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Abstract
Objectives Treatment and outcomes of acute stroke have been revolutionised by mechanical thrombectomy. Deep learn-
ing has shown great promise in diagnostics but applications in video and interventional radiology lag behind. We aimed to 
develop a model that takes as input digital subtraction angiography (DSA) videos and classifies the video according to (1) 
the presence of large vessel occlusion (LVO), (2) the location of the occlusion, and (3) the efficacy of reperfusion.
Methods All patients who underwent DSA for anterior circulation acute ischaemic stroke between 2012 and 2019 were 
included. Consecutive normal studies were included to balance classes. An external validation (EV) dataset was collected 
from another institution. The trained model was also used on DSA videos post mechanical thrombectomy to assess thrombec-
tomy efficacy.
Results In total, 1024 videos comprising 287 patients were included (44 for EV). Occlusion identification was achieved with 
100% sensitivity and 91.67% specificity (EV 91.30% and 81.82%). Accuracy of location classification was 71% for ICA, 
84% for M1, and 78% for M2 occlusions (EV 73, 25, and 50%). For post-thrombectomy DSA (n = 194), the model identified 
successful reperfusion with 100%, 88%, and 35% for ICA, M1, and M2 occlusion (EV 89, 88, and 60%). The model could 
also perform classification of post-intervention videos as mTICI < 3 with an AUC of 0.71.
Conclusions Our model can successfully identify normal DSA studies from those with LVO and classify thrombectomy 
outcome and solve a clinical radiology problem with two temporal elements (dynamic video and pre and post intervention).
Key Points 
• DEEP MOVEMENT represents a novel application of a model applied to acute stroke imaging to handle two types of 

temporal complexity, dynamic video and pre and post intervention.
• The model takes as an input digital subtraction angiograms of the anterior cerebral circulation and classifies according to 

(1) the presence or absence of large vessel occlusion, (2) the location of the occlusion, and (3) the efficacy of thrombectomy.
• Potential clinical utility lies in providing decision support via rapid interpretation (pre thrombectomy) and automated 

objective gradation of thrombectomy outcomes (post thrombectomy).
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DICOM  Digital Imaging and Communications in 
Medicine

DSA  Digital subtraction angiography
HIPAA  Health Insurance Portability and Accountability 

Act
ICA  Internal carotid artery
LVO  Large vessel occlusion
MCA  Middle cerebral artery
MLP  Multi-layer perceptron
mTICI  Modified Treatment in Cerebral Ischaemia
PA  Posteroanterior
ViT  Vision transformer

Introduction

Ischaemic stroke is a time-dependent disease that remains a 
significant cause of morbidity and mortality [1]. Stroke is a 
compelling use case for radiology artificial intelligence (AI) 
due to its time-sensitive nature. Mechanical thrombectomy 
to extract the causal intra-arterial thrombus has revolution-
ised treatment and improved outcomes [2]. Indeed, approxi-
mately 1.9 million neurons are lost for every minute a patient 
is left untreated [3]. Therefore, measures that can increase 
the speed and efficacy of the diagnostic and treatment pro-
cess have the potential to improve patient outcomes.

The advent of increased computer processing power has 
facilitated the use of deep learning computer vision tasks [4]. 
These methods have reached expert-level performance on 
several medical imaging tasks [5, 6]. However, while many 
papers report expert-level results by using deep learning in 
radiology, most apply only a narrow range of techniques to 
a narrow selection of use cases [7]. This has led to calls for 
models that can incorporate prior images [8]. Indeed the 
development of such models has been called “essential to 
provide meaningful improvements” in the field [8]. Recently, 
computer vision for video analysis has attracted research 
interest [9, 10]. Techniques for object tracking, for example, 
have useful applications in driverless cars and other growth 
industries. Medical application of video analysis has been 
slower to develop, however, although promise has been 
shown in echocardiography [11, 12] with emerging potential 
applications in diagnostic radiology [13].

Interventional radiologists interpret medical imaging in 
real time in a video format in clinical practise, for example 
in the form of a “run” (time ordered series of images) from 
digital subtraction angiography (DSA). In the interventional 
suite, rapid assisted interpretation of these “runs” could help 
to reduce intervention times by aiding detection and deter-
mining the need for re-intervention particularly in challeng-
ing or borderline cases.

Our aim was to develop a model that takes as input a 
video of a cerebral DSA and identify the presence or absence 

of large vessel occlusion (LVO), locate the level of occlu-
sion, and assess the success of thrombectomy. The proposed 
task contains two elements which add temporal complexity: 
there is the dynamic nature of the DSA run that changes 
frame by frame, and also the change detection element, com-
paring pre and post-intervention runs.

Our primary hypothesis is that our model could identify 
occlusions in real time, which would have significant poten-
tial clinical utility by providing decision support for rapid 
interpretation (pre thrombectomy). Our secondary hypoth-
esis is that our model could be applied post thrombectomy 
as automated objective gradation of outcomes.

Methods

This manuscript was prepared according to the CLAIM 
checklist [14]. Our code is available on GitHub (https:// 
github. com/ edhlee/ DeepM oveme nt).

Patient selection

This retrospective study was HIPAA compliant, approved 
by the Stanford School of Medicine IRB and University 
of Indiana IRB with an approved data sharing agreement 
between these two institutions. We included all patients who 
underwent DSA for acute ischaemic stroke in a single ter-
tiary university-affiliated centre from 2012 to 2019. These 
patients had an abnormal CT angiogram and were referred 
to neurointerventional radiology. Consecutive patients who 
underwent DSA for other indications and had a normal study 
(from 2019) were used as controls. An independent vali-
dation cohort from a different university-affiliated tertiary 
referral centre was also retrospectively collected. Exclusion 
criteria were those patients without the standard posteroan-
terior (PA) and lateral projections of the circle of Willis.

Truth determination

All cerebral angiograms were assessed by board-certified 
neurointerventional radiologists at the respective centres, all 
of whom are board-certified and subspecialty trained. The 
location of occlusion was specified and the post-thrombec-
tomy result was assessed using a structured report. LVO 
was defined as the blockage of the terminal internal carotid 
artery (ICA) and M1 (horizontal) or M2 (vertical) segment 
of the middle cerebral artery (MCA). Modified Treatment in 
Cerebral Ischaemia (mTICI) scores were recorded. Scores 
were verified by a separate radiologist for this study. When 
no score was available, the text of the structured report and 
the images were reviewed to assign a mTICI score retro-
spectively. Disagreements were decided by a third certified 
radiologist.

https://github.com/edhlee/DeepMovement
https://github.com/edhlee/DeepMovement
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Video preparation

DICOM files of DSAs were collated in OsirixMD (ver-
sion 11) and converted to mp4 format. For the cases where 
thrombectomy was performed, four videos were created per 
patient (PA and lateral views, pre and post thrombectomy) 
while two videos of the normal controls (PA and lateral) 
were recorded. DICOM files received from the outside 
institution were loaded onto OsirixMD and processed in 
the same way.

Design

The models were trained to classify whether an LVO was 
present. Each case was classified as normal, ICA, M1, or 
M2. Next, the post-thrombectomy videos were given as 
input and were reclassified. Movement between classes 
(either from proximal to distal occlusion or to normal) 
was deemed as identification of a successful thrombec-
tomy. Finally, the model was used to classify the post-
thrombectomy videos as having an mTICI of 3 (complete 
antegrade reperfusion) or < 3 (incomplete antegrade 
reperfusion).

Deep learning models

We investigated the performance of several deep learn-
ing models using different architectures. First, we 
employed a 2D convolutional neural network (CNN) 

model (Xception) which uses only single frames, 
stacked 2D CNN (stacked-Xception) using multiple 
frames (2.5D), a 2D vision transformer (ViT), and a 
3D CNN (Inception 3D) capturing full special and tem-
poral resolution.

On all deep learning approaches except the stacked-
Xception + ViT ensemble, we train for 20 epochs with 
Adam optimizer [15], a learning rate decay of 0.9 every 
epoch. The ViT component requires considerably longer 
training times to achieve convergence. For example, train-
ing with 20 epochs and 0.9 learning rate decay every 
epoch results in a training-set F1 score of approximately 
0.6 compared to > 0.75 of other models. Data augmenta-
tions included horizontal flipping of the frames (for the 2D 
approaches), cropping, and random brightness distortions. 
The Xception backbone was pretrained on ImageNet, the 
inception-3D on Kinetics, and ViT (2D) backbone on Cifar-
100. A summary is seen in Fig. 1. All model architectures 
are detailed in the supplemental GitHub link (https:// github. 
com/ edhlee/ DeepM oveme nt).

Data augmentations included horizontal flipping of the 
frames (for the 2D approaches), cropping, and random 
brightness distortions. Grad-cams (dynamic saliency maps) 
were produced to aid interpretability.

Analysis

Our model was trained and evaluated on both an inter-
nal independent test set and an external validation set. 

Fig. 1  Summary of DEEP 
MOVEMENT. Our models are 
trained and evaluated on DSAs 
of patients before thrombec-
tomy in task 1 (a). The stacked-
Xception model is shown as an 
example. The pre-thrombec-
tomy model is next evaluated 
to predict treatment outcome of 
post thrombectomy to assess the 
quality of reperfusion in task 
2 (b)

https://github.com/edhlee/DeepMovement
https://github.com/edhlee/DeepMovement


 European Radiology

1 3

Identification of LVO was measured using the F1 score, 
sensitivity, and specificity. Location classification was eval-
uated using accuracy. The grading of post-thrombectomy 
results was evaluated using the area under the ROC curve. 
The same stacked-Xception model was then employed with-
out fine-tuning or additional transfer learning on the exter-
nal validation data.

Results

Sample size

In total, 1024 videos comprising 287 patients were included 
for analysis, 225 with occlusion and 62 normal, 237 for 
training, and 50 for testing. Of the 50 for testing, there were 
7, 11, 21, and 11 normal, ICA, M1, and M2 occlusions, 
respectively. Five cases were excluded as the requisite views 
were not obtained. Three cases were excluded due to file 
corruption. The median age was 76 and 47% of the included 
patients were female. Forty-four patients were included for 
external validation with no cases excluded. Patient demo-
graphics are summarised in Table 1.

Results on pre‑thrombectomy videos 
with stacked‑Xception

With stacked-Xception, occlusion identification was 
achieved with 100% sensitivity (CI 90.75 to 100.00%) 
and 91.67% specificity (CI 61.52 to 99.79%) (Table 2 and 
Fig. 2a). Accuracy of location classification was 71% for 
ICA, 84% for M1, and 78% for M2 occlusions.

Results on pre‑thrombectomy videos 
with alternative models

We compare stacked-Xception to a fully 3D convolutional 
approach using Inception-3D. Both architectures were first 
pretrained on large-scale datasets (ImageNet and Kinet-
ics-600). The confusion matrices on the Stanford hold-out 
set (Fig. 2b) indicate the weakness of the 3D approach on 
correctly identifying the M2 subtype. However, the 3D 

Table 1  Patient demographic information

Local data
Total number 287
Sex Male 152

Female 135
Mean age (range) 76 (18–98)
Side Left 117

Right 108
Site Normal 62

ICA 60
M1 116
M2 49

External data
Total number 44
Sex Male 21

Female 23
Mean age (range) 61 (18–94)
Side Left 23

Right 21
Site Normal 11

ICA 11
M1 12
M2 10

Table 2  Summary of results for stacked-Xception

Location Task Site Sensitivity Specificity Accuracy

Internal Identification of occlusion 100% (CI 90.75 to 100.00%) 91.67% (CI 61.52 to 99.79%) 0.98
Classification location ICA 0.71

M1 0.84
M2 0.78

Successful reperfusion ICA 1.0
M1 0.88
M2 0.35

External Identification of occlusion 91.30% (71.96 to 98.93%) 81.82% (48.22 to 97.72%)
Classification location ICA 0.73

M1 0.35
M2 0.50

Successful reperfusion ICA 0.89
M1 0.88
M2 0.60
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approach does better in predicting the ICAs. The overall 
F1 score is only higher for the stacked-Xception (0.83 ver-
sus 0.8) as shown in Fig. 3a. In Fig. 3a, we jointly train 
and evaluate an ensemble model that combines the features 
from both the stacked-Xception and 3D. The F1 score of 
the resulting model is slightly higher (0.85) than either the 
stacked or 3D models individually. The last approach is an 
ensemble of stacked-Xception and a vision transformer (2D 
on individual frames). In absolute terms, ICA identification 

is better than with the stacked-Xception and M2 identifica-
tion is better than the inception-3D. However, the F1 score 
(0.8) is marginally lower than the stacked-Xception + 3D.

Post‑thrombectomy videos

Analysing stacked-Xception performance on videos post 
thrombectomy (n = 194), the model identified successful 
reperfusion with 100% accuracy for ICA occlusions and 88% 

Fig. 2  (a–d Clockwise from top left) Confusion matrix showing results of various models on the Stanford test set: (a) stacked-Xception, (b) 3D 
model (inception-3D), (c) stacked-Xception + 3D, (d) stacked-Xception + ViT
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for M1, and 35% for M2 occlusion (Table 2 and Fig. 4). 
The model could also perform binary classification of post-
intervention videos (ICA, M1, and M2) as having an mTICI 
of 3 (complete antegrade reperfusion) or < 3 with an AUC 
of 0.71.

Grad‑cam videos comparing pre‑ 
and post‑thrombectomy videos

Figure 5a and b shows gradient attention maps of DSA 
videos from the model trained on the pre-thrombectomy 
DSAs. The shaded area represents what the model learns to 
attend to in order to make its prediction. By comparing the 

post-treatment grad-cam to the pre-thrombectomy video, it 
is possible to interpret the most important regions to the 
thrombectomy’s success or failure. The video can be viewed 
in supplementary material. Finally, grad-cams from the pre-
treatment model applied to the post-treatment model give 
interpretable evidence that our models learn meaningfully 
relevant features of the thrombectomy.

Results of external validation

Occlusion identification was achieved with 91.30% sensi-
tivity (71.96 to 98.93%) and 81.82% specificity (48.22 to 
97.72%). Accuracy of location classification was 73, 35, and 

Fig. 3  a F1 score of different 
architectures across the Stanford 
test set. b F1 score comparing 
2D-only and stacked 2D
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50% for ICA, M1, and M2, respectively. Location classifi-
cation was correct to + / − one category in 41 of 44 (93%) 
of cases. The model identified successful reperfusion with 
89% accuracy for ICA occlusions, 88% for M1 occlusions, 
and 60% for M2 occlusions comparing favourably with the 
internal data. Results are summarised in Table 2.

Discussion

Herein, we present a model that inputs video of a cerebral 
DSA to (1) identify the presence or absence of large vessel 
occlusion in acute stroke; (2) locate the level of occlusion 
(terminal ICA, M1, or M2); and (3) assess the effectiveness 
of thrombectomy.

AI has achieved expert-level performance in radiol-
ogy, but only in specific narrow domains [16, 17]. More 
recently, the concept of augmented intelligence has gained 
traction within the radiology literature [18]. While AI appli-
cations hold great promise in healthcare, there is a chasm 
between academia and the clinical application of models 
[19]. Acute stroke care has recently been disrupted by the 

advent of mechanical thrombectomy for large vessel occlu-
sion, which has had a dramatic impact on clinical practise 
[20, 21]. Future potential clinical utility for models such 
as ours would include providing decision support via rapid 
interpretation (pre thrombectomy) to aid detection of more 
subtle or distal thrombi and automated objective gradation 
of thrombectomy outcomes (post thrombectomy). “Time is 
brain” and if residual thrombus could be identified more 
quickly or if operators could be informed that > 50% ante-
grade reperfusion has not been obtained within 60 min [22], 
then there is the potential to improve patient outcomes with 
such an automated detection model.

There are two additional elements of our research ques-
tions that add temporal complexity. The video files have a 
temporal element as they follow the administration of con-
trast and the opacification of vessels over time. The temporal 
element is necessary for correct classification as parts of 
the vessel may be opacified in certain frames and not others 
due to the haemodynamic circulation. Considering multiple 
frames however necessitates adding considerable superflu-
ous information as frames before the contrast has reached 
the region of interest do not contain diagnostic information. 

Fig. 4  Confusion matrix of the 
stacked-Xception model pre-
dicting videos after intervention 
in ICA, M1, and M2
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This reduces the signal-to-noise ratio of the input, and while 
necessary, it makes the task more challenging. Furthermore, 
there is the interval change aspect whereby we evaluate 
videos before and after intervention. Development of such 
models has been deemed “essential to provide meaningful 
improvements in clinical workflows” [8].

We have explored a diverse set of deep learning archi-
tectures for stroke video as shown in Table 3. 2D models 
(models with only 2 dimensional convolutions) pretrained 
on ImageNet achieve high classification accuracy in radi-
ology [5, 23]. While they are effective for still imaging, 
they lack the capacity to incorporate temporal information. 
Methods such as optical flow are traditionally used [24–26]. 
Nonetheless, 2D models are effective in scenarios where 
the region of interest is unique (or concentrated) to a single 
frame, perhaps even more than 3D approaches. In a DSA 
video, there can be frames that contain little to no informa-
tion related to the occlusion itself; noisy or distorted frames 
in the video can even damage the AI performance. By using 
3D CNNs, we can capture full spatial and temporal infor-
mation, and using 3D CNNs is useful when the number of 
frames is large. The 3D model size (and number of train-
able parameters) is typically larger than a 2D counterpart, 
as the convolutional kernels have an extra dimension. None-
theless, for our 3D model, we choose a model that is of 
the same approximate size as a 2D model (Table 3). High 
model variance can be alleviated by pretraining on a large-
scale video dataset. In our work, we utilised both pretrained 
and non-pretrained 3D model with Kinetics-600 [27]. The 
third method we considered is a stacked CNN. This method 
passes each frame into a 2D CNN, concatenates the fea-
tures, and mixes at the feature-level across the time dimen-
sion. The fundamental difference between the stacked and 
fully 3D methods is that the stacked CNN lacks joint spatial 
and temporal representations via 3D convolutions. This has 
both positives and negatives as while 3D kernels can capture 
time-dependent continuity of vessel occlusion from frame to 
frame, these kernels have larger receptive fields (compared 
to 2D) that can adversely affect the final predictions. For 
example, a DSA patient video may contain only a few frames 
with occlusion and many redundant frames with no occlu-
sion. These redundant frames can perturb the final prediction 
signal. This is demonstrated by the plateau of performance 
with additional frames in Fig. 3b. Finally, we apply vision 
transformers (ViTs) [28] that apply layers of multi-headed 
self-attention and multi-layer perceptrons (MLP) on image 
patches. ViTs have recently shown strong robustness against 
image distortions (such as occlusions, permutations) when 
compared to state-of-the-art CNNs and are less sensitive to 

colour and texture bias than CNNs [28]. There is growing 
evidence that CNNs [29] rely mainly on texture (and colour) 
information rather than shape.

We have investigated numerous deep learning approaches 
and found both the stacked-Xception and stacked-Xcep-
tion + inception-3D produced high classification accuracies 
in tasks 1 and 2 with reasonably low model complexity. Both 
models were pretrained from large-scale images and video 
datasets. We have shown that more frames throughout the 
DSA video are necessary but with limited improvements in 
F1 score after 8 input frames. By using more than 20 frames, 
all approaches would require more complexity in computa-
tional and memory overheads.

We conducted a robust external validation of our primary 
model to examine its potential for generalizability. The DSA 
videos from the external site were obtained using differ-
ent fluoroscopy equipment and stored on different imag-
ing platforms compared to the local data. Furthermore, the 
technique of obtaining the images is somewhat different as 
seen in Fig. 6a and b. The local images are centred higher, 
and thus the region of interest is in a different location in 
the local and external images making generalizability more 
challenging. While the overall location accuracy reduced, 
occlusion localisation was within + / − one category in 95% 
of cases meaning that the vast majority of miss-classifica-
tions were near misses.

Grad-cams in Fig. 5a and b highlight the regions of each 
frame that are attended to by the trained model. They illus-
trate that the pattern of attention is different for those videos 
in different classes. For example, in an M2 occlusion case, 
the patient’s treatment (Fig. 5b) appears to have been suc-
cessful as the model classifies this post-thrombectomy video 
as normal with 71.2% confidence. This has potential clini-
cal utility both in real-time decision support to assess the 
efficacy of a particular pass and also retrospectively to help 
standardise TICI grading. Furthermore, we can see that the 
attention in the example of an ICA occlusion is concentrated 
more inferiorly than in the case of a normal or M2 study due 
to the anatomical location of the occlusion. This intuitive 
observation gives confidence that the model is behaving as 
we would expect. A supplementary video shows the chang-
ing attention map frame by frame. The pre- versus post-
thrombectomy grad-cams were computed by taking a model 
trained to classify pre-thrombectomy DSAs and evaluating 
the post-thrombectomy DSAs. This was not only to assess 
the quality of the treatment (from the model’s point of view) 
but also to provide interpretable evidence that our models 
learn meaningful features. For example, the model does not 
attend to the eyes or the skull, where the shapes and textures 
of non-vessel objects may bias the prediction.

Our results are promising but have limitations. Pos-
sibly due to the limited sample size and overfitting, the 
3D model trained from scratch performed considerably 

Fig. 5  a Grad-cam attention maps from the stacked-Xception model 
on the test set. b Grad-cam visualisation of 3 patients with M1 occlu-
sion pre and post treatments

◂
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worse than the 2D, stacked, or 3D models leveraging Ima-
geNet or Kinetics-600 pretraining. Despite the consistent 
performance on the external validation set, it is impor-
tant to note that a limited selection of patients within one 
country are included. However, imaging in acute stroke is 
quite uniform, and the performance on unseen data dem-
onstrates a degree of robustness in our model that bodes 
well for future generalizability. We enrolled consecutive 
patients and externally validated our research with the aim 
of reduction of selection bias in this study. Three patients’ 
video files were corrupted and we were not able to include 
them in our study. This was due to the video conversion 
process, and hopefully, if this technique becomes more 
popular, these technical hurdles will be overcome. Our 
dataset could be interpreted as having bias classes, with 
75% of our cases having pathology. To alleviate this, we 
used sensitivity, specificity, or AUC when reporting results 

from bias classes. Importantly, the relatively even split 
between normal, ICA, M1, and M2 classes is in keeping 
with the population who proceed to thrombectomy [30].

Conclusion

Our models can successfully identify normal DSA studies 
from those with ICA, M1, and M2 occlusions, and can clas-
sify the outcome of mechanical thrombectomy via mTICI 
grading. This has the potential to increase the speed, accu-
racy, and efficacy of stroke care by augmenting performance 
of neurointerventional radiologists. It could also be used 
for objective assessment of thrombectomy outcomes. Fur-
thermore, we have addressed a problem with two temporal 

Table 3  Qualitative exploration and number of trainable parameters of deep learning architectures for DSA video

Model Potential advantages Potential limitations

2D CNN Simple to use, useful when region of interest is unique to 
a single frame. Leverages large-scale ImageNet dataset

Lacks temporal dependency

3D CNN Captures full spatial and temporal dependency, use-
ful when # of frames are large. Leverages large-scale 
Kinetics video dataset

Typically larger in model size than an equivalent 2D model 
due to the added kernel dimension

Stacked 2D CNN model Simple to use (with limited frames), easy to interpret 
DSA over a few individual frames. Leverages ImageNet 
pretraining on 2D feature extractors

Feature-level temporal dependency only. There are no joint 
spatial and temporal dependencies

2D vision transformer Robust to frame-level distortions, relaxed inductive bias 2D features only
Limited training dataset size may limit the final perfor-

mance

Fig. 6  a, b Illustrative example 
comparing the difference in 
the videos between internal 
and external validation (a left: 
Stanford M1/Pre, b right: IU 
M1/Pre)
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elements, dynamic video and pre and post-intervention, with 
a unique application of state-of-the-art methods.
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tary material available at https:// doi. org/ 10. 1007/ s00330- 023- 09478-3.
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