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Abstract 20 

The implementation of recommendations for type 2 diabetes (T2D) screening and diagnosis focus on 21 

measurement of HbA1c and fasting glucose. This approach leaves a large number of individuals with 22 

isolated impaired glucose tolerance (iIGT), who are only detectable through oral glucose tolerance 23 

tests (OGTTs), at risk of diabetes and its severe complications. We applied machine learning to 24 

proteomic profiles of a single fasted sample from 11,546 participants of the Fenland study to test 25 

discrimination of iIGT defined using gold standard OGTTs. We observed significantly improved 26 

discriminative performance by adding only three proteins (RTN4R, CBPM, and GHR) to the best clinical 27 

model (0.80 (0.79-0.86), p=0.004), which we validated in an external cohort. Increased plasma levels 28 

of these candidate proteins were associated with an increased risk for future T2D in an independent 29 

cohort and were also increased in individuals genetically susceptible to impaired glucose homeostasis 30 

and T2D. Assessment of a limited number of proteins can identify individuals likely to be missed by 31 

current diagnostic strategies and at high risk of T2D and its complications. 32 

  33 



 3 

Introduction 34 

Current clinical guidelines for type 2 diabetes (T2D) screening and diagnosis are based on glycated 35 

haemoglobin (HbA1c) and fasting glucose (FG) levels for reasons of practicality, however alternative 36 

tests can be used1,2. Globally, over 7.5% of adults have impaired glucose tolerance (IGT)3 with 37 

increased prevalence reported in older individuals4 and specific ethnic groups, such as people from 38 

Southeast Asia5. A substantial proportion of people with IGT (28 – 86%)6-8 can only be identified 39 

through oral glucose tolerance tests (OGTTs), which are inconvenient and time-consuming. Individuals 40 

with isolated IGT (iIGT), that is, 2-hour plasma glucose (2hPG) ≥7.8 and < 11.1 mmol/L but normal 41 

HbA1c and fasting glucose, remain undetected by current T2D detection strategies9-12 but are at very 42 

high risk of developing diabetes (annualized T2D relative risk of 5.5 compared to normoglycemic 43 

individuals)13 and presenting with its severe micro- and macrovascular complications9-12,14. Compared 44 

to individuals with fasting hyperglycaemia, mortality is twice as high in the iIGT group over a period of 45 

5 to 12 years15,16.  46 

Small proof-of-concept studies in cohorts of high-risk individuals have demonstrated the value of deep 47 

molecular profiling for early identification of pathways that are differentially regulated between 48 

individuals with and without insulin resistance17,18 and to guide its prediction19. Deep profiling of the 49 

plasma proteome at population scale has become possible through aptamer-based affinity assays20. 50 

The systematic study of the circulating proteome promises to improve strategies for prediction and 51 

diagnosis18 as well as aetiological understanding, including identification of novel pathways leading to 52 

T2D and refinement of aetiological subtypes.  53 

Because of the high global prevalence of IGT and iIGT, their severe complications, and the currently 54 

unmet need of screening strategies that can identify iIGT without a challenge test, we used machine 55 

learning to test whether large-scale proteomic profiling of a single fasted sample could identify 56 

individuals with iIGT and improve current clinical models. We then tested whether the most 57 

discriminatory proteins were affected by fasting status, to assess the feasibility of using non-fasted 58 

samples to identify iIGT. To gain insights into IGT and iIGT aetiology, we 1) identified and characterised 59 

biochemical, phenotypic, and anthropometric drivers of discriminatory proteins, 2) investigated 60 

whether their plasma levels were associated with the risk of future T2D in an independent prospective 61 

cohort with 521 incident T2D cases, and 3) tested the influence of genetic susceptibility to T2D or 62 

related phenotypes on protein levels. 63 

Results 64 

We used an aptamer-based assay  to target 4,775 distinct fasting plasma proteins by 4,979 aptamers 65 

in 11,546 participants (5,389 men and 6,157 women) without diagnosed diabetes from the 66 
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contemporary Fenland study21 (baseline visit in 2005-2015, mean age 48.5 years (7.5 s.d.), 67 

Supplementary Table 1), as previously described18 (Methods). Participants completed a 75-gram 68 

OGTT (Figure 1a). We defined isolated post challenge hyperglycaemia as 2hPG ≥7.8 mmol/L but HbA1c 69 

<42mmol/mol and FG <6.1 mmol/L. This definition captured all participants with isolated IGT (2hPG 70 

7.8-11.1mmol/L but HbA1c <42mmol/mol and FG <6.1 mmol/L) as well as participants with isolated 71 

post-challenge hyperglycaemia in the diabetic range (2hPG ≥ 11.1 mmol/L but HbA1c <42mmol/mol 72 

and FG <6.1 mmol/L, N=117), i.e. high-risk individuals missed by standard FG and HbA1c testing. For 73 

simplicity, we refer from here on to IGT (or iIGT) for all individuals with 2hPG ≥ 7.8 mmol/L, without 74 

specifically distinguishing post-challenge hyperglycaemia ≥ 11.1 mmol/L. We used a least absolute 75 

shrinkage and selection operator (LASSO) regression framework implemented as a three-step 76 

approach, including independent feature selection (50% sample size), optimization (25%) and 77 

validation (25%) to discriminate IGT (prevalence 6.7%) and iIGT (3.9%) based on fasting assessment of 78 

4,775 proteins (targeted by 4,979 aptamers) (Figure 1b). We defined highly discriminatory proteins as 79 

those selected in >80%, 90%, or 95% of random subsamples of the study population during feature 80 

selection (Extended Data Figure 1).   81 

  82 
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Proteomic signatures to discriminate IGT and IIGT  83 

We identified 65 and 68 proteins, respectively, that achieved an area under the receiver operating 84 

characteristic curve (AUROC) (95% confidence interval) of 0.83 (0.80 – 0.86) and 0.77 (0.72 – 0.81) for 85 

discrimination of IGT and iIGT in the independent validation set (Extended Data Figure 2, 86 

Supplementary Tables 2 and 3). This represented a significantly better predictor when compared to 87 

the performance of a T2D genetic risk score (T2D-GRS, AUROCIGT 0.58 (0.52 – 0.63), AUROCiIGT 0.54 88 

(0.49 – 0.60)) (Figure 2a and b, and Extended Data Figure 3). Protein-based models further 89 

outperformed the standard patient information-based model (based on the Cambridge Diabetes Risk 90 

Score including age, sex, family history of diabetes, smoking status, prescription of steroid or 91 

antihypertensive medication and body mass index (BMI))22 (AUROCIGT = 0.71 (0.67 – 0.75); AUROCiIGT 92 

= 0.71 (0.66 – 0.76)) and the standard clinical model that additionally included blood test results, that 93 

is, FPG and HbA1c (AUROCIGT= 0.78 (0.74 – 0.82); AUROCiIGT=0.75 (0.70 – 0.80)) (Figure 2a and b, 94 

Supplementary Table 4).  95 

Considering a limited set of the most informative proteins that were identified by the feature selection 96 

framework (Methods), discrimination was still superior to the standard clinical model adding only 8 97 

proteins for IGT (AUROCIGT 0.83 (0.80 – 0.86), p-value = 4.13 × 10-5, Figure 2a, Supplementary Table 98 

2) and 3 proteins for iIGT (AUROCiIGT 0.80 (0.76 – 0.85), p-value = 0.004, Figure 2b, Supplementary 99 

Table 3), including 2 proteins (Reticulon-4 receptor, Carboxypeptidase M) selected for both (Figure 100 

2c, Supplementary Table 523-33). The weights for the variables included in these final models are 101 

available in Supplementary Table 6. We observed significant improvement over and above the clinical 102 

model of similar magnitude in the independent Whitehall II (WHII) study (Supplementary Table 7 and 103 

8, Extended Data Figure 4). 104 

To identify participants with iIGT and IGT, respectively, we choose a cut-off for the clinical + protein 105 

model that optimized sensitivity (recall) at 0.70 and 0.71, which yielded a positive predicted value 106 

(precision) of 0.20 and 0.13, respectively. The net reclassification index was higher for the final iIGT 107 

model (14.5%) compared to IGT (6.5%), consistent with the current lack of informative predictors.  108 

Of the 9 distinct proteins included in the 2 final models, 8 were not significantly affected by fasting 109 

status (Methods) with maximum postprandial fold changes ranging between 0.07 and 0.16; only 110 

HTRA1 showed some evidence of a post-prandial increase (maximum fold change= 0.15, p-111 

value=0.004, Supplementary Table 9).  112 

Finally, we tested model performance de novo omitting the 3 most informative proteins to predict 113 

iIGT. The novel model included 7 proteins and still performed significantly better than the best clinical 114 

model (AUROC = 0.78 (0.73 – 0.83), p-value = 0.04, Extended Data Figure 5). This finding illustrates 115 



 6 

redundancy in the protein biomarkers available to select from for iIGT prediction, providing practical 116 

benefits for clinical implementation, for example with regard to flexibility of prioritising choice of 117 

proteins more easily targeted by clinical chemistry assays, least affected by fasting status or sample 118 

handling. 119 

Proteomically informed screening strategies 120 

We calculated the numbers needed to screen (NNS) to determine how many OGTTs would need to be 121 

performed to identify one participant with iIGT using a three-stage screening approach (Figure 3). We 122 

stratified all Fenland individuals based on the patient-derived information model in the first instance 123 

and based on their HbA1c levels and the 3-protein iIGT model in the second instance (Methods). 124 

According to current guidelines2, individuals at high predicted risk based on the patient-derived 125 

information model, but HbA1c levels below cut-offs for prediabetes or T2D2 would not be considered 126 

for further testing (N Fenland =  4163, NNS = 14, Figure 3). Applying the clinical + 3-protein iIGT model 127 

on this group enabled identification of a high-risk subgroup (N = 1739) in which application of an OGTT 128 

should be considered, since the NNS was only 7 to identify one additional individual with iIGT (Figure 129 

3, Supplementary Table 10). Hence, our proposed approach identified an additional >30% of 130 

individuals that would be reclassified (as having prediabetes) and could be offered preventative 131 

interventions, that is, a substantial proportion of high-risk individuals that would otherwise be missed 132 

by current strategies. To test for potential bias in the NNS estimates arising from overfitting, we 133 

applied the same screening algorithm in the test set only, which provided internal validation for the 134 

estimates and results from the entire Fenland set (Extended Data Figure 6). 135 

Characterisation of discriminatory proteins 136 

To investigate whether increased genetic risk of diabetes and related metabolic risk factors affect 137 

abundances of the identified proteins, we compared their differences in individuals with higher versus 138 

lower genetic risk based on genetic risk scores (GRS) for T2D and related endophenotypes, including 139 

fasting glucose34, fasting insulin34, 2hPG34, body mass index (BMI)35 and T2D36, using linear regression 140 

models. We found evidence of significant, directional concordant associations between genetic 141 

susceptibility to these phenotypes and plasma abundances for 4 of the 9 most predictive IGT and iIGT 142 

proteins, (p-value < 0.001, Figure 4c). Plasma abundances of Growth hormone receptor (GHR), 143 

Reticulon-4 receptor (RTN4R), Carboxypeptidase M (CBPM) and Serine protease HTRA1 (HTRA1) were 144 

associated with genetic susceptibility to more than one of these phenotypes, including fasting insulin, 145 

T2D and BMI.   146 

The 3 most predictive iIGT proteins and 6 of the 8 most predictive IGT proteins were significantly 147 

associated with higher measured concentrations of fasting and 2-hour glucose, and insulin. 148 
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Chondroadherin (CHAD) was the only protein inversely associated with all 4 measures. From the 149 

remaining two IGT predictor proteins only Cartilage intermediate layer protein 2 (CILP2) was 150 

significantly inversely associated with fasting glucose (p-values<0.001, Figure 3a). In the independent 151 

prospective WHII cohort (N = 1,492, including 521 incident T2D cases, Supplementary Table 11), all 152 

proteins were significantly associated with an increased risk of developing future T2D, except for 153 

CHAD, which was inversely associated (p-value < 0.006, Figure 4b), and CILP2, which showed no 154 

significant association. Effect sizes ranged from 0.88–1.51 (hazard ratio for T2D per s.d. difference in 155 

the protein target) adjusting for age, sex, and BMI. Associations for HTRA1, GHR, and CBPM remained 156 

significant even upon additional adjustment for fasting glucose, total triglycerides, HDL-cholesterol, 157 

and lipid lowering medication (Supplementary Table 12).  158 

Informative biomarkers are not only relevant to improve screening strategies but can inform 159 

understanding of the separate and shared aetiologies of IGT and iIGT. Comparison of protein ranking 160 

from IGT as opposed to iIGT feature selection revealed that most discriminatory proteins differed 161 

strongly between the IGT and iIGT selections (Extended Data Figure 7) with only eleven proteins 162 

achieving similarly high rankings for both outcomes, that is, being selected in >80% across random 163 

subsets of the study population. The top two biological GO term processes differed between the 65-164 

IGT protein signature (“proteolysis” and “cytokine-mediated signalling pathway”, Supplementary 165 

Table 13) and the 68-iIGT protein signature (“cartilage development”, “collagen fibril organization”, 166 

Supplementary Table 14), however none were significantly enriched following Bonferroni adjustment 167 

for multiple comparisons.  168 

To identify potential differences in factors influencing these IGT and iIGT protein signatures, we 169 

computed the proportion of variance in the first principal component of the 65-IGT and 68-iIGT protein 170 

signatures explained by 24 biochemical, phenotypic, and anthropometric factors. Both signatures had 171 

similarly large proportions of explained variance by glycaemic (5.2 – 37.8%) and anthropometric (25.1 172 

– 40.9%) measures, blood lipids (2.7 – 33.1%), or an ultrasound-based score for hepatic steatosis (22.4 173 

– 24.5%) (Methods). Differences included the higher proportion of variance explained by C-reactive 174 

protein and the lower proportion explained by ALT (a biomarker of liver injury) for the 65-IGT 175 

compared to the 68-iIGT protein signature (CRP 30.2% vs 20.3% and ALT 14.7% vs 23.2%, respectively, 176 

Extended Data Figure 8). Measures related to glucose metabolism (explaining up to 23.8% of the 177 

variance) and adiposity (explaining up to 26.9 % of the variance) were identified as the main factors 178 

explaining variance in the 9 predictive IGT or iIGT proteins included in the final prediction models. 179 

Other protein specific factors included total triglycerides (explained up to 22.6% of GHR), HDL-180 

cholesterol (up to 13.6% of RTN4R), measures of hepatic steatosis (liver score explained up to 15% of 181 
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GHR) and inflammation (up to 27.2% of HTRA1), as well as genetic variants in proximity of the relevant 182 

protein-encoding gene (up to 11.3% of RTN4R) (Extended Data Figure 8).  183 

 184 

Long-term health outcomes associated with predicted iIGT 185 

To explore the clinical consequences of isolated impaired glucose tolerance in the absence of an OGTT, 186 

we performed an exploratory analysis in a random sub-cohort of the prospective EPIC-Norfolk study37 187 

(N=753). We evaluated associations between predicted probabilities based on 1) the final clinical + 3-188 

protein model, 2) the 3-protein model only, and 3) the 68-protein iIGT model with the onset of eight 189 

cardiometabolic diseases based on electronic-heath record linkage38 (N incident cases 30-235; follow-190 

up time between 18 – 19 years; Supplementary Table 15 - 16). All scores were significantly associated 191 

with a greater risk of future T2D (52 incident T2D cases) at 5% false discovery rate (FDR). The iIGT final 192 

clinical+3-protein score was further associated with cataracts and renal disease, possibly reflecting the 193 

known association between chronically elevated 2hPG levels and micro- or macrovascular 194 

complications. Predicted probabilities from the best performing 68-protein-based iIGT-model, showed 195 

a nominally significant association for coronary artery disease (HR = 1.22, p-value = 0.03, CAD) and 196 

peripheral artery disease (HR = 1.27, p-value = 0.04, PAD), T2D-related complications, although these 197 

did not reach statistical significance when adjusting for multiple testing given the small number of 198 

incident cases in this small exploratory cohort. We observed significant associations for individual 199 

proteins with the risk of future T2D, with effect sizes comparable to those in the WHII study39 (Figure 200 

5).  201 

We used proteomic measures done with a distinct proteomic technique, the Olink Explore panel40 in 202 

an independent study (random sub-cohort of the prospective EPIC-Norfolk study, N=602) to test 203 

correlation of overlapping protein predictors and to validate some of our findings using an orthogonal 204 

technique. We observed a high correlation between the SomaScan and Olink measurements for the 205 

top three selected proteins (N=50, Spearman’s r: GHR = 0.80, RTN4R = 0.70 and CBPM = 0.87, 206 

Pearson’s r: GHR = 0.80, RTN4R = 0.72 and CBPM = 0.82). In line with this, we replicated the previously 207 

observed associations with an increased risk of incident T2D, including comparable effect sizes, and 208 

further observed significant associations between the final clinical + 3-protein model and incident 209 

cataracts, heart failure, and coronary heart disease (Extended Data Figure 9). These findings suggest 210 

cross-platform transferability of our results. 211 

 212 

 213 
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 214 

Discussion 215 

Behavioural interventions in individuals with IGT have been shown to delay progression to T2D and 216 

reduce the risk of long term microvascular and macrovascular complications41. However, individuals 217 

with iIGT are likely to remain undiagnosed because the current implementation of recommendations 218 

for screening and diagnosing T2D does not focus on OGTTs, for reasons of practicality. People with 219 

iIGT are at high risk of developing T2D and its associated complications, and failure to identify them 220 

can lead to the development of severe and potentially irreversible complications of their unmanaged 221 

hyperglycaemia16.  222 

By combining deep plasma proteomic profiling with machine learning, we developed models for 223 

improved identification of IGT and iIGT and demonstrated that as few as 8 and 3 proteins, respectively, 224 

provided significant improvement over established clinical predictors 22. We provided external 225 

validation of the significant and substantial improvement achieved by the selected proteins over and 226 

above the stringent benchmark provided by the best clinical model, something rarely done in genomic 227 

or other ‘omic prediction studies. The improvement observed in our independent replication study 228 

was slightly greater than what was originally observed, and we note that the lack of HbA1c 229 

measurements and other differences in study design (previous phases including OGTT screening) and 230 

participant characteristics (older and more males on average) of the Whitehall II cohort39 are likely to 231 

have contributed to this, leading to a lower AUROC for the clinical model and/ or potential 232 

misclassification of iIGT.  233 

We propose a 3-step screening strategy, in line with the current UK Diabetes Prevention 234 

Programmes42, involving risk assessment by 1) a patient-derived information model, 2) measuring 235 

HbA1c levels and only 3 additional proteins from a single spot blood sample, and 3) an OGTT for 236 

eventual diagnosis. Implementation of this proposed screening strategy, could lead to a large 237 

proportion of individuals with iIGT to be additionally identified with a lower NNS, compared to the 238 

currently recommended 2-stage approach42. Our findings illustrate how the identified proteins could 239 

most efficiently be integrated into existing screening approaches to identify individuals with iIGT, who 240 

are at high risk of T2D and its complications but are currently being missed. Behavioural interventions 241 

have shown to be effective at reversing post-load hyperglycaemia independently of fasting glucose 242 

levels43,44, emphasising the value of identifying individuals with iIGT who would benefit the most from 243 

these interventions. We further provided evidence of a link between our developed iIGT predictive 244 

scores with incident T2D and several known cardiometabolic comorbidities resulting from chronically 245 

elevated 2hPG. These finding highlight the potential of applying such a predictive risk score not only 246 
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for cross-sectional identification of iIGT, but for monitoring future risk for associated comorbidities 247 

that impact patients’ quality of life. 248 

We showed that the identified proteins are not strongly affected by fasting status, suggesting that 249 

they could enable a simple and convenient strategy to better identify individuals with IGT and iIGT, 250 

compared to an OGTT, which requires repeated blood draws conveying additional costs18. Protein 251 

assessment could substantially improve the feasibility and acceptability of an improved strategy to 252 

identify iIGT, more so than alternative strategies that have been proposed such as a 1-hour OGTT45, 253 

and hence brings it in line with existing strategies for the screening and diagnosis of T2D. Since HbA1c 254 

testing requires anticoagulated whole-blood, usually EDTA, a subset of the same sample type could 255 

be processed for plasma preparation to measure discriminatory proteins, avoiding the need for 256 

additional blood sampling.  257 

This study provided insights into aetiological differences between iIGT and IGT. Our results suggested 258 

a stronger low-grade inflammatory component46-49 among proteins discriminatory for IGT compared 259 

to those for iIGT. These proteins might represent refined biomarkers of low-grade inflammation, as 260 

they were highlighted as being predictive over and above established inflammatory markers also 261 

covered in our proteomic study, such as C-reactive protein. At an individual biomarker level, we 262 

identified a number of proteins shared or distinctly associated with these metabolic disturbances, 263 

including GHR, RTN4R, HTRA1, CBPM, CHAD, CBLN4, NEU1, CILP2, and S100-A10. We used genetic 264 

data to provide evidence that early deregulation of diabetes related pathways is linked to the 265 

candidate proteins, most of which were also significantly associated with risk of future development 266 

of T2D, providing a novel set of high priority T2D targets for further follow-up and assessment in in 267 

more diverse settings and ethnicities.  268 

While our model estimated a meaningful decrease in the NNS, there are important consideration for 269 

implantation of the proposed strategy. A considerable proportion of individuals with iIGT were missed 270 

by being classified low risk in either the first or subsequent screening steps. A further limitation of our 271 

study was the lack of orthogonal validation of our protein-based prediction models with an alternative 272 

proteomic technology. Technical, genetic, and other biological factors can result in biased protein 273 

measurements due to changes in affinity of the aptamer reagents50. However, the strong correlations 274 

observed with the antibody-based Olink Explore panel suggests cross-platform transferability. We 275 

further validated the phenotypic association of the iIGT predictive protein scores with incident 276 

cardiometabolic diseases using Olink Explore measurements, providing the possibility of 277 

implementing our model with alternative proteomic technologies. 278 
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In summary, we demonstrated the utility of the plasma proteome to inform strategies for screening 279 

of iIGT and for gaining novel aetiological insights into early signatures of impaired glucose tolerance, 280 

a globally very common and clinically important metabolic disorder, but one that it is difficult to detect 281 

and treat in routine clinical practice.   282 
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Figure Legends 447 

Figure 1. Study design. a, Proteomic profiling was done in fasting plasma samples from participants from the 448 
Fenland cohort that had undergone an OGTT. b, 3-step modelling framework for IGT and iIGT classification. *For 449 
iIGT prediction individuals with non-isolated IGT were excluded. c, Association of top discriminatory proteins 450 
with incident type 2 diabetes was assessed in the Whitehall II study d, Association of iIGT protein scores with 8 451 
incident cardiometabolic diseases was assessed in a sub-cohort of the EPIC-Norfolk study. OGTT: oral glucose 452 
tolerance test, IGT: impaired glucose tolerance, iIGT: isolated impaired glucose tolerance. 453 
 454 
Figure 2. Performance of LASSO trained models for impaired glucose tolerance (a) and isolated impaired 455 
glucose tolerance (b) discrimination in the internal validation test set. a, IGT discrimination performance in the 456 
independent internal validation test set (N=2881, 192 IGT individuals) for the standard clinical model (Cambridge 457 
T2D risk Score + FPG + HbA1c), a 65-protein model and a clinical + 8 protein model. b, iIGT discrimination 458 
performance in the independent internal validation test set (N=2795, 111 iIGT individuals) for the standard 459 
clinical model, a 68-protein model and a clinical + 3 protein model. c, Comparison of protein ranking during 460 
feature selection for iIGT (N=2795, 111 iIGT individuals) and IGT (N=2881, 192 IGT individuals) top discriminatory 461 
proteins. IGT: impaired glucose tolerance, iIGT: isolated impaired glucose tolerance, FPG: fasting plasma glucose, 462 
HbA1c: glycated haemoglobin. 463 
 464 
Figure 3. Proposed 3-stage screening strategy. In the first stage, individuals in the whole of Fenland were divided 465 
into low and high risk according to the Cambridge T2D risk score. The high risk group would undergo a second 466 
stage involving measurement of HbA1c and of the 3 iIGT proteins. Individuals with HbA1c levels within the T2D 467 
or prediabetic range would be referred for intervention and lifestyle modifications. Individuals with HbA1c below 468 
the prediabetic range, would be further stratified using the final clinical + 3 iIGT protein model to identify a high 469 
risk group, which on a third stage would be taken forward for OGTT testing to identify iIGT cases that would 470 
have otherwise been missed by current screening guidelines. Figure was designed with biorender.com.  471 
 472 
Figure 4. Characterization of the association between top impaired glucose tolerance and isolated impaired 473 
glucose tolerance discriminatory proteins and glycaemic traits, future T2D risk and genetic predisposition to 474 
metabolic phenotypes. a, Association of top IGT and iIGT discriminatory proteins with fasting and 2-hour glucose 475 
and insulin in the Fenland study (N = 10259 individuals). Beta estimates with 95% confidence intervals are shown. 476 
b, Association of top IGT and iIGT discriminatory proteins with incident T2D in the Whitehall II study (N = 1492, 477 
521 incident T2D cases). Hazard ratios (HR) with 95% confidence intervals are shown. c, Association of genetic 478 
risk scores for fasting glucose, fasting insulin, 2-hour plasma glucose, type 2 diabetes and body mass index with 479 
top IGT and iIGT discriminatory proteins in the Fenland study (N = 7973 individuals). Beta estimates with a 95% 480 
confidence interval are shown. FG: fasting glucose, FI: fasting insulin, 2hPG: 2-hour plasma glucose, 2hPI: 2-hour 481 
plasma insulin, T2D: type 2 diabetes, BMI: body mass index.  482 
 483 
Figure 5. Association of iIGT protein scores with incident cardiometabolic diseases. Association of iIGT 484 
prediction scores (left panel) or individual top iIGT proteins (right panel) with 8 cardiometabolic disease 485 
outcomes in a sub-cohort the EPIC-Norfolk study (N=753 individuals). Hazard ratios (HR) with 95% confidence 486 
intervals are shown.  487 
 488 
 489 
 490 
 491 
 492 
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Methods 493 

Study Samples 494 

The Fenland study21 is a population-based cohort of 12,435 men and women born between 1950 and 495 

1975 who underwent detailed phenotyping at the baseline visit from 2005-2015. Participants were 496 

recruited from general practice surgeries in Cambridge, Ely and Wisbech (UK). Exclusion criteria of the 497 

Fenland study included pregnancy, prevalent diabetes, an inability to walk unaided, psychosis, or 498 

terminal illness. The study was approved by the Cambridge Local Research Ethics Committee (NRES 499 

Committee – East of England Cambridge Central, ref. 04/Q0108/19) and all participants provided 500 

written informed consent. The consent covered measurements made from blood samples as well as 501 

extends beyond the baseline examination as described previously21. 502 

Clinical assessment  503 

All participants completed a 2-hour 75 g OGTT following an overnight fast. Blood samples were 504 

collected at fasting and 2-hour post glucose load in EDTA tubes for plasma separation by 505 

centrifugation. Samples were kept at -80°C until further analysis. Glucose (assayed in a Dade Behring 506 

Dimension RxL analyser) and insulin (DELFIA® immunoassay, Perkin Elmner) concentrations were 507 

measured at fasting and 2-hours, as well as lipid profiles (triglycerides, HDL and total cholesterol), 508 

alanine aminotransferase (ALT), alkaline phosphatase (ALP), C-reactive protein (CRP) and serum 509 

creatinine (assayed in a Dade Behring Dimension RxL analyser) at fasting, and HbA1c (Tosoh 510 

Bioscience, TOSOH G7 analyser).  511 

IGT and T2D were defined by 2-hour glucose according to IEC diagnosis criteria2 as glucose levels 512 

between 7.8  and < 11.1 mmol/L (141 and < 199 mg/dL) and ≥ 11.1 mmol/L (≥ 199 mg/dL), respectively. 513 

IGT was defined as 2hPG ≥7.8 mmol/L and <11.1 mmol/L, post-challenge hyperglycaemia as 2hPG 514 

≥11.1mmol/L, iIGT as individuals with IGT but HbA1c <42mmol/mol (6%) and FG <6.1 mmol/L 515 

(<110mg/dL), and isolated post-challenge hyperglycaemia as individuals with post-challenge 516 

hyperglycaemia but HbA1c <42mmol/mol and FG <6.1 mmol/L. The number of individuals with post-517 

challenge hyperglycaemia in the diabetic range (i.e., 2hPG ≥ 11.1 mmol/L) was too low to investigate 518 

the performance of our models to identify this group of people with undiagnosed T2D biochemically 519 

defined solely due to elevated 2-hour glucose. These individuals would still be missed and remain 520 

undiagnosed by FG and HbA1c testing. We therefore used the terms IGT and iIGT to refer to all 521 

individuals with 2hPG ≥ 7.8 mmol/L throughout text and in order to develop a model that captures all 522 

individuals that would remain undiagnosed by current strategies. We note that the thresholds to 523 

define glycaemic categories vary across the American Diabetes Association (ADA) , WHO and the 524 

International Expert Committee (IEC)51. We use the IEC HbA1c and FG thresholds to reflect current 525 
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clinical practice in the UK. We note that using ADA thresholds will likely results in lower case numbers 526 

for IGT and iIGT at the cost of a substantially higher false-positive rate. Body mass index (BMI) was 527 

calculated as weight (kg) / square of height (m2). Additionally, the homeostasis model assessment of 528 

insulin resistance (HOMA-IR) was calculated as FI (µIU/mL) × fasting glucose (mmol/mL)/22.552. 529 

Estimated glomerular filtration rate (eGFR) was calculated by the CKD-EPI equation using serum 530 

creatinine53. 531 

Hepatic steatosis was evaluated by an abdominal ultrasound and images were scored by two trained 532 

operators. Criteria used for scoring included: increased echotexture of the liver parenchyma, 533 

decreased visualisation of the intra-hepatic vasculature and attenuation of ultrasound beam. A normal 534 

liver was considered as a score from 3 – 4, mild steatosis from 5 – 7, moderate steatosis from 8 – 10 535 

and sever steatosis ≥ 11 54.  536 

Participants completed DEXA scan measurements using a Lunar Prodigy advanced fan beam scanner 537 

(GE Healthcare) performed by trained operators using standard imaging, positioning protocols and 538 

manually processed according to a standardized procedure described previously35. Abdominal visceral 539 

and subcutaneous fat mass was estimated using the DEXA software.  540 

Differences in clinical characteristics were evaluated by ANOVA followed by posthoc Tukey test, or χ2 541 

for categorical variables. Non-normally distributed variables were log transformed when appropriate. 542 

Proteomic profiling of the Fenland cohort 543 

Proteomic profiling was done using an aptamer-based technology (SomaScan proteomic assay). 544 

Fasting proteomic profiling was done in participants from the Fenland cohort at baseline, from which 545 

relative abundancies of 4,775 unique protein targets (evaluated by 4,979 SOMAmer reagents, 546 

SomaLogic v4)18,55 was evaluated in EDTA plasma. Briefly, proteins are targeted by modified single 547 

stranded DNA sequences (aptamers). Concentration is then approximated as relative fluorescence 548 

units using a DNA microarray 56. 549 

To account for variation in hybridization within runs, hybridization control probes are used to generate 550 

a hybridization scale factor for each sample. To control for total signal differences between samples 551 

due to variation in overall protein concentration or technical factors such as reagent concentration, 552 

pipetting or assay timing, we used the adaptive median normalisation (AMN), unless stated otherwise. 553 

Briefly, a ratio between each aptamer's measured value and a reference value from an external 554 

reference population is computed, and the median of these ratios is computed for each of the three 555 

dilution sets (20%, 1% and 0.005%) and applied to each dilution set to shift the intrapersonal 556 

distribution of protein intensities accordingly to match the reference population. We removed 557 

samples if they did not meet an acceptance criterion for scaling factors with values outside of the 558 
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recommend range (0.25-4) or were flagged as technical failures (n=19). Detailed SomaLogic’s 559 

normalization, calibration data, and quality control processes have been previously described in 560 

detail18. At a protein level, we took only human protein targets forward for subsequent analysis (4,979 561 

out of the 5284 aptamers). Intraassay coefficients of variation (calculated based on raw fluorescence 562 

units) had a median of 4.98% (interquartile range 3.87% - 6.99%) suggesting good quality measures 563 

for the vast majority of protein targets. We decided to not apply any other filters to individual protein 564 

qualities given that even poorly measured proteins might be informative and left it to the restrictive 565 

feature selection approach applied to drop uninformative proteins, including possibly poorly 566 

measured once. Aptamers’ target annotation and mapping to UniProt accession numbers as well as 567 

Entrez gene identifiers were provided by SomaLogic and we used those to obtain genomic positions 568 

of protein encoding genes.  569 

Genome wide genotyping and imputation 570 

Fenland participants were genotyped using three genotyping arrays: the Affymetrix UK Biobank Axiom 571 

array (OMICs, N=8994), Illumina Infinium Core Exome 24v1 (Core-Exome, N=1060) and Affymetrix 572 

SNP5.0 (GWAS, N=1402). Samples were excluded for the following reasons: 1) failed channel contrast 573 

(DishQC <0.82); 2) low call rate (<95%); 3) gender mismatch between reported and genetic sex; 4) 574 

heterozygosity outlier; 5) unusually high number of singleton genotypes or 6) impossible identity-by-575 

descent values. Single nucleotide polymorphisms (SNPs) were removed if: 1) call rate < 95%; 2) clusters 576 

failed Affymetrix SNPolisher standard tests and thresholds; 3) MAF was significantly affected by plate; 577 

4) SNP was a duplicate based on chromosome, position, and alleles (selecting the best probe set 578 

according to Affymetrix SNPolisher); 5) Hardy-Weinberg equilibrium p<10-6; 6) did not match the 579 

reference or 7) MAF=0. 580 

Autosomes for the OMICS and GWAS subsets were imputed to the HRC (r1) panel using IMPUTE4, and 581 

the Core-Exome subset and the X-chromosome (for all subsets) were imputed to HRC.r1.1 using the 582 

Sanger imputation server57. All three arrays subsets were also imputed to the UK10K+1000Gphase358 583 

panel using the Sanger imputation server in order to obtain additional variants that do not exist in the 584 

HRC reference panel. Variants with MAF < 0.001, imputation quality (info) < 0.4 or Hardy Weinberg 585 

Equilibrium p < 10-7 in any of the genotyping subsets were excluded from further analyses. 586 

Statistical Analyses 587 

Classification of IGT and iIGT from the fasting proteome 588 

To identify and validate a proteomic signature able to discriminate IGT and iIGT (as a binary outcome), 589 

the entire Fenland study (N=11,546 without missing data for 2hPG), was divided into three subsets: 590 

for feature selection (50%, N = 5773), parameter optimization (25%, N=2887) and validation (25%, 591 
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N=2881). IGT and iIGT cases were split equally into 50% for training (NIGT = 387, NiIGT = 222), 25 % for 592 

optimization (NIGT = 194, NiIGT = 111) and 25% for testing (NIGT = 193, NiIGT = 111) sets. For these 593 

analyses, SOMAmer RFUs were log10-transformed. Feature selection was carried out by least absolute 594 

shrinkage and selection operator (LASSO) regression. We chose to use LASSO because it was the most 595 

suitable model to 1) identify the smallest possible set of independent predictors, 2) it is 596 

computationally efficient, which allowed us to implement a robust framework using bootstrap 597 

resampling to identify a core set of most informative predictors and 3) it is less prone to overfitting. 598 

To address case-control imbalance we used the ROSE R package59, which implements down-sampling 599 

of the majority class (controls) along with synthetic new data points for the minority class (IGT or iIGT). 600 

A nested 10-fold cross-validation (inner loop to determine regularization parameter, ʎ) was done over 601 

100 bootstrap samples (outer loop) drawn from the feature selection set. Each protein received a 602 

score that was generated by counting the number of times it was included in the final model from 603 

each of the 100 bootstrap samples, that is, the score was between 0 (for proteins that were never 604 

selected in the final model) and 100 (for proteins that were selected in the final model in all bootstrap 605 

samples). We ranked the proteins based on their score to identify the most informative set of features 606 

(i.e. with a higher score) (Supplementary Fig. 1). This was implemented by the use of the R packages 607 

caret60 and glmnet61. Proteins selected in the final model in more than 80%, 90%, and 95% of the 608 

bootstrap samples, were tested as predictors and taken forward for parameter optimization by 10-609 

fold cross validation of the model by LASSO regression in the optimization set. Additional models were 610 

optimized by LASSO regression, such as a standard patient information-based model using the 611 

variables from the Cambridge Diabetes Risk Score (age, sex, family history of diabetes, smoking status, 612 

prescription of steroid or antihypertensive medication and BMI)22, a standard clinical model (including 613 

the variables from the Cambridge Diabetes risk Score, FG and HbA1c) and a standard clinical plus the 614 

selected proteins model. Clinical predictors were forced to be kept in the clinical plus proteins model 615 

by setting the penalty factors of these variables to 0. For comparison, ridge regression (which will keep 616 

all proteins in the final model) was used to build a prediction model using all the 4979 proteins as 617 

predictors.  618 

Performance of the classification models were evaluated in the internal independent validation set, 619 

which was never used for training and optimization. The prediction models’ discriminatory power was 620 

assessed by computing the area under the receiver operating curve (AUROC). Confidence intervals 621 

and p-values (using the deLong method implemented by the R package pROC62) were computed for 622 

the comparison between the ROC curves for the standard clinical model and clinical with added 623 

proteins model. Additionally, models’ net reclassification index was evaluated using the R package 624 

PredictABEL63. 625 
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Using an analogous machine learning strategy, we developed models for iIGT discrimination. For these 626 

analyses, all individuals with non-isolated IGT (2hPG > 7.8 mmol/L, FPG > 6.1 mmol/L and HbA1c > 42 627 

mmol/mol) were excluded from the cohort (leaving N = 11,281), which was subsequently divided into 628 

feature selection (50%, N = 5591), parameter optimization (25%, N=2796) and validation (25%, 629 

N=2795). Feature selection, optimization and testing were carried out as described for IGT models. To 630 

achieve comparable model performance with the minimal number of predictors, we used recursive 631 

feature elimination on the set of proteins selected in >95% of boots during feature selection. As a 632 

sensitivity analysis, we performed the same framework described above, that is, feature selection, 633 

parameter optimization and validation to assess model performance when using protein data 634 

reversing the final normalisation step that is unique to the SomaScan platform. We note that using 635 

‘non-normalised’ proteomic data led to broadly comparable results, which are well in the margins of 636 

random variation of protein measurements in general, albeit with some difference in the proteins 637 

selected as the most predictive markers in the final models (Supplementary Table 17). 638 

Calibration of the final models was assessed in the internal validation set by computing the calibration 639 

slope, which evaluates the spread of the estimated risks and has a target value of one. Calibration 640 

slopes less than 1 indicate extreme estimated risks while slopes greater than 1 indicate very moderate 641 

risk estimates. Calibration slopes were computed using the R package rms64. 642 

The number needed to screen (NNS) was calculated using a staged screening scenario. Firstly, 643 

participants from the Fenland study were stratified by predicted probabilities from the Cambridge T2D 644 

risk Score, that is, non-invasive risk factors that could be obtained by interviewing the patient. The 645 

threshold used to stratify individuals into “high” and “low” risk strata according to their predicted 646 

probabilities was set to optimize a balance between the total number of individuals that would be 647 

needed to screen and sensitivity (as would be appropriate for such a screening setting), which was 648 

achieved at 0.7, regardless of specificity. On second instance, participants within the high-risk group 649 

were further stratified by HbA1c levels, using IEC cut-offs (normoglycaemic : HbA1c < 42 mmol/mol, 650 

prediabetic criteria: HbA1c >= 42 mmol/mol and < 48 mmol/mol, T2D criteria : HbA1c >= 48 651 

mmol/mol)51. On third instance, participants whose HbA1c did not meet the criteria for T2D or 652 

prediabetes (that is, normoglycaemic as defined aboved), were further stratified according to the 653 

clinical + 3- iIGT protein model. Similarly, a threshold that optimized testing as few individuals as 654 

possible while retaining good sensitivity of 0.7 was set for this model (Supplementary Table 10). We 655 

estimated the NNS within this stratum compared to the NNS within the full set of individuals with 656 

HbA1c in the normoglycaemic range. The NNS was calculated as the total number of individuals within 657 

the group divided by the number iIGT cases within the same group and refers to the number of OGTTs 658 
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that would need to be done to identify one iIGT case within the group of interest. We additionally 659 

estimated the NNS in the test set only, as a sensitivity analysis.   660 

IGT/iIGT model validation and follow-up analyses in the WHII study 661 

The Whitehall II study is a longitudinal, prospective cohort study39 that was approved by the joint  662 

University College London / University College London Hospital’s Committees on the Ethics of Human 663 

Research. Proteomic profiling of fasting EDTA-plasma samples was done for all individuals at phase 5 664 

(from 1997 - 1999) with the SomaScan v4.1 proteomic assay. We performed validation of the IGT and 665 

iIGT clinical + protein models at phase 5 (from 1997 - 1999) of the study, were proteomic profiling and 666 

OGTT values were available. Since HbA1c was not measured at phase 5 of the study, we defined iIGT 667 

as 2hPG > 7.8 mmol/L and FPG > 6.1 mmol/L. We used the weights from the models trained in Fenland 668 

to evaluate their performance in WHII phase 5 (total sample size = 5058, NIGT= 693, NiIGT=617) for the 669 

baseline clinical model (Cambridge T2D risk score + FG) and the baseline clinical + protein iIGT and IGT 670 

models (3 and 8 proteins respectively).  671 

For the association between top discriminatory proteins and incident T2D in the Whitehall II study 672 

individuals were selected as a nested case-control study design in which proteomic profiling of fasting 673 

EDTA-plasma samples was done at phase 5 (from 1997 - 1999) with the SomaScan v4 proteomic assay. 674 

Incident T2D occurrence was assessed in repeated clinical examinations in 1997-1999, 2002-2004, 675 

2007-2009, 2012-2013, and 2015-2016, based on FPG above 7 mmol/L, HbA1c>6.5%, use of diabetes 676 

medication, or reported physician diagnosed diabetes, excluding prevalent T2D cases at baseline from 677 

the analysis. Additionally, participants with impaired kidney function (eGFR < 30 mL/min/1.73m2), 678 

incident cardiovascular diseases or missing data on T2D at follow-up were excluded. The final sample 679 

comprised of 521 cases and 971 controls. 680 

Association between fasting candidate proteins and incident T2D was assessed using Cox-proportional 681 

hazards regression adjusting for the baseline confounders age, sex and BMI. We tested a second 682 

model adjusting for additional baseline confounders including FG, triglycerides, HDL-cholesterol and 683 

lipid lowering medication on top of age, sex and BMI to determine whether the association persisted 684 

in a more refined model. 685 

Effect of fasting status on plasma levels of IGT and iIGT discriminatory proteins 686 

Fourteen adult participants were recruited to participate in the study and provided informed consent 687 

appropriately. Participants were asked to fast overnight for at least 12 hours prior to reporting to the 688 

study site. Fasting blood samples were collected from each participant, after which they were given a 689 

moderate fat meal consisting of 5-8 ounces of Cheerios with 6 ounces of 2% milk, one egg, one slice 690 
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of bacon, one slice of toast with margarine, and 4 ounces of orange juice (calories: 450, 16.9 grams of 691 

fat, 16 grams of protein, and 59 grams of carbohydrates)65.  692 

The time for each participant to complete the meal ranged from 7 to 19 minutes (average of 16 693 

minutes). Post prandial blood samples were collected at 0.5, 1, and 3 hours following completion of 694 

the meal. Since each participant consumed their meals at different rates, the actual blood collection 695 

times post meal does vary between participants. Participants were not allowed to eat or drink any 696 

further caloric items until after the last blood collection. Twelve participants (6 male and 6 female) 697 

completed the study. Two participants were excluded due to unmet fasting requirements and an 698 

adverse reaction during the first blood draw. 699 

Blood samples were processed to obtain EDTA-plasma by centrifugation and frozen at -80°C until 700 

delivered to SomaLogic Sample Management for proteomic profiling using the SomaScan v4 assay. 701 

The effect of fasting status on 9 unique SOMAmer reagents included in the final clinical + protein 702 

models for IGT or iIGT, was tested by repeated measures ANOVA. Proteins with ANOVA p-values < 703 

0.0055 (according to Bonferroni adjustment for 9 comparisons) were deemed to be significantly 704 

affected by fasting status.   705 

Functional annotation of IGT and iIGT-protein signatures 706 

Functional annotation of the 65-IGT and 68-iIGT protein signatures was performed using modified 707 

Fisher’s exact tests as implemented by the Database for Annotation, Visualization and Integrated 708 

Discovery (DAVID, version 6.8) and enrichment of biological process GO terms (GOTERM_BP_DIRECT) 709 

was analysed, setting the full list of proteins evaluated by the SomaLogic platform as the background.  710 

Variance explained in top discriminatory protein levels by clinical, biochemical, anthropometric and 711 

behavioural risk factors 712 

The proportion of variance explained in candidate protein levels by several variables was evaluated in 713 

the Fenland cohort using the variancePartition R package66. Analogously, the proportion of variance 714 

explained in the first principal component of the 65-IGT and 68-iIGT discriminatory protein signatures 715 

was evaluated. Briefly, this package fits a linear mixed model to assess the effect of each variable on 716 

the outcome while correcting for all other variables. Variables evaluated were age, sex, IGT, IPCH, FPG, 717 

2hPG, FI, 2hPI, HbA1c, total triglycerides, total cholesterol, HDL-cholesterol, LDL-cholesterol, ALT, ALP, 718 

a liver score, BMI, waist-to-hip ratio (WHR), amount of subcutaneous fat, amount of visceral fat, CRP, 719 

estimated glomerular filtration rate (eGFR) and intake of statins or antihypertensive medication. FPG, 720 

2hPG, FI, 2hPI, HbA1c, total triglycerides, ALT, ALP, CRP, subcutaneous fat and visceral fat were natural 721 

log-transformed due to skewed distribution of these variables. We fit separate models for each of the 722 

variables evaluated adjusting only for age and sex in the entire Fenland cohort (N=11,546) to avoid 723 
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bias due to strong collinearity among variables tested. For each of the models, participants with 724 

missing data were excluded.   725 

Protein quantitative trait loci (pQTLs) for candidate proteins 726 

Genetic variants associated with candidate proteins (protein quantitative trait loci or pQTLs) were 727 

taken from our genome-wide association studies across all aptamers as described in Pietzner et al, 728 

202155.   729 

Percentage of variance explained in protein levels by cis and trans pQTL scores 730 

Polygenic scores were constructed for pQTLs within the cis (within ±500 kb of the protein-encoding 731 

gene) and trans regions. Cis-pQTL scores were built using conditionally independent variants. The 732 

percentage of variance explained in protein levels by the cis and trans-scores was computed as 733 

described in the above section adjusting for age and sex. 734 

Association between top discriminatory proteins and fasting and 2-hour plasma glucose and insulin 735 

Observational associations between the top selected IGT and iIGT discriminatory proteins and FPG, FI, 736 

2hPG and 2hPI were assessed in the entire Fenland cohort at baseline (N=10,259 without missing data) 737 

by linear regression models adjusting for age, sex, BMI and test site from the study. The models for 738 

2hPG and 2hPI were additionally adjusted by FPG and FPG + FI, respectively. Protein levels were log10-739 

transformed and standardized, and 2hPG and 2hPI values were log-transformed for these analyses. 740 

Proteins were considered significant at a Bonferroni threshold (p-values < 0.001, accounting for 741 

comparisons between the number of protein and number of traits, as for all further association 742 

analyses). 743 

Association between polygenic risk scores for glycaemic traits and top discriminatory proteins 744 

T2D36, fasting glucose (FG)34, fasting insulin34 (FI score), 2hPG34 (2hPG score) and BMI35 polygenic 745 

scores, weighted by genetic effect sizes of previously reported genome-wide significant  variants, were 746 

computed for 7,973 Fenland participants genotyped with the same array (Affymetrix UK Biobank 747 

Axiom Array). Variants not available, with low imputation quality scores < 0.6, or with strand 748 

ambiguous alleles were excluded from the scores. Each polygenic score was tested for associations 749 

with the plasma abundancies of top IGT and iIGT discriminatory proteins by linear regression models 750 

adjusting for age, sex, BMI, the first 10 genetic principal components and test site of the study.  751 

Association between iIGT scores with incident cardiometabolic diseases in a sub-cohort of the EPIC-752 

Norfolk study 753 

The EPIC-Norfolk study is a cohort of 25,639 middle-aged, individuals from the general population of 754 

Norfolk a county in Eastern England which is a component of EPIC37. The EPIC-Norfolk study was 755 
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approved by the Norfolk Research Ethics Committee (ref. 05/Q0101/191); all participants gave their 756 

informed written consent before entering the study. All participants were flagged for mortality at the 757 

UK Office of National Statistics and vital status was ascertained for the entire cohort. Death certificates 758 

were coded by trained nosologists according to the International Statistical Classification of Diseases 759 

and Related Health Problems, 10th Revision (ICD-10). Hospitalization data were obtained using 760 

National Health Service numbers through linkage with NHS Digital. Participants were identified as 761 

having experienced an event if the corresponding ICD-10 code was registered on the death certificate 762 

(as the underlying cause of death or as a contributing factor) or as the cause of hospitalization 763 

(Supplementary Table 15). Since the long-term follow-up of EPIC-Norfolk comprised the ICD-9 and 764 

ICD-10 coding system, codes were consolidated. The current study is based on follow-up to 31 March 765 

2016. Information on lifestyle factors and medical history was obtained from questionnaires as 766 

reported previously37. The current analysis is based on a random sub-cohort (N=875) of the whole 767 

EPIC-Norfolk study population that was selected excluding known prevalent case subjects of diabetes 768 

at baseline was using the same definitions as used in the InterAct Project67; in which proteomic 769 

profiling was done at health check 1 using the SOMAscan v4 platform from citrate-plasma samples 770 

stored in liquid nitrogen since the baseline visit.  771 

Participants with missing data for any of the variables included in the final prediction models 772 

developed in the Fenland study were excluded. The final sample comprised of 753 individuals for 773 

which characteristics are presented in Supplementary Table 16.  774 

Final prediction models trained and optimized for iIGT in the Fenland study were used to calculate the 775 

predicted probability of iIGT for each participant at health check 1 in this sub-cohort of the EPIC-776 

Norfolk study. Models tested included: the clinical + 3-proteins iIGT model, 3-protein iIGT model (95% 777 

feature selection protein set model), 68-protein iIGT model (80% feature selection protein set model) 778 

and the clinical model as a baseline comparison. We then tested the association of the predicted iIGT 779 

probability with 8 incident cardiometabolic diseases (or associated T2D comorbidities) including type 780 

2 diabetes, coronary heart disease, heart failure, peripheral artery disease, cerebral stroke, liver 781 

disease, renal disease and cataracts using cox proportional hazards models adjusting by age at 782 

baseline and sex (except for the clinical + 3 protein model, which already accounted for these risk 783 

factors within the score). Associations were deemed significant at an 5% FDR accounting for 784 

comparison between 8 diseases.  785 

We aimed for cross-platform validation in a separate random sub-cohort of the prospective EPIC-786 

Norfolk study (N=771), in which proteomic measures were done with the Olink Explore panel40 from 787 

serum samples. Participants with missing data for any of the variables included in the final prediction 788 
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models developed in the Fenland study (expect HbA1c which was excluded from the models as it was 789 

unavailable in a large proportion of participants from this sub-cohort) were excluded. The final sample 790 

comprised of 602 individuals for which characteristics are presented in Supplementary Table 18.  791 

Final prediction models trained and optimized for iIGT in the Fenland study (using SomaScan) were 792 

used to calculate the predicted probability of iIGT for each participant at health check 1 in this sub-793 

cohort of the EPIC-Norfolk study, using the Olink measures for the proteins. Models tested included: 794 

the clinical + 3-proteins iIGT model, 3-protein iIGT model (95% feature selection protein set model) 795 

and the Cambridge T2D risk Score. We then tested the association of the predicted iIGT probability 796 

with the same Cox-model setting and set of disease as in the sub-cohort with available SomaLogic 797 

measurements except for liver disease (Supplementary Table 19). Associations were deemed 798 

significant at an 5% FDR accounting for comparison between 7 diseases.  799 

All statistical analyses were performed using R language, and environment for statistical computing 800 

(version 3.6.1 and 4.1.0, R Core Team). 801 

 802 

Data availability 803 

Data access for the Fenland and EPIC studies can be requested by bona fide researchers for specified 804 

scientific purposes through a simple application process via the study websites below. Data will either 805 

be shared through an institutional data sharing agreement or arrangements will be made for analyses 806 

to be conducted remotely without the necessity for data transfer. 807 

Fenland: https://www.mrc-epid.cam.ac.uk/research/studies/fenland/information-for-researchers 808 

EPIC-Norfolk: https://www.mrc-epid.cam.ac.uk/research/studies/epic-norfolk 809 
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Code availability 811 
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Abstract 20 

The implementation of recommendations for type 2 diabetes (T2D) screening and diagnosis focus on 21 

measurement of HbA1c and fasting glucose. This approach leaves a large number of individuals with 22 

isolated impaired glucose tolerance (iIGT), who are only detectable through oral glucose tolerance 23 

tests (OGTTs), at risk of diabetes and its severe complications. We applied machine learning to 24 

proteomic profiles of a single fasted sample from 11,546 participants of the Fenland study to test 25 

discrimination of iIGT defined using gold standard OGTTs. We observed significantly improved 26 

discriminative performance by adding only three proteins (RTN4R, CBPM, and GHR) to the best clinical 27 

model (0.80 (0.79-0.86), p=0.004), which we validated in an external cohort. Increased plasma levels 28 

of these candidate proteins were associated with an increased risk for future T2D in an independent 29 

cohort and were also increased in individuals genetically susceptible to impaired glucose homeostasis 30 

and T2D. Assessment of a limited number of proteins can identify individuals likely to be missed by 31 

current diagnostic strategies and at high risk of T2D and its complications. 32 

  33 
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Introduction 34 

Current clinical guidelines for type 2 diabetes (T2D) screening and diagnosis are based on glycated 35 

haemoglobin (HbA1c) and fasting glucose (FG) levels for reasons of practicality, however alternative 36 

tests can be used1,2. Globally, over 7.5% of adults have impaired glucose tolerance (IGT)3 with 37 

increased prevalence reported in older individuals4 and specific ethnic groups, such as people from 38 

Southeast Asia5. A substantial proportion of people with IGT (28 – 86%)6-8 can only be identified 39 

through oral glucose tolerance tests (OGTTs), which are inconvenient and time-consuming. Individuals 40 

with isolated IGT (iIGT), that is, 2-hour plasma glucose (2hPG) ≥7.8 and < 11.1 mmol/L but normal 41 

HbA1c and fasting glucose, remain undetected by current T2D detection strategies9-12 but are at very 42 

high risk of developing diabetes (annualized T2D relative risk of 5.5 compared to normoglycemic 43 

individuals)13 and presenting with its severe micro- and macrovascular complications9-12,14. Compared 44 

to individuals with fasting hyperglycaemia, mortality is twice as high in the iIGT group over a period of 45 

5 to 12 years15,16.  46 

Small proof-of-concept studies in cohorts of high-risk individuals have demonstrated the value of deep 47 

molecular profiling for early identification of pathways that are differentially regulated between 48 

individuals with and without insulin resistance17,18 and to guide its prediction19. Deep profiling of the 49 

plasma proteome at population scale has become possible through aptamer-based affinity assays20. 50 

The systematic study of the circulating proteome promises to improve strategies for prediction and 51 

diagnosis18 as well as aetiological understanding, including identification of novel pathways leading to 52 

T2D and refinement of aetiological subtypes.  53 

Because of the high global prevalence of IGT and iIGT, their severe complications, and the currently 54 

unmet need of screening strategies that can identify iIGT without a challenge test, we used machine 55 

learning to test whether large-scale proteomic profiling of a single fasted sample could identify 56 

individuals with iIGT and improve current clinical models. We then tested whether the most 57 

discriminatory proteins were affected by fasting status, to assess the feasibility of using non-fasted 58 

samples to identify iIGT. To gain insights into IGT and iIGT aetiology, we 1) identified and characterised 59 

biochemical, phenotypic, and anthropometric drivers of discriminatory proteins, 2) investigated 60 

whether their plasma levels were associated with the risk of future T2D in an independent prospective 61 

cohort with 521 incident T2D cases, and 3) tested the influence of genetic susceptibility to T2D or 62 

related phenotypes on protein levels. 63 

Results 64 

We used an aptamer-based assay  to target 4,775 distinct fasting plasma proteins by 4,979 aptamers 65 

in 11,546 participants (5,389 men and 6,157 women) without diagnosed diabetes from the 66 
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contemporary Fenland study21 (baseline visit in 2005-2015, mean age 48.5 years (7.5 s.d.), 67 

Supplementary Table 1), as previously described18 (Methods). Participants completed a 75-gram 68 

OGTT (Figure 1a). We defined isolated post challenge hyperglycaemia as 2hPG ≥7.8 mmol/L but HbA1c 69 

<42mmol/mol and FG <6.1 mmol/L. This definition captured all participants with isolated IGT (2hPG 70 

7.8-11.1mmol/L but HbA1c <42mmol/mol and FG <6.1 mmol/L) as well as participants with isolated 71 

post-challenge hyperglycaemia in the diabetic range (2hPG ≥ 11.1 mmol/L but HbA1c <42mmol/mol 72 

and FG <6.1 mmol/L, N=117), i.e. high-risk individuals missed by standard FG and HbA1c testing. For 73 

simplicity, we refer from here on to IGT (or iIGT) for all individuals with 2hPG ≥ 7.8 mmol/L, without 74 

specifically distinguishing post-challenge hyperglycaemia ≥ 11.1 mmol/L. We used a least absolute 75 

shrinkage and selection operator (LASSO) regression framework implemented as a three-step 76 

approach, including independent feature selection (50% sample size), optimization (25%) and 77 

validation (25%) to discriminate IGT (prevalence 6.7%) and iIGT (3.9%) based on fasting assessment of 78 

4,775 proteins (targeted by 4,979 aptamers) (Figure 1b). We defined highly discriminatory proteins as 79 

those selected in >80%, 90%, or 95% of random subsamples of the study population during feature 80 

selection (Extended Data Figure 1).   81 

  82 
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Proteomic signatures to discriminate IGT and IIGT  83 

We identified 65 and 68 proteins, respectively, that achieved an area under the receiver operating 84 

characteristic curve (AUROC) (95% confidence interval) of 0.83 (0.80 – 0.86) and 0.77 (0.72 – 0.81) for 85 

discrimination of IGT and iIGT in the independent validation set (Extended Data Figure 2, 86 

Supplementary Tables 2 and 3). This represented a significantly better predictor when compared to 87 

the performance of a T2D genetic risk score (T2D-GRS, AUROCIGT 0.58 (0.52 – 0.63), AUROCiIGT 0.54 88 

(0.49 – 0.60)) (Figure 2a and b, and Extended Data Figure 3). Protein-based models further 89 

outperformed the standard patient information-based model (based on the Cambridge Diabetes Risk 90 

Score including age, sex, family history of diabetes, smoking status, prescription of steroid or 91 

antihypertensive medication and body mass index (BMI))22 (AUROCIGT = 0.71 (0.67 – 0.75); AUROCiIGT 92 

= 0.71 (0.66 – 0.76)) and the standard clinical model that additionally included blood test results, that 93 

is, FPG and HbA1c (AUROCIGT= 0.78 (0.74 – 0.82); AUROCiIGT=0.75 (0.70 – 0.80)) (Figure 2a and b, 94 

Supplementary Table 4).  95 

Considering a limited set of the most informative proteins that were identified by the feature selection 96 

framework (Methods), discrimination was still superior to the standard clinical model adding only 8 97 

proteins for IGT (AUROCIGT 0.83 (0.80 – 0.86), p-value = 4.13 × 10-5, Figure 2a, Supplementary Table 98 

2) and 3 proteins for iIGT (AUROCiIGT 0.80 (0.76 – 0.85), p-value = 0.004, Figure 2b, Supplementary 99 

Table 3), including 2 proteins (Reticulon-4 receptor, Carboxypeptidase M) selected for both (Figure 100 

2c, Supplementary Table 523-33). The weights for the variables included in these final models are 101 

available in Supplementary Table 6. We observed significant improvement over and above the clinical 102 

model of similar magnitude in the independent Whitehall II (WHII) study (Supplementary Table 7 and 103 

8, Extended Data Figure 4). 104 

To identify participants with iIGT and IGT, respectively, we choose a cut-off for the clinical + protein 105 

model that optimized sensitivity (recall) at 0.70 and 0.71, which yielded a positive predicted value 106 

(precision) of 0.20 and 0.13, respectively. The net reclassification index was higher for the final iIGT 107 

model (14.5%) compared to IGT (6.5%), consistent with the current lack of informative predictors.  108 

Of the 9 distinct proteins included in the 2 final models, 8 were not significantly affected by fasting 109 

status (Methods) with maximum postprandial fold changes ranging between 0.07 and 0.16; only 110 

HTRA1 showed some evidence of a post-prandial increase (maximum fold change= 0.15, p-111 

value=0.004, Supplementary Table 9).  112 

Finally, we tested model performance de novo omitting the 3 most informative proteins to predict 113 

iIGT. The novel model included 7 proteins and still performed significantly better than the best clinical 114 

model (AUROC = 0.78 (0.73 – 0.83), p-value = 0.04, Extended Data Figure 5). This finding illustrates 115 
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redundancy in the protein biomarkers available to select from for iIGT prediction, providing practical 116 

benefits for clinical implementation, for example with regard to flexibility of prioritising choice of 117 

proteins more easily targeted by clinical chemistry assays, least affected by fasting status or sample 118 

handling. 119 

Proteomically informed screening strategies 120 

We calculated the numbers needed to screen (NNS) to determine how many OGTTs would need to be 121 

performed to identify one participant with iIGT using a three-stage screening approach (Figure 3). We 122 

stratified all Fenland individuals based on the patient-derived information model in the first instance 123 

and based on their HbA1c levels and the 3-protein iIGT model in the second instance (Methods). 124 

According to current guidelines2, individuals at high predicted risk based on the patient-derived 125 

information model, but HbA1c levels below cut-offs for prediabetes or T2D2 would not be considered 126 

for further testing (N Fenland =  4163, NNS = 14, Figure 3). Applying the clinical + 3-protein iIGT model 127 

on this group enabled identification of a high-risk subgroup (N = 1739) in which application of an OGTT 128 

should be considered, since the NNS was only 7 to identify one additional individual with iIGT (Figure 129 

3, Supplementary Table 10). Hence, our proposed approach identified an additional >30% of 130 

individuals that would be reclassified (as having prediabetes) and could be offered preventative 131 

interventions, that is, a substantial proportion of high-risk individuals that would otherwise be missed 132 

by current strategies. To test for potential bias in the NNS estimates arising from overfitting, we 133 

applied the same screening algorithm in the test set only, which provided internal validation for the 134 

estimates and results from the entire Fenland set (Extended Data Figure 6). 135 

Characterisation of discriminatory proteins 136 

To investigate whether increased genetic risk of diabetes and related metabolic risk factors affect 137 

abundances of the identified proteins, we compared their differences in individuals with higher versus 138 

lower genetic risk based on genetic risk scores (GRS) for T2D and related endophenotypes, including 139 

fasting glucose34, fasting insulin34, 2hPG34, body mass index (BMI)35 and T2D36, using linear regression 140 

models. We found evidence of significant, directional concordant associations between genetic 141 

susceptibility to these phenotypes and plasma abundances for 4 of the 9 most predictive IGT and iIGT 142 

proteins, (p-value < 0.001, Figure 4c). Plasma abundances of Growth hormone receptor (GHR), 143 

Reticulon-4 receptor (RTN4R), Carboxypeptidase M (CBPM) and Serine protease HTRA1 (HTRA1) were 144 

associated with genetic susceptibility to more than one of these phenotypes, including fasting insulin, 145 

T2D and BMI.   146 

The 3 most predictive iIGT proteins and 6 of the 8 most predictive IGT proteins were significantly 147 

associated with higher measured concentrations of fasting and 2-hour glucose, and insulin. 148 
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Chondroadherin (CHAD) was the only protein inversely associated with all 4 measures. From the 149 

remaining two IGT predictor proteins only Cartilage intermediate layer protein 2 (CILP2) was 150 

significantly inversely associated with fasting glucose (p-values<0.001, Figure 3a). In the independent 151 

prospective WHII cohort (N = 1,492, including 521 incident T2D cases, Supplementary Table 11), all 152 

proteins were significantly associated with an increased risk of developing future T2D, except for 153 

CHAD, which was inversely associated (p-value < 0.006, Figure 4b), and CILP2, which showed no 154 

significant association. Effect sizes ranged from 0.88–1.51 (hazard ratio for T2D per s.d. difference in 155 

the protein target) adjusting for age, sex, and BMI. Associations for HTRA1, GHR, and CBPM remained 156 

significant even upon additional adjustment for fasting glucose, total triglycerides, HDL-cholesterol, 157 

and lipid lowering medication (Supplementary Table 12).  158 

Informative biomarkers are not only relevant to improve screening strategies but can inform 159 

understanding of the separate and shared aetiologies of IGT and iIGT. Comparison of protein ranking 160 

from IGT as opposed to iIGT feature selection revealed that most discriminatory proteins differed 161 

strongly between the IGT and iIGT selections (Extended Data Figure 7) with only eleven proteins 162 

achieving similarly high rankings for both outcomes, that is, being selected in >80% across random 163 

subsets of the study population. The top two biological GO term processes differed between the 65-164 

IGT protein signature (“proteolysis” and “cytokine-mediated signalling pathway”, Supplementary 165 

Table 13) and the 68-iIGT protein signature (“cartilage development”, “collagen fibril organization”, 166 

Supplementary Table 14), however none were significantly enriched following Bonferroni adjustment 167 

for multiple comparisons.  168 

To identify potential differences in factors influencing these IGT and iIGT protein signatures, we 169 

computed the proportion of variance in the first principal component of the 65-IGT and 68-iIGT protein 170 

signatures explained by 24 biochemical, phenotypic, and anthropometric factors. Both signatures had 171 

similarly large proportions of explained variance by glycaemic (5.2 – 37.8%) and anthropometric (25.1 172 

– 40.9%) measures, blood lipids (2.7 – 33.1%), or an ultrasound-based score for hepatic steatosis (22.4 173 

– 24.5%) (Methods). Differences included the higher proportion of variance explained by C-reactive 174 

protein and the lower proportion explained by ALT (a biomarker of liver injury) for the 65-IGT 175 

compared to the 68-iIGT protein signature (CRP 30.2% vs 20.3% and ALT 14.7% vs 23.2%, respectively, 176 

Extended Data Figure 8). Measures related to glucose metabolism (explaining up to 23.8% of the 177 

variance) and adiposity (explaining up to 26.9 % of the variance) were identified as the main factors 178 

explaining variance in the 9 predictive IGT or iIGT proteins included in the final prediction models. 179 

Other protein specific factors included total triglycerides (explained up to 22.6% of GHR), HDL-180 

cholesterol (up to 13.6% of RTN4R), measures of hepatic steatosis (liver score explained up to 15% of 181 
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GHR) and inflammation (up to 27.2% of HTRA1), as well as genetic variants in proximity of the relevant 182 

protein-encoding gene (up to 11.3% of RTN4R) (Extended Data Figure 8).  183 

 184 

Long-term health outcomes associated with predicted iIGT 185 

To explore the clinical consequences of isolated impaired glucose tolerance in the absence of an OGTT, 186 

we performed an exploratory analysis in a random sub-cohort of the prospective EPIC-Norfolk study37 187 

(N=753). We evaluated associations between predicted probabilities based on 1) the final clinical + 3-188 

protein model, 2) the 3-protein model only, and 3) the 68-protein iIGT model with the onset of eight 189 

cardiometabolic diseases based on electronic-heath record linkage38 (N incident cases 30-235; follow-190 

up time between 18 – 19 years; Supplementary Table 15 - 16). All scores were significantly associated 191 

with a greater risk of future T2D (52 incident T2D cases) at 5% false discovery rate (FDR). The iIGT final 192 

clinical+3-protein score was further associated with cataracts and renal disease, possibly reflecting the 193 

known association between chronically elevated 2hPG levels and micro- or macrovascular 194 

complications. Predicted probabilities from the best performing 68-protein-based iIGT-model, showed 195 

a nominally significant association for coronary artery disease (HR = 1.22, p-value = 0.03, CAD) and 196 

peripheral artery disease (HR = 1.27, p-value = 0.04, PAD), T2D-related complications, although these 197 

did not reach statistical significance when adjusting for multiple testing given the small number of 198 

incident cases in this small exploratory cohort. We observed significant associations for individual 199 

proteins with the risk of future T2D, with effect sizes comparable to those in the WHII study39 (Figure 200 

5).  201 

We used proteomic measures done with a distinct proteomic technique, the Olink Explore panel40 in 202 

an independent study (random sub-cohort of the prospective EPIC-Norfolk study, N=602) to test 203 

correlation of overlapping protein predictors and to validate some of our findings using an orthogonal 204 

technique. We observed a high correlation between the SomaScan and Olink measurements for the 205 

top three selected proteins (N=50, Spearman’s r: GHR = 0.80, RTN4R = 0.70 and CBPM = 0.87, 206 

Pearson’s r: GHR = 0.80, RTN4R = 0.72 and CBPM = 0.82). In line with this, we replicated the previously 207 

observed associations with an increased risk of incident T2D, including comparable effect sizes, and 208 

further observed significant associations between the final clinical + 3-protein model and incident 209 

cataracts, heart failure, and coronary heart disease (Extended Data Figure 9). These findings suggest 210 

cross-platform transferability of our results. 211 

 212 

 213 
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 214 

Discussion 215 

Behavioural interventions in individuals with IGT have been shown to delay progression to T2D and 216 

reduce the risk of long term microvascular and macrovascular complications41. However, individuals 217 

with iIGT are likely to remain undiagnosed because the current implementation of recommendations 218 

for screening and diagnosing T2D does not focus on OGTTs, for reasons of practicality. People with 219 

iIGT are at high risk of developing T2D and its associated complications, and failure to identify them 220 

can lead to the development of severe and potentially irreversible complications of their unmanaged 221 

hyperglycaemia16.  222 

By combining deep plasma proteomic profiling with machine learning, we developed models for 223 

improved identification of IGT and iIGT and demonstrated that as few as 8 and 3 proteins, respectively, 224 

provided significant improvement over established clinical predictors22. We provided external 225 

validation of the significant and substantial improvement achieved by the selected proteins over and 226 

above the stringent benchmark provided by the best clinical model, something rarely done in genomic 227 

or other ‘omic prediction studies. The improvement observed in our independent replication study 228 

was slightly greater than what was originally observed, and we note that the lack of HbA1c 229 

measurements and other differences in study design (previous phases including OGTT screening) and 230 

participant characteristics (older and more males on average) of the Whitehall II cohort39 are likely to 231 

have contributed to this, leading to a lower AUROC for the clinical model and/ or potential 232 

misclassification of iIGT.  233 

We propose a 3-step screening strategy, in line with the current UK Diabetes Prevention 234 

Programmes42, involving risk assessment by 1) a patient-derived information model, 2) measuring 235 

HbA1c levels and only 3 additional proteins from a single spot blood sample, and 3) an OGTT for 236 

eventual diagnosis. Implementation of this proposed screening strategy, could lead to a large 237 

proportion of individuals with iIGT to be additionally identified with a lower NNS, compared to the 238 

currently recommended 2-stage approach42. Our findings illustrate how the identified proteins could 239 

most efficiently be integrated into existing screening approaches to identify individuals with iIGT, who 240 

are at high risk of T2D and its complications but are currently being missed. Behavioural interventions 241 

have shown to be effective at reversing post-load hyperglycaemia independently of fasting glucose 242 

levels43,44, emphasising the value of identifying individuals with iIGT who would benefit the most from 243 

these interventions. We further provided evidence of a link between our developed iIGT predictive 244 

scores with incident T2D and several known cardiometabolic comorbidities resulting from chronically 245 

elevated 2hPG. These finding highlight the potential of applying such a predictive risk score not only 246 
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for cross-sectional identification of iIGT, but for monitoring future risk for associated comorbidities 247 

that impact patients’ quality of life. 248 

We showed that the identified proteins are not strongly affected by fasting status, suggesting that 249 

they could enable a simple and convenient strategy to better identify individuals with IGT and iIGT, 250 

compared to an OGTT, which requires repeated blood draws conveying additional costs18. Protein 251 

assessment could substantially improve the feasibility and acceptability of an improved strategy to 252 

identify iIGT, more so than alternative strategies that have been proposed such as a 1-hour OGTT45, 253 

and hence brings it in line with existing strategies for the screening and diagnosis of T2D. Since HbA1c 254 

testing requires anticoagulated whole-blood, usually EDTA, a subset of the same sample type could 255 

be processed for plasma preparation to measure discriminatory proteins, avoiding the need for 256 

additional blood sampling.  257 

This study provided insights into aetiological differences between iIGT and IGT. Our results suggested 258 

a stronger low-grade inflammatory component46-49 among proteins discriminatory for IGT compared 259 

to those for iIGT. These proteins might represent refined biomarkers of low-grade inflammation, as 260 

they were highlighted as being predictive over and above established inflammatory markers also 261 

covered in our proteomic study, such as C-reactive protein. At an individual biomarker level, we 262 

identified a number of proteins shared or distinctly associated with these metabolic disturbances, 263 

including GHR, RTN4R, HTRA1, CBPM, CHAD, CBLN4, NEU1, CILP2, and S100-A10. We used genetic 264 

data to provide evidence that early deregulation of diabetes related pathways is linked to the 265 

candidate proteins, most of which were also significantly associated with risk of future development 266 

of T2D, providing a novel set of high priority T2D targets for further follow-up and assessment in in 267 

more diverse settings and ethnicities.  268 

While our model estimated a meaningful decrease in the NNS, there are important consideration for 269 

implantation of the proposed strategy. A considerable proportion of individuals with iIGT were missed 270 

by being classified low risk in either the first or subsequent screening steps. A further limitation of our 271 

study was the lack of orthogonal validation of our protein-based prediction models with an alternative 272 

proteomic technology. Technical, genetic, and other biological factors can result in biased protein 273 

measurements due to changes in affinity of the aptamer reagents50. However, the strong correlations 274 

observed with the antibody-based Olink Explore panel suggests cross-platform transferability. We 275 

further validated the phenotypic association of the iIGT predictive protein scores with incident 276 

cardiometabolic diseases using Olink Explore measurements, providing the possibility of 277 

implementing our model with alternative proteomic technologies. 278 
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In summary, we demonstrated the utility of the plasma proteome to inform strategies for screening 279 

of iIGT and for gaining novel aetiological insights into early signatures of impaired glucose tolerance, 280 

a globally very common and clinically important metabolic disorder, but one that it is difficult to detect 281 

and treat in routine clinical practice.   282 
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Figure Legends 447 

Figure 1. Study design. a, Proteomic profiling was done in fasting plasma samples from participants from the 448 
Fenland cohort that had undergone an OGTT. b, 3-step modelling framework for IGT and iIGT classification. *For 449 
iIGT prediction individuals with non-isolated IGT were excluded. c, Association of top discriminatory proteins 450 
with incident type 2 diabetes was assessed in the Whitehall II study. d, Association of iIGT protein scores with 8 451 
incident cardiometabolic diseases was assessed in a sub-cohort of the EPIC-Norfolk study. OGTT: oral glucose 452 
tolerance test, IGT: impaired glucose tolerance, iIGT: isolated impaired glucose tolerance. 453 
 454 
Figure 2. Performance of LASSO trained models for impaired glucose tolerance (a) and isolated impaired 455 
glucose tolerance (b) discrimination in the internal validation test set. a, IGT discrimination performance in the 456 
independent internal validation test set (N=2881, 192 IGT individuals) for the standard clinical model (Cambridge 457 
T2D risk Score + FPG + HbA1c), a 65-protein model and a clinical + 8 protein model. b, iIGT discrimination 458 
performance in the independent internal validation test set (N=2795, 111 iIGT individuals) for the standard 459 
clinical model, a 68-protein model and a clinical + 3 protein model. c, Comparison of protein ranking during 460 
feature selection for iIGT (N=2795, 111 iIGT individuals) and IGT (N=2881, 192 IGT individuals) top discriminatory 461 
proteins. IGT: impaired glucose tolerance, iIGT: isolated impaired glucose tolerance, FPG: fasting plasma glucose, 462 
HbA1c: glycated haemoglobin. 463 
 464 
Figure 3. Proposed 3-stage screening strategy. In the first stage, individuals in the whole of Fenland were divided 465 
into low and high risk according to the Cambridge T2D risk score. The high risk group would undergo a second 466 
stage involving measurement of HbA1c and of the 3 iIGT proteins. Individuals with HbA1c levels within the T2D 467 
or prediabetic range would be referred for intervention and lifestyle modifications. Individuals with HbA1c below 468 
the prediabetic range, would be further stratified using the final clinical + 3 iIGT protein model to identify a high 469 
risk group, which on a third stage would be taken forward for OGTT testing to identify iIGT cases that would 470 
have otherwise been missed by current screening guidelines. Figure was designed with biorender.com.  471 
 472 
Figure 4. Characterization of the association between top impaired glucose tolerance and isolated impaired 473 
glucose tolerance discriminatory proteins and glycaemic traits, future T2D risk and genetic predisposition to 474 
metabolic phenotypes. a, Association of top IGT and iIGT discriminatory proteins with fasting and 2-hour glucose 475 
and insulin in the Fenland study (N = 10259 individuals). Beta estimates with 95% confidence intervals are shown. 476 
b, Association of top IGT and iIGT discriminatory proteins with incident T2D in the Whitehall II study (N = 1492, 477 
521 incident T2D cases). Hazard ratios (HR) with 95% confidence intervals are shown. c, Association of genetic 478 
risk scores for fasting glucose, fasting insulin, 2-hour plasma glucose, type 2 diabetes and body mass index with 479 
top IGT and iIGT discriminatory proteins in the Fenland study (N = 7973 individuals). Beta estimates with a 95% 480 
confidence interval are shown. FG: fasting glucose, FI: fasting insulin, 2hPG: 2-hour plasma glucose, 2hPI: 2-hour 481 
plasma insulin, T2D: type 2 diabetes, BMI: body mass index.  482 
 483 
Figure 5. Association of iIGT protein scores with incident cardiometabolic diseases. Association of iIGT 484 
prediction scores (left panel) or individual top iIGT proteins (right panel) with 8 cardiometabolic disease 485 
outcomes in a sub-cohort the EPIC-Norfolk study (N=753 individuals). Hazard ratios (HR) with 95% confidence 486 
intervals are shown.  487 
 488 
 489 
 490 
 491 
 492 
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Methods 493 

Study Samples 494 

The Fenland study21 is a population-based cohort of 12,435 men and women born between 1950 and 495 

1975 who underwent detailed phenotyping at the baseline visit from 2005-2015. Participants were 496 

recruited from general practice surgeries in Cambridge, Ely and Wisbech (UK). Exclusion criteria of the 497 

Fenland study included pregnancy, prevalent diabetes, an inability to walk unaided, psychosis, or 498 

terminal illness. The study was approved by the Cambridge Local Research Ethics Committee (NRES 499 

Committee – East of England Cambridge Central, ref. 04/Q0108/19) and all participants provided 500 

written informed consent. The consent covered measurements made from blood samples as well as 501 

extends beyond the baseline examination as described previously21. 502 

Clinical assessment  503 

All participants completed a 2-hour 75 g OGTT following an overnight fast. Blood samples were 504 

collected at fasting and 2-hour post glucose load in EDTA tubes for plasma separation by 505 

centrifugation. Samples were kept at -80°C until further analysis. Glucose (assayed in a Dade Behring 506 

Dimension RxL analyser) and insulin (DELFIA® immunoassay, Perkin Elmner) concentrations were 507 

measured at fasting and 2-hours, as well as lipid profiles (triglycerides, HDL and total cholesterol), 508 

alanine aminotransferase (ALT), alkaline phosphatase (ALP), C-reactive protein (CRP) and serum 509 

creatinine (assayed in a Dade Behring Dimension RxL analyser) at fasting, and HbA1c (Tosoh 510 

Bioscience, TOSOH G7 analyser).  511 

IGT and T2D were defined by 2-hour glucose according to IEC diagnosis criteria2 as glucose levels 512 

between 7.8  and < 11.1 mmol/L (141 and < 199 mg/dL) and ≥ 11.1 mmol/L (≥ 199 mg/dL), respectively. 513 

IGT was defined as 2hPG ≥7.8 mmol/L and <11.1 mmol/L, post-challenge hyperglycaemia as 2hPG 514 

≥11.1mmol/L, iIGT as individuals with IGT but HbA1c <42mmol/mol (6%) and FG <6.1 mmol/L 515 

(<110mg/dL), and isolated post-challenge hyperglycaemia as individuals with post-challenge 516 

hyperglycaemia but HbA1c <42mmol/mol and FG <6.1 mmol/L. The number of individuals with post-517 

challenge hyperglycaemia in the diabetic range (i.e., 2hPG ≥ 11.1 mmol/L) was too low to investigate 518 

the performance of our models to identify this group of people with undiagnosed T2D biochemically 519 

defined solely due to elevated 2-hour glucose. These individuals would still be missed and remain 520 

undiagnosed by FG and HbA1c testing. We therefore used the terms IGT and iIGT to refer to all 521 

individuals with 2hPG ≥ 7.8 mmol/L throughout text and in order to develop a model that captures all 522 

individuals that would remain undiagnosed by current strategies. We note that the thresholds to 523 

define glycaemic categories vary across the American Diabetes Association (ADA) , WHO and the 524 

International Expert Committee (IEC)51. We use the IEC HbA1c and FG thresholds to reflect current 525 
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clinical practice in the UK. We note that using ADA thresholds will likely results in lower case numbers 526 

for IGT and iIGT at the cost of a substantially higher false-positive rate. Body mass index (BMI) was 527 

calculated as weight (kg) / square of height (m2). Additionally, the homeostasis model assessment of 528 

insulin resistance (HOMA-IR) was calculated as FI (µIU/mL) × fasting glucose (mmol/mL)/22.552. 529 

Estimated glomerular filtration rate (eGFR) was calculated by the CKD-EPI equation using serum 530 

creatinine53. 531 

Hepatic steatosis was evaluated by an abdominal ultrasound and images were scored by two trained 532 

operators. Criteria used for scoring included: increased echotexture of the liver parenchyma, 533 

decreased visualisation of the intra-hepatic vasculature and attenuation of ultrasound beam. A normal 534 

liver was considered as a score from 3 – 4, mild steatosis from 5 – 7, moderate steatosis from 8 – 10 535 

and sever steatosis ≥ 11 54.  536 

Participants completed DEXA scan measurements using a Lunar Prodigy advanced fan beam scanner 537 

(GE Healthcare) performed by trained operators using standard imaging, positioning protocols and 538 

manually processed according to a standardized procedure described previously35. Abdominal visceral 539 

and subcutaneous fat mass was estimated using the DEXA software.  540 

Differences in clinical characteristics were evaluated by ANOVA followed by posthoc Tukey test, or χ2 541 

for categorical variables. Non-normally distributed variables were log transformed when appropriate. 542 

Proteomic profiling of the Fenland cohort 543 

Proteomic profiling was done using an aptamer-based technology (SomaScan proteomic assay). 544 

Fasting proteomic profiling was done in participants from the Fenland cohort at baseline, from which 545 

relative abundancies of 4,775 unique protein targets (evaluated by 4,979 SOMAmer reagents, 546 

SomaLogic v4)18,55 was evaluated in EDTA plasma. Briefly, proteins are targeted by modified single 547 

stranded DNA sequences (aptamers). Concentration is then approximated as relative fluorescence 548 

units using a DNA microarray 56. 549 

To account for variation in hybridization within runs, hybridization control probes are used to generate 550 

a hybridization scale factor for each sample. To control for total signal differences between samples 551 

due to variation in overall protein concentration or technical factors such as reagent concentration, 552 

pipetting or assay timing, we used the adaptive median normalisation (AMN), unless stated otherwise. 553 

Briefly, a ratio between each aptamer's measured value and a reference value from an external 554 

reference population is computed, and the median of these ratios is computed for each of the three 555 

dilution sets (20%, 1% and 0.005%) and applied to each dilution set to shift the intrapersonal 556 

distribution of protein intensities accordingly to match the reference population. We removed 557 

samples if they did not meet an acceptance criterion for scaling factors with values outside of the 558 
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recommend range (0.25-4) or were flagged as technical failures (n=19). Detailed SomaLogic’s 559 

normalization, calibration data, and quality control processes have been previously described in 560 

detail18. At a protein level, we took only human protein targets forward for subsequent analysis (4,979 561 

out of the 5284 aptamers). Intraassay coefficients of variation (calculated based on raw fluorescence 562 

units) had a median of 4.98% (interquartile range 3.87% - 6.99%) suggesting good quality measures 563 

for the vast majority of protein targets. We decided to not apply any other filters to individual protein 564 

qualities given that even poorly measured proteins might be informative and left it to the restrictive 565 

feature selection approach applied to drop uninformative proteins, including possibly poorly 566 

measured once. Aptamers’ target annotation and mapping to UniProt accession numbers as well as 567 

Entrez gene identifiers were provided by SomaLogic and we used those to obtain genomic positions 568 

of protein encoding genes.  569 

Genome wide genotyping and imputation 570 

Fenland participants were genotyped using three genotyping arrays: the Affymetrix UK Biobank Axiom 571 

array (OMICs, N=8994), Illumina Infinium Core Exome 24v1 (Core-Exome, N=1060) and Affymetrix 572 

SNP5.0 (GWAS, N=1402). Samples were excluded for the following reasons: 1) failed channel contrast 573 

(DishQC <0.82); 2) low call rate (<95%); 3) gender mismatch between reported and genetic sex; 4) 574 

heterozygosity outlier; 5) unusually high number of singleton genotypes or 6) impossible identity-by-575 

descent values. Single nucleotide polymorphisms (SNPs) were removed if: 1) call rate < 95%; 2) clusters 576 

failed Affymetrix SNPolisher standard tests and thresholds; 3) MAF was significantly affected by plate; 577 

4) SNP was a duplicate based on chromosome, position, and alleles (selecting the best probe set 578 

according to Affymetrix SNPolisher); 5) Hardy-Weinberg equilibrium p<10-6; 6) did not match the 579 

reference or 7) MAF=0. 580 

Autosomes for the OMICS and GWAS subsets were imputed to the HRC (r1) panel using IMPUTE4, and 581 

the Core-Exome subset and the X-chromosome (for all subsets) were imputed to HRC.r1.1 using the 582 

Sanger imputation server57. All three arrays subsets were also imputed to the UK10K+1000Gphase358 583 

panel using the Sanger imputation server in order to obtain additional variants that do not exist in the 584 

HRC reference panel. Variants with MAF < 0.001, imputation quality (info) < 0.4 or Hardy Weinberg 585 

Equilibrium p < 10-7 in any of the genotyping subsets were excluded from further analyses. 586 

Statistical Analyses 587 

Classification of IGT and iIGT from the fasting proteome 588 

To identify and validate a proteomic signature able to discriminate IGT and iIGT (as a binary outcome), 589 

the entire Fenland study (N=11,546 without missing data for 2hPG), was divided into three subsets: 590 

for feature selection (50%, N = 5773), parameter optimization (25%, N=2887) and validation (25%, 591 
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N=2881). IGT and iIGT cases were split equally into 50% for training (NIGT = 387, NiIGT = 222), 25 % for 592 

optimization (NIGT = 194, NiIGT = 111) and 25% for testing (NIGT = 193, NiIGT = 111) sets. For these 593 

analyses, SOMAmer RFUs were log10-transformed. Feature selection was carried out by least absolute 594 

shrinkage and selection operator (LASSO) regression. We chose to use LASSO because it was the most 595 

suitable model to 1) identify the smallest possible set of independent predictors, 2) it is 596 

computationally efficient, which allowed us to implement a robust framework using bootstrap 597 

resampling to identify a core set of most informative predictors and 3) it is less prone to overfitting. 598 

To address case-control imbalance we used the ROSE R package59, which implements down-sampling 599 

of the majority class (controls) along with synthetic new data points for the minority class (IGT or iIGT). 600 

A nested 10-fold cross-validation (inner loop to determine regularization parameter, ʎ) was done over 601 

100 bootstrap samples (outer loop) drawn from the feature selection set. Each protein received a 602 

score that was generated by counting the number of times it was included in the final model from 603 

each of the 100 bootstrap samples, that is, the score was between 0 (for proteins that were never 604 

selected in the final model) and 100 (for proteins that were selected in the final model in all bootstrap 605 

samples). We ranked the proteins based on their score to identify the most informative set of features 606 

(i.e. with a higher score) (Supplementary Fig. 1). This was implemented by the use of the R packages 607 

caret60 and glmnet61. Proteins selected in the final model in more than 80%, 90%, and 95% of the 608 

bootstrap samples, were tested as predictors and taken forward for parameter optimization by 10-609 

fold cross validation of the model by LASSO regression in the optimization set. Additional models were 610 

optimized by LASSO regression, such as a standard patient information-based model using the 611 

variables from the Cambridge Diabetes Risk Score (age, sex, family history of diabetes, smoking status, 612 

prescription of steroid or antihypertensive medication and BMI)22, a standard clinical model (including 613 

the variables from the Cambridge Diabetes risk Score, FG and HbA1c) and a standard clinical plus the 614 

selected proteins model. Clinical predictors were forced to be kept in the clinical plus proteins model 615 

by setting the penalty factors of these variables to 0. For comparison, ridge regression (which will keep 616 

all proteins in the final model) was used to build a prediction model using all the 4979 proteins as 617 

predictors.  618 

Performance of the classification models were evaluated in the internal independent validation set, 619 

which was never used for training and optimization. The prediction models’ discriminatory power was 620 

assessed by computing the area under the receiver operating curve (AUROC). Confidence intervals 621 

and p-values (using the deLong method implemented by the R package pROC62) were computed for 622 

the comparison between the ROC curves for the standard clinical model and clinical with added 623 

proteins model. Additionally, models’ net reclassification index was evaluated using the R package 624 

PredictABEL63. 625 
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Using an analogous machine learning strategy, we developed models for iIGT discrimination. For these 626 

analyses, all individuals with non-isolated IGT (2hPG > 7.8 mmol/L, FPG > 6.1 mmol/L and HbA1c > 42 627 

mmol/mol) were excluded from the cohort (leaving N = 11,281), which was subsequently divided into 628 

feature selection (50%, N = 5591), parameter optimization (25%, N=2796) and validation (25%, 629 

N=2795). Feature selection, optimization and testing were carried out as described for IGT models. To 630 

achieve comparable model performance with the minimal number of predictors, we used recursive 631 

feature elimination on the set of proteins selected in >95% of boots during feature selection. As a 632 

sensitivity analysis, we performed the same framework described above, that is, feature selection, 633 

parameter optimization and validation to assess model performance when using protein data 634 

reversing the final normalisation step that is unique to the SomaScan platform. We note that using 635 

‘non-normalised’ proteomic data led to broadly comparable results, which are well in the margins of 636 

random variation of protein measurements in general, albeit with some difference in the proteins 637 

selected as the most predictive markers in the final models (Supplementary Table 17). 638 

Calibration of the final models was assessed in the internal validation set by computing the calibration 639 

slope, which evaluates the spread of the estimated risks and has a target value of one. Calibration 640 

slopes less than 1 indicate extreme estimated risks while slopes greater than 1 indicate very moderate 641 

risk estimates. Calibration slopes were computed using the R package rms64. 642 

The number needed to screen (NNS) was calculated using a staged screening scenario. Firstly, 643 

participants from the Fenland study were stratified by predicted probabilities from the Cambridge T2D 644 

risk Score, that is, non-invasive risk factors that could be obtained by interviewing the patient. The 645 

threshold used to stratify individuals into “high” and “low” risk strata according to their predicted 646 

probabilities was set to optimize a balance between the total number of individuals that would be 647 

needed to screen and sensitivity (as would be appropriate for such a screening setting), which was 648 

achieved at 0.7, regardless of specificity. On second instance, participants within the high-risk group 649 

were further stratified by HbA1c levels, using IEC cut-offs (normoglycaemic : HbA1c < 42 mmol/mol, 650 

prediabetic criteria: HbA1c >= 42 mmol/mol and < 48 mmol/mol, T2D criteria : HbA1c >= 48 651 

mmol/mol)51. On third instance, participants whose HbA1c did not meet the criteria for T2D or 652 

prediabetes (that is, normoglycaemic as defined aboved), were further stratified according to the 653 

clinical + 3- iIGT protein model. Similarly, a threshold that optimized testing as few individuals as 654 

possible while retaining good sensitivity of 0.7 was set for this model (Supplementary Table 10). We 655 

estimated the NNS within this stratum compared to the NNS within the full set of individuals with 656 

HbA1c in the normoglycaemic range. The NNS was calculated as the total number of individuals within 657 

the group divided by the number iIGT cases within the same group and refers to the number of OGTTs 658 
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that would need to be done to identify one iIGT case within the group of interest. We additionally 659 

estimated the NNS in the test set only, as a sensitivity analysis.   660 

IGT/iIGT model validation and follow-up analyses in the WHII study 661 

The Whitehall II study is a longitudinal, prospective cohort study39 that was approved by the joint  662 

University College London / University College London Hospital’s Committees on the Ethics of Human 663 

Research. Proteomic profiling of fasting EDTA-plasma samples was done for all individuals at phase 5 664 

(from 1997 - 1999) with the SomaScan v4.1 proteomic assay. We performed validation of the IGT and 665 

iIGT clinical + protein models at phase 5 (from 1997 - 1999) of the study, were proteomic profiling and 666 

OGTT values were available. Since HbA1c was not measured at phase 5 of the study, we defined iIGT 667 

as 2hPG > 7.8 mmol/L and FPG > 6.1 mmol/L. We used the weights from the models trained in Fenland 668 

to evaluate their performance in WHII phase 5 (total sample size = 5058, NIGT= 693, NiIGT=617) for the 669 

baseline clinical model (Cambridge T2D risk score + FG) and the baseline clinical + protein iIGT and IGT 670 

models (3 and 8 proteins respectively).  671 

For the association between top discriminatory proteins and incident T2D in the Whitehall II study 672 

individuals were selected as a nested case-control study design in which proteomic profiling of fasting 673 

EDTA-plasma samples was done at phase 5 (from 1997 - 1999) with the SomaScan v4 proteomic assay. 674 

Incident T2D occurrence was assessed in repeated clinical examinations in 1997-1999, 2002-2004, 675 

2007-2009, 2012-2013, and 2015-2016, based on FPG above 7 mmol/L, HbA1c>6.5%, use of diabetes 676 

medication, or reported physician diagnosed diabetes, excluding prevalent T2D cases at baseline from 677 

the analysis. Additionally, participants with impaired kidney function (eGFR < 30 mL/min/1.73m2), 678 

incident cardiovascular diseases or missing data on T2D at follow-up were excluded. The final sample 679 

comprised of 521 cases and 971 controls. 680 

Association between fasting candidate proteins and incident T2D was assessed using Cox-proportional 681 

hazards regression adjusting for the baseline confounders age, sex and BMI. We tested a second 682 

model adjusting for additional baseline confounders including FG, triglycerides, HDL-cholesterol and 683 

lipid lowering medication on top of age, sex and BMI to determine whether the association persisted 684 

in a more refined model. 685 

Effect of fasting status on plasma levels of IGT and iIGT discriminatory proteins 686 

Fourteen adult participants were recruited to participate in the study and provided informed consent 687 

appropriately. Participants were asked to fast overnight for at least 12 hours prior to reporting to the 688 

study site. Fasting blood samples were collected from each participant, after which they were given a 689 

moderate fat meal consisting of 5-8 ounces of Cheerios with 6 ounces of 2% milk, one egg, one slice 690 
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of bacon, one slice of toast with margarine, and 4 ounces of orange juice (calories: 450, 16.9 grams of 691 

fat, 16 grams of protein, and 59 grams of carbohydrates)65.  692 

The time for each participant to complete the meal ranged from 7 to 19 minutes (average of 16 693 

minutes). Post prandial blood samples were collected at 0.5, 1, and 3 hours following completion of 694 

the meal. Since each participant consumed their meals at different rates, the actual blood collection 695 

times post meal does vary between participants. Participants were not allowed to eat or drink any 696 

further caloric items until after the last blood collection. Twelve participants (6 male and 6 female) 697 

completed the study. Two participants were excluded due to unmet fasting requirements and an 698 

adverse reaction during the first blood draw. 699 

Blood samples were processed to obtain EDTA-plasma by centrifugation and frozen at -80°C until 700 

delivered to SomaLogic Sample Management for proteomic profiling using the SomaScan v4 assay. 701 

The effect of fasting status on 9 unique SOMAmer reagents included in the final clinical + protein 702 

models for IGT or iIGT, was tested by repeated measures ANOVA. Proteins with ANOVA p-values < 703 

0.0055 (according to Bonferroni adjustment for 9 comparisons) were deemed to be significantly 704 

affected by fasting status.   705 

Functional annotation of IGT and iIGT-protein signatures 706 

Functional annotation of the 65-IGT and 68-iIGT protein signatures was performed using modified 707 

Fisher’s exact tests as implemented by the Database for Annotation, Visualization and Integrated 708 

Discovery (DAVID, version 6.8) and enrichment of biological process GO terms (GOTERM_BP_DIRECT) 709 

was analysed, setting the full list of proteins evaluated by the SomaLogic platform as the background.  710 

Variance explained in top discriminatory protein levels by clinical, biochemical, anthropometric and 711 

behavioural risk factors 712 

The proportion of variance explained in candidate protein levels by several variables was evaluated in 713 

the Fenland cohort using the variancePartition R package66. Analogously, the proportion of variance 714 

explained in the first principal component of the 65-IGT and 68-iIGT discriminatory protein signatures 715 

was evaluated. Briefly, this package fits a linear mixed model to assess the effect of each variable on 716 

the outcome while correcting for all other variables. Variables evaluated were age, sex, IGT, IPCH, FPG, 717 

2hPG, FI, 2hPI, HbA1c, total triglycerides, total cholesterol, HDL-cholesterol, LDL-cholesterol, ALT, ALP, 718 

a liver score, BMI, waist-to-hip ratio (WHR), amount of subcutaneous fat, amount of visceral fat, CRP, 719 

estimated glomerular filtration rate (eGFR) and intake of statins or antihypertensive medication. FPG, 720 

2hPG, FI, 2hPI, HbA1c, total triglycerides, ALT, ALP, CRP, subcutaneous fat and visceral fat were natural 721 

log-transformed due to skewed distribution of these variables. We fit separate models for each of the 722 

variables evaluated adjusting only for age and sex in the entire Fenland cohort (N=11,546) to avoid 723 
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bias due to strong collinearity among variables tested. For each of the models, participants with 724 

missing data were excluded.   725 

Protein quantitative trait loci (pQTLs) for candidate proteins 726 

Genetic variants associated with candidate proteins (protein quantitative trait loci or pQTLs) were 727 

taken from our genome-wide association studies across all aptamers as described in Pietzner et al, 728 

202155.   729 

Percentage of variance explained in protein levels by cis and trans pQTL scores 730 

Polygenic scores were constructed for pQTLs within the cis (within ±500 kb of the protein-encoding 731 

gene) and trans regions. Cis-pQTL scores were built using conditionally independent variants. The 732 

percentage of variance explained in protein levels by the cis and trans-scores was computed as 733 

described in the above section adjusting for age and sex. 734 

Association between top discriminatory proteins and fasting and 2-hour plasma glucose and insulin 735 

Observational associations between the top selected IGT and iIGT discriminatory proteins and FPG, FI, 736 

2hPG and 2hPI were assessed in the entire Fenland cohort at baseline (N=10,259 without missing data) 737 

by linear regression models adjusting for age, sex, BMI and test site from the study. The models for 738 

2hPG and 2hPI were additionally adjusted by FPG and FPG + FI, respectively. Protein levels were log10-739 

transformed and standardized, and 2hPG and 2hPI values were log-transformed for these analyses. 740 

Proteins were considered significant at a Bonferroni threshold (p-values < 0.001, accounting for 741 

comparisons between the number of protein and number of traits, as for all further association 742 

analyses). 743 

Association between polygenic risk scores for glycaemic traits and top discriminatory proteins 744 

T2D36, fasting glucose (FG)34, fasting insulin34 (FI score), 2hPG34 (2hPG score) and BMI35 polygenic 745 

scores, weighted by genetic effect sizes of previously reported genome-wide significant  variants, were 746 

computed for 7,973 Fenland participants genotyped with the same array (Affymetrix UK Biobank 747 

Axiom Array). Variants not available, with low imputation quality scores < 0.6, or with strand 748 

ambiguous alleles were excluded from the scores. Each polygenic score was tested for associations 749 

with the plasma abundancies of top IGT and iIGT discriminatory proteins by linear regression models 750 

adjusting for age, sex, BMI, the first 10 genetic principal components and test site of the study.  751 

Association between iIGT scores with incident cardiometabolic diseases in a sub-cohort of the EPIC-752 

Norfolk study 753 

The EPIC-Norfolk study is a cohort of 25,639 middle-aged, individuals from the general population of 754 

Norfolk a county in Eastern England which is a component of EPIC37. The EPIC-Norfolk study was 755 
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approved by the Norfolk Research Ethics Committee (ref. 05/Q0101/191); all participants gave their 756 

informed written consent before entering the study. All participants were flagged for mortality at the 757 

UK Office of National Statistics and vital status was ascertained for the entire cohort. Death certificates 758 

were coded by trained nosologists according to the International Statistical Classification of Diseases 759 

and Related Health Problems, 10th Revision (ICD-10). Hospitalization data were obtained using 760 

National Health Service numbers through linkage with NHS Digital. Participants were identified as 761 

having experienced an event if the corresponding ICD-10 code was registered on the death certificate 762 

(as the underlying cause of death or as a contributing factor) or as the cause of hospitalization 763 

(Supplementary Table 15). Since the long-term follow-up of EPIC-Norfolk comprised the ICD-9 and 764 

ICD-10 coding system, codes were consolidated. The current study is based on follow-up to 31 March 765 

2016. Information on lifestyle factors and medical history was obtained from questionnaires as 766 

reported previously37. The current analysis is based on a random sub-cohort (N=875) of the whole 767 

EPIC-Norfolk study population that was selected excluding known prevalent case subjects of diabetes 768 

at baseline was using the same definitions as used in the InterAct Project67; in which proteomic 769 

profiling was done at health check 1 using the SOMAscan v4 platform from citrate-plasma samples 770 

stored in liquid nitrogen since the baseline visit.  771 

Participants with missing data for any of the variables included in the final prediction models 772 

developed in the Fenland study were excluded. The final sample comprised of 753 individuals for 773 

which characteristics are presented in Supplementary Table 16.  774 

Final prediction models trained and optimized for iIGT in the Fenland study were used to calculate the 775 

predicted probability of iIGT for each participant at health check 1 in this sub-cohort of the EPIC-776 

Norfolk study. Models tested included: the clinical + 3-proteins iIGT model, 3-protein iIGT model (95% 777 

feature selection protein set model), 68-protein iIGT model (80% feature selection protein set model) 778 

and the clinical model as a baseline comparison. We then tested the association of the predicted iIGT 779 

probability with 8 incident cardiometabolic diseases (or associated T2D comorbidities) including type 780 

2 diabetes, coronary heart disease, heart failure, peripheral artery disease, cerebral stroke, liver 781 

disease, renal disease and cataracts using cox proportional hazards models adjusting by age at 782 

baseline and sex (except for the clinical + 3 protein model, which already accounted for these risk 783 

factors within the score). Associations were deemed significant at an 5% FDR accounting for 784 

comparison between 8 diseases.  785 

We aimed for cross-platform validation in a separate random sub-cohort of the prospective EPIC-786 

Norfolk study (N=771), in which proteomic measures were done with the Olink Explore panel40 from 787 

serum samples. Participants with missing data for any of the variables included in the final prediction 788 
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models developed in the Fenland study (expect HbA1c which was excluded from the models as it was 789 

unavailable in a large proportion of participants from this sub-cohort) were excluded. The final sample 790 

comprised of 602 individuals for which characteristics are presented in Supplementary Table 18.  791 

Final prediction models trained and optimized for iIGT in the Fenland study (using SomaScan) were 792 

used to calculate the predicted probability of iIGT for each participant at health check 1 in this sub-793 

cohort of the EPIC-Norfolk study, using the Olink measures for the proteins. Models tested included: 794 

the clinical + 3-proteins iIGT model, 3-protein iIGT model (95% feature selection protein set model) 795 

and the Cambridge T2D risk Score. We then tested the association of the predicted iIGT probability 796 

with the same Cox-model setting and set of disease as in the sub-cohort with available SomaLogic 797 

measurements except for liver disease (Supplementary Table 19). Associations were deemed 798 

significant at an 5% FDR accounting for comparison between 7 diseases.  799 

All statistical analyses were performed using R language, and environment for statistical computing 800 

(version 3.6.1 and 4.1.0, R Core Team). 801 

 802 

Data availability 803 

Data access for the Fenland and EPIC studies can be requested by bona fide researchers for specified 804 

scientific purposes through a simple application process via the study websites below. Data will either 805 

be shared through an institutional data sharing agreement or arrangements will be made for analyses 806 

to be conducted remotely without the necessity for data transfer. 807 

Fenland: https://www.mrc-epid.cam.ac.uk/research/studies/fenland/information-for-researchers 808 

EPIC-Norfolk: https://www.mrc-epid.cam.ac.uk/research/studies/epic-norfolk 809 
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Code availability 811 

The code employed for the machine learning developed framework has been deposited in the 812 

following repository: https://github.com/MRC-Epid/iigt_prediction_proteomics. 813 
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