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Abstract

Schizophrenia (SZ) is a severe mental disorder characterized by failure of functional

integration (aka dysconnection) across the brain. Recent functional connectivity

(FC) studies have adopted functional parcellations to define subnetworks of large-

scale networks, and to characterize the (dys)connection between them, in normal and

clinical populations. While FC examines statistical dependencies between observa-

tions, model-based effective connectivity (EC) can disclose the causal influences that

underwrite the observed dependencies. In this study, we investigated resting state

EC within seven large-scale networks, in 66 SZ and 74 healthy subjects from a public

dataset. The results showed that a remarkable 33% of the effective connections

(among subnetworks) of the cognitive control network had been pathologically mod-

ulated in SZ. Further dysconnection was identified within the visual, default mode

and sensorimotor networks of SZ subjects, with 24%, 20%, and 11% aberrant cou-

plings. Overall, the proportion of discriminative connections was remarkably larger in

EC (24%) than FC (1%) analysis. Subsequently, to study the neural correlates of

impaired cognition in SZ, we conducted a canonical correlation analysis between the

EC parameters and the cognitive scores of the patients. As such, the self-inhibitions

of supplementary motor area and paracentral lobule (in the sensorimotor network)

and the excitatory connection from parahippocampal gyrus to inferior temporal gyrus

(in the cognitive control network) were significantly correlated with the social cogni-

tion, reasoning/problem solving and working memory capabilities of the patients.

Future research can investigate the potential of whole-brain EC as a biomarker for

diagnosis of brain disorders and for neuroimaging-based cognitive assessment.
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canonical correlation analysis, cognitive impairment, dynamic causal modeling, dysconnection
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1 | INTRODUCTION

Schizophrenia (SZ) is a debilitating brain disorder characterized by epi-

sodes of psychosis; common symptoms include delusions, hallucinations,

disorganized thinking, social withdrawal and apathy. SZ is also associ-

ated with a wide range of cognitive impairments, spanning from basic

perceptual processes to complex nonsocial and social cognitive func-

tions (Green et al., 2019). The dysconnection hypothesis (Friston,
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Brown, et al., 2016; Friston & Frith, 1995) tries to bridge the explanatory

gap between the symptoms and signs of SZ and the underlying neuronal

pathophysiology. To this end, it casts psychosis as “aberrant neuromo-

dulation of synaptic efficacy that mediates the (context-sensitive) influ-

ence of intrinsic and extrinsic (long-range) connectivity” (Friston, Brown,

et al., 2016).

Among different neuroimaging modalities, functional magnetic

resonance imaging (fMRI) predominates in system-level connectomic

studies. Particularly, the task-free version—known as resting state

fMRI—is better tolerated by clinical populations, and circumvents the

need for stringent subject compliance. Today, resting state fMRI fea-

tures are being rigorously examined to identify potential biomarkers

for diagnosis and prognosis of different brain disorders (Abraham

et al., 2017; Chen et al., 2022; Damoiseaux, 2012; Drysdale

et al., 2017; Franzmeier et al., 2017; Hohenfeld et al., 2018; Khalili-

Mahani et al., 2017; Pfannmöller & Lotze, 2019; Rashid &

Calhoun, 2020; Taylor et al., 2021; Viviano et al., 2018; Wang

et al., 2018).

Earlier connectomic studies have investigated the (dys)connection

between different nodes of a network, defined based on local anatomi-

cal demarcations (Bassett et al., 2008; Liang et al., 2006; Supekar

et al., 2008; Zhou et al., 2007). More recently, functional parcellation

of large-scale networks has gained interest (Allen et al., 2014; Glasser

et al., 2016; Gordon et al., 2014; Schaefer et al., 2018; Tian

et al., 2020), furnishing insight into the interaction of finer-scale func-

tional patterns as subcomponents of larger-scale distributed networks.

Empirical evidence from numerous functional connectivity

(FC) studies suggests that the interaction of constituent subnetworks

of intrinsic networks has been disrupted in SZ. Dysconnection of sub-

networks (within and across principal modes1/networks) has been

associated with the clinical and genomic characteristics of SZ patients

in several FC studies (Du et al., 2020; Miller et al., 2016; Rabany

et al., 2019; Rashid et al., 2019).

However, since FC is meant to quantify statistical dependencies

between the observations (i.e., neurophysiological recordings), it

does not reveal the directed effective/causal influences that under-

write these dependencies (Friston, 2011). The latter is referred to as

effective connectivity (EC). In EC analysis, a generative model

should be specified, which can predict the observations based on a

biophysically grounded model of the network dynamics, called a

dynamic causal model (DCM) (Friston et al., 2003). Given some

empirical data, the parameters of this model would be estimated

such that the model optimally explains the observations—in a proce-

dure known as model inversion (Friston et al., 2007; Zeidman

et al., 2022). The most established EC model, in the context of rest-

ing state fMRI, is called spectral DCM (Friston, Kahan, Biswal, &

Razi, 2014; Razi et al., 2015). The term spectral highlights the nature

of the observations (i.e., cross-spectral densities between signals)

that the model is designed to explain. Notably, cross-spectrum is the

Fourier counterpart of cross-covariance function, which (at zero

time-lag and normalized) is the most conventional FC measure. In

other words, spectral DCM is a generative model of how FC is real-

ized. Notably, the effort that goes into the specification of a genera-

tive model and performing model inversion in EC, results in the

separation of neuronal-level coupling from observation-level

dependencies.

We speculated that resting state EC among the subnetworks of

the principal intrinsic networks of the brain is disrupted in SZ. To test

this hypothesis, we identified 50 subnetworks of seven large-scale

networks of the brain, using constrained spatial independent compo-

nents analysis (CSICA), in 74 HC and 66 SZ subjects. The networks

comprised the: subcortical (SC), auditory (AUD), sensorimotor (SM),

visual (VIS), cognitive control (COG), default mode network (DMN),

and cerebellum (CB). Subject-level estimates of EC (using spectral

DCM) were analyzed, for each network separately, in a parametric

empirical Bayesian (PEB) scheme, to identify group differences that

characterize the conjectured dysconnection within the examined net-

works. Additionally, the same networks were analyzed using FC, for

comparison. We asked whether the two (FC and EC) approaches

reveal different aspects of network dysconnection in SZ. We also

asked which large-scale networks—and to what extent—are dyscon-

nected in this disorder.

In the second part of the research, we investigated the neural cor-

relates of cognitive impairment in SZ. Schizophrenia has been associ-

ated with a wide range of cognitive deficits including aberrations in

speed of processing, attention, working memory, verbal and visual

learning, problem solving and social cognition (Green et al., 2019).

Cognitive impairment is a core feature of SZ, and the prime driver of

severe disabilities in functional outcomes (including occupational,

social, and economic performance) of the patients (Green, 2006;

Green et al., 2000; Lepage et al., 2014; Tripathi et al., 2018). These

impairments cannot be explained by the positive symptoms of the dis-

order or the medication effects (Green et al., 2019), and they are

largely unresponsive to antipsychotic treatment (Tripathi et al., 2018).

Nevertheless, the neural basis of cognitive impairment in SZ is still

poorly understood (Alkan et al., 2021).

In order to establish functional validity for the EC estimates,

and to elucidate the neural associates of cognitive impairment in SZ,

we conducted a canonical correlation analysis (CCA) between the

EC parameters and the cognitive scores of the patients (from

MCCB2 tests). To achieve a stable CCA model, we observed the

practical recommendations (about sufficient sample to feature ratio)

from recent technical reports (Helmer et al., 2020; Yang et al., 2021)

using appropriate feature selection procedures. From this analysis,

we asked which effective connections and cognitive traits are

mostly correlated in the patients, and whether such a linear associa-

tion holds some degree of generalizability beyond the current

sample.

1A “mode” is a distributed functional pattern or an intrinsic network, such as the default

mode. It is contrasted against a “node” which is a local anatomical region, in the terminology

of Friston et al. (2014b).

2The Measurement and Treatment Research to Improve Cognition in Schizophrenia

(MATRICS) Consensus Cognitive Battery (MCCB) tests (Nuechterlein et al. (2008); Kern et al.

(2011); August et al. (2012)).

2 ZARGHAMI ET AL.
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2 | MATERIALS AND METHODS

2.1 | Dataset and preprocessing

We analyzed the publicly available schizophrenia dataset of the Cen-

ter for Biomedical Research Excellence (COBRE)3 (Çetin et al., 2014),

which includes 72 SZ patients and 76 healthy control (HC) subjects

(18–65 years old). The patients had been diagnosed using the Struc-

tured Clinical Interview for DSM-IV4 Axis I Disorders (SCID-I) (First

et al., 2002), and were receiving antipsychotic medications. Five-

minute resting state scans were acquired on a 3-Tesla Siemens Tim

Trio scanner, during which subjects were instructed to keep their eyes

open and fixate on a central cross. A total of 150 (T2*-weighted) func-

tional volumes were collected using a gradient-echo EPI sequence,

with the following settings: TR = 2 s, TE = 29 ms, flip angle = 75�,

33 axial slices, ascending acquisition, matrix size = 64 � 64, voxel size

= 3.75 � 3.75 � 4.55 mm, field of view = 240 mm. A high-resolution

T1-weighted structural image had also been collected for each

subject.

Standard preprocessing of functional data (before ICA analysis)

was performed using the SPM12 software.5 In brief, the first 5 vol-

umes were discarded to allow for T1 equilibration; the remaining

images were realigned to the first volume (for motion correction),

slice-timing corrected, co-registered to the anatomical image of the

corresponding subject, warped to the standard Montreal Neurologi-

cal Institute (MNI) template (Collins et al., 1998), resampled to 3 mm3

isotropic voxels, and smoothed with a Gaussian kernel (FWHM

= 6mm). The preprocessing that precedes ICA is somewhat minimal

(Allen et al., 2014), because ICA can separate physiological, head

motion and imaging artifacts—from neurally relevant components—

based on their spatial, temporal and spectral properties (Allen

et al., 2014; Griffanti et al., 2017; Salimi-Khorshidi et al., 2014). And,

residual motion is mitigated during postprocessing (see Section 2.3)

(Allen et al., 2014).

Two disenrolled subjects, one subject with incomplete functional

session and five subjects with excessive head motion (translation

>4 mm or rotation >4 degrees) were excluded. For the remaining sub-

jects, the mean framewise displacement (FD) was reasonably low

(0:41�0:22 mm) (Power et al., 2012). The demographics of the

retained 140 subjects (74 HC/66 SZ) have been summarized in

Table 1. There were no significant differences in age, gender propor-

tion, maximum head translation and rotation between the two groups

(uncorrected p-values = .12, .26, .13, .36, respectively). The patients

were receiving antipsychotic medications, which were converted to

their chlorpromazine (CPZ) equivalents.

2.2 | Cognitive profile

The MATRICS6 consensus cognitive battery (MCCB) tests (August

et al., 2012; Kern et al., 2011; Nuechterlein et al., 2008) been con-

ducted to estimate the cognitive performance of the participants in

seven domains: speed of processing, attention/vigilance, working

memory, verbal learning, visual learning, reasoning/problem solving,

and social cognition. The composite MCCB score had been calculated

as the standardized sum of all seven domains, based upon published

normative data (Kern et al., 2011). Out of the 140 subjects included in

our analysis, MCCB T-scores were available for a total of 117 partici-

pants (59 HC, 58 SZ). We compared the performance of HC and SZ

subjects in each domain and in their composite scores, using two-

sample permutation-based t-tests with maxT correction for multiple

comparisons (Westfall & Young, 1993).

2.3 | Network identification

We conducted a refined functional parcellation of the brain, per sub-

ject, using (spatially) constrained spatial ICA (CSICA) (Lin et al., 2010),

as implemented in the Group ICA of fMRI Toolbox (GIFT7). The spatial

constraints were imposed using aggregate functional networks from a

previous large group study by (Allen et al., 2014). Notably, CSICA

maximizes the independence of spatial components (i.e., networks) for

each individual, while acknowledging spatial variability at the subject

level and preserving network correspondence at the group level (Lin

et al., 2010). As spatial priors, we used the 50 aggregate functional

networks identified in Allen et al. (2014) based on a refined group spa-

tial ICA analysis on 405 subjects. The artefactual components (includ-

ing physiological, head motion and imaging artifact components) were

identified and eliminated in Allen et al. (2014), leaving 50 reproducible

TABLE 1 Demographics of the participants.

Number Female/male Age

Max head

translation (mm)

Max head rotation

(degrees)

CPZ equivalent

(mg/day)

Healthy Controls 74 23=51 35:8�11:6 0:94�0:65 0:83�0:53 -

Schizophrenia

Patients

66 13=53 38:3�14:2 1:12�0:76 0:93�0:73 363:1�305:0

Abbreviation: CPZ, chlorpromazine.

3http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html
4Diagnostic and Statistical Manual of Mental Disorder, 4th edition (DSM-IV).
5https://www.fil.ion.ucl.ac.uk/spm/software/spm12/

6The Measurement and Treatment Research to Improve Cognition in Schizophrenia

(MATRICS) initiative was designed to support the development of psychopharmacological

agents to improve cognition in schizophrenia.
7http://trendscenter.org/software/gift/
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functional subnetworks.8 These 50 functional parcels constituted sub-

components of seven large-scale resting state networks; namely, the

subcortical (SC), auditory (AUD), sensorimotor (SM), visual (VIS), cog-

nitive control (COG), default mode network (DMN) and the cerebel-

lum (CB) (Figure 1b). The list of subnetworks and their abbreviations

are available in Table 2.

The time courses corresponding to subject-specific ICs

(i.e., subnetworks) were detrended and orthogonalized with respect to

the subject's estimated motion parameters and their first derivatives.

The series were further despiked using AFNI's 3dDespike algorithm,

which detects outlier time points and replaces them with spline inter-

polations (Allen et al., 2014). The subject-specific subnetworks and

their postprocessed9 time courses were subsequently analyzed using

functional and effective connectivity methods.

F IGURE 1 (a) Flowchart of
analysis. (b) The 50 subnetworks
used as spatial priors belong to
seven large-scale resting state
networks. The number of
constituent subnetworks of each
network has been mentioned in
parentheses. Subject-specific
versions of these subnetworks

and their corresponding
timeseries were identified using
constrained spatial independent
components analysis, and
adopted as regions of interest
(ROIs) and ROI timeseries in
functional and effective
connectivity analyses. Cognitive
relevance of the EC parameters
was assessed using canonical
correlation analysis. The
subnetwork abbreviations are
listed in Table 2.

8The peak coordinates of these subnetworks (herein used as spatial priors) are listed in

Table S1 of Allen et al. (2014).

9By virtue of the linear generative model of ICA (X = A � S) regression of the IC timeseries

(A) on potential confounds is largely similar to regressing out the same confounds from the

data matrix (X); as such, the spatial composition of the ICs (S) and their association with the

timeseries are preserved.

4 ZARGHAMI ET AL.
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TABLE 2 Names and abbreviations of 50 aggregate subnetworks from Allen et al. (2014) used herein as spatial priors/templates to derive
subject-specific subnetworks using constrained spatial independent components analysis.

Network Subnetwork abbreviation Subnetwork full name

Subcortical (SC) Putamen1 Putamen 1

Putamen2 Putamen 2

Thalamus Thalamus

Caudate Caudate

Auditory (AUD) STG1 Superior temporal gyrus 1

STG2 Superior temporal gyrus 2

Sensorimotor (SM) (aka somatomotor) PreCG Precentral gyrus

SPL Superior parietal lobule

R-PoCG Right postcentral gyrus

L-PoCG Left postcentral gyrus

ParaCL1 Paracentral lobule 1

ParaCL2 Paracentral lobule 2

PoCG Postcentral gyrus

SMA Supplementary motor area

Visual (VIS) Cuneus Cuneus

FFG Fusiform gyrus

CalcarineG Calcarine gyrus

Cuneus Cuneus

SOG Superior occipital gyrus

MTG Middle temporal gyrus

LingualG Lingual gyrus

MOG Middle occipital gyrus

R-MOG Right middle occipital gyrus

L-MOG Left middle occipital gyrus

Cognitive control (COG) aInsula Anterior insula

RSN-SMA Supplementary motor area

MiFG1 Middle frontal gyrus 1

MiFG2 Middle frontal gyrus 2

PreCG Precentral gyrus

IPL Inferior parietal lobule

R.STG + IFG Right superior temporal gyrus + Inferior frontal gyrus

R-IPL Right inferior parietal lobule

pInsula Posterior insula

L-IPL Left right inferior parietal lobule

PHG Parahippocampal gyrus

IFG Inferior frontal gyrus

MCC Middle cingulate cortex

ITG Inferior temporal gyrus

Default mode network (DMN) Precuneus1 Precuneus 1

ACC Anterior cingulate cortex

PCC1 Posterior cingulate cortex 1

PCC2 Posterior cingulate cortex 2

Precuneus2 Precuneus 2

MiFG+SFG Middle frontal gyrus + Superior frontal gyrus

R-AG Right angular gyrus

L-AG Left angular gyrus

L.MTG + IFG Left middle temporal gyrus + Inferior frontal gyrus

(Continues)
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2.4 | Functional connectivity analysis

Functional connectivity was computed as the sample covariance

matrix of the subnetwork time series for each individual. These FC

matrices were then averaged over the subjects of each group

(Figure 3a). To estimate group differences, we set up a multiple linear

regression model for each FC entry as follows: FC (per subject) was

the dependent variable; diagnosis was the regressor of interest; age,

gender and medication dosage were covariates (Allen et al., 2011;

Damaraju et al., 2014). As such, p-values for the significance of diag-

nosis coefficients and their corresponding t-statistics were recorded.

The p-values were adjusted for multiple comparisons based on the

false discovery rate (FDR) approach (Benjamini & Hochberg, 1995).

The group difference matrices in Figure 3b,c reflect

�sign t� statisticð Þ� log10qFDR values, for entries with qFDR <0:05.

2.5 | Effective connectivity analysis

Effective connectivity analysis for resting state fMRI was conducted

using spectral DCM (Friston, Kahan, Biswal, & Razi, 2014). Group

effects were modeled using a hierarchical Bayesian framework known

as parametric empirical Bayes (PEB) (Friston et al., 2015; Friston,

Litvak, et al., 2016), as described later.

2.5.1 | Spectral dynamic causal model

Spectral DCM was used to estimate the effective connections within

each of the seven large-scale resting state networks. Briefly, spectral

DCM specifies how complex cross-spectra of the BOLD signals are

generated from regional hemodynamic responses to the neuronal

dynamics of a (biophysically plausible and endogenously driven) neural

network. Under local linearity assumptions on the dynamical system,

together with parametrized power-law distributions for the noise

cross-spectra, the model admits a deterministic form that can be effi-

ciently inverted in spectral domain (Friston, Kahan, Biswal, &

Razi, 2014; Razi et al., 2015).

The generative model of spectral DCM was then fitted to the

cross-spectral densities estimated from empirical data using multivari-

ate autoregressive models (as implemented in spm_dcm_fMRI_csd in

SPM12). In this routine, the optimal10 model parameters are estimated

by maximizing a variational lower bound, called free energy (F),11 on

the log Bayesian model evidence. Thereafter, maximized free energy

is used for model comparison, and the parameter posterior distribu-

tions are used for inference about the effective connections. Notably,

free energy offers a trade-off between the model's accuracy and com-

plexity; that is, F = accuracy�complexity, with the latter term protect-

ing against overfitting (Friston et al., 2007; Zeidman et al., 2022).

Seven spDCMs were set up for each subject to model the seven

large-scale networks. An additional spDCM was set up, per subject, to

coarsely model the between-network couplings (Tsvetanov

et al., 2016), using the first eigen-series from the seven large-scale

networks. For each DCM, a fully connected network structure was ini-

tially assumed for each subject, per network. This assumption was

later refined iteratively by incorporating group information

(as empirical priors) on the subject-level connections. These empirical

priors were computed in a Bayesian framework that facilitates group

inference for dynamic causal models (Friston et al., 2015; Friston,

Litvak, et al., 2016; Zeidman et al., 2019)—as explained next.

2.5.2 | Group analysis using parametric empirical
Bayes

PEB is a hierarchical Bayesian model, particularly useful for estimating

group effects in DCM studies. Operationally, PEB is a Bayesian gen-

eral linear model (GLM) that partitions between-subject variability into

designed group effects (such as group mean and difference) and addi-

tive random effects. It can also be regarded as a generalization to the

summary statistic random effects approach, with the advantage that

PEB takes the full posterior densities of the first level (i.e., DCM)

parameters to the second (between-subject) level. That is, PEB

accounts for the posterior uncertainty of the parameters in addition

to their expected (point estimate) values. Mathematically, the PEB

model is specified as:

Third level : θ 2ð Þ ¼ ηþϵ 3ð Þ ð1Þ

Second level : θ 1ð Þ ¼Xθ 2ð Þ þϵ 2ð Þ ð2Þ

First level :bg ið Þ
y θ 1ð Þ

i

� �
¼ g ið Þ

y,model θ 1ð Þ
i

� �
þϵ 1ð Þ

i ð3Þ

TABLE 2 (Continued)

Network Subnetwork abbreviation Subnetwork full name

Cerebellum (CB) L-CB Left cerebellum

R-CB Right cerebellum

CB Cerebellum

Note: Each template is a mask containing one or more (typically bilateral) clusters within the brain. The peak coordinates of these templates are available in

Table S1 and Figure S2 of Allen et al. (2014). The group maps have been publicly shared by the authors at https://trendscenter.org/data.

10Optimal parameters offer the most accurate and least complex explanation for the data. 11Also known as evidence lower bound (ELBO) in machine learning.
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In Equation (3), the observed (cross-spectral) data features from

subject i are modeled as having been generated by a spectral DCM

with parameters θ 1ð Þ
i and sampling error ϵ 1ð Þ

i . DCM parameters θ 1ð Þ are

themselves described by a GLM in Equation (2), with design matrix X,

group parameters θ 2ð Þ and between-subject variability ϵ 2ð Þ. The col-

umns of X encode the hypothesized sources of intersubject variability

(e.g., group mean and difference) while ϵ 2ð Þ accounts for the random

effects. Hence, each corresponding entry in θ 2ð Þ is the group-level

effect of one covariate on one connection. These group effects, in

turn, have priors specified at the third level, as noted in Equation (1).

The parameters and noise components are assumed to be normally

distributed, and estimated through an iterative variational Laplace

scheme (Friston et al., 2007; Zeidman et al., 2022).

Specifically, the second level (group) parameters are estimated by

assimilating the posteriors of the first level parameters. These group

parameters then serve as empirical priors for estimation at the first

level. And this iterative scheme continues until convergence. Notably,

the empirical priors are typical group values that guide subject-level

F IGURE 2 Behavioral (cognitive) results. (a) Statistical comparison of cognitive performance in HC and SZ subjects, as measured by the seven
tests of the MATRICS consensus cognitive battery (MCCB) and the composite score. The red box plots show 95% confidence intervals around
the mean of the scores, while blue/gray boxes mark one SD of the scores for HC/SZ subjects. The standardized MCCB scores are scattered over
the boxes. Asterisks indicate statistical significance based on two-sample permutation t-tests with maxT correction for multiple comparisons.
*p < .05; **p < .01; ***p < .001. (b) Correlation of MCCB scores between different domains, across all subjects.
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F IGURE 3 Functional connectivity analysis. (a) Average FC pattern for the HC and SZ group. Diagonal (unity) entries have been removed for
better visualization. (b) Difference in FC (SZ � HC), adjusted for age and gender. The colorbar denotes �sign(t) � log(qFDR), where the t-statistic
is computed from the estimated coefficient in a multiple linear regression model that includes one FC entry (across subjects) as the dependent
variable, diagnosis label as the independent variable, plus age and gender as covariates. p values corresponding to the coefficients' t-stats have
been corrected using the FDR method, and the entries corresponding to qFDR < 0.05 are marked in color. The 50 sublabels reflect the
constituent subnetworks of seven large-scale networks. (c) Difference in FC (SZ � HC), adjusted for (CPZ equivalent of) medication dosage, in
addition to age and gender. Network and subnetwork abbreviations are available in Table 2.

F IGURE 4 Representative spectral dynamic causal model results for a single subject. (a) The absolute values of the predicted and observed
power spectral densities of the eight subnetworks in the SM network. (b) Spatial maps of the SM subnetworks. (c) The posterior expectations
(colored bars) and uncertainties (95% credible intervals; black lines) of the effective connections between the SM subnetworks. The x-labels
denote the receiving ends of directed connections, while the sources of influence are distinguished by the color codes. The extrinsic and intrinsic
connections are in units of Hz and log(Hz), respectively. Subnetwork abbreviations are listed in Table 2.
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inferences and circumvent local maxima problems (Friston

et al., 2015; Zeidman et al., 2019). Moreover, the hierarchical nature

of PEB along with the precise null priors specified for the group

effects (Zeidman et al., 2019) automatically (and stringently) adjusts

for multiple comparisons (Gelman et al., 2012; Gelman &

Tuerlinckx, 2000; Neath et al., 2018).

In summary, first we used spectral DCM to infer effective connec-

tivity for each subject. Then the hierarchical model of PEB was used to

integrate subject-level results for group analysis. The design matrix of

PEB (X in Equation 2) comprised of five columns/regressors: a constant

column (of 1's) to capture the commonalities across all participants; a

second column to encode group differences between SZ and HC sub-

jects (encoded with +1's and �1's); and three other columns contain-

ing age, gender and (CPZ equivalent of) antipsychotic medication

dosage, as covariates. In a supplementary analysis, the group (mean

and difference) effects were quantified without adjusting for the medi-

cation dosage (Figure S2). Moreover, two other PEB models were set

up to capture group-specific average patterns of EC (Figure S3).

In each GLM, all DCM parameters were initially allowed to con-

tribute to all group effects. This assumption was refined post hoc

using exploratory Bayesian model reduction (BMR) on the group-level

posteriors. That is, parameters that did not contribute to the model

evidence were recursively pruned from the parent (full) model to gen-

erate reduced models. Usually, no single reduced model is the overall

winner with probability greater than 0.95. Hence, Bayesian model

averaging (BMA) was used to compute the weighted average of each

parameter across the top 256 reduced models, where the weights cor-

responded to the posterior probabilities of these models (Hoeting

et al., 1999; Penny et al., 2010). Hence, we report the posterior esti-

mates of the connectivity parameters that optimally explain the group

mean and difference effects across HC and SZ subjects.

2.5.3 | Visualization of network dysconnection

Following PEB analysis, we constructed a binary n�n matrix for each

network (containing n subnetworks), where 1's denoted the connec-

tions contributing to group difference effects. Then, the nodal degree

for each subnetwork was computed as the sum of the corresponding

row and column entries in this binary matrix. These degrees were nor-

malized (i.e., divided) by the maximum degree in an n-node directed

network (i.e., 2n�1). For visualization purposes, the normalized

degrees were set as the radii of spheres centered on the peak coordi-

nates of the subnetworks in MNI space. The results were illustrated

using the BrainNet Viewer toolbox (Xia et al., 2013). Hence, a larger

sphere marks further dysconnection of a subnetwork within its perti-

nent network.

2.6 | Cognitive relevance of effective connectivity
in SZ

After DCM analysis, we asked whether the EC profile of these seven

large-scale networks could explain the cognitive performance of the

SZ patients. Therefore, we used canonical correlation analysis (CCA)

(Hotelling, 1936) to identify linear relationships between the strengths

of EC parameters (X) and the MCCB scores of the patients (Y), after

adjusting for age, gender and medication dosage (as CPZ equivalents).

To decrease overfitting, we used an ensemble feature selection

method (based on forward selection and backward elimination) to

restrict the number of variables compared to the sample size. In the

following, we outline the details of this procedure and the fundaments

of the CCA model.

2.6.1 | Canonical correlation analysis

CCA is a multivariate statistical method that identifies the sources of

common variation in two (usually high-dimensional) sets of variables,

such that the identified patterns offer a compact description of many-

to-many relations. Hence, CCA “opens interpretational opportunities

that go beyond techniques that map one-to-one relations

(e.g., Pearson's correlation) or many-to-one relationships (e.g., ordinary

multiple regression)” (Wang et al., 2020). Especially, in the era of big

data neuroscience, CCA is being efficiently used to chart the links

between brain, behavior, cognition, genes and disease (Calhoun &

Sui, 2016; Correa et al., 2010; Mihalik et al., 2022; Mohammadi-Nejad

et al., 2017; Smith et al., 2015; Wang et al., 2020; Xia et al., 2018;

Zhuang et al., 2020).

Mathematically, CCA is designed to maximize the correlation

between linear combinations of two datasets X and Y:

max
a1,b1

r1 ¼ corr a1X,b1Yð Þ. Here, Xs�q contains the q connectivity param-

eters for s subjects, and Ys�p holds their MCCB scores in p domains.12

As such, r1 is called the first canonical correlation; a1 and b1 are the

first canonical weights; and u1¼ a1X,v1 ¼ b1Yð Þ constitute the first pair

of canonical variates. There could be additional canonical variates

ui,við Þ corresponding to r2, r3,…, rmin q,pð Þ. To test for the number of sig-

nificant canonical correlations, Wilks' Λ-statistic is usually used

(Rencher, 2002):

Λ1 ¼ jSj
jSxxjjSyyj ¼

Ymin q,pð Þ

i¼1

1� rið Þ2 ð4Þ

TABLE 3 Model fitting for each network (mean ± SD of R2 across subjects).

Network SC AUD SM VIS COG DMN CB

R2 (mean ± SD) (%) 92:8�2:4 92:0�5:8 92:7�2:2 89:3�2:4 79:8�2:9 90:0�2:1 94:3�2:9

Abbreviations: AUD, auditory; CB, cerebellum; COG, cognitive control; DMN, default mode network; SC, subcortical; SM, sensorimotor; VIS, visual.

12The variables (i.e., the columns of X and Y) are z-scored to get standardized canonical

weights (a and b).
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where S¼ Syy Syx
Sxy Sxx

� �
, S::

0s are sample covariance matrices, and Λ1 is

distributed as Λq,p,s�1�p. For Λ1 ≤Λα,
13 one would reject the null

hypothesis of no linear relationship between the x0s and the y0s

(i.e., H0 :Σyx ¼0Þ. This is more evident from the second equality in

Equation (4), which shows that if one or more of the r2i
0
s is large, then

Λ1 will be small.14 In practice, F and χ2-approximations of Wilks' Λ are

commonly used for statistical inference (Bartlett, 1947; Rao, 1952).

F IGURE 5 Group differences (SZ � HC) in effective connectivity. Each panel contains the posterior expectations (colored bars) and 95%
credible intervals (black lines) of the effective connections within the large-scale networks and between them. The x-labels denote the target
regions, while the source regions are distinguished by color codes. The extrinsic and intrinsic connections are in units of Hz and log(Hz),
respectively. Self-connections are inhibitory, and can be converted to units of Hz using �0.5 � exp(Aii). Subnetwork abbreviations are listed in
Table 2. Note that several networks (including the subcortical, auditory and cerebellar networks) contain connections with nontrivial expected
posteriors, which are nonetheless insignificant by virtue of their high posterior uncertainties (i.e., their 95% credible intervals cross zero). In
Figure S1, the expected posteriors of significant group (difference and mean) effects are illustrated in matrix format.

13Λα denotes the critical value of Wilks' Λ corresponding to α¼ 0:05.

14Λ2, Λ3 and so on are similarly defined to test the significance of r2 and succeeding ri 0s after
the first (Rencher (2002)).
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F IGURE 5 (Continued)
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However, since parametric tests could be sensitive to departures from

normality, or yield too optimistic p-values (when feature selection is

conducted in the same dataset upon which CCA is performed),

permutation-based inference for CCA has become common as well

(Dinga et al., 2019; Winkler et al., 2020).

Based on previous rigorous studies (Helmer et al., 2020; Leach &

Henson, 2014; Yang et al., 2021), constructing reliable CCA models

requires that the number of samples be at least 9–10 times the num-

ber of features. In the current dataset, cognitive scores were available

for 58 (out of 66) SZ patients, whereas there were 470 EC features.

Hence, a suitable feature selection procedure was required to restrict

the number of variables entering the predictive model. Subset selec-

tion in CCA can be performed by the same methods used in

multivariate regression (Rencher, 2002). Hence, we used the forward

selection and backward elimination procedures. Briefly, first a useful

subset of the EC parameters (x0s) was identified using forward selec-

tion, to linearly predict the MCCB scores (y0s). Then backward elimina-

tion was applied to the y0s, pruning those that did not contribute

significantly to predicting the selected x0s, in a linear model. The math-

ematical details are briefly revised next.

2.6.2 | Feature selection

We used forward selection on the EC parameters followed by back-

ward elimination on the MCCB scores (Rencher, 2002), which we

F IGURE 6 Network dysconnection. (a) The spheres are centered on the peak coordinates of the subnetworks in MNI space. The colors
encode different networks. Each sphere radius is proportional to the normalized degree of the corresponding subnetwork, where the normalized
degree is computed from the binary matrix of significantly altered connections (SZ � HC) from group EC analysis. The values of the normalized

degrees are reported in panel (b). In short, the size of each sphere reflects the extent of abnormal coupling of that subnetwork in SZ, within its
associated network.
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collectively call feature selection15 here. The forward selection

method works as follows: At the first step, for each xj and (all) the y0s,

a dedicated CCA model is constructed. After calculating Λ xj
� �

for each

j (from Equation 4), the variable with minimum Λ xj
� �

is selected and

denoted as x1; this is the variable that best predicts the y0s just by

itself. At the second step, we seek the variable yielding the smallest

partial Λ—adjusted for the first chosen variable—given by:

Λ xjjx1
� �¼Λ x1,xj

� �
Λ x1ð Þ ð5Þ

which is calculated for each xj ≠ x1. As such, the variable that mini-

mizes Λ xjjx1
� �

is selected and denoted as x2. Similarly, after m vari-

ables have been selected, partial Λ assumes the following form for the

next step:

Λ xjjx1,x2,…,xm
� �¼Λ x1,x2,…,xm,xj

� �
Λ x1,x2,…,xmð Þ ¼Λf

Λr
ð6Þ

At this step, one would choose the xj that minimizes partial Λ in

Equation (6), which is distributed as Λp,1,s�m�1 (convertible to

Fp,s�m�p). Notably, the second equality in Equation (6) reinforces the

fact that partial Λ is the ratio of Λ-statistics between the full(er) CCA

model (containing xj) and the reduced CCA model (missing xjÞ,
denoted by Λf and Λr , respectively. This selection procedure con-

tinues until the step at which the minimum partial Λ exceeds a prede-

termined threshold, or equivalently the associated partial F falls below

a preselected value.16 In practice, to the keep the sample to feature

ratio above nine (Helmer et al., 2020; Leach & Henson, 2014; Yang

et al., 2021), the feature selection was stopped earlier.

As for the backward elimination on the MCCB scores (y0s), we

started with a full model (containing all the y0s, and the x-subset from

forward selection) and deleted redundant y0s based on partial Λ. That

is, at the first step we removed the yjthat maximized

F IGURE 7 Cognitive
correlates of effective
connectivity, identified using
canonical correlation analysis.
(a) Standardized canonical
weights of the selected EC
features (left) and MCCB
domains (right). (b) The first pair
of canonical variates/scores

plotted against each other. The
first canonical correlation is
significant (r = 0.79, p < .001).
(c) Comparison of the original and
cross-validated canonical
correlations, with the latter
reflecting potential
generalizability of the model. ITG,
Inferior temporal gyrus; ParaCL1,
paracentral lobule 1; PHG,
parahippocampal gyrus; SMA,
supplementary motor area.

15Alternatively, feature combination can be used to restrict the number of variables prior to

CCA, using, for example, singular value decomposition (Friston et al. (1995)). However, the

resulting synthetic features would be less functionally interpretable than the original features

(i.e., the effective connections), especially when discussing their contributions toward the

final CCA model.

16Alternatively, the stopping rule can be cast in terms of the p-value of the partial Λ or F

exceeding a predetermined value—e.g., the conventional α¼ 0:05.
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Λ yjjy1,y2,yj�1,yjþ1,…,yp
� �¼ Λ y1,…,yp

� �
Λ y1,…,yj�1,yjþ1,yp
� �¼Λf

Λr
ð7Þ

which is distributed as Λ1,q0 ,s�p�q0 (convertible to Fq0 ,s�p�q0 ), with q0

denoting the cardinality of the x-subset. This single variable removal

procedure continued with the remining y variables, until a step at

which the largest partial Λ became significant (at α¼0:05), indicating

that the corresponding y was not redundant in the presence of its fel-

lows. So, through feature selection, we ended up with a small subset

of relevant x0s and y0s for the CCA model.

In practice, to render the model resistant to small changes in

the data, we implemented an ensemble version of the above feature

selection procedure (de Bin et al., 2016; Saeys et al., 2008). That is,

we used bootstrap aggregating (aka bagging) (Breiman, 1996; Saeys

et al., 2008). Specifically, 200 bootstrap resamples were generated

and the feature selection procedure was applied to each resample,

selecting a maximum of 5% of the variables at a time. The outputs

of different feature selectors were then aggregated by computing

the frequency of inclusion for each feature, as the proportion of

times it had been selected by different feature selectors, which can

range from 0 (never selected) to 1 (always selected) (de Bin

et al., 2016). The top few EC parameters and MCCB scores entered

the final CCA model to compute the canonical correlations, weights

and variates.

2.6.3 | Generalizability of the model

We assessed the generalizability of the linear (CCA) model using k-

fold cross-validation (k = 5). That is, the samples (i.e., subjects) were

randomly partitioned into k subsets. The CCA model was constructed

based on k � 1 training folds, using the feature selection procedure

outlined above. The resulting canonical weights were then used to

compute canonical variates and correlations for the remaining (test)

fold. In a circular fashion, each of the k folds served as the test fold

exactly once. The whole cross-validation procedure was repeated

100 times, each time with a new random partitioning. As such, the

out-of-sample canonical correlations were computed to test the gen-

eralizability of the linear brain-behavior model.

3 | RESULTS

3.1 | Impaired cognition in SZ

Statistical tests revealed that SZ patients have impaired cognitive per-

formance, compared to HCs, in all seven domains of the MCCB tests

and in composite scores (adjusted p-values were <.001, .027, .043,

<.001, .034, <.001, .0362 and <.001, respectively). Figure 2a summa-

rizes these results. The box-plots show 95% confidence intervals

around the mean of the test scores in red, and one standard deviation

(SD) of the scores in blue/gray for HC/SZ subjects. The scores are

scattered over the boxes. Specifically, the mean�SD of the composite

score for SZ patients was 33:4�12:6, whereas HC subjects achieved

50:1�8:2. The correlation of the subjects' scores in different domains

is illustrated in Figure 2b. It is apparent that, speed of processing,

attention/vigilance, working memory, and reasoning/problem solving

were more correlated with each other, while social cognition was the

least correlated with the other (nonsocial) domains.

3.2 | Limited FC changes in SZ

Figure 3a illustrates the FC patterns averaged over subjects of each

group. These average patterns show the expected modular organiza-

tion within sensory systems and default mode components, as well as

anticorrelation between them (Chang & Glover, 2010; Fox

et al., 2005; Shirer et al., 2012). Figure 3b depicts group differences in

FC (SZ-HC), adjusted for age and gender. The colored entries reflect

�sign t� statisticð Þ� log qFDRð Þ for the significant differences

(qFDR <0:05). From the 1225 unique FC entries, 11% were significantly

different between the two groups after accounting for age and gen-

der. As such, HCs had stronger correlation in the sensory regions and

pronounced subcortical-sensory anticorrelation (than SZ patients), as

reported in Damaraju et al. (2014). However, when the regression

model was adjusted for the antipsychotic medication dosage—besides

age and gender—the between-group FC effects diminished further. In

this case, only 18 connections (i.e., about 1% of all the functional con-

nections) showed discriminative effects (Figure 3c). The ratio was the

same when considering only within-network functional connections

(3=210≈0:01). The Bayesian dual of this FC analysis resulted in a sim-

ilar proportion of significant connections (see Figure S4).

3.3 | Numerous EC alterations in SZ

Spectral DCM was used to estimate EC between the subnetworks of

each large-scale network, per subject. Figure 4 contains representa-

tive DCM results. In Figure 4a, the predicted and estimated

(i.e., observed) power spectral densities are plotted for the constituent

subnetworks of the SM network, for an exemplar subject. The subnet-

works per se are visualized in Figure 4b. The effective connections

that can best predict the subnetwork spectral densities for this subject

are demonstrated in Figure 4c. This bar plot shows the posterior

expectations of the EC parameters and their estimated uncertainties

(as 95% credible intervals). Positive and negative connections denote

excitatory and inhibitory effects respectively; except for self-

connections (Aii), which are by design inhibitory, and encoded as log

scaling parameters. That is, self-connections can be converted to units

of Hz using �0:5� exp Aiið Þ, where �0.5 Hz is the prior expected

value for the self-connections. This negativity constraint ensures self-

inhibition, hence stability of the dynamical system model.

To assess the model fitting, the coefficient of determination (R2)

was computed, which reflects the proportion of variance in the

14 ZARGHAMI ET AL.
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observations (herein cross-spectra) that is explained/predicted by the

model.17 The closer the value of R2 to 1, the better the model fits the

data. These values were computed for each network and subject, and

averaged over subjects to quantify the goodness of fit for different

networks. The results are summarized in Table 3, where R2 is

expressed in percentage. On average, the models explained 90%±3%

of the data, across networks and subjects.

Following the first-level analysis, the posterior densities of

subject-specific EC parameters were assimilated in a Bayesian GLM

(i.e., PEB model) to estimate the group average of each connection

strength, and the effect of diagnosis on each connection (i.e., group

differences), having accounted for the effect of age, gender and medi-

cation dosage. Group differences are illustrated in Figure 5 within

each network, and between networks. The plots in Figure 5 follow the

same visualization convention as the single-subject result in Figure 4,

except that here the connection strengths pertain to group (differ-

ence) effects. Furthermore, both group mean and differences are suc-

cinctly visualized as matrices in Figure S1. Group-specific averages

have also been illustrated in Figure S3.

To summarize the EC group difference results: the COG network

shows the highest ratio of altered connections (33%), followed by the

VIS (24%), DMN (20%), and SM (11%) networks. In the AUD network,

the self-connection of (bilateral) STG2 was less inhibitory in SZ. No

EC alteration was detected within the SC and CB networks, having

accounted for the effect of age, gender and medication dosage.

Within the COG network, 64% of the altered connections were more

positive/less negative in SZ. A similar trend was seen in the VIS net-

work (59% more positive connectivity changes in SZ). However, the

opposite ratio held in the SM and DMN (57% and 69% of their altered

connections were more negative in SZ, respectively). This diverse pat-

tern of changes within multiple large-scale networks speaks to the

complexity of the connectomic disorganization in schizophrenia.

Moreover, the coarse between-network analysis (Figure 5, last panel)

showed that the SC, AUD and DMN networks were more self-

inhibited in SZ patients, while the AUD network exerted a more excit-

atory effect on the VIS network in the patient group. Overall, 24% of

the directed influences showed SZ-related changes when analyzed

with EC, whereas this ratio was 1% for the FC analysis, when the

medication effect was accounted for. We shall elaborate on the impli-

cations of these findings in Section 4.

3.4 | Cognitive control network is the most
dysconnected in SZ

Network dysconnection in SZ was further elucidated using graph the-

oretical methods. The normalized degrees of the subnetworks, com-

puted from the binary matrices of significantly altered connections for

each network, have been visualized on the glass brains in Figure 6a.

The color-coded spheres are centered on the peak coordinates of the

subnetworks. The size of each sphere is proportional to the extent of

abnormal coupling of the corresponding subnetwork in SZ, within its

associated network. As apparent by visual inspection (and the bar plot

in Figure 6b), the COG, VIS, DMN, SM, and AUD networks show con-

siderable dysconnection in SZ.

3.5 | Cognitive performance is related to the EC
profile of SZ patients

To examine the association between the EC profile of the patients

and their cognitive performance, we used canonical correlation analy-

sis. To construct a reliable CCA model, the number of features was

limited using ensemble feature selection, based on bootstrap aggrega-

tion (Section 2.6.2). The resultant top features and their inclusion fre-

quencies are listed in Table S1. The top three EC parameters included:

the self-connections of SMA and ParaCL1 (in SM network) and the

connection from PHG to ITG (in COG network). The inclusion fre-

quencies of these parameters were 0.76, 0.185 and 0.18, respectively,

across bootstrap resamples. Similarly, the top three MCCB cognitive

traits turned out to be: social cognition, reasoning/problem solving,

and working memory; with inclusion frequencies of 1.0, 0.97 and

0.93, respectively.

CCA between the selected (EC and MCCB) variables revealed

one significant canonical correlation18 (r1 = 0.79, p < .001, chi-

squared = 60.05, df = 9). Notably, this linear relationship was

achieved with a sample to feature ratio of 58/(3 + 3) ≈9:7, in line

with recent recommendations for multivariate model stability (Helmer

et al., 2020; Yang et al., 2021). The corresponding (standardized)

canonical weights have been plotted in Figure 7a. The self-inhibition

of SMA was the most contributive EC parameter, followed by the

self-inhibition of ParaCL1, and the excitatory connection from PHG to

ITG. These three connections are positively related, based on the

signs of their canonical weights.

On the behavioral side, reasoning/problem solving had the high-

est contribution, followed by working memory and social cognition.

Working memory was negatively related to the other two domains.

This is despite the fact that all the cognitive (MCCB) domains were

positively correlated when analyzed separately from the connectivity

data (Figure 2b). This is because, CCA eigen-decomposes the cross-

correlation matrix between two sets of variables, to find the directions

of maximum shared variance between them. As such, in the multivari-

ate (brain-behavior) mapping identified by CCA, working memory was

negatively weighted relative to the other two cognitive domains when

analyzed in conjunction with the effective connectivity data.

The corresponding first pair of canonical variates/scores have

been plotted against each other in Figure 7b. Furthermore, Figure 7c

shows the cross-validated canonical correlation (rcv = 0.47; 0.95%17R2 ¼ Predicted sum of squares
Total sum of squares ¼ PSS

TSS , where PSS denotes the sum of squares of cross-spectra

predicted/modeled by spectral DCM, and TSS denotes the total sum of squares of cross-

spectra estimated from empirical data. The summations (of cross-spectra squared) are

performed over frequency bins and pairs of regions for which the cross-spectra are

computed. In SPM12, R2 for any fitted DCM can be calculated using spm_dcm_fmri_check.m.

18Permutation-based inference yielded p = .002 (see Figure S6 for the null distributions of

Wilks' lambda and the first canonical correlation).
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confidence interval = [0.48, 0.46]), which is significant but lower than

the in-sample association strength. This attenuation was anticipated

based on previous studies (Helmer et al., 2020). Briefly, cross-

validated estimates of canonical correlations underestimate the true

values almost as much as in-sample estimates tend to overestimate

them (Helmer et al., 2020). Nevertheless, the key point of this analysis

is that such a linear model of brain-behavior association holds some

level of out-of-sample generalizability. This is a consequence of effec-

tive feature selection and observing the requisite sample to feature

ratio (Section 2.6.2). In Figure S5, we have shown the in-sample and

cross-validated canonical correlation estimates for two other sample

to feature ratios (1.25 and 14.25) to emphasize the key effect of this

ratio on CCA generalizability.

4 | DISCUSSION

This study investigated effective and functional connectivity between

the subnetworks of seven large-scale networks of the brain, based on

resting state fMRI scans from 66 SZ and 74 HC subjects. Group

means and differences in EC were estimated using a parametric

empirical Bayesian scheme. Group FC differences were estimated in a

multiple regression model. Behavioral results from MCCB tests were

analyzed separately (using permutation-based t-tests) and in conjunc-

tion with EC estimates (using canonical correlation analysis). In the fol-

lowing we discuss our main findings and their implications.

The analysis of behavioral data revealed significantly reduced

cognitive performance in the patient group, in all seven domains of

the MCCB tests and in the composite scores (Figure 2a). These results

are consistent with the large body of literature on neurocognitive

impairments in SZ (Green et al., 2019). Neurocognition typically

includes: speed of processing, verbal learning and memory, visuospa-

tial learning and memory, working memory, attention/vigilance, and

reasoning/problem solving (Nuechterlein et al., 2005). Across these

domains, typical SZ impairment has been reported to be 0.75–1.5

standard deviations away from that of the HC (Green et al., 2019;

Heinrichs & Zakzanis, 1998; Mesholam-Gately et al., 2009). In addi-

tion to neurocognitive impairments, our results revealed significant

deficits in the social cognition of the patients. We will come back to

the significance of impaired social and nonsocial cognition in SZ, when

we discuss brain-behavior associations.

In our neuroimaging analysis, the model-based EC method identi-

fied considerably more differences between SZ and HC subjects than

the descriptive FC approach did. Specifically, 24% of the investigated

connections showed group difference (discriminative) effects in the

EC analysis, whereas this ratio was about 1% for the FC approach,19

after adjusting for age, gender and medication dosage. This is mainly

because, by specifying a biologically grounded generative model

(i.e., DCM) and inverting this model to fit the observations, the hemo-

dynamic variations are effectively disentangled from the underlying

neuronal dynamics, disclosing the abnormalities at the level of neural

circuitry. This central difference between EC and FC (and the ensuing

sensitivity to group differences) may explain why EC parameters have

been more informative features for diagnosis and prognosis of brain

disorders in a number of studies (Brodersen et al., 2011; Brodersen

et al., 2014; Frässle et al., 2020).

Notably, among the seven networks modeled using spectral

DCM, the COG network turned out to be the most disturbed network

in SZ, with 33% of its connections showing discriminative effects. The

other severely affected networks were the VIS, DMN and SM with

24%, 20% and 11% of their connections modulated in SZ, respec-

tively. While most of the connections in the COG and VIS networks

had become more positive/less negative in SZ, the opposite relation

held for the DMN and SM networks (i.e., more negative changes in

connectivity prevailed). Furthermore, in the AUD network, the bilat-

eral STG2 subnetwork was significantly more excitable in SZ subjects.

These results add to the mounting evidence for the dysconnection20

hypothesis of SZ, which emphasizes that “there is abnormal (rather

than decreased) functional integration among brain regions in schizo-

phrenia” (Stephan et al., 2009).

Alterations within (and across) the COG, VIS, DMN, SM and AUD

networks at resting state have been reported in numerous SZ neuro-

imaging studies; for instance: (Bastos-Leite et al., 2015; Cui

et al., 2015; Damaraju et al., 2014; Hu et al., 2017; Li et al., 2019;

Usc�atescu et al., 2021; Zarghami et al., 2020). However, we have not

come across any prior DCM study that has modeled as many as seven

large-scale networks in schizophrenia. To our knowledge, the number

of regions (14 subnetworks) included in the dynamic causal modeling

of the COG network is also unprecedented. This is important, because

we showed that FC could not reveal the connectomic changes that

EC did. Hence, the ease of conducting a large FC analysis comes at

the cost of the information that can only be uncovered through model

inversion of a biologically grounded generative model.

In the SM network, we found that the self-connections of

ParaCL1 and ParaCL2 were more inhibitory in SZ, which translates to

lower excitability of these regions. Conversely, PoCG was more excit-

able (i.e., disinhibited) in the patients. In DCM framework, these

(inhibitory) self-connections reflect the excitability or postsynaptic

gain of neuronal populations. Computationally, these gains have been

attributed to the precision of prediction errors (encoded by the activity

of superficial pyramidal cells) ascending from lower to higher levels in

cortical hierarchies, to update the predictions (encoded by deep pyra-

midal cells) passed down from higher to lower levels. It has been pro-

posed that these predictions serve to explain our sensations by

minimizing the prediction errors—in a theoretical framework known as

predictive coding (Bastos et al., 2012; Clark, 2013; Friston, 2008;

Rao & Ballard, 1999; Srinivasan et al., 1982). From the perspective of

predictive coding, psychotic symptoms and failure of functional inte-

gration (i.e., dysconnection) in SZ can both be explained by aberrant

precision (i.e., abnormal postsynaptic gain control) in this disorder

(Adams et al., 2013; Friston, Brown, et al., 2016).

19Frequentist and Bayesian FC analyses revealed comparable significant effects (Figure S4).

20The Greek prefix dys means bad or ill, whereas the Latin prefix dis means apart (Stephan

et al. (2009)).
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Physiologically, aberrant gain modulation in SZ has been attrib-

uted to NMDA21 receptor dysfunction and GABAergic22 abnormali-

ties, which create excitation–inhibition imbalance and subsequently

disturb the synchrony of large-scale networks (Gao & Penzes, 2015;

Jardri & Deneve, 2013; O'Donnell, 2011). In the current study, altered

self-connection in three subnetworks (ParaCL1, ParaCL2 and PoCG)

of the SM network provided evidence for the failure of neuromodula-

tory gain control in these regions for SZ patients. In addition to the

SM network, there was evidence for SZ-related excitation–inhibition

imbalance in several other networks. Namely, bilateral STG2 in the

AUD network; MTG and MOG in the VIS network; Precuneus2, MiFG

+SFG and R-AG in the DMN, showed significantly altered gain control

in the patient group. Still, neuromodulatory gain control in the SM

network had the highest association with cognitive performance in

SZ, as we will shortly revise.

Our brain-behavior analysis (using CCA) revealed that resting

state EC within large-scale networks is significantly correlated with

the cognitive profile of the patients. Cross-validation confirmed that

such a linear association has some level of out-of-sample generaliz-

ability. To achieve a stable and generalizable CCA model, we had

observed the sample to feature ratio of above nine (Helmer

et al., 2020; Yang et al., 2021) using ensemble feature selection (de Bin

et al., 2016; Saeys et al., 2008). We shall now discuss the significance

of the effective connections and cognitive domains that the feature

selection procedure returned—and their contribution toward the

connection-cognition model.

The top selected EC feature—by far—was the self-connection of

supplementary motor area (SMA) in the SM network, which had an

inclusion frequency of 0.76 over bootstrap resamples, and the largest

absolute canonical weight in the CCA model. Structural and functional

aberrations of SMA are well-known in the context of SZ and psycho-

sis (Exner et al., 2006). Structurally, the volume of SMA/pre-SMA has

been reported to be smaller in SZ patients, and related to their

impaired implicit learning (Exner et al., 2006). Functionally, there have

been recurrent reports about the reduced activation of SMA during

motor and mental tasks (Crespo-Facorro et al., 1999; Guenther

et al., 1994; Ortuno et al., 2005; Rogowska et al., 2004; Schröder

et al., 1995) and a wide range of neurocognitive tasks in SZ (Pic�o-

Pérez et al., 2022) and in early psychosis patients (Horne et al., 2022;

Vanes et al., 2019). SMA dysfunction has also been associated with

temporal processing deficit in SZ (as a measure of cognitive malfunc-

tion) (Alústiza et al., 2017; Davalos et al., 2011; Ortuño et al., 2011)

and with reduced sense of agency (a common positive symptom of

psychosis) (Farrer et al., 2003; Nachev et al., 2008; Wolpe et al., 2020;

Yomogida et al., 2010). Our CCA analysis revealed that the self-

inhibition of SMA at resting state is significantly correlated with the

cognitive performance of SZ patients, above and beyond the other

effective connections.

The second most contributive connection to the EC-MCCB rela-

tionship was the self-connection of ParaCL1, in the SM network.

Paracentral lobule alterations have come up frequently in neuroimag-

ing studies of SZ and psychosis. Structurally, (Borgwardt et al., 2007)

found that patients with first episode psychosis and individuals (with

at-risk mental state) who later became psychotic both had smaller

gray matter volume in the ParaCL region, compared to HCs. Similarly,

twins with schizophrenia were reported to have less ParaCL cortical

volume than their nonpsychotic cotwins (Borgwardt et al., 2010). Evi-

dence for behavioral association of ParaCL function in SZ includes the

study of (Gao et al., 2022), who reported that fractional amplitude of

low-frequency fluctuations (fALFF) in the ParaCL region is decreased

in patients with SZ, and is associated with their clinical characteristics.

Regarding cognitive relevance, reduced ALFF in the ParaCL was

reported to be negatively correlated with the (impaired) speed of pro-

cessing in SZ patients (Wang et al., 2019). In the present study,

ParaCL excitability turned out to be both a discriminative and a cogni-

tively relevant connectomic feature for SZ, highlighting the implication

of this region in the pathophysiology of SZ and in the psychopatho-

logical consequences.

The third contributing variable to the connection-cognition CCA

model was the effective connection from PHG to ITG, in the COG

network. Structurally, both the PHG and ITG regions have been

reported to have less gray matter volume in SZ patients than in HCs

(Curtis et al., 2021; Zhuo et al., 2017). According to Curtis et al.

(2021), the thinner gray matter in the PHG of first episode SZ patients

correlates with their hallucinations, processing speed, working mem-

ory, and verbal learning. Functionally, (Diederen et al., 2010) showed

that auditory verbal hallucinations in SZ patients are consistently pre-

ceded by deactivation of the PHG. Aberrant activity and connectivity

patterns including the PHG and ITG have been frequently associated

with working memory deficits in SZ (Chatterjee et al., 2019; Kim

et al., 2009; Meyer-Lindenberg et al., 2001). We found that the excit-

atory influence of the PHG component on the ITG subnetwork at

resting state is significantly correlated with the working memory per-

formance, social cognition, and reasoning/problem solving capabilities

of SZ patients.

Notably, the cognitive traits that correlated most consistently

with EC included both social and nonsocial (i.e., working memory and

reasoning) aspects of cognition in SZ. These three cognitive domains

had nearly perfect inclusion frequencies during ensemble feature

selection (Table S1). Nonsocial cognitive (aka neurocognitive) alter-

ations and their neural substrates have been a major focus of SZ stud-

ies for many years. Conversely, social cognition has more recently

been attended to, and proposed as a Research Domain Criteria

(RDoC) domain (Cuthbert & Insel, 2013; Gur & Gur, 2016).

Social cognition broadly encompasses the mental operations

needed to perceive, interpret and process information for adaptive

social interactions (Green et al., 2019). Examples include emotion pro-

cessing, social perception and mentalizing (aka theory of mind, ToM),

in which SZ patients have consistently performed poorly (compared

to HCs) with large effect sizes (Savla et al., 2013). We found signifi-

cantly impaired social cognition in SZ patients (Figure 2a), in line with

previous reports (Burns, 2006; Green et al., 2019; Savla et al., 2013).

Moreover, in our brain-behavior analysis, social cognition was the only

21N-methyl-D-aspartate (NMDA).
22Gamma-aminobutyric acid (GABA).
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cognitive trait that was consistently selected as neurally relevant

across all data resamples (with inclusion frequency = 1). Social cogni-

tion was also the least correlated with the other (nonsocial) cognitive

scores of the subjects (Figure 2b), which speaks to the originality of

the information conveyed by the social aspect.

Overall, there is growing evidence that both social and nonsocial

cognitive deficits are core features of SZ, which exist at the illness

onset, cannot be explained by positive symptoms or antipsychotic

medication effects, are relatively stable over the course of illness, and

are detectable at lower levels in unaffected relatives of the patients

and in prodromal or other high-risk samples (Burns, 2006; Green

et al., 2019; Lee et al., 2015; McCleery et al., 2014). For instance, (Aiai

et al., 2017) found significant differences in the working memory and

reasoning/problem solving capabilities of SZ patients' fathers com-

pared to matched HCs. There is also evidence for heritability of emo-

tion identification efficiency (a social cognitive trait) in SZ (Gur,

Loughead, et al., 2007; Gur, Nimgaonkar, et al., 2007). In the present

SZ sample, we found that social cognition, working memory and rea-

soning/problem solving are strongly correlated with the EC profiles of

the patients.

Revisiting our brain-behavior results, we found that eight out of

the top 11 cognitively relevant EC features were situated in the COG

network (Table S1), which is an interesting finding. Nevertheless, more

remarkably, the top two cognitively relevant connections were not in

the COG network, but in the SM network; namely, the self-

connections of SMA and ParaCL1. We already discussed the implica-

tions of aberrant postsynaptic gain control and excitation–inhibition

imbalance in SZ, from the perspective of predictive coding. The fact

that abnormal gain modulation in the sensorimotor network is so rele-

vant to the cognitive performance of the patients also speaks to the

close relationship between sensorimotor processing deficits and cog-

nitive impairments in SZ (Fritze et al., 2022; Kumari et al., 2008; San-

Martin et al., 2020).

The well-known sensorimotor and sensory gating deficiencies in

SZ patients (and their unaffected relatives) (Braff et al., 1992; Braff &

Light, 2005) have been attributed to their inability to filter out irrele-

vant external and internal stimuli, which may lead to misperceptions,

sensory flooding, distractibility, disorganized thinking and cognitive

fragmentation (Braff & Light, 2005; Dawson et al., 2000). A recent

study on sensorimotor control in SZ showed that the modulation of

cortical excitability and inhibition (during a visuomotor task) is

impaired in SZ patients, and that their inferior visuomotor performance

is correlated with their attention scores (Carment et al., 2019).

Although SZ has often been regarded as a primarily cognitive disorder,

it has been argued that its “symptoms may in fact rather reflect cumu-

lative cascade impairments originating in sensory and perceptual dys-

functions, in combination with failed integration between lower- and

higher-order processes” (Kaufmann et al., 2015). The considerable

proportion of discriminative connections that our EC analysis revealed

within the VIS, SM and AUD networks (Figure 5) highlights the crucial

role of sensory/sensorimotor processing deficits in the pathophysiol-

ogy of SZ. Moreover, the fact that the top cognitively relevant effec-

tive connections included the cortical excitabilities of SM regions

speaks to the importance of sensorimotor-cognition relation-

ship in SZ.

We conclude by mentioning the limitations of the present study

and some future directions of research. First, we modeled the seven

networks separately and conducted a coarse between-network analy-

sis, for computational and identifiability reasons.23 If all the within-

and between-network connections were analyzed simultaneously in a

large 50-node DCM, the pattern of significant connections could

change compared to the effects reported in this study. The same is

true if more subnetworks were included in the analysis or if different

network parcellations were used. Notably, this interpretational cau-

tionary point is not unique to EC studies. For instance, partial-correla-

tion-based FC analyses (Lefort-Besnard et al., 2018; Liégeois

et al., 2020; van den Heuvel et al., 2008) are sensitive to the regions

included in the study (since, by definition, partial correlation between

two regions adjusts for the confounding effects of all the other regions

included). In the same spirit, the present EC results should be inter-

preted in light of the analysis choices—namely, the particular func-

tional parcellation adopted, and the individual causal modeling of the

seven networks. Recent reformulations of DCM (as a Bayesian linear

regression model) (Frässle et al., 2017; Frässle et al., 2021) are apt for

EC analysis on large networks of several hundred regions, which

would facilitate both within- and between-network inferences.

Moreover, our EC results did not show SZ-related alterations

among the subnetworks of the SC or CB network (although FC sug-

gested reduced subcortical-sensory anticorrelation in SZ, similar to

Damaraju et al., 2014). The literature contains numerous reports on

the structural and functional alterations of SC regions in SZ, and their

cognitive association (Andreasen et al., 1998; Carlsson &

Carlsson, 1990; Fan et al., 2019; Kambeitz et al., 2014; Koshiyama

et al., 2018; Koshiyama et al., 2018; Patterson, 1987). The implication

of CB in SZ (especially through the cerebello-thalamo-cortical cir-

cuitry) has also been extensively investigated (Andreasen et al., 1998;

Andreasen & Pierson, 2008; Bernard & Mittal, 2015; Brady

et al., 2019; Cao & Cannon, 2019; Yeganeh-Doost et al., 2011). In the

present work, the group difference in EC between two subcompo-

nents of the CB network was explained away by the effect of medica-

tion dosage (Figure S2). We speculate that a different or more refined

parcellation of the SC and CB networks prior to EC analysis might

facilitate the identification of potentially altered EC within these net-

works. Subcortical–cortical causal influences in SZ have also been the

focus of several small-DCM studies (Sabaroedin, n.d.; Csukly

et al., 2021; Sabaroedin et al., 2021), which can greatly benefit from

the whole-brain modeling approach furnished by recent reformula-

tions of DCM (Frässle et al., 2021).

We accounted for the effect of antipsychotic medication dosage

(in terms of CPZ equivalents) in the group (FC and EC) analyses, and

in the brain-behavior (CCA) model, alongside the other covariates of

age and gender. While the effect of the medication dosage covariate

per se was not significant (in neither connectivity analysis), including

23For 50 nodes, inverting a spDCM containing 2500+ parameters based on 150 time points

is very ill-posed.
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the medication dosage as a covariate explained away a good number

of the discriminative connections in both FC and EC analyses

(Figure 3 for FC; Figures S1 and S2 for EC), which highlights the con-

founding effect of this factor. To systematically study the neuromodu-

latory role of medication effect versus the core pathophysiology of

SZ, longitudinal studies on drug-naïve patients (Anticevic et al., 2015;

Hadley et al., 2016; Towlson et al., 2019), especially if analyzed in the

framework of dynamic causal models, would be invaluable.

Another interesting avenue could be investigating the predictive

power of EC versus FC features for HC/SZ classification, and for pre-

diction of the clinical symptoms and behavioral scores. There have

been several reports of the superiority of EC features (over FC) for

the classification of SZ (Brodersen et al., 2014) and aphasic

(Brodersen et al., 2011) patients from HCs, and for prediction of indi-

vidual clinical trajectories in depression (Frässle et al., 2020), based on

small DCMs. In the present study (including seven large-scale net-

works), the discriminative effects identified based on EC turned out to

be far more pronounced than FC differences. Hence, we speculate

that a combination of generative modeling and discriminative classi-

fiers (aka generative embedding) would increase the accuracy and

generalizability of the predictor models for SZ, beyond the more con-

ventional FC-based predictors.

5 | CONCLUSIONS

This study investigated resting state effective and functional connec-

tivity within seven large-scale networks of the brain, in 66 SZ and

74 HC subjects. Behaviorally, SZ patients showed inferior cognitive

performance in all seven domains of the MCCB cognitive tests. EC

analysis revealed that a remarkable one third of the effective connec-

tions (among the subnetworks) of the COG network have been patho-

logically modulated in SZ. Further dysconnection was identified within

the VIS, DMN and SM networks, with 24%, 20%, and 11% of their

connections altered in SZ, respectively. The bilateral STG2 subnet-

work in the AUD network was also more excitable in the patient

group. Notably, EC uncovered considerably more discriminative con-

nections than FC did (24% vs. 1% of the connections showed group

differences in EC and FC analyses, respectively). To study the neural

correlates of (impaired) cognition in SZ, we conducted a canonical cor-

relation analysis between the EC parameters and the MCCB scores of

the patients. This analysis revealed that the self-inhibitions of SMA

and ParaCL1 (in the SM network) and the excitatory connection from

PHG to ITG (in the COG network) were significantly correlated with

the social cognition, reasoning/problem solving and working memory

capabilities of the patients. Future research can investigate the poten-

tial of whole-brain EC parameters as biomarkers for (diagnosis and

prognosis of) SZ and other brain disorders, and for neuroimaging-

based cognitive assessment.
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