column) and Cz

J(ω, q) (right col-
umn) for the surface (top row) and second molecular layer (bottom row). The
dashed and dotted–dashed curves are the acoustic (ω = cq) and capillary
(ω = q3/2√γ/ρm) modes. The solid lines are the real part of the dispersion law
computed numerically for different viscosity values.

D(q, ω) = 0 for different choices of the viscosity parameter expressed
as fractions of η (ηb being rescaled accordingly). These curves are
reported in Fig. 3 (thin solid lines), along with the sound disper-
sion in bulk ω = cq (dashed line) and the capillary dispersion of
an ideal, inviscid fluid, ω = q3/2√γ/ρm (dotted–dashed line). Before
discussing the results on the propagating modes Cx

J and Cz
J , we note

that the remaining two, Cy
J and Ch are non-propagating, that is, for

them ωmax(q) = 0, as shown in Fig. 3 of the supplementary material.
The absence of propagation for Cy

J in the hydrodynamic regime is
expected, as it is a transverse mode.25 Interestingly, we observe no
propagation also at high values of q, differently from the bulk case.24

The absence of propagation for Ch, on the other hand, confirms the
results in Ref. 38.

The emerging picture from the Cx
J and Cz

J spectra of the first
layer reported in Fig. 3 is that of a dispersion law compatible with
a very low viscosity, in the range from η/16 to η/8, at least up to
qσ ≃ 2, as it is clearly recognizable in the top row of Fig. 3 when com-
paring the molecular dynamics results with the numerical solution
of the hydrodynamic theory. At values of qσ larger than 2, contin-
uum hydrodynamics starts breaking down and it would be pointless
to compare the solutions with the molecular dynamics results. In

the second layer (the bottom row of Fig. 3), there are still traces
of a capillary mode along x (left), but the main peak quickly shifts
along the acoustic branch at qσ ≃ 1. This result suggests that sound
waves can propagate (parallel to the surface) as soon as molecules are
just below the surface layer. This is a remarkable demonstration of
the sharpness of the interface, showing that bulk-like characteristics
appear already in the second molecular layer not only for structural
properties,46,47 but also for collective transport ones.

Overall, the collective dynamics appears to be enhanced by a
factor not too dissimilar from that observed for single particle dif-
fusion within the surface layer of carbon tetrachloride,13 which, like
argon, is a good model of a simple liquid. Still, the results reported in
Fig. 3 do not rule out the presence of a capillary mode with a viscos-
ity equal to that of the bulk fluid, η. The value of qc decreases with
increasing viscosity, and the numerical solution of Eq. (1) using η as
viscosity yields qcσ ≃ 0.22, a value so small that is practically impos-
sible to resolve accurately with the current simulation, despite the
long sampling. In this case, one would not be able to observe any
propagating mode from the simulation data. This is exactly what
happens for the modes of h. The real part of the dispersion curve
for Ch is, in this sense, compatible with a viscosity equal to that of
the bulk fluid.

This is only an apparent conundrum. It is not surprising
that different correlation functions underline the presence of some
modes and hide others even though they share the same disper-
sion law. This happens in the bulk fluid, where the Rayleigh peak
associated with the thermal diffusion appears clearly in the dynamic
structure factor, but it is suppressed in the longitudinal current25 due
to the presence of a ω2 factor linking the two. A similar picture seems
to emerge here, with modes that are compatible with a small viscos-
ity being clearly visible in the spectrum of the longitudinal current,
and others with a larger viscosity being highlighted in the spectrum
of the surface height. After all, the viscosity of the bulk fluid has to
show its influence on the capillary waves because the dispersion law
of the surface has to transform into that of the bulk when penetrating
into the liquid (we see the appearance of the sound dispersion law in
the second layer already), and the dynamics of subsequent layers are
coupled through the interatomic interactions. In this sense, the sys-
tem behaves as two coupled fluids (a thin interfacial layer and the
underlying bulk) with different viscosities.

Looking at the imaginary part of the dispersion law (the absorp-
tion) provides further insight. For a single Lorentzian spectrum
L(ω)∝ 1/[(ω − ωmax)2 + Γ2], the line broadening Γ is the curve’s
half width at half maximum (hwhm) and determines the inverse
time of a perturbation’s exponential decay. However, the present
spectra can be described reasonably well (see Figs. S1–S5 of the
supplementary material) only by a superposition of three Lorentzian
functions. To avoid any bias induced by the fitting procedure, we
decided to use the hwhm of the whole spectrum, Γhwhm, as a proxy
for the absorption. The meaning of this quantity is not as direct as
that of a single Lorentzian spectral line. However, Γhwhm is a quite
stable quantity, like ωmax, against variation in the analysis proto-
col (e.g., the length of the correlation function used to compute the
spectra or the filtering window size discussed in the supplementary
material) and does not depend on a fitting procedure.

In Fig. 4, we report the values of Γhwhm computed for the first
two molecular layers, as well as the imaginary part of the zeros of
D(q, ω) calculated numerically, for viscosity values η and η/16 (same
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FIG. 4. Imaginary part of the dispersion curve estimated from Cx
J (left column),

Cz
J (central column), and Ch (right column) for the surface (top row) and second

molecular layer (bottom row). Filled symbols: Γmin; open symbols: Γhwhm. The solid
lines are the imaginary part of the numerical solution of D(q, ω) = 0.

scaling factor applied to the bulk viscosity). Notice that, for a vis-
cosity value η, the imaginary part branches off 28 in correspondence
to the critical wavevector qcσ ≃ 0.22 into two solutions. One solu-
tion (low) shows a slowly increasing, roughly linear function of q,
while the other (high) is a rapidly growing function of q. For the
lower viscosity case, η/16, qc lies outside the visible range of q, and
only one curve is seen in the plots. In both the spectra of Cx

J and
Cz

J , Γhwhm shows a steep rise along the high branch for viscosity η.
The spectrum of Ch, which is always peaked around zero, shows
instead a width Γhwhm that seems to follow the η/16 dispersion curve
relatively well. The absorption data support the same picture that
emerges from the analysis of ωmax, showing again that two fam-
ilies of modes appear in the surface layers, one of which can be
described by a viscosity that is markedly lower than that of the bulk
fluid.

Here, a further consideration is in order regarding the non-
evaporation boundary condition, Jz = ∂h/∂t, typically used in the
hydrodynamic theory [e.g., in the derivation of Eq. (1)]. This condi-
tion does not, strictly speaking, apply to the present case, not because
of evaporating molecules (present, but relatively rare) but because
of the way the surface layer is defined. In the present formulation,
atoms can join/leave the surface layer from/to the layer underneath,

thereby changing both Jz and h in an impulsive way. This makes,
by the way, the derivative of the correlation functions different from
zero at t = 0, a condition otherwise imposed by time reversal.29 As a
consequence, one cannot expect the respective spectra to be related
by Cz

J (q, ω) = −iωCh(q, ω).

IV. CONCLUSIONS
The early intuition of Goodrich10 about the existence of surface

excess viscosity in simple liquids and the assumption of Earnshaw
and Hughes12 about their hypothetical confinement in a thin molec-
ular region turned out to be, in essence, correct, even though there
is no need to invoke the presence of a diffuse interface. In fact,
the strong anisotropy and inhomogeneity at the sharp liquid/vapor
interface promote a faster collective dynamics of the surface layer
with respect to the bulk and, in turn, a much lower viscosity
associated with some of its collective modes.

Continuum hydrodynamics is known to break down in sim-
ple liquids at scales smaller than about three molecular diameters,
where correlations and nonlocal effects start playing an important
role. Despite the strong anisotropy of the liquid/vapor interface,
effective transport properties can still be computed in the long
wavelength limit. The collective currents in the first layer show the
unmistakable signature of capillary modes, while acoustic modes can
start propagating along the surface already in the second molecular
layer, showing that bulk-like properties start appearing as soon as
molecules enter the second surface layer. We interpreted the spectra
of the collective currents in terms of two families of modes, the first
associated with the viscosity of the bulk fluid and the second with
a much smaller surface viscosity. We relate the coexistence of these
two families of modes to the presence of a more mobile set of sur-
face atoms, a finding backed by results on the diffusion coefficient of
surface molecules. To which extent the low viscosity modes extend
deep in the q→ 0 limit is an open question.

The presence of a reduced effective viscosity on the surface can
be ascribed to the increased mobility of interfacial atoms, thanks
to the asymmetric environment. One might wonder what can hap-
pen at liquid/solid or liquid/liquid interfaces. A strong interaction
with a rigid substrate is likely to reduce the mobility48 and induce
an increase in the surface viscosity. On the other hand, the presence
of slip at solid surfaces49,50 (albeit very smooth ones51–53) and liq-
uid/liquid interfaces54 signals a weaker interaction with the opposite
phase and could be compatible with a reduction in effective surface
viscosity since the slip length is essentially a measure of the ratio
between viscosity and frictional forces.

For a free liquid surface, the measured dispersion relations sup-
port the existence of a surface effective viscosity in simple liquids,
which is about one order of magnitude smaller than in the bulk.
This finding could have important implications for the kinetics of
diffusion-limited reactions at liquid interfaces. Given the role of vis-
cosity in reaction kinetics55 and the importance of reactions at liquid
surfaces56 in atmospheric chemistry57 or catalysis,15,16,58 it is hard to
underestimate the impact of such a small viscosity at the surface of
simple liquids, even if limited to the range of wavevectors explored
in this work. This would imply an acceleration of diffusion-limited
reactions by a factor inversely proportional to the viscosity ratio;
therefore, in the range of 8–16, a trend opposite to that is observed
at liquid/solid interfaces.48
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SUPPLEMENTARY MATERIAL

See the supplementary material for additional information on
the simulations, details on the Green–Kubo calculation of trans-
port coefficients in inhomogeneous systems, details on the algorithm
for the identification of surface molecules, and plots of selected
autocorrelation functions and relative spectra.
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