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A B S T R A C T

The deregulation of electricity markets has driven the need to optimise market bidding strategies, e.g. when
and how much electricity to buy or sell, in order to gain an economic advantage in a competitive market
environment. The present work aims to determine optimal day-ahead market bidding curves for a microgrid
comprised of a battery, power generator, photovoltaic (PV) system and an electricity load from a commercial
building. Existing day-ahead market bidding models heuristically fix price values for each allowed bidding
curve point prior to the optimisation problem or relax limitations set by market rules on the number of price–
quantity points per curve. In contrast, this work integrates the optimal selection of prices for the construction
of day-ahead market bidding curves into the optimisation of the energy system schedule; aiming to further
enhance the bidding curve accuracy while remaining feasible under present market rules. The examined
optimisation problem is formulated as a mixed integer linear programming (MILP) model, embedded in a
two-stage stochastic programming approach. Uncertainty is considered in the electricity price and the PV
power. First stage decisions are day-ahead market bidding curves, while the overall objective is to minimise
the expected operational cost of the microgrid. The bidding strategy derived is then examined through Monte
Carlo simulations by comparing it against a deterministic approach and two alternative stochastic bidding
approaches from literature.
1. Introduction

Over the last three decades, power systems have undergone a funda-
mental transition from centralised, vertically integrated towards decen-
tralised, deregulated systems [1]. Deregulated systems based on market
mechanisms are complex due to their competitive nature, but offer
economic incentives to those participants with the best decision making
in a present market set-up. Therefore, strategies need to be developed
on how to optimally participate in relevant markets of the power sector.
Moreover, political support to de-carbonise the energy sector will boost
the adoption of renewable resources for power production [2,3]. Uncer-
tainty involved in renewable energy supply poses a major challenge to
decision makers in the power system. Thus, system operators need to
secure more grid flexibility to handle the increase of uncertain energy
supply, while energy market participants can adopt bidding strategies
to hedge against rising market volatilities.

Decentralised energy networks such as microgrids have generated
considerable research interest both in- and outside academia for their
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potential to provide reliable, low-emission energy and their capability
to add flexibility to the power sector [4]. A microgrid can be defined
as a group of interconnected loads and distributed energy resources
acting as a single controllable unit [5]. The definition further includes
a physical network for internal energy flows, advanced control tech-
nologies as well as the technical feature to operate decoupled from the
grid, known as island mode [6]. Distributed energy resources deployed
in the microgrid are small-scale power units that produce, store or
release energy. These units produce efficient and predominantly green
energy due to its close proximity to energy consumers and a high
share of renewable energy [7]. Despite these benefits, the installation
of microgrid systems faces the obstacle of high investment cost [8].
Hence, more research is needed to improve the economic viability of
microgrid systems.

Several microgrid models were studied under economical perspec-
tives in literature. Deterministic microgrid models such as in Refs. [9–
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Fig. 1. Timeline over two consecutive, explanatory days for the ERCOT day-ahead market.
1] assume accurate knowledge of data, but may fall short if data
ealisations deviate [12]. In contrast, microgrid models under uncer-
ainty, such as in stochastic programming, hedge decisions against a
redicted uncertainty space of data, derived from information available
t the moment of decision making. Particularly, stochastic program-
ing aims to find best decisions under uncertainty taking into account

he expected objective value after the uncertainty is revealed. The
ncertainty space can be approximated by a set of discrete realisa-
ions, called scenarios, which allow the optimisation problem to be
ransformed into a deterministic equivalent which can be solved with
tandard optimisation solvers [13]. A two-stage stochastic program-
ing problem was formulated in Ref. [14] for the optimal energy
ispatch of a microgrid with uncertain wind and solar power gen-
ration. Thomas et al. [15] analysed a stochastic microgrid model
omprised of a stationary battery, a PV system with uncertain power
utput and controllable batteries from a fleet of electric vehicles.
rover-Silva et al. [16] studied a microgrid with thermal comfort
onstraints modelled as a two-stage stochastic programming problem
ith uncertainty in energy demand, ambiguous temperature and PV
ower. However, in the described references the electricity price was
reated as perfectly known. Naturally, this assumption dismisses the
eed to extend microgrid optimisation problems with decisions on how
o participate in electricity markets. Only a few researchers addressed
he problem of bidding in electricity markets under uncertain electricity
rices explicitly for microgrids [17–21].

Overall, electricity markets with different time resolutions and set-
lement periods are facilitated to maintain the power system energy
alance at any time [1]. Electricity as a physical commodity can be
raded in wholesale markets; services for grid balancing can be traded
n reserve or auxiliary markets [22]. The focus of this work is in short-
erm wholesale electricity markets with daily or shorter time horizons.
hese may include a day-ahead, intra-day and a real-time or balancing
arket. The day-ahead market handles bulk electricity, while intra-
ay and real-time markets allow market participants to trade electricity
loser to its actual delivery [22].

In the day-ahead market, market gate closure and market clearing
ake place on each day, but the settlement (here: delivery of electricity)
appens on the day ahead. Fig. 1 illustrates this procedure by an ex-
mple for the Electric Reliability Council of Texas’s (ERCOT) day-ahead
arket [23]. Before gate closure, and for each discrete time block of the
ay ahead, market participants submit a collection of price–quantity
oints, known as a bidding curve. Each point expresses the willingness
o buy (sell) a certain amount of electricity for a market clearing
rice below (above) or equal to a certain price threshold. Indicative
idding curves for buying or selling electricity in the ERCOT day-
head market are given in Fig. 2. The economic importance of bidding
trategies in various short term electricity markets has been established
2

n applications such as operating stand-alone batteries [24,25], large
hydros [26–28], industrial demand side management [29–31], retail-
ers [32,33] or virtual power plants [34–36]. For instance, Fleten and
Pettersen [32] examined a two-stage stochastic programming problem
of a retailer with price responsive demand. The optimisation goal was
to determine piecewise linear bidding curves for buying electricity
in the Nord Pool1 day-ahead market. The authors demonstrated that
more price–quantity points per curve result in equal or higher expected
profit and that the profit gain per additionally activated price–quantity
point tails off for larger values. Ottesen et al. [37] considered a two-
stage stochastic programming problem of an aggregator of prosumers.
The aggregator controlled the prosumer’s flexibility and covered the
exchange of electricity with prosumers through bidding in the Nord
Pool day-ahead electricity market and an additional balancing market.
Krishnamurthy et al. [25] considered a stochastic optimisation problem
of a stand-alone battery bidding in the ERCOT day-ahead electricity
market. After market clearing a subsequent real-time market problem
was solved. Results indicated that a single price–quantity point with an
optimised bid price threshold resulted in higher profits than so called
self-scheduled bids, whose bidding quantity materialises regardless of
the market clearing price. However, their approach was limited to
optimise only a single price–quantity point for buying or selling instead
of multiple points forming a bidding curve.

This work considers a microgrid with a commercial electricity de-
mand and its own resources for production and storage of electrical
energy. Electricity exchange between the microgrid and the main grid
is assumed to be facilitated via bidding into a day-ahead electricity
market and a simplified real-time market. In this context, a novel
mathematical model for bidding in the day-ahead market is formulated.
The proposed model addresses a gap in research, which is to optimise
simultaneously bid price thresholds and bid quantities of submitted buy
or sell biding curves along with the recourse microgrid energy schedule.
In particular, this model results in bidding curves that are guaranteed
to be feasible under a market rule limit for the number of utilised
price–quantity points per curve per time period.

The remainder of this paper is organised as follows: Section 2
describes the overall problem statement together with relevant assump-
tions. Section 3 presents the mathematical formulation of the proposed
optimisation problem. It further describes the solution approach to
evaluate obtained bidding decisions. In Section 4, the examined micro-
grid bidding model is tested in a computational study and results are
discussed in Section 5 . Finally, in Section 6 concluding remarks are
given.

1 Pan-European power exchange based in Norway
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Fig. 2. Stepwise bidding curves (a) for buying electricity using three price–quantity
points and (b) for selling electricity using four price–quantity points. An exemplaric
market clearing at a market clearing price is illustrated in red.

2. Problem statement

This work considers a microgrid consisting of a battery, power gen-
erator, PV system and a commercial building with electricity load. Its
internal electricity network is assumed to be perfect with no power flow
losses or congestions. The microgrid system and technical parameters
for all resources are given and remain unchanged, i.e. the microgrid
optimisation problem is purely operational. The battery has constant
charge/discharge efficiencies and degeneration is assumed to be linear
proportional with respect to battery flow rates. Moreover, the battery
storage starts and ends each day with a prefixed initial battery storage.
The generator is assumed to have linear operational costs with no start
up, shut down or minimum up and down times. Additionally, the gas
price is assumed to be flat and perfectly known. Both electricity demand
and the PV power are inflexible. They cannot be curtailed or shifted and
hence need to be served instantly in the microgrid energy balance.

Energy exchange with the main grid is assumed to be unrestricted
and facilitated through trading in the day-ahead and real-time market.
The microgrid is assumed to be a price-taker in both electricity markets.
Day-ahead market rules are based on the ERCOT day-ahead market:
Stepwise bidding curves with up to 10 price–quantity points can be
submitted for buying and selling electricity for each hour of the day
ahead. Electricity prices are assumed to be uniform, i.e. accepted
bidding quantities settle at the market clearing price rather than at
submitted bid prices. Real-time market prices are hourly averaged to
match the time resolution of the optimisation problem. Furthermore,
the real-time market price is assumed to follow the day-ahead market
price, but is considered to be less favourable for both buying and selling
energy [18,37].

Uncertainty is considered in electricity prices and the PV power over
the day ahead; electricity demand is assumed to be perfectly known.
Decision stages are illustrated in Fig. 3. It is worth to mention, that
real-time market prices and the PV power reveal gradually over the
day ahead, but are simplified to a single stage in the decision tree. The
overall problem can be stated as follows:
3

Fig. 3. Decision stages of the two-stage stochastic optimisation model.

Given are (a) battery initial state of charge, minimum and maximum
storage capacity, charge and discharge capacity, charge and discharge
efficiency, degradation cost (b) generator capacity, heat-to-power ratio
(c) gas price, (d) electricity demand, (e) scenarios for PV power, (f)
scenarios for day-ahead market electricity price, (g) real-time market
price, (h) market rules for bidding curves; determine (a) day-ahead
market bidding curves for buying and selling electricity, (b) battery
schedule, (c) generator schedule, (d) real-time market bidding; so as
to minimise total microgrid operational cost.

3. Mathematical model

The microgrid bidding problem is formulated as a two-stage stochas-
tic MILP model. The goal is to find optimal bidding curves as first stage
decisions minimising the microgrid operational costs subject to internal
energy balances, resource constraints and electricity market rules. The
time horizon is the day ahead discretised into equidistant, hourly time
intervals 𝑡 ∈ 𝑇 . Scenarios for day-ahead market electricity price and
PV power output are jointly represented by scenario set 𝑆 with index
𝑠 ∈ 𝑆. The notation of the mathematical model is given as follows:

3.1. Notation

Indices

𝑡 time (hr)
𝑠 scenario

Sets

𝑆𝑃
𝑡 scenario set with distinct day-ahead market electricity prices

at time 𝑡

Parameters

𝑅𝐵 maximum battery charge or discharge rate [kW]
𝑅𝐺 maximum power output of the generator [kW]
𝐶𝐷𝐴
𝑠𝑡 day-ahead market electricity price of scenario 𝑠 at time 𝑡

[$∕kWh]
𝐶𝑅𝑇 ,𝑏
𝑠𝑡 real-time market electricity price for buying in scenario 𝑠 at

time 𝑡 [$∕kWh]
𝐶𝑅𝑇 ,𝑠𝑒
𝑠𝑡 real-time market electricity price for selling in scenario 𝑠 at

time 𝑡 [$∕kWh]
𝐶𝑔𝑎𝑠 natural gas price [$∕MBTU]
𝐶𝐵,𝑑𝑒𝑔𝑟 degradation cost for battery (dis)charging [$∕kWh]
𝐿𝐵 integer multiplicator of battery capacity to limit daily battery

utilisation [−]
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𝑀𝑃 Big-M coefficient for auxiliary constraints to prevent buy and
sell bidding curves from crossing each other [$∕kWh]

𝑄,𝑏 Big-M coefficient for constraints to measure incremental
quantity increases of price–quantity points in buy bidding
curves [kW]

𝑄,𝑠𝑒 Big-M coefficient for constraints to measure incremental
quantity increases of price–quantity points in sell bidding
curves [kW]

𝑠𝑡 order of scenario 𝑠 from low to high day-ahead market
electricity prices at time 𝑡 [−]

𝐷
𝑡 electricity demand in the microgrid at time 𝑡 [kW]
𝑃𝑉
𝑠𝑡 PV power in scenario 𝑠 at time 𝑡 [kW]

𝑅𝐺 generator heat rate [MBTU∕kWel]
𝐵,𝑚𝑖𝑛 minimum allowed battery storage [kWh]
𝐵,𝑚𝑎𝑥 maximum allowed battery storage [kWh]
𝐵
𝑡0

initial battery storage [kWh]

𝛿 time step length [h]
𝛥𝑄𝑚𝑖𝑛 minimum incremental quantity increase for an active price–

quantity point of a bidding curve [kW]
𝜀 positive number close to zero
𝜂𝑐 charge efficiency of battery [−]
𝜂𝑑 discharge efficiency of battery [−]
𝜋𝑠 probability of scenario 𝑠 [−]

Binary variables

𝑍𝐵,𝑐
𝑠𝑡 1 if battery charges at time 𝑡 of scenario 𝑠; 0 otherwise

𝑍𝐵,𝑑
𝑠𝑡 1 if battery discharges at time 𝑡 of scenario 𝑠; 0 otherwise

𝑌 𝐷𝐴,𝑏
𝑠𝑡 1 if bid quantity for buying electricity at day-ahead market

electricity price of scenario s at time t increases incremen-
tally in the buy bidding curve; 0 otherwise

𝑌 𝐷𝐴,𝑠𝑒
𝑠𝑡 1 if bid quantity for selling electricity at day-ahead market

electricity price of scenario s at time t increases incremen-
tally in the sell bidding curve; 0 otherwise

Positive Continuous variables

𝑃 𝑢𝑝,𝑏
𝑡 auxiliary variable for the highest price value of active price–

quantity points of the bidding curve for buying at time 𝑡
[$∕kWh]

𝑃 𝑙𝑜,𝑠𝑒
𝑡 auxiliary variable for the lowest price value of active price–

quantity points of the bidding curve for selling at time 𝑡
[$∕kWh]

𝑄𝐵,𝑐
𝑠𝑡 charge rate of battery at time 𝑡 of scenario 𝑠 [kW]

𝑄𝐵,𝑑
𝑠𝑡 discharge rate of battery at time 𝑡 of scenario 𝑠 [kW]
𝐷𝐴,𝑏
𝑠𝑡 electricity bought in the day-ahead market in scenario 𝑠 at

time 𝑡 [kW]
𝐷𝐴,𝑠𝑒
𝑠𝑡 electricity sold in the day-ahead market in scenario 𝑠 at time

𝑡 [kW]
𝐺
𝑠𝑡 generator electricity output at time 𝑡 of scenario 𝑠 [kW]

𝑄𝑅𝑇 ,𝑏
𝑠𝑡 electricity bought in the real-time market in scenario 𝑠 at

time 𝑡 [kW]
𝑄𝑅𝑇 ,𝑠𝑒

𝑠𝑡 electricity sold in the real-time market in scenario 𝑠 at time
𝑡 [kW]

𝐸𝐵
𝑠𝑡 battery storage of electricity at time 𝑡 of scenario 𝑠 [kWh]

𝛥𝑄𝐷𝐴,𝑏
𝑠𝑡 incremental quantity increase at price–quantity point of the

bidding curve for buying at day-ahead market electricity
price of scenarios 𝑠 at time 𝑡 [kW]

𝛥𝑄𝐷𝐴,𝑠𝑒
𝑠𝑡 incremental quantity increase at price–quantity point of the

bidding curve for selling at day-ahead market electricity
4

price of scenarios 𝑠 at time 𝑡 [kW]
3.2. Microgrid energy system

3.2.1. Battery constraints
The battery storage (𝐸𝐵

𝑠𝑡) in scenario 𝑠 at time 𝑡 is determined by
the battery storage at the previous time point adding the amount of
charged electricity accumulated from charge rate 𝑄𝐵,𝑐

𝑠𝑡 with efficiency
𝜂𝑐 and subtracting the amount of discharged electricity accumulated
rom discharge rate 𝑄𝐵,𝑑

𝑠𝑡 with efficiency 𝜂𝑑 over time step length 𝛿.

𝐵
𝑠𝑡 = 𝐸𝐵

𝑡0
+ 𝛿 ⋅ (𝜂𝑐 ⋅𝑄𝐵,𝑐

𝑠𝑡 − 1∕𝜂𝑑 ⋅𝑄𝐵,𝑑
𝑠𝑡 ), ∀𝑠, 𝑡 = 1 (1)

𝐵
𝑠𝑡 = 𝐸𝐵

𝑠,𝑡−1 + 𝛿 ⋅ (𝜂𝑐 ⋅𝑄𝐵,𝑐
𝑠𝑡 − 1∕𝜂𝑑 ⋅𝑄𝐵,𝑑

𝑠𝑡 ), ∀𝑠, 𝑡 > 1 (2)

here 𝐸𝐵
𝑡0

is the initial battery storage at the beginning of the time hori-
on. Moreover, the battery storage cannot exceed its capacity 𝐸𝐵,𝑚𝑎𝑥

nd must not fall below a minimum storage 𝐸𝐵,𝑚𝑖𝑛 at any time 𝑡 of
scenario 𝑠.

𝐵,𝑚𝑖𝑛 ≤ 𝐸𝐵
𝑠𝑡 ≤ 𝐸𝐵,𝑚𝑎𝑥, ∀𝑠, 𝑡 (3)

Furthermore, the battery storage at the end of the time horizon in
scenario 𝑠 must be greater or equal to the initial battery storage.

𝐸𝐵
𝑡0
≤ 𝐸𝐵

𝑠,𝑡=|𝑇 |, ∀𝑠 (4)

Charging and discharging the battery at the same time 𝑡 in scenario 𝑠
is not allowed.

𝑍𝐵,𝑐
𝑠𝑡 +𝑍𝐵,𝑑

𝑠𝑡 ≤ 1, ∀𝑠, 𝑡 (5)

where binary variable 𝑍𝐵,𝑐
𝑠𝑡 equals one if the battery is charging at time

𝑡 of scenario 𝑠, zero otherwise. Similarly, binary variable 𝑍𝐵,𝑑
𝑠𝑡 equals

one if the battery is discharging at time 𝑡 of scenario 𝑠, zero otherwise.
If the battery is in (dis)charge mode at time 𝑡 of scenario 𝑠, it cannot

exceed its maximum (dis)charge rate 𝑅𝐵 . Otherwise, its (dis)charge rate
must be zero.

𝑄𝐵,𝑐
𝑠𝑡 ≤ 𝑅𝐵 ∗ 𝑍𝐵,𝑐

𝑠𝑡 , ∀𝑠, 𝑡 (6)

𝑄𝐵,𝑑
𝑠𝑡 ≤ 𝑅𝐵 ∗ 𝑍𝐵,𝑑

𝑠𝑡 , ∀𝑠, 𝑡 (7)

To reduce long-term battery degradation the battery is not allowed to
charge or discharge more than a multiplier 𝐿𝐵 of its storage capacity
over the time horizon in scenario 𝑠.

𝛿 ⋅
∑

𝑡
𝑄𝐵,𝑐

𝑠𝑡 ≤ 𝐿𝐵 ⋅ 𝐸𝐵,𝑚𝑎𝑥, ∀𝑠 (8)

𝛿 ⋅
∑

𝑡
𝑄𝐵,𝑑

𝑠𝑡 ≤ 𝐿𝐵 ⋅ 𝐸𝐵,𝑚𝑎𝑥, ∀𝑠 (9)

3.2.2. Generator constraints
The generator electricity output 𝑄𝐺

𝑠𝑡 cannot exceed its capacity 𝑅𝐺

at any time 𝑡 of scenario 𝑠:

𝑄𝐺
𝑠𝑡 ≤ 𝑅𝐺 , ∀𝑠, 𝑡 (10)

3.2.3. Microgrid energy balance
An internal energy balance illustrated in Fig. 4 is applied to match

electricity supply and demand within the microgrid at time 𝑡 of scenario
𝑠. The left hand side of the balance equation represents electricity
supply, namely battery discharging, generator electricity output, PV
power (𝑄𝑃𝑉

𝑠𝑡 ) as well as electricity bought in the day-ahead market
(𝑄𝐷𝐴,𝑏

𝑠𝑡 ) and real-time market (𝑄𝑅𝑇 ,𝑏
𝑠𝑡 ). The right hand side of the

balance equation represents electricity consumption, namely battery
charging, electricity demand (𝑄𝐷

𝑡 ) as well as electricity sold in the
day-ahead market (𝑄𝐷𝐴,𝑠𝑒

𝑠𝑡 ) and real-time market (𝑄𝑅𝑇 ,𝑠𝑒
𝑠𝑡 ). Note, that

the battery does not actually consume or produce electricity in the
microgrid, but is treated as such from the perspective of the energy
balance boundary.

𝑄𝐵,𝑑
𝑠𝑡 +𝑄𝐺

𝑠𝑡 +𝑄𝑃𝑉
𝑠𝑡 +𝑄𝐷𝐴,𝑏

𝑠𝑡 +𝑄𝑅𝑇 ,𝑏
𝑠𝑡

= 𝑄𝐵,𝑐
𝑠𝑡 +𝑄𝐷

𝑡 +𝑄𝐷𝐴,𝑠𝑒
𝑠𝑡 +𝑄𝑅𝑇 ,𝑠𝑒

𝑠𝑡 , ∀𝑠, 𝑡 (11)
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Fig. 4. Microgrid internal energy balance.

3.3. Day-ahead market bidding

The day-ahead market requires particular market rules to hold
for the bidding decisions determined by the stochastic optimisation.
The following set of bidding constraints are inspired by the ERCOT
day-ahead market.

3.3.1. Monotonicity constraints
Bidding curves for buying (selling) electricity have to be mono-

tonically decreasing (increasing). Therefore, buy (sell) quantity of the
bidding curve at day-ahead market price of scenario 𝑠 at time 𝑡 has to
e equal or larger than the quantity of its closest but higher (lower)
rice of scenario 𝑠′.
𝐷𝐴,𝑏
𝑠𝑡 = 𝛥𝑄𝐷𝐴,𝑏

𝑠𝑡 , ∀𝑠 ∈ 𝑆𝑃
𝑡 , 𝑡 ∶ 𝑂𝑠𝑡 = 𝑂𝑚𝑎𝑥

𝑡 (12)
𝐷𝐴,𝑏
𝑠𝑡 = 𝑄𝐷𝐴,𝑏

𝑠′𝑡 + 𝛥𝑄𝐷𝐴,𝑏
𝑠𝑡 ,

∀(𝑠, 𝑠′) ∈ 𝑆𝑃
𝑡 , 𝑡 ∶ 𝑂𝑠′𝑡 = 𝑂𝑠𝑡 + 1 ∧ 1 < 𝑂𝑠′𝑡 ≤ 𝑂𝑚𝑎𝑥

𝑡 (13)
𝐷𝐴,𝑠𝑒
𝑠𝑡 = 𝛥𝑄𝐷𝐴,𝑠𝑒

𝑠𝑡 , ∀𝑠 ∈ 𝑆𝑃
𝑡 , 𝑡 ∶ 𝑂𝑠𝑡 = 1 (14)

𝐷𝐴,𝑠𝑒
𝑠𝑡 = 𝑄𝐷𝐴,𝑠𝑒

𝑠′𝑡 + 𝛥𝑄𝐷𝐴,𝑠𝑒
𝑠𝑡 ,

∀(𝑠, 𝑠′) ∈ 𝑆𝑃
𝑡 , 𝑡 ∶ 𝑂𝑠𝑡 = 𝑂𝑠′𝑡 + 1 ∧ 1 < 𝑂𝑠𝑡 ≤ 𝑂𝑚𝑎𝑥

𝑡 (15)

here 𝑂𝑠𝑡 represents the order of scenario 𝑠 from low to high day-
head market electricity prices at time 𝑡, 𝑂𝑚𝑎𝑥

𝑡 = max𝑠 (𝑂𝑠𝑡) represents
ts maximum at time 𝑡, positive slack variables 𝛥𝑄𝐷𝐴,𝑏

𝑠𝑡 and 𝛥𝑄𝐷𝐴,𝑠𝑒
𝑠𝑡

epresent the incremental quantity increase of the bidding curve at time
for buying and selling electricity at day-ahead market electricity price
𝐷𝐴
𝑠𝑡 of scenario 𝑠. Subset 𝑆𝑃

𝑡 represents scenarios with distinct day-
ahead market electricity price values at time 𝑡, i.e. let 𝑠, 𝑠′ ∈ 𝑆𝑃

𝑡 at
ime 𝑡 then 𝐶𝐷𝐴

𝑠𝑡 ≠ 𝐶𝐷𝐴
𝑠′≠𝑠,𝑡.

.3.2. Nonanticipativity constraints
To respect nonanticipativity of the uncertainty ahead when bidding

urves are decided, a certain realisation of an electricity price must
mply a certain accepted quantity after market clearing [13]. This
uarantees that committed buy (sell) bid quantities over the scenario
et at time 𝑡 root from a single buy (sell) bidding curve submitted for
his hour as stage one decision that can be unambiguously constructed
sing the solution of 𝑄𝐷𝐴,𝑏

𝑠𝑡 (𝑄𝐷𝐴,𝑠𝑒
𝑠𝑡 ). Therefore, buy (sell) quantities at

ay-ahead market electricity prices of scenario 𝑠 and 𝑠′ have to be equal
if prices of both scenarios are the same at time 𝑡.

𝑄𝐷𝐴,𝑏
𝑠𝑡 = 𝑄𝐷𝐴,𝑏

𝑠′𝑡 , ∀𝑠 ∈ 𝑆𝑃
𝑡 , 𝑠

′ > 𝑠, 𝑡 ∶ 𝐶𝐷𝐴
𝑠𝑡 = 𝐶𝐷𝐴

𝑠′𝑡 (16)

𝑄𝐷𝐴,𝑠𝑒
𝑠𝑡 = 𝑄𝐷𝐴,𝑠𝑒

𝑠′𝑡 , ∀𝑠 ∈ 𝑆𝑃
𝑡 , 𝑠

′ > 𝑠, 𝑡 ∶ 𝐶𝐷𝐴
𝑠𝑡 = 𝐶𝐷𝐴

𝑠′𝑡 (17)

3.3.3. Price–quantity point limit constraints
If the bid quantity at day-ahead market electricity price of scenario

𝑠 of the bidding curve for buying (selling) at time 𝑡 increases incre-
𝐷𝐴,𝑏 𝐷𝐴,𝑠𝑒
5

mentally by 𝛥𝑄𝑠𝑡 (𝛥𝑄𝑠𝑡 ), it represents an active price–quantity
Fig. 5. Mathematical construction of bid points for a bidding curve for buying
electricity at time 𝑡.

point and implies binary variable 𝑌 𝐷𝐴,𝑏
𝑠𝑡 (𝑌 𝐷𝐴,𝑠𝑒

𝑠𝑡 ) to be equal one. Addi-
tionally, the incremental quantity increase of any active price–quantity
point must exceed a lower threshold (𝛥𝑄𝑚𝑖𝑛).

𝛥𝑄𝑚𝑖𝑛 ⋅ 𝑌 𝐷𝐴,𝑏
𝑠𝑡 ≤ 𝛥𝑄𝐷𝐴,𝑏

𝑠𝑡 ≤ 𝑀𝑄,𝑏 ⋅ 𝑌 𝐷𝐴,𝑏
𝑠𝑡 , ∀𝑠 ∈ 𝑆𝑃

𝑡 , 𝑡 (18)

𝛥𝑄𝑚𝑖𝑛 ⋅ 𝑌 𝐷𝐴,𝑠𝑒
𝑠𝑡 ≤ 𝛥𝑄𝐷𝐴,𝑠𝑒

𝑠𝑡 ≤ 𝑀𝑄,𝑠𝑒 ⋅ 𝑌 𝐷𝐴,𝑠𝑒
𝑠𝑡 , ∀𝑠 ∈ 𝑆𝑃

𝑡 , 𝑡 (19)

where 𝑀𝑄,𝑏 and 𝑀𝑄,𝑠𝑒 are sufficiently large values and binary variable
𝑌 𝐷𝐴,𝑏
𝑠𝑡 (𝑌 𝐷𝐴,𝑠𝑒

𝑠𝑡 ) equals one if the bid quantity at day-ahead market
electricity price of scenario 𝑠 increases incrementally and forms an
active price–quantity point of the bidding curve for buying (selling) at
time 𝑡. Conversely, we label a bid point as inactive if its bid quantity
does not increase incrementally and binary variable 𝑌 𝐷𝐴,𝑏

𝑠𝑡 (𝑌 𝐷𝐴,𝑠𝑒
𝑠𝑡 )

equals zero. Fig. 5 illustrates the mathematical construction of an
inactive and active price–quantity point for a generic buy bidding
curve. Notice that inactive price–quantity points add no information to
bidding curves, hence are redundant once a bidding solution has been
obtained. Consequently, bidding curves as first stage decisions can be
expressed in a compact form by 𝐵𝑏

𝑡 = {(𝑄𝐷𝐴,𝑏
𝑠𝑡 , 𝐶𝐷𝐴

𝑠𝑡 ) ∣ 𝑠 ∈ 𝑆𝑆𝑡𝑜𝑐ℎ ∧
𝑌 𝐷𝐴,𝑏
𝑠𝑡 = 1} for buying and 𝐵𝑠𝑒

𝑡 = {(𝑄𝐷𝐴,𝑠𝑒
𝑠𝑡 , 𝐶𝐷𝐴

𝑠𝑡 ) ∣ 𝑠 ∈ 𝑆𝑆𝑡𝑜𝑐ℎ∧𝑌 𝐷𝐴,𝑠𝑒
𝑠𝑡 = 1}

for selling for each time 𝑡.
Electricity markets often restrict the number of points per bidding

curve. Thus, the sum of active price–quantity points of the bidding
curve for buying (selling) electricity at time 𝑡 is not allowed to exceed
𝑁 points per curve.
∑

𝑠∈𝑆𝑃
𝑡

𝑌 𝐷𝐴,𝑏
𝑠𝑡 ≤ 𝑁, ∀𝑡 (20)

∑

𝑠∈𝑆𝑃
𝑡

𝑌 𝐷𝐴,𝑠𝑒
𝑠𝑡 ≤ 𝑁, ∀𝑡 (21)

where the value of 𝑁 is determined by market rules, for instance
𝑁 = 10 in the ERCOT or the California Independent System Operator
(CAISO) day-ahead market. An illustrative example of a feasible solu-
tion for a buy bidding curve together with numerical values is provided
in Fig. 6.

3.3.4. Simultaneous buy and sell bid constraints
Although both buy and sell bidding curves can be submitted to-

gether at time 𝑡, only one should be activated in a certain market
clearing outcome. This requirement can be violated if the price of a sell
bidding curve point falls below the price of a buy bidding curve point,
and the day-ahead market price clears in between both prices. Auxiliary
variables 𝑃 𝑢𝑝,𝑏

𝑡 and 𝑃 𝑙𝑜,𝑠𝑒
𝑡 are introduced to represent the highest price
value of active price–quantity points of the bidding curve for buying
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Fig. 6. Illustrative example of (a) a feasible solution of a buy bidding curve (solid blue line) constructed from discrete price–quantity points (green x-marks) at an hour 𝑡 using
five scenarios and (b) corresponding numerical values.
b
b
b

and the lowest price value of active price–quantity pairs of the bidding
curve for selling at time 𝑡, respectively. Their values are determined by
the following logical constraints.

𝐶𝐷𝐴
𝑠𝑡 ⋅ 𝑌 𝐷𝐴,𝑏

𝑠𝑡 ≤ 𝑃 𝑢𝑝,𝑏
𝑡 , ∀𝑠 ∈ 𝑆𝑃

𝑡 , 𝑡 (22)

𝑃 𝑙𝑜,𝑠𝑒
𝑡 ≤ 𝐶𝐷𝐴

𝑠𝑡 +𝑀𝑃 ⋅ (1 − 𝑌 𝐷𝐴,𝑠𝑒
𝑠𝑡 ), ∀𝑠 ∈ 𝑆𝑃

𝑡 , 𝑡 (23)

where 𝑀𝑃 is a sufficiently large value. In case all price–quantity points
of the buy (sell) bidding curve at time 𝑡 are inactive, these logical
constraints are non-binding.

Due to the monotonicity property enforced in Eqs. (12)–(15), it is
sufficient that the highest price value of active price–quantity points
of the bidding curve for buying has to be lower than the lowest price
value of active price–quantity points of the bidding curve for selling at
time 𝑡.

𝑃 𝑢𝑝,𝑏
𝑡 ≤ 𝑃 𝑙𝑜,𝑠𝑒

𝑡 + 𝜀, ∀𝑡 (24)

where a small positive number 𝜀 ensures strict inequality.

3.4. Objective function

The objective function aims to minimise the expected total cost 𝑇𝐶
of the microgrid over the day ahead. The total cost of each scenario
with probability 𝜋𝑠 comprises four terms: Battery degradation cost (O1)
is the product of degradation cost 𝐶𝐵,𝑑𝑒𝑔𝑟 with the sum of charging and
discharging over the day ahead in scenario 𝑠. Generator fuel cost (O2)
is calculated from flat gas price 𝐶𝑔𝑎𝑠 charged for the generator heat
input, which is its total electricity output over the day ahead in scenario
𝑠 multiplied with the generator heat rate 𝐻𝑅𝐺. Day-ahead market net
cost (O3) is calculated as the sum of the product between the net of
electricity bought minus electricity sold in the day-ahead market and
its day-ahead market electricity price over the day ahead in scenario 𝑠.
Real-time market net cost (O4) is calculated as the sum of the product
between electricity bought in the real-time market and the real-time
market price for buying 𝐶𝑅𝑇 ,𝑏

𝑠𝑡 minus the product between electricity
sold in the real-time market and the real-time market price for selling
𝐶𝑅𝑇 ,𝑠𝑒
𝑠𝑡 over the day ahead in scenario 𝑠.

min 𝑇𝐶 =
∑

𝑠

(

𝜋𝑠 ⋅
(

O1, battery degradation cost
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝛿 ⋅ 𝐶𝐵,𝑑𝑒𝑔𝑟 ⋅

∑

𝑡
(𝑄𝐵,𝑐

𝑠𝑡 +𝑄𝐵,𝑑
𝑠𝑡 )

+

O2, generator fuel cost
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝛿 ⋅𝐻𝑅𝐺 ⋅ 𝐶𝑔𝑎𝑠 ⋅

∑

𝑄𝐺
𝑠𝑡
6

𝑡
p

+

O3, day-ahead market net cost
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝛿 ⋅

∑

𝑡
𝐶𝐷𝐴
𝑠𝑡 ⋅ (𝑄𝐷𝐴,𝑏

𝑠𝑡 −𝑄𝐷𝐴,𝑠𝑒
𝑠𝑡 )

+

O4, real-time market net cost
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝛿 ⋅

∑

𝑡
(𝐶𝑅𝑇 ,𝑏

𝑠𝑡 ⋅𝑄𝑅𝑇 ,𝑏
𝑠𝑡 − 𝐶𝑅𝑇 ,𝑠𝑒

𝑠𝑡 ⋅𝑄𝑅𝑇 ,𝑠𝑒
𝑠𝑡 )

)

)

(25)

where real-time market prices of scenario 𝑠 at time 𝑡 are calculated as:

𝐶𝑅𝑇 ,𝑏
𝑠𝑡 = 𝐶𝐷𝐴

𝑠𝑡 + 𝜙 ⋅ 𝐶𝐷𝐴
𝑠𝑡 , ∀𝑠, 𝑡 (26)

𝐶𝑅𝑇 ,𝑠𝑒
𝑠𝑡 = 𝐶𝐷𝐴

𝑠𝑡 − 𝜙 ⋅ 𝐶𝐷𝐴
𝑠𝑡 , ∀𝑠, 𝑡 (27)

Parameter 𝜙 determines the extent of premium charge that is assumed
to be paid for electricity traded in the real-time market. Notice that
the objective function Eq. (25) can be easily transformed into a profit
maximisation problem by considering max 𝑇𝑃 , where 𝑇𝑃 represents
total profit and 𝑇𝑃 = −𝑇𝐶.

3.5. Overview of optimisation models

The proposed stochastic optimisation problem for bidding is re-
ferred as the SN-model. This shortcut expresses that 𝑁 price values
can be selected via logical constraints out of about |𝑆𝑠𝑡𝑜𝑐ℎ

| price values
available in the stochastic optimisation to construct bidding curves
for the microgrid. Additionally, SN10 refers to the SN-model with
parameter value 𝑁 = 10, expressing a limit of ten bid points per
bidding curve in the day-ahead market. We further investigate the
SN-model with 𝑁 = 3 and 𝑁 = 5, denoted as SN3, SN5. It is bench-
marked against a deterministic model denoted as Det-model, which is
outlined in Appendix A. Furthermore, we compare the SN-model with
two alternative stochastic bidding approaches from literature denoted
as S-model and N-model outlined in Appendix B. The Det-model is
scenario independent using expected values of uncertain parameters.
Also, it features a simplified bidding approach using self-scheduled
bids, whose bid-quantities materialise independent of the electricity
price realisation. Besides, key feature of the S-model is a relaxation
of constraints on the number of active price–quantity points utilised
per bidding curves. Key feature of the N-model is a heuristic that pre-
selects | | price thresholds for the construction of bidding curve points
in the stochastic optimisation. We use shortcuts N3, N5, N10 to refer
to the N-model with | | = 3, | | = 5 and | | = 10 prefixed
id price values per time period. Essentially, all examined stochastic
idding models share the same microgrid energy system constraints,
ut use different constraints for the day-ahead market bidding. Table 1

rovides an overview of all considered optimisation problems.



Applied Energy 336 (2023) 120847R. Herding et al.

3

b
i
u
T
t
M

Table 1
Microgrid bidding models tested in the computational study.
Model Uncertainty Reference of bidding constraints Equations

SN3, SN5, SN10 Stochastic This work (1)–(25)
Det Deterministic Based on literature [17,20,21] (A.3)–(A.14)
S Stochastic Based on literature [18,28,38,39] (1)–(11), (25), (B.1)–(B.4)
N3, N5, N10 Stochastic Based on literature [26,27,32,33,37,40,41] (1)–(11), (25), (B.9)–(B.12)
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Fig. 7. Solution procedure.

.6. Solution approach

A solution procedure was applied to evaluate day-ahead market
idding decisions for a particular day. The procedure is summarised
n Fig. 7. Scenario sets were generated per random variable for the
ncertainty of the day ahead and then combined to a scenario tree.
wo scenario sets were drawn randomly without replacement from
he super set: a set for the stochastic optimisation and a set for the
onte Carlo (MC) simulation denoted as 𝑆𝑠𝑡𝑜𝑐ℎ and 𝑆𝑀𝐶 , respectively.

The stochastic optimisation problem was solved and day-ahead market
bidding curves as first stage decisions were obtained. In case of the
deterministic benchmark, the deterministic optimisation problem was
solved instead and self-scheduled bids were obtained. Bidding decisions
for the day-ahead market were then locked and tested through a Monte
Carlo simulation using 𝑆𝑀𝐶 . The Monte Carlo simulation is conducted
as follows:

Reveal uncertainty in form of scenario 𝑠 ∈ 𝑆𝑀𝐶 :

(i) obtain realisation of random variables:
𝐶̂𝐷𝐴
𝑡 ← 𝐶𝐷𝐴

𝑠𝑡 and 𝑄̂𝑃𝑉
𝑡 ← 𝑄𝑃𝑉

𝑠𝑡
(ii) determine day-ahead market commitments:

𝑄̂𝐷𝐴,𝑏
𝑡 ← ClearBuyCurves(𝐵𝑏

𝑡 , 𝐶̂𝐷𝐴
𝑡 )

𝑄̂𝐷𝐴,𝑠𝑒
𝑡 ← ClearSellCurves(𝐵𝑠𝑒

𝑡 , 𝐶̂𝐷𝐴
𝑡 ) where 𝐵𝑏

𝑡 and 𝐵𝑠𝑒
𝑡 represent

submitted bidding curves at time 𝑡
(iii) solve Det-model with fixed 𝑄̂𝐷𝐴,𝑏

𝑡 and 𝑄̂𝐷𝐴,𝑠𝑒
𝑡 , minimising total

cost 𝑇𝐶
7

(iv) store optimal total cost as:
Monte Carlo objective value 𝑀𝐶𝑠 ← 𝑇𝐶

(v) reveal next 𝑠 and go back to (i); stop when entire 𝑆𝑀𝐶 is covered

seudocodes for ClearBuyCurves(⋅) and ClearSellCurves(⋅) are
escribed by Algorithms C.1 and C.2 in Appendix C, respectively. The
onte Carlo mean objective value is obtained as the average of total

osts over 𝑆𝑀𝐶 :

C mean objective value =
∑

𝑠∈𝑆𝑀𝐶

(𝑀𝐶𝑠)∕|𝑆𝑀𝐶
| (28)

t is worth noting that the out-of-sample test was conducted using
imulated realisations of random variables rather than their actual
bservations over the day. By simplifying the test environment and
eeping scenario generation simple, the focus of this work remained
n the actual decision making process represented through different mi-
rogrid bidding models. It further allowed testing of bidding decisions
nder a significant number of possible realisations.

. Computational study

In this section, a computational study is conducted to demonstrate
he applicability of the proposed stochastic optimisation problem to
enerate bidding curves for a day-ahead electricity market. The solution
rocedure in Fig. 7 is applied for each day of two separate weeks with
ifferent time series characteristics. They are denoted as test week 1
TW1) and test week 2 (TW2):

• Test Week 1: Date range 05/03/2019 - 11/03/2019
(high electricity price peaks and volatility, lower PV power,
higher electricity demand)

• Test Week 2: Date range 05/11/2019 - 11/11/2019
(low electricity price peaks and volatility, higher PV power, lower
electricity demand)

ach day of the two weeks is characterised by predicted uncertainty
paces for the day-ahead electricity price and PV power as well as
bserved demand profiles. Furthermore, the cyclicity assumption of the
attery to start each day with a fixed initial storage allows to apply the
resented solution procedure for each day independently.

.1. Input data

PV power data with a maximum power of 300 kW were simulated
rom global horizontal irradiance data obtained from the National
olar Radiation Data Base of the National Renewable Energy Labora-
ory [42]. For the sake of simplicity, temperature dependency of the
V power was neglected. Day-ahead market electricity price data were
aken from the ERCOT Houston zone. Electricity demand data were
eceived from the industrial partner. Parameter values of the battery
re summarised in Table 2 and parameter values of the generator are
ummarised in Table 3. Real-time market prices were considered to be
0% less favourable than day-ahead market prices, which is similar to
ef. [43] but lower than for instance in Ref. [41].
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Table 2
Battery parameter values in computational study.

Symbol Parameter Value

𝑅𝐵 Maximum (dis)charge rate [kW] 250
𝐿𝐵 Multiplier for battery utilisation limit [−] 1
𝐸𝐵,𝑚𝑖𝑛 Minimum battery storage [kWh] 200
𝐸𝐵,𝑚𝑎𝑥 Maximum battery storage [kWh] 1000
𝐸𝐵

𝑡0
Initial battery storage [kWh] 500

𝜂𝑐 Charge efficiency [−] 0.95
𝜂𝑑 Discharge efficiency [−] 0.95
𝐶𝐵,𝑑𝑒𝑔𝑟 Degradation cost [$∕kWh] 0.0015

Table 3
Generator parameter values in computational study.
Symbol Parameter Value

𝑅𝐺 Maximum power output [kW] 125
𝐻𝑅𝐺 Heat rate [MBTU∕kWel] 9.8
𝐶𝑔𝑎𝑠 Natural gas price [$∕MBTU] 0.003

4.2. Scenario generation

Scenarios for the day-ahead market electricity price were obtained
from our industrial partner, whose generation method was based
on a stochastic differential equation approach. Reported scenarios
with a look-back window of 30 days and a weighting approach on
prior days were considered [44]. PV power scenarios were generated
from a seasonal autoregressive integrated moving average (SARIMA)
model. SARIMA models can be generally expressed by hyperparameters
(𝑝, 𝑑, 𝑞)𝑥(𝑃 ,𝐷,𝑄)𝑆 , where 𝑝 represents the order of autoregressive
arameters, 𝑑 is the integration order, 𝑞 is the order of moving average
arameters and 𝑃 ,𝐷,𝑄 are their seasonal equivalents with seasonality
rder 𝑆 [45]. SARIMA models were then identified as (0, 1, 2)𝑥(0, 1, 1)24

for TW1 and (1, 0, 0)𝑥(0, 1, 1)24 for TW2 based on correlation and auto-
correlation plots on the training data. Model training was performed on
historical PV power data from a look-back window of 35 days. Once
a model had been trained, a point forecast 𝑄̃𝑃𝑉

𝑡 for the PV power
over the day ahead was generated. In addition, univariate normal
distributions 𝑡(𝜇𝑡, 𝜎𝑡) for each ’hour of the day’ 𝑡 were retrieved from
the forecast error over the training data, thus resulting in 24 individual
error distributions per day. For instance, 𝑡=5 represents the forecast
error distribution observed over the fifth hour of all days from the
training data.

Finally, PV power scenarios were generated by the summation of
point forecast at time 𝑡 and error values 𝜀𝑠𝑡 sampled for each 𝑠 from
the forecast error distributions:

𝑄𝑃𝑉
𝑠𝑡 = 𝑄̃𝑃𝑉

𝑡 + 𝜀𝑠𝑡, ∀𝑠, 𝑡 (29)

𝜀𝑠𝑡 ∼ 𝑡(𝜇𝑡, 𝜎𝑡), ∀𝑠, 𝑡 (30)

In total, 1000 PV power scenarios and 1000 day-ahead market elec-
tricity price scenarios were generated for each day. From the permuted
scenario tree with cardinality of 1M scenarios, 400 scenarios were
randomly drawn for the stochastic optimisation and 10k scenarios for
the Monte Carlo simulation.

4.3. Seasonal characteristics of test week data

Test weeks TW1 and TW2 feature different seasonal characteristics
of electricity demand data, electricity price scenarios and PV power
scenarios under which the microgrid bidding strategy is examined.
Demand profiles displayed in Fig. 8 indicate that electricity demand
was generally higher in TW1 compared to TW2. Moreover, it can
be seen that demand profiles of non-working days such as weekends
are characterised by a much lower, flat profile compared to regular
working days. Furthermore, Fig. 9 displays hourly mean values and
Fig. 10 displays hourly standard deviation of scenario sets used in the
8

Fig. 8. Electrical demand observed over tested weeks.

Fig. 9. Hourly mean values of scenarios from the stochastic optimisation for (a) the
day-ahead market electricity price and (b) PV power over tested weeks.

stochastic optimisation. Key differences between both test weeks are
higher mean price peaks on the majority of days in TW1 compared
to TW2, with peaks occurring around 6 to 8 a.m. and 17 to 19 a.m.;
significantly higher electricity price variability in TW1 around time
periods of price peaks; lower mean PV power in TW1 compared to TW2
but a similar variability around its scenario mean.

4.4. Computational environment

All calculations were executed on an Intel Xeon Processor E5-1650
v3 @ 3.5 GHz with 32 GB memory. SARIMA models were implemented
in Python and their training was performed through the Statsmodels
package version 0.12.1 [46]. Optimisation problems were modelled in
GAMS 27.1.0 and solved with CPLEX 12.9.0.0.. Termination criteria
for all optimisations were set to one hour CPU time limit or global
optimality.

5. Results and discussion

In this section, objective values are displayed as ‘profit’ rather than
‘cost’ values for a more intuitive discussion, because total cost values
from the microgrid bidding were often found to be negative.

5.1. Value of stochastic solution

In general, results demonstrate that bidding curves obtained from
stochastic microgrid models outperformed self-scheduled bids obtained
from the deterministic microgrid model. This can be seen in Fig. 11,

which compares daily average Monte Carlo mean objective values from
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Fig. 10. Hourly standard deviation of scenarios from the stochastic optimisation for
(a) the day-ahead market electricity price and (b) PV power over tested weeks.

test days in TW1 and TW2 for each microgrid bidding model. From
the displayed profit values, the value of stochastic solution can be
calculated as the difference between Monte Carlo mean objective values
of a stochastic solution for microgrid bidding (N-, S- or SN-model)
and of the deterministic solution using expected values for uncertain
parameters (Det-model) [13]. The average value of stochastic solution
for the SN10-model was 5.01 $ per test day in TW1, which is a profit
ncrease well over 40% on the deterministic solution (see Fig. Fig. 11).
he average value of stochastic solution in TW2 was 3.96 $ per test
ay, which corresponds to a profit increase of above 20% on the

deterministic solution (see Fig. Fig. 11). Table 4 indicates that stochas-
tic solutions generally led to higher profits in the day-ahead market
compared to the deterministic solution. By contrast, the deterministic
solution lead on average to small profits in the real-time market, while
all stochastic solutions observed minor losses. Consequently, stochastic
models most likely took advantage of information in 𝑆𝑠𝑡𝑜𝑐ℎ and the
lexibility of bidding curves to balance moderate real-time market cost
gainst higher profits in the day-ahead market.

.2. Comparison of stochastic bidding models

As stated earlier, the SN-model has been designed to optimally
tilise multiple price–quantity points of constructed microgrid bidding
urves without exceeding a maximum point number imposed by market
ules. It is important to reiterate that the S-model is a relaxation of the
roposed SN-model. Thus, it is likely to provide an upper bound for
he expected profit of the SN-model solution. Therefore, the aim of the
N-model should be to perform as close as possible to the S-model in
erms of profit.

Fig. 11 reveals that average profits from the SN-model solutions
ere exceptionally close to profit values from the S-model solution.
ence, for the examined test days of both weeks the SN-model suc-
essfully compressed the number of active price–quantity points per
idding curve per time period into a market-feasible range as well as
nforced 𝛥𝑄𝑚𝑖𝑛 with only minor additional cost compared to the S-
odel. This observation is further stressed in Figs. 12 and 13 which

isualises normalised profit values for each test week on a daily res-
lution. The normalisation was conducted with min and max profit
alues per day across all microgrid bidding models, whose underlying
umerical values are given in Table C.1 of Appendix C.

For instance, Fig. 12 shows that on six out of seven days SN-
9

odel solutions performed above 0.95 normalised profit, i.e. close to
Fig. 11. Daily average Monte Carlo mean objective value (black) and improvement
over the deterministic solution (blue, italic) in (a) test week 1 and (b) test week 2.

the maximum profit achieved by the S-model. On the first day of TW1
and fifth and seventh day of TW2, SN-model solutions performed less
close to the S-model solution but still well above 0.8 normalised profit.
Notably, only on the first day of TW1 the S-model did not lead the profit
value ranking, which may partly be caused by a generally tight range of
profit values between different bidding models on this particular day.

Moreover, SN-model solutions performed on average better than
N-model solutions. Particularly, daily average profits from the SN10-
model were 2% greater than from the N10-model in TW1 and more
han 8% greater in TW2. Also, the SN-model demonstrated a better
esilience against tighter limits on the number of price–quantity pairs
ompared to the N-model. This can be visually observed for both test
eeks in Figs. 12 and 13, in which the spread between profit values

rom the N3- and N10-model was larger than from the SN3- and SN10-
odel in the majority of days. It is reasonable to argue that profit

eductions from allowing fewer price–quantity points per bidding curve
ere damped through the optimisation of bid price values for bidding

urves in the SN-model compared to the heuristical approach of fixing
id price values using the N-model.

Furthermore, the squeezing effect of the three SN-models on the
tilised number of price–quantity points is visualised in Fig. 14.

As expected, point numbers utilised by the S-model were usually
igher and repeatedly exceeded the point cap of ten points per curve
hat is required by ERCOT market rules. This is due to the absence of
ogical constraints in the S-model on the maximum number of points
er bidding curve and the requirement of 𝛥𝑄𝑚𝑖𝑛. For instance, buy
idding curve in the first hour of TW1 contained eleven price–quantity
oints (see Fig. 14), but quantity values of these points were in close
ange of one another, between 87.8 kW − 99.5 kW. Also, it can be seen

that bidding curves from the SN10-model frequently utilised fewer
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Table 4
Monte carlo mean objective value breakdowna, averaged over seven test days of each test week.

Objective termb Model

Det N3 N5 N10 SN3 SN5 SN10 S

TW1

O1 [$] −2.58 −2.01 −1.93 −2.02 −2.23 −2.24 −2.23 −2.20
O2 [$] −33.64 −32.57 −32.64 −31.97 −33.16 −33.11 −33.23 −33.05
O3 [$] 46.53 50.32 51.33 52.60 55.24 55.26 55.32 55.21
O4 [$] 1.45 −1.31 −1.93 −3.18 −3.13 −3.14 −3.08 −3.09

TW2

O1 [$] −1.97 −1.85 −1.93 −2.02 −2.21 −2.20 −2.21 −2.17
O2 [$] −17.28 −17.12 −17.06 −18.15 −19.16 −19.04 −18.98 −18.93
O3 [$] 35.93 42.06 43.17 44.64 45.91 45.81 45.79 45.64
O4 [$] 2.78 −1.18 −1.72 −1.51 −1.22 −1.16 −1.19 −1.00

aPositive values are profit, negative values are cost.
bO1 is battery degradation, O2 is generator fuel, O3 is day-ahead market, O4 is real-time market.
Fig. 12. Normalised Monte Carlo mean objective values of first stage bidding decisions from different bidding model approaches on each day of test week 1 (a) in full detail and
(b) zoomed between 0.9 to 1.0 normalised profit.
Fig. 13. Normalised Monte Carlo mean objective values of first stage bidding decisions from different bidding model approaches on each day of test week 2 (a) in full detail and
(b) zoomed between 0.9 to 1.0 normalised profit.
10
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Fig. 14. Count of active price–quantity points per hourly bidding curve for (a) buying in test week 1, (b) buying in test week 2, (c) selling in test week 1 and (d) selling in test
eek 2.
oints than the present limitation of ten points per curve. This suggests
hat the examined microgrid usually did not need the full cardinality
f ten price–quantity points to express its optimal bidding decisions.
owever, in as many as six out of seven days in TW2 sell bidding curves
f the SN10-model solution utilised their upper limit of ten points at
east once during each day (see Fig. 14). As an example, bidding curves
f the SN3- and SN10-model solution from the fourth day of TW2 are
hown in Fig. 15 for buying and in Fig. 16 for selling electricity.

.3. Computational results

The SN3-, SN5- and SN10-model consisted of around 130 000 equa-
ions and 132 000 variables (32 570 were binary). They were solved

on average to 1.56%, 1.03% and 0.95% optimality gap, respectively.
Full computational statistics including for reference bidding models
are given in Table C.2 of Appendix C. Results demonstrate that near
optimal solutions for the SN-models were found within an acceptable
time range of up to one hour. This was achieved despite a larger model
size of SN-models, which incorporates additional market rules and the
optimal selection of bid prices, compared to reference bidding models
11

for the same scenario set and microgrid energy system.
5.4. Expected microgrid energy balance

Expected electricity flows of the microgrids internal energy balance
obtained from the Monte Carlo simulation of the SN10-model solu-
tion are displayed in Fig. 17. Electricity leaving the energy balance
boundary is represented by a negative sign. Electricity was most likely
bought from electricity markets early in the day to charge up the
battery at low electricity prices, late in the day to recharge the initial
battery storage, and occasionally on work-days in TW1 around noon to
satisfy electricity demand. Electricity was most likely sold to the day-
ahead market at peak electricity prices in the morning and during late
afternoon. This electricity was usually provided by battery discharge
and the generator. Furthermore, electricity was sold throughout the
day on weekend days due to low electricity demand or on work-days
when excess PV power could not be stored in the battery (see hours
0–23 in Fig. 17) or when the generator became active (see hours 0–
47 in Fig. 17). Due to higher PV power and lower demand profiles in
TW2, more excess electricity was sold to electricity markets compared
to TW1.

In both test weeks, the generator was occasionally activated as
a back up to satisfy electricity demand at times of low PV power.
Additionally, it was activated to sell electricity to markets when elec-
tricity prices exceeded the generators marginal cost. Finally, real-time

market trades for the SN10-model solution were most likely for buying
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Fig. 15. Buy bidding curves from the SN3- and SN10-model solution for the fourth day of test week 2.
Fig. 16. Sell bidding curves from the SN3- and SN10-model solution for the fourth day of test week 2.
electricity in the morning, but traded quantities were generally low
throughout each day.

6. Concluding remarks

In this work, the day-ahead market bidding problem of a microgrid
consisting of a battery, generator, PV system and electricity demand
has been addressed. A two-stage stochastic MILP model has been
developed with uncertainty considered in the electricity market price
and PV power. A particular focus of the proposed microgrid bidding
model is the optimal selection of price values for day-ahead market
bidding curves that are optimised together with the microgrid’s energy
schedule. Microgrid bidding decisions have been evaluated on a large
set of possible realisations through a Monte Carlo simulation. In a com-
putational study, the evaluation procedure has been applied for each
day of two separate test weeks with different seasonal characteristics
of underlying time series data.

Results demonstrate a higher profitability of the proposed bidding
model compared to a deterministic benchmark model that relies on
self-scheduled bids. Also, it has achieved higher profits than a bid-
ding approach from literature that relies on equidistantly fixed price
values to construct bidding curves. Furthermore, the proposed bidding
model has kept the number of price–quantity points per bidding curve
12

s

successfully in a market-feasible range with only minor additional
cost and a moderate increase of computational time. The computa-
tional time could potentially be further reduced by scenario reduction
methods. Finally, the optimisation of price values to construct bidding
curves has lead to a strong resilience of profit from the energy system
against a compression of bidding curves towards fewer price–quantity
points. These advantages offer potential to use the examined bidding
approach for other energy systems that would benefit from multiple
price–quantity points in their bidding curves, but would need to curb
the number of utilised bid points per curve to a market feasible range.
Obtained results have been subject to model assumptions that may
be improved in future works. Real-time market bidding and its price
uncertainty could be modelled in more detail to take advantage from
profit opportunities in different markets. Also, future work could extend
the presented microgrid bidding problem to a multi-objective approach,
in which optimal bidding curves strike a balance between total cost
and the financial risk of potentially high, undesirable losses from
participating in electricity markets.
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Appendix A. Deterministic microgrid optimisation problem

This section outlines the deterministic microgrid optimisation prob-
lem, denoted as Det-model. It uses an analogue notation to the stochas-
tic microgrid model. However, it drops the scenario index out of
variable and equation domains. In addition, all variables from the
deterministic model are marked with a hat decorator. For instance,
battery charge rate 𝑄𝐵,𝑐

𝑠𝑡 is expressed as 𝑄̂𝐵,𝑐
𝑡 in the deterministic model.

The deterministic microgrid optimisation problem is used in the
following two circumstances within this work: The Det-model is ap-
plied before uncertainty reveals. Here, random variables at time 𝑡 are
considered as their expected values calculated over the set of stochastic
scenarios:

𝐶̂𝐷𝐴
𝑡 =

∑

𝑠∈𝑆𝑠𝑡𝑜𝑐ℎ

(𝜋𝑠 ⋅ 𝐶𝐷𝐴
𝑠𝑡 ), ∀𝑡 (A.1)

𝑄̂𝑃𝑉
𝑡 =

∑

𝑠∈𝑆𝑠𝑡𝑜𝑐ℎ

(𝜋𝑠 ⋅𝑄𝑃𝑉
𝑠𝑡 ), ∀𝑡 (A.2)
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Table C.1
Monte Carlo mean objective valuesa in test week 1 (TW1) and test week 2 (TW2) [$].

Model

Det N3 N5 N10 SN3 SN5 SN10 S

TW1

Day1 32.40 33.64 33.67 33.72 33.54 33.55 33.56 33.69
Day2 10.34 13.85 13.97 14.13 14.59 14.64 14.65 14.70
Day3 −2.87 −0.25 0.04 0.46 1.73 1.77 1.77 1.85
Day4 −4.78 −2.52 −2.36 −1.60 0.79 0.83 0.72 0.88
Day5 33.51 36.31 36.84 37.75 39.01 39.05 39.07 39.17
Day6 36.92 40.51 41.30 42.38 43.81 43.86 43.91 44.00
Day7 −23.21 −20.55 −19.74 −18.82 −16.33 −16.30 −16.29 −16.20

TW2

Day1 4.80 7.36 7.90 8.47 8.96 9.01 9.01 9.19
Day2 0.51 2.66 3.36 3.69 4.40 4.45 4.46 4.57
Day3 13.14 16.02 16.61 17.05 17.57 17.64 17.56 17.71
Day4 15.78 18.38 18.99 19.18 19.54 19.55 19.62 19.78
Day5 53.32 54.45 54.67 55.07 55.03 55.09 55.13 55.21
Day6 28.09 31.68 32.37 33.54 34.02 34.09 34.12 34.17
Day7 20.56 22.77 23.33 23.70 23.72 23.98 24.02 24.13

aPositive values are profit, negative values are cost.
p
p
T
E
T
𝛥

𝑄

𝑄

articularly, in this case first stage bidding decisions 𝑄̂𝐷𝐴,𝑏
𝑡 and 𝑄̂𝐷𝐴,𝑠𝑒

𝑡
are considered as self-scheduled bids which materialise unconditionally
for any realisation of day-ahead market electricity price at time 𝑡.

Furthermore, the Det-model is applied after uncertainty revealed,
nd first stage bidding decisions for the day-ahead market had already
een logged in. In this case 𝐶̂𝐷𝐴

𝑡 represent revealed realisations of the
ay-ahead market electricity price, 𝑄̂𝑃𝑉

𝑡 represent revealed PV power
at time 𝑡, and 𝐶̂𝑅𝑇 ,𝑏

𝑡 and 𝐶̂𝑅𝑇 ,𝑠𝑒
𝑡 represent revealed real-time market

prices for buying and selling following assumptions in Eqs. (26)–(27).
Moreover, 𝑄̂𝐷𝐴,𝑏

𝑡 and 𝑄̂𝐷𝐴,𝑠𝑒
𝑡 represent quantities that are obligated to

e served at time 𝑡 as a result of the market clearing of submitted
idding decisions. Because these quantities are binding, their values
re fixed constants in the optimisation problem. In both described
ituations the following deterministic microgrid optimisation problem
s solved:

in 𝑇𝐶 =

O1, battery degradation cost
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝛿 ⋅ 𝐶𝐵,𝑑𝑒𝑔𝑟 ⋅

∑

𝑡
(𝑄̂𝐵,𝑐

𝑡 + 𝑄̂𝐵,𝑑
𝑡 ) +

O2, generator fuel cost
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝛿 ⋅𝐻𝑅𝐺 ⋅ 𝐶𝑔𝑎𝑠 ⋅

∑

𝑡
𝑄̂𝐺

𝑡

+

O3, day-ahead market net cost
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝛿 ⋅

∑

𝑡
(𝐶̂𝐷𝐴

𝑡 ⋅ (𝑄̂𝐷𝐴,𝑏
𝑡 − 𝑄̂𝐷𝐴,𝑠𝑒

𝑡 ))

+

O4, real-time market net cost
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝛿 ⋅

∑

𝑡
(𝐶̂𝑅𝑇 ,𝑏

𝑡 ⋅ 𝑄̂𝑅𝑇 ,𝑏
𝑡 − 𝐶̂𝑅𝑇 ,𝑠𝑒

𝑡 ⋅ 𝑄̂𝑅𝑇 ,𝑠𝑒
𝑡 ) (A.3)

𝐸̂𝐵
𝑡 = 𝐸𝐵

𝑡0
+ 𝛿 ⋅ (𝜂𝑐 ⋅ 𝑄̂𝐵,𝑐

𝑠𝑡 − 1∕𝜂𝑑 ⋅ 𝑄̂𝐵,𝑑
𝑡 ), ∀𝑡 = 1 (A.4)

𝐸̂𝐵
𝑡 = 𝐸̂𝐵

𝑡−1 + 𝛿 ⋅ (𝜂𝑐 ⋅ 𝑄̂𝐵,𝑐
𝑡 − 1∕𝜂𝑑 ⋅ 𝑄̂𝐵,𝑑

𝑡 ), ∀𝑡 > 1 (A.5)

𝐸𝐵,𝑚𝑖𝑛 ≤ 𝐸̂𝐵
𝑡 ≤ 𝐸𝐵,𝑚𝑎𝑥, ∀𝑡 (A.6)

𝐸𝐵
𝑡0
≤ 𝐸̂𝐵

𝑡=|𝑇 | (A.7)

𝑍̂𝐵,𝑐
𝑡 + 𝑍̂𝐵,𝑑

𝑡 ≤ 1, ∀𝑡 (A.8)

𝑄̂𝐵,𝑐
𝑡 ≤ 𝑅𝐵 ⋅ 𝑍̂𝐵,𝑐

𝑡 , ∀𝑡 (A.9)

𝑄̂𝐵,𝑑
𝑡 ≤ 𝑅𝐵 ⋅ 𝑍̂𝐵,𝑑

𝑡 , ∀𝑡 (A.10)

𝛿 ∗
∑

𝑡
𝑄̂𝐵,𝑐

𝑡 ≤ 𝐿𝐵 ⋅ 𝐸𝐵,𝑚𝑎𝑥 (A.11)

𝛿 ∗
∑

𝑡
𝑄̂𝐵,𝑑

𝑡 ≤ 𝐿𝐵 ⋅ 𝐸𝐵,𝑚𝑎𝑥 (A.12)

𝑄̂𝐺
𝑡 ≤ 𝑅𝐺 , ∀𝑡 (A.13)

𝑄̂𝐵,𝑑
𝑡 + 𝑄̂𝐺

𝑡 + 𝑄̂𝑃𝑉
𝑡 + 𝑄̂𝐷𝐴,𝑏

𝑠𝑡 + 𝑄̂𝑅𝑇 ,𝑏
𝑠𝑡

= 𝑄̂𝐵,𝑐
𝑡 +𝑄𝐷

𝑡 + 𝑄̂𝐷𝐴,𝑠𝑒
𝑡 + 𝑄̂𝑅𝑇 ,𝑠𝑒

𝑡 , ∀𝑡 (A.14)

Eq. (A.3) represents the objective function that minimises total cost,
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Eqs. (A.4)–(A.5) are battery storage energy balances at time 𝑡 = 1 and
𝑡 > 1, respectively, Eq. (A.6) represents battery storage limitations at
time 𝑡, Eq. (A.7) enforces the battery storage endpoint at time 𝑡 = |𝑇 |,
Eq. (A.8) prevents simultaneous battery charging and discharging at
time 𝑡, Eqs. (A.9)–(A.10) are battery (dis)charge capacities at time
𝑡, Eqs. (A.11)–(A.12) represent total battery (dis)charge limitations
over the time horizon, Eq. (A.13) is the generator capacity at time 𝑡,
Eq. (A.14) is the microgrid internal energy balance at time 𝑡.

Appendix B. Benchmark stochastic bidding models

Two stochastic bidding models from literature are outlined for
energy systems participating as a price-taker in day-ahead electricity
markets. Both models share the same constraints for the energy system,
but use different bidding constraints.

B.1. S-model approach

This stochastic bidding approach is a relaxation of the bidding con-
straints proposed in this work. It was motivated by stochastic bidding
approaches from literature [18,28,38,39]. In fact, the S-model approach
does not explicitly restrict the number of price–quantity points per
buy or sell bidding curve. Instead, the cardinality |𝑆𝑃

𝑡 | of all distinct
rice scenarios is a natural upper bound for the number of selected
oints per curve per time 𝑡. Therefore, we refer to it as the S-model.
he S-model for the microgrid bidding is comprised of energy system
qs. (1)–(11), objective function Eq. (25) and bidding Eqs. (12)–(17).
he latter can be further simplified by dropping variables 𝛥𝑄𝐷𝐴,𝑏

𝑠𝑡 and
𝑄𝐷𝐴,𝑠𝑒

𝑠𝑡 to obtain:
𝐷𝐴,𝑏
𝑠′𝑡 ≤ 𝑄𝐷𝐴,𝑏

𝑠𝑡 , ∀(𝑠, 𝑠′) ∈ 𝑆𝑃
𝑡 , 𝑡 ∶ 𝑂𝑠′𝑡 = 𝑂𝑠𝑡 + 1 ∧ 1 < 𝑂𝑠′𝑡 ≤ 𝑂𝑚𝑎𝑥

𝑡

(B.1)
𝐷𝐴,𝑠𝑒
𝑠′𝑡 ≤ 𝑄𝐷𝐴,𝑠𝑒

𝑠𝑡 , ∀(𝑠, 𝑠′) ∈ 𝑆𝑃
𝑡 , 𝑡 ∶ 𝑂𝑠𝑡 = 𝑂𝑠′𝑡 + 1 ∧ 1 ≤ 𝑂𝑠𝑡 ≤ 𝑂𝑚𝑎𝑥

𝑡

(B.2)

𝑄𝐷𝐴,𝑏
𝑠𝑡 = 𝑄𝐷𝐴,𝑏

𝑠′𝑡 , ∀𝑠 ∈ 𝑆𝑃
𝑡 , 𝑠

′ > 𝑠, 𝑡 ∶ 𝐶𝐷𝐴
𝑠𝑡 = 𝐶𝐷𝐴

𝑠′𝑡 (B.3)

𝑄𝐷𝐴,𝑠𝑒
𝑠𝑡 = 𝑄𝐷𝐴,𝑠𝑒

𝑠′𝑡 , ∀𝑠 ∈ 𝑆𝑃
𝑡 , 𝑠

′ > 𝑠, 𝑡 ∶ 𝐶𝐷𝐴
𝑠𝑡 = 𝐶𝐷𝐴

𝑠′𝑡 (B.4)

where Eqs. (B.1)–(B.2) represent monotonicity requirements of bidding
curves and Eqs. (B.3)–(B.4) represent nonanticipativity constraints.
Bidding curves as first stage decisions may be expressed by 𝐵𝑏

𝑡 =
{(𝑄𝐷𝐴,𝑏

𝑠𝑡 , 𝐶𝐷𝐴
𝑠𝑡 ) ∣ 𝑠 ∈ 𝑆𝑆𝑡𝑜𝑐ℎ} for buying and 𝐵𝑠𝑒

𝑡 = {(𝑄𝐷𝐴,𝑠𝑒
𝑠𝑡 , 𝐶𝐷𝐴

𝑠𝑡 ) ∣ 𝑠 ∈
𝑆𝑆𝑡𝑜𝑐ℎ} for selling.

B.2. N-model approach

This stochastic bidding approach assumes a discrete number of price

levels 𝑛 ∈  , each with a fixed price value 𝐹𝑃𝑡𝑛 at time 𝑡. Therefore, we
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Table C.2
Average computational statistics of microgrid bidding models tested in the computational study.

Model

Det N3 N5 N10 SN3 SN5 SN10 S

Equations 172 87,700 87,800 88,000 130,100 130,100 130,100 89,800
Variables (total) 265 105,800 105,900 106,100 132,400 132,400 132,400 105,600
Variables (binary) 48 19,200 19,200 19,200 32,600 32,600 32,600 19,200
CPU time [s] 0.1 16.8 18.25 23.95 3600 3600 3600 66.85
Optimality Gap opt opt opt opt 1.56% 1.03% 0.95% opt
refer to this approach as the N-model. It was motivated by stochastic
bidding approaches from literature [26,27,32,33,37,40,41]. Price val-
ues 𝐹𝑃𝑡𝑛 must be fixed prior to the stochastic optimisation through a
heuristic. In this work, values for 𝐹𝑃𝑡𝑛 were fixed equidistantly between
a min and max value [26,37]. Min and max values were derived from
day-ahead market electricity prices 𝐶𝐷𝐴

𝑠𝑡 over 𝑆𝑠𝑡𝑜𝑐ℎ for each time 𝑡:

𝐹𝑃𝐷𝐴
𝑡,𝑛 = 𝐼𝑡 + (𝐽𝑡 − 𝐼𝑡)∕| | ⋅ 𝑛, ∀𝑡, 𝑛 (B.5)

with 𝐼𝑡 ∶= min
𝑠∈𝑆𝑠𝑡𝑜𝑐ℎ

(𝐶𝐷𝐴
𝑠𝑡 ), 𝐽𝑡 ∶= max

𝑠∈𝑆𝑠𝑡𝑜𝑐ℎ
(𝐶𝐷𝐴

𝑠𝑡 ) (B.6)

Note, prices calculated from Eq. (B.5) are ascendingly ordered, so that
𝐹𝑃𝑡,𝑛−1 ≤ 𝐹𝑃𝑡𝑛∀𝑡, 𝑛 > 1. Bidding curves submitted for time 𝑡 are then
defined as 𝐵𝑏

𝑡 = {(𝑉 𝐷𝐴,𝑏
𝑡𝑛 , 𝐹𝑃𝑡𝑛) ∣ 𝑛 ∈  } for buying and 𝐵𝑠𝑒

𝑡 =
{(𝑉 𝐷𝐴,𝑠𝑒

𝑡𝑛 , 𝐹𝑃𝑡𝑛) ∣ 𝑛 ∈  } for selling, where 𝑉 𝐷𝐴,𝑏
𝑡𝑛 (𝑉 𝐷𝐴,𝑠𝑒

𝑡𝑛 ) are positive
continuous variables representing the bid quantity for buying (selling)
at price value 𝐹𝑃𝑡𝑛 of price level 𝑛 at time 𝑡. The market clearing logic
that selects point 𝑛 and its attached bid quantity 𝑉𝑛,𝑡 from the stepwise
bidding curve to be accepted in scenario 𝑠 can be preprocessed for given
day-ahead market electricity prices 𝐶𝐷𝐴

𝑠𝑡 and expressed as follows:

 𝑐𝑙𝑒𝑎𝑟,𝑏
𝑠𝑡 = {𝑛 ∣ 𝑛 > 1 ∧ 𝐹𝑃𝐷𝐴

𝑡,𝑛−1 < 𝐶𝐷𝐴
𝑠𝑡 ≤ 𝐹𝑃𝐷𝐴

𝑡𝑛 } (B.7)

 𝑐𝑙𝑒𝑎𝑟,𝑠𝑒
𝑠𝑡 = {𝑛 ∣ 𝑛 < | | ∧ 𝐹𝑃𝐷𝐴

𝑡𝑛 ≤ 𝐶𝐷𝐴
𝑠𝑡 < 𝐹𝑃𝐷𝐴

𝑡,𝑛+1} (B.8)

The N-model for the microgrid bidding is comprised of energy system
Eqs. (1)–(11), objective function Eq. (25) and bidding Eqs. (B.9)–(B.12).
The latter are stated as follows:

𝑉 𝐷𝐴,𝑏
𝑡𝑛 ≤ 𝑉 𝐷𝐴,𝑏

𝑡,𝑛−1 , ∀𝑡, 𝑛 > 1 (B.9)

𝑉 𝐷𝐴,𝑠𝑒
𝑡,𝑛−1 ≤ 𝑉 𝐷𝐴,𝑠𝑒

𝑡,𝑛 , ∀𝑡, 𝑛 > 1 (B.10)

𝑄𝐷𝐴,𝑏
𝑠𝑡 = 𝑉 𝐷𝐴,𝑏

𝑡𝑛 , ∀𝑠, 𝑡, 𝑛 ∈  𝑐𝑙𝑒𝑎𝑟,𝑏
𝑠𝑡 (B.11)

𝑄𝐷𝐴,𝑠𝑒
𝑠𝑡 = 𝑉 𝐷𝐴,𝑠𝑒

𝑡𝑛 , ∀𝑠, 𝑡, 𝑛 ∈  𝑐𝑙𝑒𝑎𝑟,𝑠𝑒
𝑠𝑡 (B.12)

where Eqs. (B.9)–(B.10) represent monotonicity requirements and
Eqs. (B.11)–(B.12) represent the day-ahead market clearing of the
stepwise bidding curves.

Appendix C. Additional material

See Tables C.1 and C.2.
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