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Highlights:  
• We present an easy-to-use MATLAB toolbox to test for cardiac timing effects.  

• We propose a physiologically motivated method of quantifying cardiac time. 

• We propose a set of statistical tests with minimal distributional assumptions. 

• We demonstrate the utility of our approach by reanalysing open source data. 

 

  



  
 

Abstract 
There is a long history of, and renewed interest in, cardiac timing effects on behaviour and 

cognition. Cardiac timing effects may be identified by expressing events as a function of their 

location in the cardiac cycle, and applying circular (i.e. directional) statistics to test cardiac 

time-behaviour associations. Typically this approach ‘stretches’ all points in the cardiac cycle 

equally, but this is not necessarily physiologically valid. Moreover, many tests impose 

distributional assumptions that are not met by such data. We present a set of statistical 

techniques robust to this, instantiated within our new Cardiac Timing Toolbox (CaTT) for 

MATLAB: A physiologically-motivated method of wrapping behaviour to the cardiac cycle; 

and a set of non-parametric statistical tests that control for common confounds and 

distributional characteristics of these data. Using a reanalysis of previously published data, 

we guide readers through analyses using CaTT, aiding researchers in identifying 

physiologically plausible associations between heart-timing and cognition.    
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Introduction 

There is a resurgence of interest in how physiological states of the body influence aspects of 

cognition and emotion (1,2). From a historical context of the ‘peripheral’ theory of emotional 

feelings (3,4), notions of embodiment are increasingly incorporated into contemporary 

theoretical models in consciousness science (5,6), and in influential computational models of 

brain function that emphasise the predictive control of the body’s changing visceral state (7–

9).  

 

Information about the changing visceral state is continuously received by the brain, and one 

particularly important interoceptive channel carrying information about the dynamic state of 

cardiac activation is pressure-sensing baroreceptors. These are activated as blood is 

ejected from the heart into the aorta and carotid arteries with each heart beat (10), and 

signal, through afferent nerves to the brainstem, the strength and timing of individual heart 

beats and hence the state of cardiovascular activation. Since these signals peak around the 

heart beat (cardiac ventricular systole) and are reduced in the interval between heart beats 

(ventricular diastole), the influence of cardiovascular activation signals on perception, 

cognition and action may be revealed (even in states of low arousal) by testing for cardiac 

timing effects. In other words, one can test whether behaviours are facilitated or inhibited at 

different phases of the beat-to-beat cardiac cycle.  

 

The cardiac cycle describes the repeated sequence of electrical, muscular and 

haemodynamic changes preceding, during and after ejection of blood from the heart. The 

key haemodynamic phases of the cardiac cycle are ventricular systole, when the ventricular 

muscle contracts blood and blood is ejected from the heart, i.e. the ‘heart beat’, and 

ventricular diastole - the period between heart beats when ventricles fill. Ventricular 

contraction is triggered by the propagation of myocardial depolarisation, apparent in the 

standard electrocardiogram (ECG) as the QRS complex (notably the R wave peak). The 

subsequent ejection of blood is maximal over the period 250-300ms after the R wave, during 

which time arterial baroreceptors in aorta and carotid sinus are most active (Fig. 1). The 

ECG T wave, peaking around 300ms after the R wave, reflects ventricular repolarisation 

(electrical recovery of the ventricular myocardium). Baroreceptor quiescence follows, in 

anticipation of the next heart beat.  

 



RUNNING HEAD: The Cardiac Timing Toolbox 

 2 
 
 

 
Figure 1. The cardiac cycle. The QRS complex represents ventricular 
depolarisation; the T wave represents ventricular repolarisation.  

Since Lacey and Lacey’s work on the relevance of heart rate to behaviour (11), effects of 

cardiovascular activation on other aspects of perception and cognition have also been linked 

to baroreceptor signalling and cardiac cycle effects (2,5). Similarly, neural evoked responses 

to painful and somatosensory stimuli also vary with cardiac cycle (12,13). The prediction 

here is that the impact on cognition should be greater when baroreceptor output is maximum 

(ventricular systole) than when it is not (ventricular diastole). To test for effects of cardiac 

timing on behaviour, and thus for associations between bodily state and cognition, this 

branch of cardiac interoception research has taken one of two main approaches.  

 

One involves a priori time-locking stimulus presentation to systole (set according to the R 

wave peak) or diastole (set as R + δ, where δ is set by the researcher) and comparing 

behaviour, such as fear intensity ratings and other emotional categories (14,15), pain 

responses  (13,16–19), memory performance (20,21), and motor responses (22–24), across 

the two timing conditions. Relative to diastole, pain and somatosensory perception are 

attenuated at systole (12,13,19,25). Another more naturalistic approach is to collect ongoing 

ECG (or similar data) during a task and test for associations between cardiac timing and 

behaviour post-hoc (25–29).  

 

Although in the first time-locking approach, stimuli can of course be presented at multiple 

intervals across the cardiac cycle (19), this often leads to unwieldy experimental designs and 

a potentially disproportionate number of trials time-locked to systole. One advantage with the 

second approach (which comes at the cost of being unable to make directional inferences, 

i.e. behaviour may change heart rate) is that the researcher can identify whether particular 
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points, or phases, of the cardiac cycle other than ventricular systole or diastole facilitate 

performance. More importantly, the researcher does not have to commit to a fixed latency 

between systole and diastole. Instead, cardiac timing is expressed relative to the R wave 

peak.  

 

Nevertheless, testing for such associations between cardiac time and behaviour is non-

trivial. We elaborate on these issues later in the manuscript, but briefly, the first issue is that 

such tests necessitate the use of circular statistics (statistics for directional variables such as 

compass directions or months of the year), and the set of available statistical tests for 

circular variables is far smaller than for their linear counterparts. Of course, there will be 

cases where (linear) time since the last R wave peak is of primary interest (e.g. effects 

relating to pulse transit time), and in these cases circular statistics will not be necessary. The 

second issue is that many circular statistical tests make distributional assumptions that will 

not necessarily be met by the data at hand. Finally, the assumptions underlying standard 

transformations from milliseconds since the last R wave to cardiac time as expressed as an 

angle – specifically the assumption that one can uniformly stretch all timepoints - are not 

necessarily reasonable either.  

 

These complications are important to consider and address to provide valid measures of 

interoceptive influences on mental processes. In studies focusing on individual differences in 

the perception of bodily signals, there is considerable ongoing debate about the construct 

validity of Schandry’s heart beat counting task (30) and similar heart beat tracking tasks. 

Here, performance is confounded by the influence of non-interoceptive information (e.g. 

exteroceptive information (31) and knowledge of one’s average heart rate (32,33)) to the 

extent that quantifications of interoceptive accuracy are affected by true heart beat timing to 

only a small degree (34). These discussions continue to motivate improved paradigms for 

characterising the accuracy of and biases in interoceptive reports (35–37). Nevertheless, 

there has been considerably less attention given development in measurement and 

statistical analysis for cardiac timing studies.   

 

In this manuscript, we discuss and develop statistical methods for quantifying cardiac timing 

effect on behaviour. We propose a novel method for expressing behaviour as a 

(mathematical) function of the cardiac cycle, and a set of robust statistical analyses to 

address whether cardiac time differs across response types, correlates with responses, or 

facilitates/inhibits responses. We further present an easy-to-use MATLAB (The MathWorks 

Inc. Natick, USA) toolbox  – the Cardiac Timing Toolbox (CaTT) - that implements these 

analyses, and that also can import, pre-process and visualise the user’s data. Finally, we 
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illustrate how our toolbox can be used to probe, sensitively and robustly, associations 

between cardiac timing and behaviour by reanalysing a previously published, open dataset.  

Methods 

Overview of the Cardiac Timing Toolbox 

The toolbox is designed for researchers with little experience using Matlab, to guide the user 

through the entire analysis pipeline. The toolbox can be downloaded at 

https://github.com/MaxineSherman/CaTT. The functions contained enable the user to pre-

process the ECG, conduct statistical analyses on cardiac time-behaviour associations, and 

perform data visualisation. Detailed descriptions of the functions, shown in Fig.2, can be 

found by calling, for example, ‘help catt_denoise’ in Matlab, and tutorial scripts (one for 

preprocessing, one for analysis) can be found in the CaTT demo folder. An example pipeline 

for preprocessing and analysing data using CaTT can be found in Table 1. Demo scripts for 

preprocessing, analysing and visualising the data can be found in the main folder of the 

toolbox (catt_demo_preprocessing, catt_demo_analysis, and catt_demo_plotting 

respectively). 
Table 1. Example pipeline for preprocessing and analysing ECG data with CaTT 
Analysis step Code 
1. Initialize toolbox catt_init 
2. Load data into MATLAB workspace Custom code 
3a. If unknown, estimate sample rate catt_estimate_srate 
3b. If unknown, estimate timestamps catt_estimate_times 
4. Import data into CaTT catt_import 
5. Denoise the ECG data catt_denoise 
6. Identify R wave peaks and the peak and end of the T wave catt_heartbeat_detection 
7. Epoch ECG data into RR intervals catt_epoch 
8. Remove RR intervals with artefacts catt_manualRejection 
9. Estimate IBIs and remove RR intervals with extreme or nonsensical 
IBIs 

catt_IBI 

10. Estimate heart rate variability catt_HRV 
11. Estimate QT latency from ECG data, from heart rate, or set according 
to toolbox parameters 

catt_estimate_qt 

12. Express onsets as cardiac angles catt_wrap2heart 
13. For each participant, estimate whether onsets are more likely at a 
particular cardiac angle   

catt_bootstrap_clust 

14. Pool individual participant z-scores into a group z-score and group p-
value 

catt_z2p 

15. Test for group-level consistency catt_consistency 
16. Test for correlation between cardiac angles and behavior  catt_bootstrap_corr 
17. Test for difference in mean/median cardiac angle across conditions 
18. Plot the onsets, IBIs and cardiac angles to depict results 

catt_bootstrap_diff 
catt_plot_circ 
catt_plot_ibi_dist 
catt_plot_onset_dist 
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This manuscript will concentrate on explaining the motivation for and advances of the 

toolbox, as well as presenting analyses performed with CaTT on real data. To anticipate, we 

use RR interval to refer to the ECG data between two successive R wave peaks, and 

interbeat interval (IBI) to refer to the latency (in ms) between the R wave peaks. 

 

Installing the toolbox 

To download the toolbox, click the “Code” button on the Github page 

(github.com/MaxineSherman/CaTT). The source code will be packaged into a zip file. Move 

the zip file into a parent folder of choice and unzip it. Then, in Matlab, navigate to the parent 

folder and use the following command to add the toolbox to path: 

addpath(genpath(‘CaTT-main’)); 
 

We recommend using MATLAB version 2021b, on which this toolbox was developed and 
tested. 

 

Figure 2. Outline of the CaTT Toolbox. (A) List of Matlab functions included in the toolbox, grouped 

by their usage. (B) Example flow chart showing the order in which to call the functions. The user 
needs to begin by initialising the toolbox and calling the data. Next, if they wish to preprocess using 

CaTT then they would denoise, detect the peaks of the R and T waves, epoch the data into heart 

beats, then reject epochs with artefacts. Participant-level statistics heart beat variability (HRV) and 

mean interbeat interval (IBI, in ms) are calculated. Next, the user must estimate the QT interval 

(according to the method they set in the catt_opts), onsets are wrapped to the cardiac cycle, and 

finally, participant- and group-level statistical tests are run. 
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Initializing the toolbox 

The toolbox is initialized by calling the function catt_init, which specifies default 

settings for subsequent preprocessing, statistical inference and data visualisation steps. 

Opening the function file reveals a set of parameters, loaded into the structure catt_opts, 

which can be changed by the user according to their needs. Alternatively, parameters can 

be changed at the command line, for example the sample rate (which defaults at 512Hz) can 

be changed to 1000Hz as follows: 
catt_opts.fs = 1000; 

 

 
Scripts that call CaTT should begin by declaring the to-be-created CaTT options structure, 

catt_opts, as a global variable and then initialising the options by calling catt_init, as follows: 

global catt_opts; 
catt_init; 

 

Importing and cleaning data 

To preprocess ECG data in CaTT the toolbox requires, at a minimum, 3 pieces of data: a 

vector of continuous, (not epoched) ECG data; a vector of timestamps for each ECG sample 

(in ms); and onsets of events to timelock to the cardiac cycle, for example, stimulus 

presentation times (in ms). These onsets correspond to the datapoints that will later be 

converted to cardiac time, expressed in angles. If the researcher does not have 

timestamps/the sampling rate then, assuming data were sampled continuously, they/it can 

be constructed from the size of the ECG vector and the sampling rate/timestamps using the 

function catt_estimate_times/catt_estimate_srate. There is also an optional fourth 

variable one can use: responses. This should be numeric, and the same size as onsets_ms. 

It can be a binary variable (e.g. 0 = incorrect; 1 = correct), an ordinal variable (e.g. Likert 

scale ratings, or indeed any rating scale, for each stimulus presented) or a continuous 

variable (e.g. reaction times to the stimulus presented). Alternatively, the researcher might 

choose to store condition-level information here (e.g. 1 = angry face; 2 = neutral face; 3 = 

emotional face). The purpose of this variable is for use later-on, when comparing 

associations between cardiac timing and treatment effect across conditions or response 

types. 

 

In this manuscript (and in the toolbox scripts) we name to the data structure created and 

used by CaTT as catt. This structure is created by passing the three or four 

aforementioned variables to catt_import as follows: 
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catt = catt_import( ECG, times_ms, onsets_ms ); 

or 

catt = catt_import( ECG, times_ms, onsets_ms, responses ); 

 

Typically, researchers will have data from many different participants. Each participant’s 

data structure should be stored into a cell array to facilitate group-level statistical tests at 

later stages of analysis. For example, Participant One’s data will be stored in catt{1}, 

Participant Two’s data in catt{2}, etc. 

Preprocessing the cardiac data 

While users are of course free to import data that are already pre-processed, the toolbox can 

also pre-process raw ECG data. The pre-processing pipeline is adopted from that proposed 

in (26). First, continuous ECG data are detrended. This is done by applying median filter 

200ms wide to the ECG, followed by another 600ms wide median filter. The result 

constitutes a baseline that is subtracted from the raw signal. Second, the detrended data are 

denoised using a three-level Daubechies wavelet filter with one vanishing moment. These 

steps are performed by the script catt_denoise. 

 
The next step is to detect peaks of the R and T waves, and the T wave end, by calling 

catt_heartbeat_detection. For R wave peak detection, CaTT implements the 

powerful detection method developed by Manikandan & Soman (38), using the authors’ 

code, which is packaged into CaTT (https://github.com/hongzuL/A-novel-method-for-

detecting-R-peaks-in-electrocardiogram-signal). If the user finds that R wave peak detection 

is not working well (because their ECG data are particularly noisy) then they can change the 

parameter catt_opts.rdetection_thresh. This parameter determines whether a 

deflection in the ECG is categorised as an R wave peak or not, and we would therefore 

recommend increasing its value if the ECG data are particularly noisy. 

 

To detect the peaks and ends of each T wave, we implemented the algorithm by Vásquez-

Seisdedos and colleagues (39), which is commonly adopted in the literature (12,25,27): For 

each R wave peak detected, peaks of the corresponding T wave are found by finding the 

maximum ECG amplitude in the period between R+200ms and R+500ms. The minimum and 

maximum values can be changed by changing the settings for catt_opts.RT_min and 

catt_opts.RT_max respectively. Detecting the end of each T wave involves searching a 

constrained region after the T wave peak but before the R wave peak for the point at which 

the gradient indicates the end of the wave. 
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With cardiac events identified, the third step is to epoch the data, not into trials but into 

discrete RR intervals. This is done by catt_epoch. Each epoch begins at an R wave peak 

and ends at the sample preceding the next, with relevant information stored in the field 

catt.RR. Relevant information here includes: T wave timings; R-T time (the R wave peak to 

the end of the T wave); the inter-beat interval; if present, onset time expressed relative to the 

last R wave peak; and, if present, the response associated with the onset. Note that any 

epoch not containing an onset or response will have these fields populated with NaN. 

 

Manual artefact rejection is performed by the script catt_manualRejection. The 

toolbox will open a mounted figure into the MATLAB GUI and plot, epoch-by-epoch, the 

processed ECG with detected R Each epoch begins at an R wave peak and ends at the 

sample preceding the next,peaks and T waves overlaid. The user then clicks R wave peaks 

to reject the RR interval. Rejected intervals are greyed-out and stored (along with associated 

behaviour, onset and conditions) into a separate field of the data structure called 

catt.rej.  

 
Once pre-processing is complete, the script calls catt_IBI to calculate: the vector of all 

IBIs in a trial or epoch; the IBI of the cardiac cycle (RR interval) in which the onset appeared; 

and the onset, expressed as time in milliseconds since the last R wave peak.  

 

An important, second data quality check is performed by catt_IBI: the function will flag 

IBIs which are implausibly long or short, perhaps due to human error during manual artefact 

rejection or due to measurement noise. This is done in 3 ways: 

i. IBIs are z-scored and compared to a threshold called 

catt_opts.BPM_extreme_z. Its default value is 3, but this can be changed in 

catt_init.  If |z| > catt_opts.BPM_extreme_z then the corresponding RR 

is excluded from further analysis. To switch off exclusion-by-zscore the user can 

set catt_opts.BPM_extreme_z to inf (because |z| will never be greater than 

infinity) 

ii. IBIs are converted to beats per minute (bpm). Very short IBIs, corresponding to 

very high bpm, will be excluded if bpm> catt_opts.BPM_max. The default 

value is 160bpm. To switch off exclusion of very short IBIs, set 

catt_opts.BPM_max to inf. 
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iii. Very long IBIs, corresponding to very low bpms, will be excluded if bpm < 

catt_opts.BPM_min. The default value is 40bpm. To switch off exclusion of 

very long IBIs, set catt_opts.BPM_min to 0. 

 

Excluded RR intervals will be stored in catt.rej. A histogram of retained versus removed 

IBIs can be plotted by calling: 
plot_on = true 

catt = catt_IBI( catt, plot_on ) 

 

Finally, heart rate variability (HRV) is calculated using the function catt_HRV. By default, 

the function calculates HRV as RMSSD (the root mean squared of successive differences), 

but it can also be calculated using other measures as well. 

 

Expressing position in the cardiac cycle as angular data 
 

Cardiac timing – where in the RR interval a response was made – is, like any time (e.g. 

months of the year), circular. Circular variables are difficult to use for statistical inference, 

because unlike linear variables (e.g. continuous fear ratings or rating scale responses) 

where the difference between two values is simply their subtraction, circular variables 

“wrap”, thereby requiring modular arithmetic. To illustrate, while 22 + 3 = 25, three hours 

after 22:00 hours is not 25:00 hours, but 01:00 (1am). Similarly, while in linear space 11 is 

closer to 8 (difference of 3) than 1 (difference of 10), when working on 12-hour clock time the 

opposite is true: 11am is further from 8am (difference of 3) than 1pm (difference of 2). When 

stimulus or response onsets are expressed in terms of their position in the cardiac cycle, any 

statistical inference would be performed on an “inter-beat-interval-hour clock”, that is, using 

circular arithmetic where the modulus on each trial is the inter-beat interval, which itself is 

subject to variability over time. 

 

In order to test cardiac timing effects on behaviour, onsets (which refers to either stimulus 

onsets or response times – whatever you wish to time-lock to your cardiac data) need to be 

expressed as a function of the cardiac cycle. This is done by expressing time as degrees in 

radians, denoted by θ. Just as a quarter of an hour would be represented as a 90°degree 

(0.5π rad) angle on a clock face – the 15-minute mark – in cardiac time, a quarter of a 

cardiac cycle, would be represented as 90 degrees (0.5π rad) as well. There are two 

methods available for wrapping these times to the ECG: 
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The first expresses the kth onset in milliseconds, ok, as a proportion of the latency between 

the two surrounding R wave peaks, denoted IBIk. Cardiac time 𝜃!	#$%&! is given in radians 

by: 

𝜃!	#$%&! =
2𝜋𝑜&
𝐼𝐵𝐼&

 

To wrap a vector of onsets (onsets) to R wave peaks via a vector of inter-beat intervals 

expressed in milliseconds (IBIs), first you would set the parameter structure as shown below, 

then you would call the wrapping function:  
catt_opts.wrap2 = ‘rpeak’; 

or 
catt_opts.wrap2 = ‘twav’; 

catt.wrapped = catt_wrap2heart(catt); 

 
This first method treats all time points in the cardiac cycle equally, such that the relationship 

between 𝜃!	#$%& and the IBI is the same, regardless of where in the cardiac cycle the onset 

appeared (e.g. before versus after the T wave). This means that onsets on two different 

trials can take the same value of 𝜃!	#$%&, despite one falling before the T wave (i.e. prior to 

ventricular repolarisation) and another falling after the T wave. 

 

The toolbox affords a second, more biologically plausible method for expressing onsets in 

cardiac time. We know that the latency between the QRS complex and the T wave is largely 

constant; the interval from R wave peak to T wave peak lasts approximately 300ms (with 

further small within-participant differences that depend on heart rate). The variability in IBIs 

is primarily driven by variability in ventricular repolarization and diastole time (i.e. the interval 

between the T wave and next R wave) under autonomic control (40). Accordingly, the 

CaTT’s second wrapping method does not treat ECG samples across the cardiac cycle 

equally. Instead, onsets are expressed as a proportion of the cardiac cycle, but relative to 

the T wave. Onsets occurring between R wave peak and T wave end versus T wave end  

and R wave peak are transformed separately, and as follows: 

𝜃!	#$%&! =

⎩
⎨

⎧
𝜋(𝑜' − 𝑇 − 𝑅)

𝑇 − 𝑅
, 𝑜'	𝑏𝑒𝑓𝑜𝑟𝑒	𝑇	𝑤𝑎𝑣𝑒

	
𝜋(𝑜' − 𝑇 − 𝑅)
𝐼𝐵𝐼' − (𝑇 − 𝑅)

, 𝑜'	𝑎𝑓𝑡𝑒𝑟	𝑇	𝑤𝑎𝑣𝑒
 

 

What this means is that onsets falling before the T wave have negative angles that represent 

how far away the onset was from the T wave, as a proportion of R-T time. Furthermore, 

when angles are negative then the onset can be categorised as having occurred during 

systole. 
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Analogously, onsets falling after the end of the T wave take positive angles which represent 

how far away from T the onset was as a proportion of T-R time. In this way, whatever the IBI 

is, the angle θ will always tell you whether the response came before or after the T wave,  

 and will respect the latency of the refractory period. Onsets taking positive angles can be 

classified as occurring during diastole. 

 

 To illustrate, suppose we assume the time between the R wave peak and end of the T wave 

to be fixed at 300ms , and large deviations from 300ms to be attributable to measurement 

noise. If a stimulus is presented between an R and T wave (in the refractory period), then 

that stimulus onset time is expressed as a (negative) proportion of that 300ms period. Here, 

the most extreme values are highly negative, i.e., very far away from T and thus close to R, 

and the least extreme values (those closest to 0) are very close to T and thus far from R. If 

instead the stimulus is presented between the T and R wave, then the calculation of 𝜃'	(%)$! 

is different. In this case, we take the onset as a (positive) proportion of the time between T 

and R wave, i.e., the inter-beat interval minus 300ms. As before, extreme positive values 

mean that the stimulus was presented just before the next R wave peak and thus far from 

 

Figure 3. Wrapping stimulus onsets or response times to the cardiac cycle. A Schematic of one RR 

interval, from the R wave peak to the T wave end up to the second R wave peak. B Expressing 

onsets (green dot) in cardiac time, R wave peak method. Left panel depicts an onset at 100ms post 

R1, where the IBI is 1000ms, meaning θR peak = 2π(100/1000) = π/5. Right panel depicts an onset at 

650ms post R1, giving θR peak = 2π(700/1000) = 1.3π. C. Wrapping onsets to the T wave. For the 

same values as in panel B, when the onset arrives before the T wave then θT wave is negative, and 
takes the value  π(100-300)/300 = -3π/4 and  π(650-300)/(1000-300) = 0.5π respectively.   
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the T wave; values close to 0 indicate that the stimulus appeared just after the T wave. This 

is illustrated in Figure 3.  

 

In cases where the CaTT user has estimated T wave time from their data, these timepoints 

can be used in the calculation of 𝜃!	#$%&!. Where the user is unable to estimate these 

timepoints (e.g. because they only R wave peak times and not the raw ECG) then 𝜃!	#$%&! 

can be estimated as follows: 

 

One needs to estimate when T wave occurs from the R wave, the participant’s heart rate, 

and from an assumption on average QR-T time. The toolbox assumes the average QT time 

to be 400ms and the QR time to be 50ms. Therefore, the default R-T time is 350ms. 

However, there are also three implemented methods for estimating a corrected QR-T 

interval from heart rate:  

1. Bazett’s formula (41): 𝑄𝑇* =	
+'

,-#./01
 

2. Fridericia’s formula (42): 𝑄𝑇2 =	
+'

,-#./01"  

3. Sagie’s formula (43): 𝑄𝑇2 = 1000	 ×	(	 +'
3111

+ 	0.154 31 − -#.
01
5) 

 
where QT is the QT interval (again, here assumed to be 400ms = 350ms + 50ms QR time) 

and QTc is the QT interval corrected for heart rate. Across all of these corrections there is an 

assumption of a stable heart rate. This is reasonable for many experimental designs, though 

manipulations or stimuli likely to substantially change heart rate (e.g. delivery of electric 

shocks) then this assumption may be violated. In these cases we would recommend 

estimating the end of the T wave from the ECG data. Of course, regardless of the method 

chosen, expressing stimulus or response times as a function of their time from the previous 

R wave peak or T wave does not mean that they were caused by that latency.  

Statistical inference on cardiac phase 

The CaTT statistical inference functions are designed to address three types of analysis 

question, and in each case the toolbox calls function from the circstat toolbox (44) to 

implement the appropriate tests. For ease of use, this toolbox is packaged into CaTT, and 

for details on how the statistical tests work, we refer the reader to Berens’ manuscript. 

Furthermore, in each case CaTT uses permutation testing to calculate z-scores and p-

values. The analysis types are as follows: 

1. Is there an association between the phase of the cardiac cycle and some 

behaviour? 

2. Is there a difference in cardiac phase between two conditions? 
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3. Are response times clustered around some point in the cardiac cycle? 

To test for associations between phase and behaviour, we can use circular correlations. For 

example, one may wish to test whether there is a correlation between how far along the 

cardiac cycle a face is presented is, and how intensely that face is rated. Alternatively, one 

could test for a correlation between two cardiac times, for example, the (cardiac) time when 

a face was presented and the (cardiac) time when a response was made. 

 

In order to test for such correlations, you can call the function catt_bootstrap_corr, 

passing the function your variables and also whether they are linear (e.g. intensity ratings) or 

angular (i.e. cardiac time). Correlations are calculated using the circstat toolbox function 

circ_corrcl (for correlation between circular and linear variables) or circ_corrcc (for 

correlations between two circular variables) as appropriate. The function calculates p-values 

via permutation testing, shuffling one of the variables to break the association with the other 

and recomputing the correlation over many interactions. The p-value is then the proportion 

of permutations (shuffles) that resulted in a correlation greater than or equal to the empirical 

correlation. 

 

Similarly, if one wishes to test for a difference in cardiac phase between conditions, for 

example to see whether a decision to bet versus pass in a game is associated with different 

portions of the cardiac cycle, the function catt_bootstrap_diff can be called. This also 

uses permutation testing, randomly allocating each datapoint to one or another label over 

multiple iterations to obtain a p-value. Here, CaTT offers several options: the function can be 

used on linear (e.g. ratings) or circular (e.g. cardiac timing) data; condition differences can 

be calculated using the mean (for e.g. Gaussian or Von Mises data) or the median (for e.g. 

skewed data); and for paired or independent designs.  

 

Finally, one may seek to test if responses, for example button-presses, are more likely to 

occur at particular portions of the cardiac cycle. This would be a test of circular uniformity, 

asking whether cardiac times are clustered about some point. To test this, the toolbox 

function catt_bootstrap_clust would be called. The function offers two choices of test: 

The Rayleigh test (45), which assumes a Von Mises distribution (“circular Normality”) and 

that, if non-uniformity (“clustering”) is present, that it is unimodal; and Rao’s spacing test 

(46), which does not have distributional assumptions (akin to a “non-parametric” test). Both 

are implemented by circstat code (47). This third analysis type – testing for (lack of) circular 

uniformity – is arguably more complicated than the former two, for reasons that will be laid 

out in the following section. 
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The importance of permutation testing 

 
Frequentist statistical tests (e.g. t-test, ANOVA) are typically employed in experimental 

research in cognitive neuroscience and cognitive psychology to test for effects of group on  

outcome, or to test for associations (e.g. Pearson correlation). These tests make Gaussian 

assumptions and set the null hypothesis at zero; no correlation, no group difference, etc.  

 

The problem with testing for associations between cardiac (or indeed any) timing on 

behaviour is twofold: First, Normality (of errors) is not a reasonable assumption for circular 

variables because Gaussian support is over a linear rather than circular space. This issue is 

straightforward to address: Analogous statistical tests (such as the circular t-test) are 

available for circular variables if the relevant assumptions are met.  

 

Figure 4. The importance of permutation testing. A-B. Histograms depicting the distribution of two 
simulated, independent variables: inter-beat interval (left) and reaction time (right). C. Circular 
histogram of simulated reaction times, wrapped to the (simulated) cardiac cycle. Despite the 
variables being entirely independent and so no true association between cardiac timing and RT, 
strong non-uniformity is present. This is depicted by the clustering of angles. D. The null distribution, 
obtained by wrapping RTs to shuffled IBIs. The “observed” phase concentration seen in panel C is 
no different from the null. 
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The second problem, which is more complicated to address, is the assumption that the 

effect under the null hypothesis is zero. This second point is the most crucial, because even  

if one uses circular analogues of t-tests or ANOVAs there still may be a problem with 

statistical inference.  

 

Why might the effect under the null take some non-zero value? One such case would be 

when we test for an association between two periodic variables. Suppose, for example, that 

a researcher collects ECG while a participant presses a button whenever they feel like  

making a voluntary action. The researcher wants to know if participants are more likely to 

press a button at particular points in the cardiac cycle. If an individual participant’s heart rate 

is 60 bpm, then an R wave peak comes every ~1000ms (Fig. 4A). If there is also rhythmicity 

in the participant’s button presses (perhaps they press every 400ms, Fig 4B), then the 

researcher may well find a correlation between cardiac timing and behaviour, even if the two 

variables are entirely independent. This is illustrated in Fig. 4C (visualisation by the function 

catt_plot_circ) where it can be seen that there is a concentration of button presses 

about a particular portion of the cardiac cycle, just after the T wave. This indicates that, 

despite there being no causal relationship between cardiac time and button press, the null 

hypothesis is not zero: some clustering (non-uniformity) is expected. 

 

Using permutation testing for non-uniformity 
 
To control for the above, the CaTT implements permutation testing for tests of non-

uniformity (as well as for tests of difference and association), producing surrogate data from 

which H0 can be estimated. How is the permutation test for non-uniformity performed? 

Under the null hypothesis, there is no relationship between cardiac time and behaviour. 

Therefore, we reason that wrapping behaviour to IBIs from other trials should not reduce 

non-uniformity if the null hypothesis is true. This is analogous to permutation tests for 

correlations, where over many iterations the one variable is shuffled while the other is held 

constant and the correlation recomputed. Here, behaviour (onsets) is wrapped to shuffled 

IBIs to break the association between the behaviour on some trial and the cardiac cycle it 

appeared in. A clustering test – either the “parametric” Rayleigh test (which assumes a Von 

Mises distribution; the circular analogue of Gaussianity) or the “non-parametric” Rao’s 

Spacing test with no distributional assumptions– is performed on each iteration. In both 

cases the tests are implemented by the circstat toolbox (47). The null distribution is shown in 

Fig. 3D. Here it is made apparent that, despite the strong concentration of angles prior to 

shuffling, this strong concentration is entirely expected under the null. 
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Once all permutation iterations are complete, one has a simulated null distribution (48), from 

which the mean and standard deviation of the null can be calculated. From here, is it simple 

to express the circular non-uniformity (the test statistic) as a z-score, that can later be 

combined with the z-scores of other participants as necessary: 

𝑍 =
𝑈 − 𝑈∗9999

´

𝑆𝐷(𝑈∗)
 

 

where U is the observed test statistic, U* is the distribution of test statistics under the null 

and SD is standard deviation. The permutation test also gives a p-value, which is simply the 

proportion of permutations in which the test statistic was greater or equal to U. For the 

simulated data in Fig. 3C, the z-score is -0.4931, giving a permutation p-value of .622. 

 

If the user is running analyses on multiple participants (as will often be the case), then a p-

value for the group is needed. To obtain this, the toolbox uses Stouffer’s method (32) to 

obtain a pooled z-score. Here, for k participants, the set of k individual z-scores is summed 

and divided by √k. The result of this function is a z-score, meaning that the two-tailed p-

value is 2<1 − 𝛷(|𝑧|)@, where 𝛷 is the Normal cumulative distribution function. This 

conversion from individual z-scores to a p-value for the group is implemented by the function 

catt_z2p. This approach of estimating participant-level effect sizes and combining them 

using Stouffer’s method has been recommended for cases where H0 is unknown (49). 

 
Using permutation testing to test for consistent non-uniformity across participants 
 
This above permutation test can tell us whether non-uniformity is present at the group level. 

However, more than that, one would also want to know that the non-uniformity is such that 

there is some group-level cardiac time around which angles are clustered. If most 

participants exhibit non-uniformity but each is skewed towards a different cardiac time, then 

we cannot infer an effect of cardiac timing on behaviour. There are several reasons why this 

could be the case, including distributional properties of the onsets or of the inter-beat 

intervals. For example, if they are highly skewed then certain cardiac phase angles would be 

less likely to occur than others. 

 

If participants’ distributions of cardiac times (expressed in angles) are Von Mises distributed 

then one could just take the circular mean. However, this is not necessarily the case and an 

unreasonable assumption to make without examination of the data. Accordingly, we propose 
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the following test (with no distributional assumptions), implemented by the function 

catt_consistency: 

 

If the user wraps to the R wave peak (systole), then for each participant, the angular data 

are first binned into k equally-spaced bins, e.g. 8 bins of π/4 (45°; the default). One’s choice 

of bin number will depend on how many trials each participant completes, balanced against 

the required sensitivity of the test. Next, the proportion of data in each bin is calculated.  

 

If the data are uniformly distributed, then for each participant each bin should contain 1/k of 

the data. To test for consistency across participants, catt_consistency runs k one-

sample tests of difference against this expected value of 1/k and corrects for multiple 

comparisons using the FDR method. Because FDR is more lenient than other corrections 

(e.g. familywise error) it is important to be cautious and conservative when interpreting 

results. If indeed, a participant exhibits non-uniformity (as determined by 

catt_bootstrap_clust) and consistency in where that non-uniformity lies (as 

determined by catt_consistency) then the researcher can conclude that some 

behaviour is more/less likely to occur at particular phases of the cardiac cycle. Effect sizes 

for each phase bin (in output.diff_perc) are given as the percentage difference 

between the observed and expected proportion of the data in each bin. Furthermore, these 

preferred (and/or un-preferred) phases can be specified as occurring somewhere between 

the limits of the bins the researcher chose.    

 

The consistency test requires an adjustment if the user has wrapped onsets to the T wave 

(diastole): the period between diastole and the subsequent R wave peak is typically longer 

than the RT interval, and therefore, all else being equal, one would expect a greater 

proportion of onsets to fall after diastole than before. Accordingly, even in the absence of 

any consistency one would still expect unequal proportions of onsets falling before versus 

after diastole. To resolve this issue, onsets falling before diastole (which have negative 

angles) are binned into four (or k/2) equally-spaced bins between -π and 0, and then bin 

counts converted to proportions by considering only the proportion of negative angles. This 

process is repeated for positive angles, binning them into four (k/2) equally-spaced bins 

between 0 and π. There are therefore two different bin sizes used: one (which will be 

smaller) for -πrad to 0rad and another (larger) size for 0rad to πrad. Once binning is 

complete, the consistency test continues as described in the previous paragraph, comparing 

proportions to those expected under circular uniformity: 1/k.    

 

Results 
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Applying CaTT to real data 

To illustrate how CaTT can be used to perform analyses on behavioural and ECG data, we 

present a re-analysis of a freely available, published dataset (3). In this study, Galvez-Pol 

and colleagues collected continuous ECG while participants performed a visual search task. 

They asked whether blinks, saccades or fixations were more likely to occur at particular 

phases of the cardiac cycle, and answering this question requires performing a test of non-

uniformity. However, because tests of uniformity cannot accommodate data where trials are  

nested in participants, the authors took the circular mean cardiac angle for each participant 

and tested for non-uniformity of these means. Here, we exploit the potential of permutation 

testing – the ability to run tests within-participants and combine estimated z-scores into a 

group-level p-value – applying our proposed approach to Galvez-Pol and colleagues’ data.  

The code for this analysis can be found in the toolbox 

(https://github.com/MaxineSherman/CaTT/blob/main/catt_demo_analysis.m). If it is not 

already present, the script will download the authors’ data from OSF. 

 

In this open dataset, the available features include a time index, the IBI of each cardiac cycle 

in which an oculomotor event was made, and the time of the oculomotor event expressed in 

milliseconds since the last R wave peak. 

 

After initialising the toolbox by calling  
global catt_opts 

catt_init; 
we set the sampling frequency to 1000Hz, the method of estimating QT intervals to ‘fixed’ 

and the default QT time to 400ms. We did this because, without the raw ECG data, QT times 

could not be estimated: 
catt_opts.fs = 1000; 

catt_opts.qt_method = ‘fixed’; 

catt_opts.qt_default = 400; 

 

To run our analysis, for each participant i and each type of oculomotor event (fixations, 

saccades and blinks) we created a field called RR (as would be created by the function 

catt_epoch) and loaded in the relevant data: the time since the last R wave peak for each 

fixation was loaded it into a structure called group{i}.RR.catt.onset; dummy time-

points and indices were loaded into group{i}.RR.times and 
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group{i}.RR.catt.idx_RR respectively, and all responses were left blank by setting 

group{i}.RR.catt.response to nan.  

 

While we could not run manual artefact rejection, we could screen trials with extreme IBIs. 

This was done by running catt_IBI using the default parameters (excluding RR intervals  

 where the IBI was more than 3SD from the mean, or which implied a heart rate > 160bpm or 

< 40bpm). No participant had more than 3.5% of events excluded (Fig. 5). 

 

Then, we ran participant-by-participant non-parametric permutation tests, using the Rao test, 

and loaded the output back into the catt structure. This was done by running, for each 

participant i: 
 

[~,~,group{i}.catt] = catt_bootstrap_clust(group{i}.catt, ‘rao’); 

 

With this complete, we obtained the group z-value by calling catt_z2p(catt). Individual 

participant z-values ranged from -2.76 to -7.03, and so the group z-value was -28.62 and the 

corresponding p-value < .001. Note that the combined group-level z is substantially larger 

than individuals’ scores because of the cumulative effect of all z-scores having the same 

sign. The z-scores here were negative, meaning that the data were more, not less, uniform 

than expected under the null. The reason for this is as follows: participants exhibited a 

skewed circular distribution of cardiac angles, such that certain angles were less likely than 

others (see Fig. 6A for a representative example). This skew was present under the null as 

well (Fig. 6B), and to a far greater degree, hence the negative z-score. Upon inspection of 

the behavioural data, it can be seen that this was due to a skewed distribution of IBIs and 

 
Figure 5. Histograms depicting the percentage of (from left) fixations, saccades and blinks removed 

for each participant. Note that the histograms for fixations and saccades are identical. This is 

because, in this dataset, fixations always followed saccades and they both fell in the same RR 

interval. 
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uniform distribution of onsets (Fig 6C-D), leading to certain angles being necessarily less 

likely a priori. Accordingly, participants were more uniform than expected because at those  

underrepresented phases, there were more fixations occurring, leading to a “rounder” (more 

uniform) distribution in Fig. 6A than 6B. This issue highlights the importance of using  

 statistical tests with minimal distributional assumptions when looking for cardiac-behaviour 

relationships.    

 

Having established the presence of deviation from uniformity (here, more uniformity than 

expected), the second question is whether the location of non-uniformity is consistent across 

participants (because fixations are more likely at particular phases of the cardiac cycle), or 

inconsistent (because the non-uniformity is driven by the distribution of onsets and IBIs). To 

address this question, we ran catt_consistency(catt). As can be seen in Table 2, bin 

proportions did not significantly deviate from their expected values after correction for 

multiple comparisons, though a small difference of 1.35% that did not survive correction was 

found between 1.75π and 2π rad (just before the R wave peak). Accordingly, we cannot 

convincingly conclude that fixations are more likely at particular phases of the cardiac cycle: 

It is possible that the observed clustering was an artefact of the skewed data distributions. 

 

We repeated this analysis for the timing of saccades (see Table 2). Here, results showed 

that, again, fixation times deviated from uniformity (group Z = -33.52, group p < .001) but 

now there was also significant group-level consistency in where these deviations occurred: 

fixations were over-represented by 1.75% at 0.5π-0.75π (p = .01). This cardiac phase is 

relatively early in the cycle, and broadly consistent with the location originally reported. 

Fixations were also disproportionately less likely to occur, by 2.38%, just before the R wave 

peak (p < .001).  Finally, we performed the analysis for blinks. Again, blink times were more 

uniform than expected (group Z = -8.08, p < .001). However, no consistency was found, 

 

Figure 6. Data from a representative participant. A. Distribution of participant’s fixations, expressed 
as degrees in the cardiac cycle B. The null distribution, constructed by permutation testing. C-D. 
Histograms depicting the participant’s IBIs and onsets respectively. Note that the IBIs are skewed 
and the onsets broadly uniformly distributed. Skewness values for each distribution are given under 
the x-axis labels 
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meaning that no phase of the cardiac cycle was associated with more or fewer blinks at the 

group-level. 

 

 

The previous analyses found that saccades are more likely to occur approximately 25%-

37.5% of the way in to the cardiac cycle and less likely just before the R wave peak, but this 

cannot itself tell us where that period falls in systole or diastole. To address this question, 

the analyses were repeated, timelocking oculomotor events to the T wave instead: our novel 

method of examining cardiac timing effects.. Oculomotor events were time-locked such that 

diastole was set at a fixed latency of R + 350. We had to estimate the R wave peak in this 

way because we did not have the raw ECG data.  

 

Results were broadly consistent with those from the R wave peak analysis (see Table 3). 

For all oculomotor events types, distributions were more uniform than under the null (p < 

.001). As before, we found no group-level consistency for fixations or blinks. Saccades were 

1.67% less likely at diastole (-0.5π-0), p = .002, with no difference found in any other bin. 

This analysis found an underrepresentation of saccades, whereas versus when locking to 

the R wave peak we found an overrepresentation of saccades, however note that the 

locations in the cardiac cycle that these bins refer to are different.   

 

Next, using CaTT we can ask whether there are differences in the ‘preferred’ cardiac phases 

for saccades, fixations and blinks. To do this, we ran, for each participant, independent-

samples bootstrapped tests of difference using the function catt_bootstrap_diff. 

These permutation tests gave us three z-scores per participant, each pertaining to one of the 

three contrasts. We used the function catt_z2p to merge the per-participant z-scores into 

group-level z-scores and group-level p-values for each contrast.  

 

Table 2. Results for the consistency tests on fixation, saccade and blink data, wrapping to the R wave peak. 
Results are percentage deviation from expected proportions, p values, and whether the test was significant 
following FDR-correction 

Bin 
Fixations Saccades Blinks 

Difference 
(%) p Sig. 

(FDR) 
Difference 

(%) p Sig. 
(FDR) 

Difference 
(%) p Sig. 

(FDR) 
0 (systole) to 
0.25π  0.17 .797 N 1.32 .075 N -15.97 .012 N 

0.25π to 0.5π 1.15 .067 N 0.83 .246 N -16.92 .019 N 
0.5π to 0.75π  0.98 .154 N 1.75 .009 Y 4.11 .728 N 
0.75π to π -0.81 .292 N -0.85 .184 N -10.15 .111 N 
π to 1.25π 0.32 .640 N -0.65 .370 N -5.94 .395 N 
1.25π to 1.5π -0.83 .209 N -0.25 .681 N 4.86 .522 N 
1.5π to 1.75π 0.37 .560 N 0.24 .696 N -0.90 .912 N 
1.75π to 2π -1.35 .043 N -2.38 < .001 Y -3.82 .665 N 
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Table 3. Results for the consistency tests on fixation, saccade and blink data, wrapping to the T wave. Results 
are percentage deviation from expected proportions, p values, and whether the test was significant following 
FDR-correction 

Bin 
Fixations Saccades Blinks 

Difference 
(%) p Sig. 

(FDR) 
Difference 

(%) p Sig. 
(FDR) 

Difference 
(%) p Sig. 

(FDR) 
-π (systole) to -0.75π 1.30 .020 N 0.40 .443 N -4.97 .422 N 
-0.75π to -0.5π -0.95 .123 N 0.33 .535 N 0.66 .917 N 
-0.5π to -0.25π -0.09 .884 N 0.94 .159 N -2.52 .671 N 
-0.25π to 0 (diastole) -0.26 .649 N -1.67 .002 Y 6.82 .485 N 
0 (diastole) to 0.25π -1.20 .209 N 1.17 .110 N -2.75 .723 N 
0.25π to 0.5π 1.08 .301 N -0.41 .623 N -3.41 .680 N 
0.5π to 0.75π 0.36 .681 N 0.20 .882 N 4.57 .679 N 
0.75π to π (systole) -0.23 .789 N -0.96 .194 N 1.59 .926 N 

 

Results showed no significant difference at the group-level between mean cardiac time of 

saccades versus fixations (wrapping to R wave: z = -0.82, p = .415, wrapping to T wave: z = 

-0.42, p = .674), saccades versus blinks (wrapping to R: z = 0.52, p = .601, wrapping to  

T: z = 0.83, p = .408), or fixations versus blinks (wrapping to R wave: z = 1.83, p = .068, 

wrapping to T wave: z = 1.03, p = .303). This means that we found no evidence for any of 

the oculomotor events being executed earlier or later in the cardiac cycle than any other. 

 

Finally, we can ask whether the “preferred phase” for each type of oculomotor event 

(fixations, saccades and blinks) are correlated. Here, a significant (positive) correlation 

would suggest that there is some reliable lag between the two events. One would expect an 

association between fixations and saccades (because they are related oculormotor events), 

but not necessarily an association between blinks and fixations or blinks and saccades – we 

ran this analysis to illustrate how CaTT can be used for correlational analyses. 

 

For each participant and each event type, we calculated the (circular) mean cardiac angle 

for that event (i.e. the average location of that event in the cardiac cycle), relative to the R 

wave peak. Then using the function catt_bootstrap_corr we ran a circular-circular 

correlation between each event type. There was an almost perfect correlation between 

preferred phases for fixations and saccades, rho(30) = .95, p < .001, consistent with those 

events occurring very close together in time. There was no significant correlation between 

saccades and blinks, rho(30) = .20, p = .265, nor between fixations and blinks, rho(30) = .12, 

p = .471.   
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Discussion 

In this manuscript we have presented the open-source Cardiac Timing Toolbox for MATLAB, 

which can preprocess raw ECG data, detect R wave peaks and the T wave, perform data 

quality checks, and run trial- and group-level statistical analyses to test for associative 

relationships between human behaviour and cardiac timing. We are not aware of 

comparable toolboxes, and hope that this software can facilitate statistically rigorous work on 

interoception even with minimal coding experience.  

We presented a reanalysis of freely available, previously published data (26), which showed 

that the toolbox is able to decisively and robustly detect associations between cardiac timing 

and behaviour, exploiting trial-level data rather than having to average within participants, 

which is problematic when the onsets are non-Von Mises (an issue which is of course not 

unique to the dataset we used). Furthermore, CaTT is able to test for relationships between 

behaviour and the cardiac cycle in ways that respect several important features of these 

unique datasets; namely, the broadly fixed nature of the Q-T interval; the potential for 

rhythmicity in both the cardiac and behavioural data, which would lead to artefactual non-

uniformity; and the skewed distributions of inter-beat intervals. The statistical functions 

implemented use permutation testing and correction for multiple comparisons exclusively, 

alongside minimal distributional assumptions, to maximise statistical rigour. In future 

versions of the toolbox we hope to expand the set of statistical tests to include more 

complex group-level models, e.g. circular analogues of ANOVA and Bayesian models. 

We hope that these analysis approaches, made straightforward to implement by our code, 

will enhance and facilitate research on relationships between cardiac activation and 

behaviour. However, we fully acknowledge that statistical analysis in this area is an ongoing 

project, and that further development is needed to map better behaviour to the physiological 

changes occurring over the cardiac cycle. One example here is that when the location of the 

T wave is inferred from participants’ heart rate, results are vulnerable to small changes in 

how the RT latency is set. Our implementation of T wave detection here overcomes this 

problem, however this is only possible to use when the researcher has access to the raw 

ECG data (and the signal to noise ratio is high enough to permit T wave detection). Another 

avenue for development is extending the toolbox to accommodate pulse-oximetry data. 

While one can import R wave peaks detected from pulse oximetry data into CaTT, we hope 

to implement pulse-oximetry R and T detection in CaTT’s preprocessing architecture to aid 

ease-of-use. Finally, we hope to incorporate a tool for performing both a priori power 

analysis (to determine the number of participants and trials required), and post-hoc power 

analysis (to estimate the power of a given test). 
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In CaTT, we have both implemented traditional circular analyses (e.g. the Rayleigh test), 

and also proposed our own approaches (e.g. for testing consistency without making 

distributional assumptions). We fully expect that there are superior approaches to those we 

have selected, and we hope that the pipeline we propose can act as a benchmark for future 

work. 
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