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Abstract

MuZero is currently the most successful general reinforcement learning algorithm,

achieving the state of the art on Go, chess, shogi, and Atari. We want to help

MuZero to be successful in even more domains. Towards that, we do three steps:

1) We identify MuZero’s problems on stochastic environments and provide ways to

model enough information to support causally correct planning. 2) We develop a

strong baseline agent on Atari. This agent, named Muesli, matches the state of the

art on Atari, even without deep search. The conducted ablations inform us about the

importance of model learning, deep search, large networks, and regularized policy

optimization. 3) Because MuZero’s tree search is very helpful on Go and chess, we

use the principle of policy improvement to design search algorithms with even better

properties. The new algorithms, named Gumbel AlphaZero and Gumbel MuZero,

match the state of the art on Go, chess, and Atari, and significantly improve prior

performance when planning with few simulations.



Impact Statement

If you can measure something, you can optimize it. By improving reinforcement

learning algorithms, we improve the science of sequential decision making. The

possible practical applications are limited mainly by our ability to express our

wishes. We can optimize the win rate in board games, the score in computer games,

the path length in transportation, the bandwidth and latency in communication, the

efficiency in industrial process control, the log-probability in video compression,

and lane following in self-driving cars.

The provided Gumbel AlphaZero and Gumbel MuZero guarantee a policy im-

provement if the visited actions are correctly evaluated. This increases our confi-

dence that these algorithms will work on new domains, even on domains with a

large number of actions.
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Chapter 1

Introduction

Monte-Carlo tree search (MCTS) revolutionized computer Go and contributed to

the stunning victories of AlphaGo (Silver et al., 2016). Subsequently, AlphaZero

(Silver et al., 2018) brought these successes to chess and shogi. These search meth-

ods use a resettable simulator, which allows us to simulate multiple actions from a

state (e.g., by saving the game state).

However, resettable simulators are not available for many environments. For

example, we cannot reset the state of the real world. Therefore, Schrittwieser et al.

(2020) developed MuZero, which learns a model of the environment.

In Chapter 3, we point out that the MuZero model was developed for determin-

istic environments. We show the possible problems on stochastic environments and

provide a spectrum of causally correct planning methods. The same problems also

impact Value Prediction Networks (Oh et al., 2017), Dreamer (Hafner et al., 2020),

and similar variants of Dyna (Sutton, 1990) with multi-step sampled rollouts.

After that we develop two strong algorithms. The first algorithm, called

Muesli, matches the state of the art on Atari, even without a deep search (Chap-

ter 4). Next, we obtain great performance also on Go and chess with the sec-

ond algorithm, called Gumbel MuZero. Compared to MuZero, the new Gumbel

MuZero supports stochastic policies and keeps improving the policy even with a

small number of simulations (Chapter 5). By being principled, the produced al-

gorithms remove problem-dependent hyperparameters and are applicable also to

Expert Iteration (Anthony et al., 2017).
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1.1 Thesis outline
Chapter 2 provides the background on Monte-Carlo tree search, AlphaZero, and

MuZero.

Chapter 3 warns against incorrect planning with the MuZero model on stochas-

tic environments. We then propose a family of models for causally correct planning.

The chapter is based on:

• Danilo J. Rezende*, Ivo Danihelka*, George Papamakarios, Nan Rosemary

Ke, Ray Jiang, Theophane Weber, Karol Gregor, Hamza Merzic, Fabio

Viola, Jane Wang, Jovana Mitrovic, Frederic Besse, Ioannis Antonoglou,

Lars Buesing. Causally correct partial models for reinforcement learning

(Rezende et al., 2020).

Chapter 4 proposes a policy update which does not require a deep search, yet

matches the MuZero state-of-the-art results on Atari. The chapter is based on:

• Matteo Hessel*, Ivo Danihelka*, Fabio Viola, Arthur Guez, Simon Schmitt,

Laurent Sifre, Theophane Weber, David Silver, Hado van Hasselt. Muesli:

combining improvements in policy optimization (Hessel et al., 2021).

Chapter 5 proposes a policy improvement algorithm based on sampling with-

out replacement and uses the algorithm to design a principled AlphaZero tree

search. The chapter is based on:

• Ivo Danihelka, Arthur Guez, Julian Schrittwieser, David Silver. Policy im-

provement by planning with Gumbel (Danihelka et al., 2022).

The above papers are a result of collaboration with excellent coauthors. Es-

pecially, I want to give credit to Danilo Rezende for introducing me to causality

and for proposing conditioning on the intended action. When looking at the second

paper, I want to thank Matteo Hessel for developing the underlying distributed train-

ing framework, coauthoring a MuZero implementation, running many experiments,

writing the final version of the paper, and reviewing my code rapidly. Finally, I’m

grateful for wise steering from David Silver; we avoided many wrong paths. Now
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I will declare my contributions. On the above papers, I am the joint first author. I

initialized the research, proposed and implemented the algorithms, ran the majority

of the experiments, and produced the analysis. Moreover, in the second and third

papers, I authored all theorems and proofs.

We have published also the following papers, which are beyond the scope of

this thesis:

• Comparison of maximum likelihood and GAN-based training of Real NVPs

(Danihelka et al., 2017).

• The Cramer distance as a solution to biased Wasserstein gradients (Belle-

mare et al., 2017).

• Video pixel networks (Kalchbrenner et al., 2017).

• Neural scene representation and rendering (Eslami et al., 2018).

• OpenSpiel: A framework for reinforcement learning in games (Lanctot et al.,

2019).

• Grandmaster level in StarCraft II using multi-agent reinforcement learning

(Vinyals et al., 2019).

• Learning by directional gradient descent (Silver et al., 2022).



Chapter 2

Common Background

We will describe the reinforcement learning setting, the used notation, and the tree

search with AlphaZero and MuZero. The ideal reader would be already aware of

AlphaZero (Silver et al., 2018) or MuZero (Schrittwieser et al., 2020) and wants to

learn how to improve them.

For an introduction to reinforcement learning, we strongly recommend the

freely-available book by Sutton and Barto (2018). Along with many other useful

concepts, the book explains bandits, Markov decision processes, episodes, multi-

step returns, dynamic programming, and policy gradients.

2.1 The environment and the objective

We are interested in episodic environments with variable episode lengths (e.g., Atari

games), formalized as Markov Decision Processes (MDPs) with an initial state dis-

tribution µ and a discount γ ∈ [0,1]; ends of episodes correspond to absorbing states

with no rewards.

2.1.1 The objective

The agent starts at a state S0 ∼ µ from the initial state distribution. At each time

step t, the agent takes an action At ∼ π(At |St) from a policy π , obtains the reward

Rt+1 and transitions to the next state St+1. The expected sum of discounted rewards

http://incompleteideas.net/book/the-book.html
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after a state-action pair is called the action-value or Q-value qπ(s,a):

qπ(s,a) = E

[
∑
t=0

γ
tRt+1|π,S0 = s,A0 = a

]
, (2.1)

where the sum of rewards ∑t=0 γ tRt+1 is a return. The value of a state s is

vπ(s) = EA∼π(·|s) [qπ(s,A)] and the objective is to find a policy π that maximizes

the expected value of the states from the initial state distribution:

J(π) = ES∼µ [vπ(S)] . (2.2)

For example, if the reward is the increment to the score in a game, the objective

is to maximize the expected score. When evaluating an agent, we can estimate the

expected score by the average score over many episodes.

2.2 Learning and policy improvement
The objective (Eq. 2.2) can be directly maximized by evolution strategies (Wierstra

et al., 2014; Salimans et al., 2017) or by policy gradients (Williams, 1992; Sutton

et al., 2000; Agarwal et al., 2019; Agarwal et al., 2020a). These methods estimate

the gradient of the objective J(π) with respect to the policy parameters and are

therefore compatible with stochastic gradient descent and function approximation.

In the purest form, the unbiased estimate of the gradient is obtained from on-policy

data and the policy is updated only after the end of an episode.

We will instead focus on improving the value at states visited by a possibly

older policy πprior. We will use a policy improvement algorithm for that. Given a

state s, a policy improvement algorithm constructs a new policy π ′ such that vπ ′(s)≥

vπprior(s). For instance, given the πprior and its Q-values qπprior(s,a), the basic policy

improvement algorithm constructs the greedy policy:

argmax
π ′

EA∼π ′(·|s)

[
qπprior(s,A)

]
. (2.3)

After producing the improved policy at a state, we can update the agent’s policy
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π to be closer to the improved policy π ′. Because the agent’s policy is usually

represented by a function approximator (e.g., a policy network), we must be careful

not to degrade the value at other important states. For the careful policy update, we

will delve into regularized policy optimization in Chapter 4.

2.3 Policy improvement by search
Because the Q-values are usually unknown, we need to estimate them. Let us as-

sume that we have a simulator or a learned model of the environment. We can then

estimate the Q-values by a tree search.

2.3.1 Monte-Carlo tree search

Monte-Carlo tree search (MCTS) is a family of algorithms for finding the optimal

action at a state. To estimate the Q-value qπ(s,a) of an action a, we can simulate a

trajectory starting from the state s, taking the action a, and then following the policy

π . Such on-policy simulation is called a rollout and the obtained sum of rewards

(aka Monte-Carlo return) is an estimate of the Q-value.

The Monte-Carlo tree search adds one more idea: to select the optimal action,

we need the optimal Q-values q∗(s,a) of the optimal policy π∗, instead of the Q-

values qπ(s,a) of a policy π . This means we should search for optimal actions also

at the states visited inside a simulation.

There are many ways to find the optimal action. For a small environment, we

can construct the whole game tree with states at the nodes and actions at the edges.

We can then find the optimal Q-values by dynamic programming, starting from the

terminal states at the leaves:

q∗(st ,at) =

0, if st is a terminal state

E[R(st ,at)]+ γ maxat+1 ESt+1[q
∗(St+1,at+1)], otherwise,

(2.4)

where E[R(st ,at)] is the expected reward from the transition (st ,at).
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Figure 2.1: A game tree with 2 actions per state and 3 steps per episode. Each open circle
represents a state node. Each solid circle represents a state-action pair. The
initial state is the root node at the top. The terminal states are at the bottom.

For larger environments, it is intractable to construct the whole game tree.

For example, a deterministic environment with K actions per state and T steps per

episode would have a game tree with KT leaves (see Figure 2.1). The Monte-Carlo

tree search instead constructs only a part of the game tree.

The MCTS algorithm starts with just one node inside the search tree: the root

node contains the state at which we want to find the optimal action. In addition to

the state, each node contains the estimated Q-values q̂(a) and visit counts N(a) for

visited actions at the node (in these notations, we omit the node index).

The algorithm repeats three subroutines (Figure 2.2):

Select actions Expand and evaluate Backup

Figure 2.2: The subroutines in Monte-Carlo tree search. The root of the search tree is at
the top. The algorithm selects actions in a simulation, expands and evaluates a
newly visited state, and backups the new information.
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Select actions. To obtain new information, the search has to visit a new state.

MCTS does that by selecting actions in a simulation. Many strategies can be used

to balance exploration and exploitation. In the next subsections, we will explain the

action selection by UCT and AlphaZero.

Expand and evaluate. After visiting a new state, a new leaf node is added to

the search tree. The value of the node can be evaluated by a Monte-Carlo return or

by a learned value network.

Backup. After adding the new leaf, the tree needs to be updated to help the

next action selection. For the visited state-action pairs, the visit counts N(a) are

incremented and the estimated Q-values are updated to hold the average return:

q̂(a) :=
q̂(a)(N(a)−1)+G

N(a)
, (2.5)

where G is an estimate of the return (e.g., the discounted sum of rewards).

Algorithm 1 shows the generic structure of the search. After the search, the

FINALACTIONSELECTION selects an action to execute in the environment. The

environment then transitions to a new state and a new tree search can start from

there.

Algorithm 1 Generic Monte-Carlo tree search
Require: s0: root state.
Require: n: number of simulations.

tree← INITIALIZETREE(s0)
for n simulations do

node← GETROOT(tree)
a← ACTIONSELECTION(node)
while ISVISITED(node,a) do

node← GETCHILD(node,a)
a← ACTIONSELECTION(node)

newLeaf ← EXPAND(node,a)
tree← BACKUP(tree,newLeaf )

return FINALACTIONSELECTION(GETROOT(tree))

Each node in the search tree can have a different policy for the action selection.

Because these policies are not restricted to share parameters, they can be updated

quickly, without degrading the policies in other nodes. We will focus on two pop-
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ular MCTS variants: UCT and AlphaZero. Other MCTS variants can be found in

Browne et al. (2012).

2.3.2 UCT

Action selection. UCT (Upper Confidence bounds applied to Trees; Kocsis and

Szepesvári, 2006) selects an action based on an upper bound of the Q-values. At a

node, the action is selected by

argmax
a

[
q̂(a)+ cp

√
ln(∑b N(b))

N(a)

]
, (2.6)

where q̂(a) is the estimated Q-value of the action a, cp > 0 is a constant, and N(a) is

the visit count of the action a at the current node. The ∑b N(b) sums the visit counts

of all possible actions. Because an action with a zero visit count gets an infinite 1
N(a)

ratio, the UCT action selection starts by visiting each action once.

UCT assumes that q̂(a) ∈ [0,1]. This is satisfied on Go and chess by giving

reward one for winning and reward zero for losing.

Leaf evaluation. UCT MCTS evaluates a new leaf by a random rollout until

the end of the episode. The obtained Monte-Carlo return is then used to update

the Q-values. In the simplest case, the rollout policy is uniformly random. MCTS

removes the bias from the suboptimal random rollouts only asymptotically, by using

an infinite number of simulations and constructing the full tree.

2.3.3 AlphaZero

AlphaZero (Silver et al., 2018) employs a policy network and a value network to

enhance the tree search.

Action selection. Given the π(a) probabilities produced by the policy network

at the current node, AlphaZero selects an action by

argmax
a

[
q?(a)+ c1π(a)

√
1+∑b N(b)
1+N(a)

]
, (2.7)

where q?(a) is zero for unvisited actions; otherwise it is the estimated Q-value of the
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visited action. The c1 > 0 is a factor independent of a. AlphaZero again assumes

that q?(a) ∈ [0,1]. This assumption will not be needed in our later algorithms.

After the search, AlphaZero samples the final action from an (annealed) cate-

gorical distribution based on the visit counts of the root actions.

Leaf evaluation. AlphaZero does not use random rollouts. Instead, AlphaZero

uses the value network to provide the initial value estimate for a new leaf node.

Like UCT MCTS, given an infinite number of simulations and π(a) > 0, Al-

phaZero would find the optimal action. Given a limited number of simulations,

AlphaZero does not guarantee to find the optimal action or to find an improved

policy. To get a non-asymptotic guarantee, we will later meet a search algorithm

designed to produce a policy improvement (Chapter 5).

Training. The policy network and the value network are trained at states from

interactions with the environment. The loss for the policy network π is a Kullback–

Leibler divergence:

KL(πMCTS,π), (2.8)

where πMCTS is a target for the policy network. The target is proportional to the

visit counts at the root: πMCTS(a) =
N(a)

∑b N(b) . With enough simulations, the πMCTS

serves as the proposed improved policy.

A simple loss for the value network v̂ is the mean squared error:

(G(s)− v̂(s))2, (2.9)

where G(s) is an unbiased estimate of the return after the state s. Alternatively,

the value network can be trained with categorical or distributional reinforcement

learning losses (Dabney et al., 2018b).

2.3.4 MuZero

MuZero (Schrittwieser et al., 2020) extends AlphaZero to environments without a

resettable simulator. Instead of using a simulator, MuZero uses a learned model

inside the search.
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Figure 2.3: The MuZero model. The r̂1(st ,at) predicts the reward E[Rt+1|st ,at ]. The
v̂1(st ,at) predicts the expected return E[G(St+1)|st ,at ].

Figure 2.3 shows the MuZero model. The model consists of two networks:

a representation network and a dynamics network. The representation network is

used at the root of the search tree and provides the value network output v̂, the

policy network output π , and a state embedding. The embedding vector ht is a

hidden representation of the state st .

The networks are not trained to model a state. The networks are trained to

model only the quantities needed for planning: rewards, values and policies. The

reward prediction r̂k(st ,a<t+k) models the reward E[Rt+k|st ,a<t+k]. The value pre-

diction v̂k(st ,a<t+k) models the expected return E[G(St+k)|st ,a<t+k]. And the pol-

icy prediction πk(At+k|st ,a<t+k) models the policy target πMCTS(At+k|st+k).

Thanks to the model learning, MuZero is applicable also to Atari and continu-

ous control from pixels (Hubert et al., 2021; Schrittwieser et al., 2021). In the next

chapter, we will address MuZero’s limitations on stochastic environments.



Chapter 3

Causally Correct Partial Models for

Reinforcement Learning

In this chapter, we look for models suitable for planning multiple steps into the

future. Such models should give us a distribution or the expected value of the future

reward, given a sequence of future actions.

We consider general stochastic environments, and we aim to answer the fun-

damental questions: Is it possible to do multi-step planning without generating all

pixels? What information should be generated at each step?

We resolve these questions by introducing a general family of causally correct

partial models. These models can be simple and fast, because the modeled sufficient

information can be small.

This chapter is relevant only to multi-step planning. Shallow, one-step plan-

ning does not have problems on stochastic environments, because it does not plan a

sequence of actions.

3.1 Introduction
The ability to predict future outcomes of hypothetical decisions is a key aspect

of intelligence. A promising approach to capture this ability is via model-based

reinforcement learning (Munro, 1987; Werbos, 1987; Nguyen and Widrow, 1990;

Schmidhuber, 1991). In this framework, the agent learns a model of the environ-

ment. One possibility is to learn an action-conditional, next-step model (Oh et al.,
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2015; Ha and Schmidhuber, 2018; Chiappa et al., 2017; Xie et al., 2016; Deisenroth

and Rasmussen, 2011; Lin and Mitchell, 1992; Li et al., 2015; Diuk et al., 2008; Igl

et al., 2018; Ebert et al., 2018; Kaiser et al., 2019; Janner et al., 2019). However, it

is often not tractable to accurately model all the available information. This is due

both to the fact that conditioning on high-dimensional data such as images would re-

quire modeling and generating images in order to plan over several timesteps (Finn

and Levine, 2017), and to the fact that modeling images is challenging and may

unnecessarily focus on visual details, which are not relevant for acting.

These challenges have motivated researchers to consider simpler models,

henceforth referred to as partial models, that is, models that are neither conditioned

on, nor generate the full set of observed data (Oh et al., 2017; Amos et al., 2018;

Guo et al., 2018; Gregor et al., 2019). A notable example of a partial model is the

very successful MuZero model (Schrittwieser et al., 2020).

In this chapter, we demonstrate that the commonly used partial models can fail

to make correct predictions under a new policy, and we link this failure to a problem

in causal reasoning. A key insight of our methodology is the fact that any piece of

information about the state of the environment that is used by the policy to make a

decision, but is not available to the model, acts as a confounding variable. As a

result, the learned model is causally incorrect. Using such a model to reason may

lead to wrong conclusions about the optimal course of action.

We address these issues of partial models by combining general principles of

causal reasoning, probabilistic modeling, and deep learning:

• We identify and clarify a fundamental problem of partial models from a

causal-reasoning perspective and illustrate it using simple, intuitive Markov

Decision Processes (MDPs) (Section 3.3).

• In order to tackle these shortcomings, we examine the following question: Is

it possible to have a model with a small partial view and still being causally

correct in stochastic environments? We answer affirmatively. We provide the

sufficient condition for a causally correct partial model and propose a simple

practical way to implement such models (Section 3.5).



3.2. A taxonomy of reinforcement learning models 29

• We empirically demonstrate the proposed causal partial models and their ben-

efits in illustrative environments (simple MDPs and stochastic MiniPacman)

(Section 3.6).

3.2 A taxonomy of reinforcement learning models
We will classify the commonly used models based on the generated quantities.

Next-step models. A next-step model generates the next state (Figure 3.1a) or

the next observation (Figure 3.1b). The generated observation xt is then fed to the

next model state ht+1 = RNNh(ht ,xt ,at) to move a simulation forward. The next

observation model learns a distribution p̂(xt+1|ht ,at). The model can be also trained

to predict other quantities yt , given the future model state: p̂(yt |ht) (e.g., predicting

the reward after a sequence of steps).

The conditioning on the generated observations supports learning a model that

mimics the environment. However the model can accumulate generated errors if

the model is not perfect. In complex environments, the next-step models are rarely

perfect. When using images as observations, the model would have to model the

joint distribution of the pixels. Such a complex model becomes expensive and slow

to run. An example of a next-step model is the action-conditional video prediction

by Oh et al. (2015).

Deterministic models. A deterministic model does not generate any stochastic

variables during a simulation (Figure 3.1c). The model conditions on the simulation

start state s0 and a sequence of actions. The model can then predict the expected

quantities (e.g., reward and value) given the action history. By not generating the

observations, the deterministic model can be fast and avoids conditioning on pos-

sibly corrupted generated observations. An example of a deterministic model is

MuZero (see Figure 2.3).

We consider only planning with primitive actions. We do not consider ab-

stract deterministic models conditioned on no actions (e.g., Predictron by Silver

et al. (2017b)) or deterministic models conditioned on policies (e.g., a normal-form

representation of a game). These abstract models are less developed.
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(c) Deterministic model (d) Partial model

(a) Next state model (b) Next observation model

Figure 3.1: Models used in reinforcement learning. Circles are stochastic nodes; rectangles
are deterministic nodes. The model conditions on the actions a<t and models
the next state st , the next observation xt , or a partial view zt .

Partial models. A partial model generates a partial view (Figure 3.1d). The

partial view zt can be any function of the state st . E.g., the partial view can be a

downsampled observation. In a simulation, the model generates the partial view

zt ∼ p̂(zt |ht) and moves the simulation forward by updating the model state: ht+1 =

RNNh(ht ,zt ,at). When the partial view is small, the partial model can be much

faster than a next-step model. In an extreme, the deterministic model is a special

case of the partial model, with an empty partial view.

Unsurprisingly, the deterministic models conditioned on primitive actions are

not suitable for multi-step planning in stochastic environments. In Section 3.3, we

demonstrate the problems of the deterministic models on a simple stochastic MDP.

The partial models can also have problems on stochastic environments if the partial

view zt is not informative enough. In Section 3.5, we specify the information re-

quirement for the partial view. We then introduce several ways to implement such

sufficient partial views.

After making the partial models suitable for stochastic environments, we can

enjoy their fast speed and use them instead of the slow next-step models.
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Figure 3.2: Examples of stochastic MDPs. (a) FuzzyBear: after visiting a forest, the agent
meets either a teddy bear or a grizzly bear with 50% chance and can either hug
the bear or run away. (b) AvoidFuzzyBear: here, the agent has the extra option
to stay home.

3.3 A simple example: FuzzyBear

We will use a simple example to illustrate that the deterministic models are not suit-

able for multiplestep planning on stochastic environments. Consider the FuzzyBear

MDP shown in Figure 3.2a: an agent at initial state s0 transitions into an encounter

with either a teddy bear or a grizzly bear with 50% random chance, and can then take

an action to either hug the bear or run away. In order to plan, the agent may learn

a deterministic model p̂(r2|s0,a0,a1) that predicts the reward r2 after performing

actions {a0,a1} starting from state s0. The deterministic model does not generate

and does not condition on the intermediate state s1, which means the model ignores

the observed kind of the bear. The model is suitable for deterministic environments,

but it will have problems on stochastic environments, as we shall see. Such a reward

model is usually trained on the agent’s experience, which consists of sequences of

past actions and associated rewards.

Now, suppose the agent wishes to evaluate the sequence of actions {a0 =

visit forest,a1 = hug} using the average reward under the model p̂(r2|s0,a0,a1).

From Figure 3.2a, we see that the correct average reward is 0.5×1+0.5×(−0.5) =

0.25. However, if the model has been trained on past experience in which the agent

has mostly hugged the teddy bear and run away from the grizzly bear, it will learn

that the sequence {visit forest,hug} is associated with a reward close to 1, and that

the sequence {visit forest,run} is associated with a reward close to 0. Mathemati-
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cally, the model will learn the following conditional probability:

p(r2|s0,a0,a1) = ∑
s1

p(s1|s0,a0,a1)p(r2|s1,a1) (3.1)

= ∑
s1

p(s1|s0,a0)π(a1|s1)

∑s′1
p(s′1|s0,a0)π(a1|s′1)

p(r2|s1,a1), (3.2)

where s1 is the state corresponding to either teddy bear or grizzly bear. In the above

expression, p(s1|s0,a0) and p(r2|s1,a1) are the transition and reward dynamics of

the MDP, and π(a1|s1) is the agent’s behavior policy that generated its past experi-

ence. As we can see, the behavior policy affects what the model learns.

The fact that the reward model p̂(r2|s0,a0,a1) is not robust to changes in the

behavior policy has serious implications for planning. For example, suppose that

instead of visiting the forest, the agent could have chosen to stay at home, as shown

in Figure 3.2b. In this situation, the optimal action is to stay home, because it gives

a reward of 0.6, whereas visiting the forest gives at most a reward of 0.5× 1+

0.5× 0 = 0.5. However, an agent that uses the above reward model to plan will

overestimate the reward of going into the forest as being close to 1 and will choose

the suboptimal action.1

One way to avoid this bias is to use a behavior policy that doesn’t depend on

the state s1, i.e., π(a1|s1) = π(a1). Unfortunately, this approach does not scale well

to complex environments because it requires an enormous amount of training data

for the behavior policy to explore interesting states. A better approach is to make

the model robust to changes in the behavior policy. Fundamentally, the problem is

due to causally incorrect reasoning: the model learns the observational conditional

p(r2|s0,a0,a1) instead of the interventional conditional given by

p(r2|s0,do(a0),do(a1)) = ∑
s1

p(s1|s0,a0)p(r2|s1,a1),

where the do-operator do(·) means that the actions are performed independently of

the unspecified context (i.e., independently of s1). The interventional conditional is

1This problem is not restricted to toy examples. In a medical domain, a model could learn that
leaving the hospital increases the probability of being healthy.
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(a) (b) (c) (d) (e) (f)

Figure 3.3: Illustration of various causal graphs. (a) Simple dependence without confound-
ing. This is the prevailing assumption in many machine-learning applications.
(b) Graph with confounding. (c) Intervention on graph (b) equivalent to setting
the value of x and observing y. (d) Graph with a backdoor z blocking all paths
from u to x. (e) Graph with a frontdoor z blocking all paths from x to y. (f)
Graph with a variable z blocking the direct path from u to y.

robust to changes in the policy and is a more appropriate quantity for planning.

In contrast, the observational conditional quantifies the statistical association

between the actions a0,a1 and the reward r2 regardless of whether the actions caused

the reward or the reward caused the actions. In Section 3.4, we review relevant

concepts from causal reasoning, based on which we propose solutions that address

the problem.

Finally, although using p(r2|s0,do(a0),do(a1)) leads to causally correct plan-

ning, it is not optimal either: it predicts a reward of 0.25 for the sequence

{visit forest,hug} and 0 for the sequence {visit forest,run}, whereas the optimal

policy obtains a reward of 0.5. The optimal policy makes the decision after observ-

ing s1 (teddy bear vs grizzly bear); it is closed-loop as opposed to open-loop. The

solution is to make the intervention at the policy level, as we will do in Section 3.5.

3.4 Background on causal reasoning
Causal reasoning provides tools to answer questions after a change to the data

distribution, without collecting new data.

Many applications of machine learning involve predicting a variable y (target)

from a variable x (covariate). A standard way to make such a prediction is by fitting

a model p̂(y|x) to a dataset of (x,y) pairs. Then, if we are given a new x and the

data-generation process hasn’t changed, we can expect that a well trained p̂(y|x)

will make an accurate prediction of y.

Confounding: In many situations, however, we would like to use the data to
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make different kinds of predictions. For example, what prediction of y should we

make if something in the environment has changed, or if we set x ourselves? In these

cases, x didn’t come from the original data-generation process. This may cause

problems in our prediction, because there may be unobserved variables u, known as

confounders, that affected both x and y during the data-generation process. That is,

the actual process was of the form p(u)p(x|u)p(y|x,u) where we only observed x

and y as shown in Figure 3.3b.

For example, the x is the action of leaving or staying in a hospital, the y

is the obtained happiness, and u can be the unobserved health. With the unob-

served u, a model p̂(y|x) fitted on (x,y) pairs will converge to the target p(y|x) ∝∫
p(u)p(x|u)p(y|x,u)du. However, if at prediction time we set x ourselves (i.e., we

tell everyone to leave the hospital now, independently of their health), the actual

distribution of the happiness y will be p(y|do(x)) =
∫

p(u)p(y|x,u)du. This is be-

cause setting x ourselves changes the original graph from Figure 3.3b to the one in

Figure 3.3c.

Interventions: The operation of setting x to a fixed value x̃ independently

of its parents, known as the do-operator (Pearl et al., 2016), changes the data-

generation process to p(u)δ (x− x̃)p(y|x,u), where δ (x− x̃) is the delta-function.

As explained above, this results in a different target distribution
∫

p(u)p(y|x̃,u)du,

which we refer to as p(y|do(x = x̃)), or simply p(y|do(x)) when x̃ is implied. Let

par j be the parents of x j. The do-operator is a particular case of the more general

concept of an intervention: given a generative process p(x) = ∏ j p j(x j|par j), an

intervention is defined as a change that replaces one or more factors by new fac-

tors. For example, the intervention pk(xk|park)→ ψk(xk|par′k) replaces pk(xk|park)

by ψk(xk|par′k). This changes the joint distribution p(x) to p(x)ψk(xk|par′k)
pk(xk|park)

. The do-

operator is a “hard” intervention whereby we replace a factor by a delta function;

that is, p(x/k,do(xk = x̃k)) = p(x) δ (xk−x̃k)
pk(xk|park)

, where x/k denotes the collection of all

variables except xk.

Backdoors and frontdoors: In general, for graphs of the form of Figure 3.3b,

p(y|x) does not equal p(y|do(x)). As a consequence, it is not generally possible to
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recover p(y|do(x)) using observational data, i.e., (x,y) pairs sampled from p(x,y),

regardless of the amount of data available or the expressivity of the model. However,

recovering p(y|do(x)) from observational data alone becomes possible if we assume

additional structure in the data-generation process. Suppose there exists another

observed variable z that blocks all paths from the confounder u to the covariate x, as

shown in Figure 3.3d. This variable is a particular case of the concept of a backdoor

(Pearl et al., 2016, Chapter 3.3) and is said to be a backdoor for the pair x− y. In

this case, we can express p(y|do(x)) entirely in terms of distributions that can be

obtained from the observational data as

p(y|do(x)) = Ep(z)[p(y|z,x)]. (3.3)

This formula holds as long as p(x|z)> 0 and is referred to as backdoor adjustment.

The same formula applies when z blocks the effect of the confounder u on y as in

Figure 3.3f. More generally, we can use p(z) and p(y|z,x) to compute the marginal

distribution p(y) under an arbitrary intervention of the form p(x|z)→ ψ(x|z) on the

graph in Figure 3.3d. We refer to the new marginal as pdo(ψ)(y) and obtain it by

pdo(ψ)(y) = Ep(z)ψ(x|z)[p(y|z,x)]. (3.4)

A similar formula can be derived when there is a variable z blocking the effect of

x on y, which is known as a frontdoor, shown in Figure 3.3e. Derivations for the

backdoor and frontdoor adjustment formulas are provided in Appendix A.1.

Causally correct models: Given data generated by an underlying generative

process p(x), we say that a learned model p̂(x) is causally correct with respect

to a set of interventions I if the model remains accurate after any intervention in

I. That is, if p̂(x) ≈ p(x) and p̂(x) is causally correct with respect to I, then

p̂do(ψ)(x)≈ pdo(ψ)(x) for all do(ψ) in I.
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(a) (b)

Figure 3.4: The causal diagram for the states and actions in reinforcement learning. (a)
An agent interacting with the environment, collecting a trajectory {st ,at}T

t=0.
These trajectories are the training data for the models. (b) Same as (a) but also
including the backdoor zt in the collected trajectory. The red arrows indicate
the locations of the possible interventions.

3.5 Designing causally correct models
In reinforcement learning (RL), we know the causal diagram for the states and ac-

tions (Figure 3.4a). The direction of time defines the causality there.

Equipped with the causality tools, we can find the problem in the design of the

deterministic model and propose a fix. We start by looking at the model of some

property yt (e.g., the reward) of the state st . The deterministic model learns the

conditional distribution p(y2|s0,a0,a1), given the starting state s0 and a sequence

of actions.2 By inappropriate design, the deterministic model does not condition

on the state s1. The state s1 then acts as a confounder (see Figure 3.4a). With the

presence of the confounder, we cannot use the model after an intervention on a1,

because p(y2|s0,a0,do(a1)) is not equal to p(y2|s0,a0,a1).

Let’s design a better model. We want to have a model that can be trained on

data collected when following a behavior policy, and we want to be able to reuse the

model to answer queries after interventions on some actions. The interventions on

the actions can produce the actions from a different distribution than the behavior

policy. If we consider a general partial model as in Figure 3.1d, we want to be able

to answer a query: p(yt+1|ht ,zt ,do(at)). That is, we want to be able to predict the

yt+1 after an intervention on at , given the model state ht and the partial view zt . The

model state ht contains a starting state s0, the previous partial views z<t , and the

previous actions a<t .

To have a model usable after an intervention on an at , we will use a carefully

2We reindex time for notational simplicity. The state passed to the model is denoted as s0, even
though the state may be in the middle of an episode.
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designed partial model. We must be careful to put enough information to the partial

views zt in the collected {st ,zt ,at}T
t=0 trajectories. The collected training data for

the model come from a behavior policy, which may be different from a later used

simulation policy. We will design a model where p(yt+1|ht ,zt ,do(at)) is equal to

p(yt+1|ht ,zt ,at), and where the model can learn the p(yt+1|ht ,zt ,at) distribution

from the collected data.

The main theorem: To design a partial model that is causally correct with

respect to interventions on the action, it is sufficient to use a partial view which

makes the behavior action at conditionally independent of the state st , given the

partial view zt and the model state ht .

Proof. at ⊥ st |ht ,zt =⇒ p(yt+1|ht ,zt ,do(at)) = p(yt+1|ht ,zt ,at).

Intuitively, the conditional independence of at and st makes p(st |ht ,zt ,at) equal

to p(st |ht ,zt) and prevents the conditioning on the action to affect the probability of

the previous state. Therefore, causality can be respected. The marginal distribution

p(yt+1|ht ,zt ,at) = ∑
st

p(st |ht ,zt ,at)p(yt+1|st ,at) (3.5)

is then the same as p(yt+1|ht ,zt ,do(at)) = ∑st p(st |ht ,zt)p(yt+1|st ,at).

Deterministic model corollary: In deterministic environments, it is sufficient

to use a deterministic model with an empty partial view, because the state st can be

fully determined from the model state ht .

Observation model corollary: If the state st is represented by the history of

actions and observations, it is sufficient to use the observation as the partial view

zt . The model state ht and zt will then together form the history of actions and

observations.

In the rest of the chapter, we refer to the causally correct partial models as

Causal Partial Models (CPM).

3.5.1 Sufficient partial views

Not all partial views are sufficient to give us a causally correct partial model. For

example, a downsampled observation may be missing an important bullet.
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Table 3.1: Comparison between a deterministic model and a causal partial model. The
shaded cells indicate the key differences in architectures.

Deterministic model Causal partial model

Partial view zt ∼ m(zt |st)
Agent Action at ∼ π(at |st) Action at ∼ π(at |zt)

State init. h1 = g(s0,a0) State init. h1 = g(s0,a0)
Model Partial view zt ∼ p̂(zt |ht)
generates State update ht+1= RNNh(ht ,at) State update ht+1 = RNNh(ht ,zt ,at)

Prediction yt ∼ p̂(yt |ht) Prediction yt ∼ p̂(yt |ht)

To have a sufficient partial view, we propose a simple construction. In RL,

we usually have access to the internal computation of the behavior policy, so we

can choose as the partial view a layer from the behavior policy computation graph.

We propose to use as the partial view a layer that separates the state st and the

executed action at . The action at will be then conditionally independent of the

state st , given the partial view zt . Such a partial view acts as a backdoor for the pair

st−at .

The location of the proposed partial view is displayed in Figure 3.4b. When

collecting data, the agent first produces a partial view zt ∼ m(zt |st) and then selects

an action at ∼ π(at |zt) based only on the partial view. The change made to the agent

computation graph is shown in Table 3.1.

We will now list concrete examples of sufficient partial views:

State: We can use the state st as the partial view zt .

Policy probabilities: The zt can be the probabilities or sufficient statistics pro-

duced by the behavior policy. For example, when the actions are discrete, the vec-

tor of policy probabilities can be produced by a Dirichlet distribution m(zt |st). The

p̂(zt |ht) model can then be a mixture of Dirichlet distributions and can be trained to

minimize KL(m(zt |st) ∥ p̂(zt |ht)).

Intended action: The zt can be the intended action before using some form

of exploration (e.g., ε-greedy exploration). This is an interesting choice when the

actions are discrete, as it is simple to model and, when doing planning, results in a

low branching factor that is independent of the complexity of the environment (e.g.,
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Algorithm 2 Model training
Data collection on an actor:
For each step:

zt ∼ m(zt |st) . . . sample the partial view (e.g., the intended action)
at ∼ π(at |zt) . . . sample the executed action (e.g., add ε-exploration)

Collect:
st . . . agent state
zt . . . partial view
at . . . executed action
yt+1 . . . targets (rewards, returns, . . . )

Model training on a learner:
Require a trajectory: s0,a<T ,z<T ,y≤T
h1 = g(s0,a0) . . . initialize the model state
For each trajectory step:

Train p̂(yt |ht) to model yt .
Train p̂(zt |ht) to model zt .
ht+1 = RNNh(ht ,zt ,at) . . . update the model state

in visually rich 3D environments).

Combinations: It is possible to combine a layer with additional information.

For example, the zt can contain the intended action, combined with a small down-

sampled observation. When a partial view is sufficient, adding more information to

it will keep it sufficient.

The model training is summarized in Algorithm 2. When the zt is the intended

action before ε-exploration, the zt will be sampled from a policy m(zt |st) and the

executed action at will then be sampled from an ε-exploration policy π(at |zt) =

(1− ε)I{zt = at}+ ε
1
na

, where na is the number of actions, ε is in (0,1), and the

indicator I{zt = at} is 1 if zt = at , and zero otherwise. It is imperative that we

use some form of exploration to ensure that π(at |zt) > 0 for all at and zt as this is

necessary to allow the model to learn the effects of the actions.

3.5.2 Interventions at the policy level

So far, we have talked about at and zt collected to form the training data for a model.

In a simulation, the zt would be generated from p̂(zt |ht) and the simulation action

at can be freely chosen.

Inside the simulation, we do not have to do open-loop planning; rather we



3.5. Designing causally correct models 40

Algorithm 3 Using the model to generate a simulation under a new policy ψ

Require an agent state: s0
a0 = ψ(a0|s0) . . . choose the first action
h1 = g(s0,a0) . . . initialize the model state
For each trajectory step:

Predict the wanted targets p̂(yt |ht) (e.g., rewards, returns, . . . ).
zt ∼ p̂(zt |ht) . . . generate the partial view
at ∼ ψ(at |ht ,zt) . . . choose the next action
ht+1 = RNNh(ht ,zt ,at) . . . update the model state

can condition on the ht and zt . Instead of doing do(at), we can specify a simula-

tion policy: ψ(at |ht ,zt). To make a prediction, we can perform a simulation under

the new policy ψ(at |ht ,zt) by directly applying the backdoor-adjustment formula,

Equation (3.4), as follows:

pdo(ψ(at |ht ,zt))(yt+1|ht) = Ep(zt |ht)ψ(at |ht ,zt)[p(yt+1|ht+1)], (3.6)

where the components p(zt |ht) and p(yt+1|ht+1) with ht+1 = RNNh(ht ,zt ,at) can

be learned from observational data produced by the agent. The simulation would

first generate zt ∼ p̂(zt |ht) and then select an action at ∼ ψ(at |ht ,zt), conditioned

on the generated partial view. The generating of a simulation is summarized in

Algorithm 3.

3.5.3 Summary before experiments

We have explained how to design causally correct partial models suitable for

stochastic environments. Now is a good time to summarize the explanation.

A deterministic model is suitable for planning on deterministic environments.

On stochastic environments, planning with MuZero’s deterministic model can pro-

duce wrong value estimates. Similarly, planning with a partial model can produce

wrong value estimates if the partial view is not informative enough. Interestingly,

the informative partial view does not have to contain the whole observation. The

partial view will prevent confounding if the partial view contains enough informa-

tion to reproduce the behavior policy.

During planning, we are not restricted to stick with the behavior policy. The
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simulation policy can condition on the starting state s0 and the following sequence

of actions a<t and partial views z≤t . In principle, the ability to simulate the be-

havior policy is all you need for a policy iteration. However, the proposed policy

improvement can be larger if planning also tries policies different from the behavior

policy.

We provided a spectrum of sufficient partial views. The intended action is

one of the smallest sufficient partial views. It can be combined with any other in-

formation to form larger sufficient partial views. The best size of the partial view

will depend on the environment and on the used planning algorithm. For exam-

ple, tree search algorithms would prefer a small partial view, because it provides a

small branching factor. Table 3.2 summarizes the properties of deterministic mod-

els, causal partial models, and next-step models.

Table 3.2: Models and their properties.

Deterministic model Causal partial model Next-step model
Generates nothing sufficient partial view: zt observation
Speed fast controlled by zt size slow
Causally correct in deterministic environments always always

or with on-policy simulations
Simulation variance lowest controlled by zt size high (distracted)
Extra branching 0 controlled by zt size huge
Invariant of - π(at |zt) π(at |st)
Evaluable policies ψ(at |s0,a<t) ψ(at |s0,a<t ,z≤t) any
Training iterative with policy iterative with policy once

3.6 Experiments
We will show experiments on simple MDPs and stochastic MiniPacman. For plan-

ning, we will use value-iteration, expectimax search, or MuZero’s Monte-Carlo tree

search.

We focus mainly on making MuZero suitable for stochastic environments; thus

the used deterministic model is equivalent to MuZero’s model. Additionally, the

used causally correct partial model is a minimal modification to MuZero: the par-

tial view is the intended action. The causally correct partial model generates and

conditions on the partial view in each simulation.
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Deterministic
Causal Partial Model

(a) On FuzzyBear.

Deterministic
Causal Partial Model

(b) On AvoidFuzzyBear.

Figure 3.5: MDP Analysis: We randomly generate 500 policies and scatter-plot them with
x-axis showing the quality of the behavior policy V π

env and y-axis showing
corresponding optimal evaluations V ∗M(π) from dynamic programming inside
a model. The unrealistic optimism of the deterministic model evaluations is
demonstrated by the blue dots above the maximum possible V ∗env line.

3.6.1 Value-iteration analysis on MDPs

In this section, we will analyze the learned models on the FuzzyBear and Avoid-

FuzzyBear MDPs (Figure 3.2). Because the MDPs are small, we can use a tabular

representation for the models and we can compute the exact models. The obtained

models are then at the global minimum of their training loss. This will illustrate

that the non-causal partial models cannot be fixed by bigger networks or by more

training data.

Because the obtained models depend both on the MDP dynamic and on the

used behavior policy, we will do the analysis for 500 randomly generated behavior

policies. After obtaining a model M(π), we can find the optimal simulation pol-

icy proposed by planning with the model. For the found optimal simulation policy,

we then ask the model to estimate the value V ∗M(π), of the starting state, under the

optimal simulation policy. The exact computation for any episodic MDP is in Ap-

pendix A.3. We will see that planning with the deterministic model proposes wrong

simulation policies and overestimates their value.

On FuzzyBear MDP (Figure 3.2a), the optimal policy is to always hug the

teddy bear and to run away from the grizzly bear. We empirically show the dif-

ference between the causal partial models and deterministic models when learning
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from randomly generated policies. For each policy, we derive the corresponding

converged model M(π) equivalent to training on data generated by the policy. We

then compute the optimal value of V ∗M(π) using this model.

In Figure 3.5a, we see that the causal partial model always produces a value

greater than or equal to the value of the behavior policy. The value estimated by

the causal partial model can always be achieved in the real environment. If the

behavior policy was already good, the simulation policy used inside the model can

reproduce the behavior policy by respecting the intended action. If the behavior

policy is random, the intended action is uninformative about the underlying state,

so the simulation policy has to choose the most rewarding action, independently

of the state. Furthermore, if the behavior policy is bad, the simulation policy can

choose the opposite of the intended action. This allows the agent to find a very

good simulation policy when the behavior policy is very bad. To further improve

the policy, the search for better policies should be done also in state s1. The model

can then be retrained on data from the improved policies.

If we look at the deterministic model, we see that it displays the unfortunate

property of becoming unrealistically optimistic as the behavior policy becomes bet-

ter.

On AvoidFuzzyBear MDP (Figure 3.2a), the optimal policy is to stay at home.

Indeed, planning with the causal partial model always prefers to stay home, result-

ing in a constant evaluation for all policies (Figure 3.5b). On the other hand, the

deterministic model gives varied, overly optimistic evaluations while choosing the

wrong action (visit forest).

3.6.2 Experiments with Expectimax and MCTS

We will now describe experiments with models represented by neural networks and

trained by gradient descent. The models will be compared based on their ability

to support a tree search. The tree search is used to find an improved policy, given

the model. We will use the classical expectimax search (Michie, 1966; Russell and

Norvig, 2009) or a variant of MuZero’s Monte-Carlo tree search (MCTS) (Schrit-

twieser et al., 2020). When using a causal partial model, we will use the intended
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(b) Expectimax on MiniPacman.
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(c) MCTS on MiniPacman.

Figure 3.6: (a) MCTS on AvoidFuzzyBear with p(teddy) = 0.55. The optimal policy
should achieve reward 0.6. (b) The non-causal deterministic model (NCPM)
produced visibly worse expectimax search. (c) The causal partial model (CPM)
was used inside a MuZero-style MCTS enhanced with chance nodes. The
search was able to find a much better policy than the pretrained behavior policy.

action as the partial view zt . The intended action is a good match for the discrete

tree search because the intended action has a small number of categorical values, is

easy to model, and has a low variance and a low branching factor.

On AvoidFuzzyBear: On the simple AvoidFuzzyBear MDP (Figure 3.2b), it

is enough to use expectimax with a search depth of 3: a decision node, a chance

node, and a decision node. The policy found by the search was used to produce the

next action for the real environment.

Only the deterministic model was unable to solve the task. Expectimax with

the deterministic model consistently preferred the suboptimal stochastic path with

the fuzzy bear, as predicted by our theoretical analysis from the previous section.

Results with MuZero-style MCTS are in Figure 3.6a. MuZero (NCPM + MCTS)

has a number of properties that mitigate the negative effects of the deterministic

model. We discuss MuZero properties in Section 3.6.3, and the experimental setup

is described in Appendix A.2.

On MiniPacman: We used the 2D MiniPacman environment (Guez et al.,

2019) to test whether the non-causal models have problems in other stochastic en-

vironments as well. To reduce variance and to remove differences in exploration,

we trained all models on data from the same pretrained policy. Indeed, we see in

Figures 3.6b and 3.6c that the non-causal deterministic model (NCPM) achieved



3.6. Experiments 45

visibly smaller reward when used with expectimax or MCTS. Combining MCTS

with chance nodes mitigated some of the negative effects of the NCPM, as explained

in the next section.

3.6.3 MuZero properties on stochastic environments

MuZero performed surprisingly well on the stochastic environments, even when

using the deterministic action-conditioned non-causal model. We will provide an

explanation here. First, let us denote by v̂(s0,a0,a1, . . . ,at) the output of the learned

value network, given s0,a0,a1, . . . ,at . The v̂(s0,a0) will correctly model the ex-

pected return, given s0,a0. However, the next v̂(s0,a0,a1) can lead to causally

incorrect planning because s1 is a confounder here. When planning with a new

policy ψ(a1|s0,a0), the ∑a1 ψ(a1|s0,a0)v̂(s0,a0,a1) can be biased on stochastic en-

vironments. The planning with a causally correct model would instead compute the

expected return by

∑
z1

p(z1|s0,a0)∑
a1

ψ(a1|s0,a0,z1)v̂(s0,a0,z1,a1), (3.7)

where z1 is a backdoor to make a1 independent of s1, given z1.

By analyzing the search trees on the AvoidFuzyBear MDP, we were able to find

a number of MuZero properties that mitigate the negative effects of the non-causal

model:

1. The correctly estimated value v̂(s0,a0) discourages opening a tree branch that

is suboptimal in the real environment.

2. The learned policy network π(at |ht) discourages opening the suboptimal

branch if the action leading to the suboptimal branch is not the most probable

action. (E.g., MuZero has fewer problems on AvoidFuzzyBear if p(teddy)<

0.5.)

3. The averaging of the value-network values from all nodes of the search tree

assigns a small weight to the correct v̂(s0,a0) only after many simulations.
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4. If using chance nodes inside a search tree, the bigger branching factor leads

to a shallower search. The shallow search bootstraps more from the causally

correct v̂(s0,a0).

3.7 Related work
The Book of Why (Pearl and Mackenzie, 2018) discusses in depth the history and

motivation behind causality. For a short introduction to causality, see Hardt and

Recht (2021). From the vast literature on causality, we will mention only a few

related works.

Prior to this work, there has been a growing interest in combining causal in-

ference with reinforcement learning (RL) research in the directions of non-model-

based bandit algorithms (Bareinboim et al., 2015; Forney et al., 2017; Zhang and

Bareinboim, 2017; Lee and Bareinboim, 2018; Bradtke and Barto, 1996; Lu et al.,

2018) and causal discovery with RL (Zhu et al., 2019). Contrary to previous works,

in this work we focus on model-based approaches and propose a framework for

designing causally correct partial models.

Bottou et al. (2013) provides an excellent example application of the backdoor

adjustment to advertisement scoring on Bing. With careful data collection, the effect

of an intervention can be estimated by importance sampling on historical data.

Ortega et al. (2021) warns that causal reasoning is important also for the usage

of language models. A language model is trained on a data distribution; if the model

is then conditioned on text generated from a different distribution, the model would

still assume that the text is from the original data distribution. Such careless usage

leads to wrong inferences.

In model-based reinforcement learning, MCTS is not the only way to do plan-

ning. Our proposed causal partial models can be used equally well inside Dyna

(Sutton, 1990), Dyna-2 (Silver et al., 2008), and Policy Gradient Search (Anthony

et al., 2019). A sufficient partial view becomes important when combining stochas-

tic environments, multi-step planning, and a simulation policy different from the

behavior policy. In Section 3.5.1, we provided examples of sufficient partial views.
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In contrast, a lossy encoding of the agent state is not guaranteed to be a sufficient

partial view.

Influenced by our work, Stochastic MuZero (Antonoglou et al., 2022) uses VQ-

VAE (van den Oord et al., 2017) to produce a discrete partial view. The VQ-VAE

encoder is trained end-to-end to produce a partial view that is helpful for predicting

the future rewards, values, and policies.

Limited model capacity. While the mentioned causality problems cannot be

fixed by larger networks or by longer training, an orthogonal line of work focused

on problems caused by limited model capacity. Hallucinated replay (Talvitie, 2014)

and Hallucinated DAgger-MC (Talvitie, 2017, 2018) consider imperfect models and

provide theoretical guarantees in deterministic environments. To avoid model er-

rors, selective Dyna-style planning (Abbas et al., 2020) truncates the rollout length

if the model uncertainty is high. A similar truncation can be used on stochastic

environments, to truncate the rollout length if the model does not have enough in-

formation to reproduce the behavior policy.

3.8 Conclusion
We showed that the commonly used deterministic or partial models produce wrong

conclusions with multi-step planning on stochastic environments. We then ex-

plained that partial models can be used for planning if the partial view is informative

enough. We defined the needed information and provided a spectrum of sufficient

partial views. Hopefully, people will become more careful when applying a model

to a changed situation. Our explanation should help them to design causally correct

partial models.

The theory is simpler if we do not use multi-step planning. We then do not

need to worry about causally correct planning. The one-step Q-values q(s,a) are

causally correct with respect to interventions on the action. As we will see in the

next chapter, a policy update based on the Q-values is a strong baseline.



Chapter 4

Muesli: Combining Improvements in

Policy Optimization

In this chapter, we propose a novel policy update that combines regularized pol-

icy optimization with model learning as an auxiliary loss. The update (henceforth

Muesli) matches MuZero’s state-of-the-art performance on Atari. Notably, Muesli

does so without using deep search: it acts directly with a policy network and has

computation speed comparable to model-free baselines. The Atari results are com-

plemented by extensive ablations, and by additional results on continuous control

and 9x9 Go.

4.1 Introduction
Reinforcement learning (RL) is a general formulation for the problem of sequential

decision-making under uncertainty, where a learning system (the agent) must learn

to maximize the cumulative rewards provided by the world it is embedded in (the

environment), from the experience of interacting with such an environment (Sutton

and Barto, 2018). An agent is said to be value-based if its behavior (i.e., its policy) is

inferred (e.g., by inspection) from learned value estimates (Sutton, 1988; Watkins,

1989; Rummery and Niranjan, 1994; Tesauro, 1995). In contrast, a policy-based

agent directly updates a (parametric) policy (Williams, 1992; Sutton et al., 2000)

based on past experience. We may also classify as model-free the agents that update

values and policies directly from experience (Sutton, 1988), and as model-based
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Figure 4.1: Median human-normalized score across 57 Atari games. (a) Muesli and other
policy updates; all these use the same IMPALA network and a moderate amount
of replay data (75%). Shades denote standard errors across 5 seeds. (b) Muesli
with the larger MuZero network and the high replay fraction used by MuZero
(95%), compared to the latest version of MuZero (Schrittwieser et al., 2021).
These large-scale runs use 2 seeds. Muesli still acts directly with the policy
network and uses one-step look-aheads in updates.

those that use (learned) models (Oh et al., 2015; van Hasselt et al., 2019) to plan

either global (Sutton, 1990) or local (Richalet et al., 1978; Kaelbling and Lozano-

Pérez, 2010; Silver and Veness, 2010) values and policies. Such distinctions are

useful for communication, but, to master the singular goal of optimizing rewards

in an environment, agents often combine ideas from more than one of these areas

(Hessel et al., 2018; Silver et al., 2016; Schrittwieser et al., 2020).

In this chapter, we focus on a critical part of RL, namely policy optimization.

We leave a precise formulation of the problem for later, but different policy opti-

mization algorithms can be seen as answers to the following crucial question:

Given data about an agent’s interactions with the world,

and predictions in the form of value functions or models,

how should we update the agent’s policy?

We start from an analysis of the desiderata for general policy optimization.



4.1. Introduction 50

These include support for partial observability and function approximation, the

ability to learn stochastic policies, robustness to diverse environments or training

regimes (e.g., off-policy data), and being able to represent knowledge as value func-

tions and models. See Section 4.3 for further details on our desiderata for policy

optimization.

Then, we propose a policy update combining regularized policy optimization

with model-based ideas so as to make progress on the dimensions highlighted in the

desiderata. More specifically, we use a model inspired by MuZero (Schrittwieser

et al., 2020) to estimate action values via one-step look-ahead. These action val-

ues are then plugged into a modified Maximum a Posteriori Policy Optimization

(MPO) (Abdolmaleki et al., 2018) mechanism, based on clipped normalized advan-

tages, that is robust to scaling issues without requiring constrained optimization.

The overall update, named Muesli, then combines the clipped MPO targets and

policy gradients into a direct method (Vieillard et al., 2020) for regularized policy

optimization.

The majority of our experiments were performed on 57 classic Atari games

from the Arcade Learning Environment (Bellemare et al., 2013; Machado et al.,

2018), a popular benchmark for deep RL. We found that, on Atari, Muesli can

match the state-of-the-art performance of MuZero, without requiring deep search,

but instead acting directly with the policy network and using one-step look-aheads

in the updates. To help understand the different design choices made in Muesli,

our experiments on Atari include multiple ablations of our proposed update. Ad-

ditionally, to evaluate how well our method generalizes to different domains, we

performed experiments on a suite of continuous control environments (based on

MuJoCo and sourced from the OpenAI Gym (Brockman et al., 2016)). We also

conducted experiments in 9x9 Go in self-play, to evaluate our policy update in a

domain traditionally dominated by search methods.
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4.2 Background on regularized policy optimization

A regularized policy optimization algorithm solves the following problem:

argmax
π

(
EA∼π(·|s)

[
q̂πprior(s,A)

]
−Ω(π)

)
, (4.1)

where q̂πprior(s,a) are approximate Q-values of a πprior policy and Ω(π) ∈ R is a

regularizer. For example, we may use as the regularizer the negative entropy of

the policy Ω(π) = −λH[π], weighted by an entropy cost λ (Williams and Peng,

1991)1. Alternatively, we may also use Ω(π) = λ KL(πprior,π), where πprior is the

previous policy, as used in TRPO (Schulman et al., 2015).

Following the terminology introduced by Vieillard et al. (2020), we can then

solve Eq. 4.1 by either direct or indirect methods. If π(a|s) is differentiable with

respect to the policy parameters, a direct method applies gradient ascent to

J(s,π) = EA∼π(·|s)

[
q̂πprior(s,A)

]
−Ω(π). (4.2)

Using the log derivative trick to sample the gradient of the expectation results in the

canonical (regularized) policy gradient update (Sutton et al., 2000).

In indirect methods, the solution of the optimization problem (4.1) is found

exactly, or numerically, for one state and then distilled into a parametric policy

(Hinton et al., 2015). For example, Maximum a Posteriori Policy Optimization

(MPO) (Abdolmaleki et al., 2018) uses as regularizer Ω(π) = λ KL(π,πprior), for

which the exact solution to the regularized problem is

πMPO(a|s) = πprior(a|s)exp
(

q̂πprior(s,a)

λ

)
1

z(s)
, (4.3)

where z(s) = EA∼πprior(·|s)

[
exp
(

q̂πprior(s,A)
λ

)]
is a normalization factor that ensures

that the resulting probabilities form a valid probability distribution (i.e., they sum

up to 1).

1The Greek letter λ is used to denote a (Lagrange) multiplier. This usage of λ is unrelated to
TD-Lambda returns.
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Figure 4.2: An episodic MDP with 4 states. State 1 is the initial state. State 4 is terminal. At
each step, the agent can choose amongst two actions: up or down. The rewards
range from -1 to 1, as displayed. The discount is 1. If the state representation
φ(s) is the same in all states, the best stochastic policy is π∗(up|φ(s)) = 5

8 .

4.3 Desiderata and motivating principles
First, to motivate our investigation, we discuss a few desiderata for a general policy

optimization algorithm.

4.3.1 Observability and function approximation

Being able to learn stochastic policies, and being able to leverage Monte-Carlo or

multi-step bootstrapped return estimates is important for a policy update to be truly

general.

This is motivated by the challenges of learning in partially observable environ-

ments (Åström, 1965) or, more generally, in settings where function approximation

is used (Sutton and Barto, 2018). Note that these two are closely related: if a cho-

sen function approximation ignores a state feature, then the state feature is, for all

practical purposes, not observable.

In POMDPs, the optimal memory-less stochastic policy can be better than any

memory-less deterministic policy, as shown by Singh et al. (1994). As an illustra-

tion, consider the MDP in Figure 4.2; in this problem we have 4 states and, on each

step, 2 actions (up or down). If the state representation of all states is the same

φ(s) = ∅, the optimal policy is stochastic. We can easily find such a policy with

pen and paper: π∗(up|φ(s)) = 5
8 ; see Appendix B.2 for details.
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It is also known that, in these settings, it is often preferable to leverage Monte-

Carlo returns, or at least multi-step bootstrapped estimators, instead of using one-

step targets (Jaakkola et al., 1995). Consider again the MDP in Figure 4.2: boos-

trapping from vπ(φ(s)) produces biased estimates of the expected return, because

vπ(φ(s)) aggregates the values of multiple states; again, see Appendix B.2 for the

derivation.

Among the methods in Section 4.2, both policy gradients and MPO allow

convergence to stochastic policies, but only policy gradients naturally incorporate

multi-step return estimators. In MPO, stochastic return estimates could make the

agent overly optimistic (E[exp(G)]≥ exp(E[G])).

4.3.2 Policy representation

Policies may be constructed from action values or they may combine action values

and other quantities (e.g., a direct parametrization of the policy or historical data).

We argue that the action values alone are not enough.

First, we show that action values are not always enough to represent the

best stochastic policy. Consider again the MDP in Figure 4.2 with identical state

representation φ(s) in all states. As discussed, the optimal stochastic policy is

π∗(up|φ(s)) = 5
8 . This non-uniform policy cannot be inferred from Q-values, as

these are the same for all actions and are thus wholly uninformative about the best

probabilities: qπ∗(φ(s),up) = qπ∗(φ(s),down) = 1
4 . Similarly, a model on its own

is also insufficient without a policy, as it would produce the same uninformative

action values.

One approach to address this limitation is to parameterize the policy explicitly

(e.g., via a policy network). This has the additional advantage that it allows us

to directly sample both discrete (Mnih et al., 2016) and continuous (van Hasselt

and Wiering, 2007; Degris et al., 2012; Silver et al., 2014) actions. In contrast,

maximizing Q-values over continuous action spaces is challenging. Access to a

parametric policy network that can be queried directly is also beneficial for agents

that act by planning with a learned model (e.g., via MCTS), as it allows to guide

search in large or continuous action space.
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4.3.3 Robust learning

We seek algorithms that are robust to 1) off-policy or historical data; 2) inaccu-

racies in values and models; 3) diversity of environments. In the following para-

graphs, we discuss what each of these entails.

Reusing data from previous iterations of policy π (Lin, 1992; Riedmiller, 2005;

Mnih et al., 2015) can make RL more data efficient. However, if computing the

gradient of the objective EA∼π(·|s)

[
q̂πprior(s,A)

]
on data from an older policy πprior,

an unregularized application of the gradient can degrade the value of π . The amount

of degradation depends on the total variation distance between π and πprior, and we

can use a regularizer to control it, as in Conservative Policy Iteration (Kakade and

Langford, 2002), Trust Region Policy Optimization (Schulman et al., 2015), and

Appendix B.3.

Whether we learn on- or off-policy, agents’ predictions incorporate errors.

Regularization can also help here. For instance, if Q-values have errors, the MPO

regularizer Ω(π)= λ KL(π,πprior) maintains a strong performance bound (Vieillard

et al., 2020). The errors from multiple iterations average out, instead of appearing

in a discounted sum of the absolute errors. While not all assumptions behind this re-

sult apply in an approximate setting, Section 4.5 shows that MPO-like regularizers

are helpful empirically.

Finally, robustness to diverse environments is critical to ensure that a policy

optimization algorithm operates effectively in novel settings. This can take various

forms, but we focus on robustness to diverse reward scales and minimizing problem-

dependent hyperparameters. The latter are an especially subtle form of inductive

bias that may limit the applicability of a method to established benchmarks (Hessel

et al., 2019).

4.3.4 Rich representation of knowledge

Even if the policy is parametrized explicitly, we argue that it is important for the

agent to represent knowledge in multiple ways (Degris and Modayil, 2012) to up-

date such a policy in a reliable and robust way. Two classes of predictions have

proven particularly useful: value functions and models.
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Observability and function approximation
1a) Support learning stochastic policies
1b) Leverage Monte-Carlo targets
Policy representation
2a) Support learning the optimal memory-less policy
2b) Scale to (large) discrete action spaces
2c) Scale to continuous action spaces
Robust learning
3a) Support off-policy and historical data
3b) Deal gracefully with inaccuracies in the values/model
3c) Be robust to diverse reward scales
3d) Avoid problem-dependent hyperparameters
Rich representation of knowledge
4a) Estimate values (variance reduction, bootstrapping)
4b) Learn a model (representation, composability)

Table 4.1: A recap of the desiderata or guiding principles that we believe are important
when designing general policy optimization algorithms. These are discussed in
Section 4.3.

Value functions (Sutton, 1988; Sutton et al., 2011) can capture knowledge

about a cumulant over long horizons, but can be learned with a cost independent

of the span of the predictions (van Hasselt and Sutton, 2015). They have been

used extensively in policy optimization, e.g., to implement forms of variance reduc-

tion (Williams, 1992), and to allow updating policies online through bootstrapping,

without waiting for episodes to fully resolve (Sutton et al., 2000).

Models can also be useful in various ways: 1) learning a model can act as

an auxiliary task (Schmidhuber, 1990; Sutton et al., 2011; Jaderberg et al., 2017;

Guez et al., 2020), and help with representation learning; 2) a learned model may

be used to update policies and values via planning (Werbos, 1987; Sutton, 1990;

Ha and Schmidhuber, 2018); 3) finally, the model may be used to plan for action

selection (Richalet et al., 1978; Silver and Veness, 2010). These benefits of learned

models are entangled in MuZero. Sometimes it may be useful to decouple them, for

instance, to retain the benefits of models for representation learning and policy op-

timization, without depending on the computationally intensive process of planning

for action selection.
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4.4 Robust yet simple policy optimization
The full list of desiderata is presented in Table 4.1. These are far from solved

problems, but they can be helpful to reason about policy updates. In this section,

we describe a policy optimization algorithm motivated by these desiderata.

As a basic requirement, the policy update needs to work with a tabular rep-

resentation. The convergence is harder to guarantee with function approximation.

Instead, we practically mitigate divergence by using target networks (Mnih et al.,

2015), large networks, and multi-step returns. Large networks are helpful because

they have the capacity to give different representations to different states.

4.4.1 Our proposed clipped MPO (CMPO) regularizer

We use the Maximum a Posteriori Policy Optimization (MPO) algorithm (Abdol-

maleki et al., 2018) as starting point, since it can learn stochastic policies (1a), sup-

ports discrete and continuous action spaces (2c), can learn stably from off-policy

data (3a), and has strong performance bounds even when using approximate Q-

values (3b). We then improve the degree of control provided by MPO on the total

variation distance between π and πprior (3a), avoiding sensitive domain-specific hy-

perparameters (3d).

MPO uses a regularizer Ω(π) = λ KL(π,πprior), where πprior is the previous

policy. Since we are interested in learning from stale data, we allow πprior to

correspond to arbitrary previous policies, and we introduce a regularizer Ω(π) =

λ KL(πCMPO,π), based on the new target

πCMPO(a|s) =
πprior(a|s)exp

(
clip( ˆadv(s,a),−c,c)

)
zCMPO(s)

, (4.4)

where ˆadv(s,a) is a non-stochastic approximation of the advantage q̂πprior(s,a)−

v̂πprior(s) and the factor zCMPO(s) ensures the policy is a valid probability distribu-

tion. The πCMPO term we use in the regularizer has an interesting relation to natural

policy gradients (Kakade, 2001): πCMPO is obtained if the natural gradient is com-

puted with respect to the logits of πprior and then the expected gradient is clipped

(for proof, note that the natural policy gradient with respect to the logits is equal to
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the advantages (Agarwal et al., 2019)).

The clipping threshold c controls the maximum total variation distance be-

tween πCMPO and πprior. Specifically, the total variation distance between π ′ and π

is defined as

DTV(π
′(·|s),π(·|s)) = 1

2 ∑
a
|π ′(a|s)−π(a|s)|. (4.5)

As discussed in Section 4.3.3, constrained total variation supports robust off-policy

learning. The clipped advantages allow us to derive not only a bound for the total

variation distance but an exact formula:

Theorem 4.4.1 (Maximum CMPO total variation distance). For any clipping

threshold c > 0, we have:

max
πprior, ˆadv,s

DTV(πCMPO(·|s),πprior(·|s)) = tanh(
c
2
).

We refer readers to Appendix B.4 for proof of Theorem 4.4.1; we also verified

the theorem predictions numerically.

Note that the maximum total variation distance between πCMPO and πprior does

not depend on the number of actions or other environment properties (3d). It de-

pends only on the clipping threshold as visualized in Figure 4.3a. This allows us to

control the maximum total variation distance under a CMPO update, for instance, by

setting the maximum total variation distance to ε , without requiring the constrained

optimization procedure used in the original MPO paper. Instead of the constrained

optimization, we just set c = 2arctanh(ε). We used c = 1 in our experiments, across

all domains.
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Figure 4.3: (a) The maximum total variation distance between πCMPO and πprior is exclu-
sively a function of the clipping threshold c. (b) A comparison (on 10 Atari
games) of the Muesli sensitivity to the regularizer multiplier λ . Each dot is
the mean of 5 runs with different random seeds and the black line is the mean
across all 10 games. With Muesli’s normalized advantages, the good range of
values for λ is fairly large, not strongly problem-dependent, and λ = 1 per-
forms well on many environments.

4.4.2 A novel policy update

Given the proposed regularizer Ω(π) = λ KL(πCMPO,π), we can update the policy

by direct optimization of the regularized objective. That is by gradient descent on

LPG+CMPO(π,s) =−EA∼π(·|s)
[ ˆadv(s,A)

]
+

λ KL(πCMPO(·|s),π(·|s)), (4.6)

where the advantage terms in each component of the loss can be normalized using

the approach described in Section 4.4.5 to improve the robustness to reward scales.

The first term corresponds to a standard policy gradient update, thus allowing

stochastic estimates of ˆadv(s,A) that use Monte-Carlo or multi-step estimators (1b).

The second term adds regularization via distillation of the CMPO target, to preserve

the desiderata addressed in Section 4.4.1.

Critically, the hyperparameter λ is easy to set (3d), because even if λ is high,
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λ KL(πCMPO(·|s),π(·|s)) still proposes improvements to the policy πprior. This

property is missing in popular regularizers that maximize entropy or minimize a

distance from πprior. We refer to the sensitivity analysis depicted in Figure 4.3b for

a sample of the wide range of values of λ that we found to perform well on Atari.

We used λ = 1 in all other experiments reported in this chapter.

Both terms can be sampled, allowing us to trade-off the computation cost and

the variance of the update; this is especially useful in large or continuous action

spaces (2b), (2c).

We can sample the gradient of the first term by computing the loss on data

generated on a prior policy πprior, and then use importance sampling to correct for

the distribution shift with respect to π . This results in the estimator

− π(a|s)
πb(a|s)

(Gv(s,a)− v̂πprior(s)), (4.7)

for the first term of the policy loss. In this expression, πb(a|s) is the behavior pol-

icy; the advantage (Gv(s,a)− v̂πprior(s)) uses a stochastic multi-step bootstrapped

estimator Gv(s,a) and a learned baseline v̂πprior(s).

We can also sample the regularizer by computing a stochastic estimate of the

KL on a subset of N actions a(k) sampled from πprior(s). In which case, the second

term of Eq. 4.6 becomes (ignoring an additive constant)

−λ

N

N

∑
k=1

[
exp(clip( ˆadv(s,a(k)),−c,c))

zCMPO(s)
logπ(a(k)|s)

]
, (4.8)

where ˆadv(s,a) = q̂πprior(s,a)− v̂πprior(s) is computed from the learned values q̂πprior

and v̂πprior(s). To support sampling just few actions from the current state s, we can

estimate zCMPO(s) for the i-th sample out of N as

z̃(i)CMPO(s) =
zinit +∑

N
k ̸=i exp(clip( ˆadv(s,a(k)),−c,c))

N
, (4.9)

where zinit is an initial estimate. We use zinit = 1.
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4.4.3 Learning a model

As discussed in Section 4.3.4, learning models have several potential benefits. Thus,

we propose to train a model alongside policy and value estimates (4b). As in

MuZero (Schrittwieser et al., 2020) our model is not trained to reconstruct obser-

vations, but is rather only required to provide accurate estimates of rewards, values

and policies. It can be seen as an instance of value equivalent models (Grimm et al.,

2020).

For training, the model is unrolled k > 1 steps, taking as inputs an initial state

st and an action sequence a<t+k = at ,at+1, ...,at+k−1. On each step, the model then

predicts rewards r̂k, values v̂k and policies πk. Rewards and values are trained to

match the observed rewards and values of the states actually visited when executing

those actions.

Policy predictions πk after unrolling the model k steps are trained to match the

πCMPO(·|st+k) policy targets computed in the actual observed states st+k. The policy

component of the model loss can then be written as:

Lm(π,st) =
K

∑
k=1

KL(πCMPO(·|st+k),πk(·|st ,a<t+k))

K
. (4.10)

This differs from MuZero in that here the policy predictions πk(·|st ,a<t+k) are

updated towards the targets πCMPO(·|st+k), instead of being updated to match

πMCTS(·|st+k) proportional to the visit counts from an MCTS.

4.4.4 Using the model

The first use of a model is as an auxiliary task. We implement this by conditioning

the model not on a raw environment state st but, instead, on the activations h(st)

from a hidden layer of the policy network. Gradients from the model loss Lm are

then propagated all the way into the shared encoder, to help learning good state

representations.

The second use of the model is within the policy update from Eq. 4.6. Specifi-

cally, the model is used to estimate the action values q̂πprior(s,a), via one-step look-
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ahead:

q̂πprior(s,a) = r̂1(s,a)+ γ v̂1(s,a), (4.11)

and the model-based action values are then used in two ways. First, they are used

to estimate the multi-step return Gv(s,A) in Eq. 4.7, by combining action values

and observed rewards using the Retrace estimator (Munos et al., 2016). Second,

the action values are used in the (non-stochastic) advantage estimate ˆadv(s,a) =

q̂πprior(s,a)− v̂πprior(s) required by the regularization term in Eq. 4.8.

Using the model to compute the πCMPO target instead of using it to construct

the search-based policy πMCTS has several advantages: a fast analytical formula,

stochastic estimation of KL(πCMPO(·|s),π(·|s)) in large action spaces (2b), and di-

rect support for continuous actions (2c). In contrast, MuZero’s targets πMCTS are

only an approximate solution to regularized policy optimization (Grill et al., 2020),

and the approximation can be crude when using few simulations.

Note that we could have also used deep search to estimate action-values, and

used these in the proposed update. Deep search would however be computationally

expensive, and may require more accurate models to be effective (3b).

4.4.5 Normalization

CMPO avoids overly large changes but does not prevent updates from becoming

vanishingly small due to small advantages. To increase robustness to reward scales

(3c), we divide advantages ˆadv(s,a) by the standard deviation of the advantage

estimator. A similar normalization was used in PPO (Schulman et al., 2017), but we

estimate ESt ,At

[
(Gv(St ,At)− v̂πprior(St))

2
]

using moving averages, to support small

batches. Normalized advantages do not become small, even when the policy is close

to optimal; for convergence, we rely on learning-rate decay.

All policy components can be normalized using this approach, but the model

also predicts rewards and values, and the corresponding losses could be sensitive to

reward scales. To avoid having to tune, per game, the weighting of these unnormal-

ized components (4c), (4d), we compute losses in a non-linearly transformed space

https://github.com/openai/baselines/blob/9b68103b737ac46bc201dfb3121cfa5df2127e53/baselines/ppo2/model.py#L139
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(Pohlen et al., 2018; van Hasselt et al., 2019), using the categorical reparametriza-

tion introduced by MuZero (Schrittwieser et al., 2020).

4.5 An empirical study

In this section, we investigate empirically the policy updates described in Sec-

tion 4.4. The full agent implementing our recommendations is named Muesli, as

an homage to MuZero. The Muesli policy loss is LPG+CMPO(π,s)+Lm(π,s). All

agents in this section are trained using the Sebulba podracer architecture (Hessel

et al., 2021).

First, we use the 57 Atari games in the Arcade Learning Environment (Belle-

mare et al., 2013) to investigate the key design choices in Muesli by comparing it

to suitable baselines and ablations. We use sticky actions to make the environments

stochastic (Machado et al., 2018). To ensure comparability, all agents use the same

policy network, based on the IMPALA agent (Espeholt et al., 2018). When applica-

ble, the model described in Section 4.4.3 is parametrized by an LSTM (Hochreiter

and Schmidhuber, 1997), with a diagram in Figure B.2 in the appendix. Agents

are trained using uniform experience replay, and estimate multi-step returns using

Retrace (Munos et al., 2016).

In Figure 4.1a, we compare the median human-normalized score on Atari

achieved by Muesli to that of several baselines: policy gradients (in red), PPO (in

green), MPO (in gray) and a policy gradient variant with TRPO-like KL(πb,π) reg-

ularization (in orange). The updates for each baseline are reported in Appendix B.6,

and the agents differed only in the policy components of the losses. In all updates

we used the same normalization, and trained a MuZero-like model grounded in val-

ues and rewards. In MPO and Muesli, the policy loss included the policy model

loss from Eq. 4.10. For each update, we separately tuned hyperparameters on 10 of

the 57 Atari games. We found the performance on the full benchmark to be sub-

stantially higher for Muesli (in blue). In the next experiments we investigate how

different design choices contributed to Muesli’s performance.

In Figure 4.4, we use the Atari games beam rider and gravitar to investi-
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Figure 4.4: A comparison (on two Atari games) of the robustness of clipped and unclipped
MPO agents to the scale of the advantages. Without clipping, we found that
performance degraded quickly as the scale increased. In contrast, with CMPO,
performance was almost unaffected by scales ranging from 10−3 to 103.

gate advantage clipping. Here, we compare the updates that use clipped (in blue)

and unclipped (in red) advantages, when first rescaling the advantages by factors

ranging from 10−3 to 103 to simulate diverse return scales. Without clipping, per-

formance was sensitive to scale, and degraded quickly when scaling advantages by

a factor of 100 or more. With clipping, learning was almost unaffected by rescaling,

without requiring more complicated solutions such as the constrained optimization

introduced in related work to deal with this issue (Abdolmaleki et al., 2018).

In Figure 4.5, we show how Muesli combines the benefits of direct and in-

direct optimization. A direct MPO update uses the λ KL(π,πprior) regularizer as

a penalty; c.f. Mirror Descent Policy Optimization (Tomar et al., 2020). Indirect

MPO first finds πMPO from Eq. 4.3 and then trains the policy π by the distillation

loss KL(πMPO,π). Note the different direction of the KLs. Vieillard et al. (2020) ob-

served that the best choice between direct and indirect MPO is problem-dependent,

and we found the same: compare the ordering of direct MPO (in green) and indi-



4.5. An empirical study 64

0 50 100 150 200
Millions of frames

0

3000

6000

9000

12000

15000

M
e
a
n
 r

e
tu

rn

atari57/alien

Muesli

Direct MPO

CMPO

0 50 100 150 200
Millions of frames

0

20

40

60

80

100
atari57/robotank

Muesli

Direct MPO

CMPO

Figure 4.5: A comparison (on two Atari games) of direct and indirect optimization.
Whether direct MPO (in green) or indirect CMPO (in yellow) perform best
depends on the environment. Muesli, however, typically performs as well as,
or better than either one of them. The aggregate score across the 57 games for
Muesli, direct MPO and CMPO are reported in Figure B.5 of the appendix.

rect CMPO (in yellow) on the two Atari games alien and robotank. In contrast,

we found that the Muesli policy update (in blue) was typically able to combine the

benefits of the two approaches by performing as well as, or better than the best

among the two updates on each of the two games. See Figure B.5 in the appendix

for aggregate results across more games.

In Figure 4.6a, we evaluate the importance of using multi-step bootstrapped

returns and model-based action values in the policy-gradient-like component of

Muesli’s update. Replacing the multi-step return with an approximate q̂πprior(s,a)

(in red in Figure 4.6a) degraded the performance of Muesli (in blue) by a large

amount, showing the importance of leveraging multi-step estimators. We also eval-

uated the role of model-based action value estimates qπ in the Retrace estimator

by comparing full Muesli to an ablation (in green) where we instead used model-

free values v̂ in a V-trace estimator (Espeholt et al., 2018). The ablation performed

worse.
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Figure 4.6: Median score across 57 Atari games. (a) Return ablations: 1) Retrace or V-
trace, 2) training the policy with multi-step returns or with q̂πprior(s,a) only (in
red). (b) Different numbers of samples to estimate the KL(πCMPO,π). The “1
sample, oracle” (pink) used the exact zCMPO(s) normalizer, requiring to expand
all actions. The ablations were run with 2 random seeds.

In Figure 4.6b, we compare the performance of Muesli when using different

numbers of actions to estimate the KL term in Eq. 4.6. We found that the resulting

agent performed well in absolute terms (∼ 300% median human-normalized per-

formance) when estimating the KL by sampling as few as a single action (brown).

Performance increased by sampling up to 16 actions, which was then comparable

to the exact KL.

In Figure 4.7a, we show the impact of different parts of the model loss on rep-

resentation learning. The performance degraded when training the model to predict

only one step (in green). This suggests that training a model to support deeper un-

rolls (5 steps in Muesli, in blue) is a useful auxiliary task even if using only one-step

look-aheads in the policy update. In Figure 4.7a we also show that performance de-

graded even further if the model was not trained to output policy predictions at each

step in the future, as per Eq. 4.10, but instead was trained only to predict rewards
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Figure 4.7: Median score across 57 Atari games. (a) Muesli ablations that train one-step
models (in green), or drop the policy component of the model (in red). (b)
Muesli and two MCTS-baselines that act by sampling from πMCTS and learn by
using πMCTS as the target; all use the IMPALA policy network and an LSTM
model.

and values (in red). This is consistent with the value equivalence principle (Grimm

et al., 2020): a rich signal from training models to support multiple predictions is

critical for this type of model.

In Figure 4.7b, we compare Muesli to an MCTS baseline. As in MuZero, the

baseline uses MCTS for both acting and learning. This is not a canonical MuZero,

though, as it uses the (smaller) IMPALA network. MCTS (in purple) performed

worse than Muesli (in blue) in this regime. We ran another MCTS variant with

limited search depth (in green); this performed better than full MCTS, suggesting

that with insufficiently large networks, the model may not be sufficiently accurate

to support deep search. In contrast, Muesli performed well even with these smaller

models (3b).

Since we know from the literature that MCTS can be very effective in combi-

nation with larger models, in Figure 4.1b we reran Muesli with a much larger policy

network and model, similar to that of MuZero. In this setting, Muesli matched the
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frames. Evaluating 3 seeds against Pachi with 10K simulations per move. (a)
Muesli and other search-free baselines. (b) MuZero MCTS with 150 simula-
tions, and Muesli with and without the use of MCTS at the evaluation time
only.

published performance of MuZero (the current state of the art on Atari in the 200M

frames regime). Notably, Muesli achieved this without relying on deep search: it

still sampled actions from the fast policy network and used one-step look-aheads in

the policy update. We note that the resulting median score matches MuZero and is

substantially higher than all other published agents, see Table 4.2 to compare the

final performance of Muesli to other baselines.

Next, we evaluated Muesli on learning 9x9 Go from self-play. This requires to

handle non-stationarity and a combinatorial space. It is also a domain where deep

search (e.g., MCTS) has historically been critical to reach non-trivial performance.

In Figure 4.8a, we show that Muesli (in blue) still outperformed the strongest base-

lines from Figure 4.1a, as well as CMPO on its own (in yellow). All policies were

evaluated against Pachi (Baudiš and Gailly, 2011). Muesli reached a ∼75% win

rate against Pachi: to the best of our knowledge, this is the first system to do so

from self-play alone without deep search. In the appendix we report even stronger
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Table 4.2: Median human-normalized score across 57 Atari games from the ALE, at 200M
frames, for several published baselines. These results are sourced from different
papers, thus the agents differ along multiple dimensions (e.g., network archi-
tecture and amount of experience replay). MuZero and Muesli both use a very
similar network, the same proportion of replay, and both use the harder version
of the ALE with sticky actions (Machado et al., 2018). The ± denotes the stan-
dard error over 2 random seeds.

AGENT MEDIAN

DQN (Mnih et al., 2015) 79%
DreamerV2 (Hafner et al., 2020) 164%
IMPALA (Espeholt et al., 2018) 192%
Rainbow (Hessel et al., 2018) 231%
Meta-gradient{γ,λ} (Xu et al., 2018) 287%
STAC (Zahavy et al., 2020) 364%
LASER (Schmitt et al., 2020) 431%
MuZero Reanalyse (Schrittwieser et al., 2021) 1,047 ±40%
Muesli 1,041 ±40%

win rates against GnuGo (Bump et al., 2005).

In Figure 4.8b, we compare Muesli to MCTS on Go; here, Muesli’s perfor-

mance (in blue) fell short of that of the MCTS baseline (in purple), suggesting there

is still value in using deep search for acting in some domains. This is demonstrated

also by another Muesli variant that uses deep search at evaluation only. Such a

Muesli/MCTS[Eval] hybrid (in light blue) recovered part of the gap with the MCTS

baseline, without slowing down training. For reference, with the pink vertical line

we depict the published MuZero, with its even greater data efficiency thanks to more

simulations, a different network, more replay, and early resignation.

Finally, we tested the same agents on MuJoCo environments in OpenAI Gym

(Brockman et al., 2016), to test if Muesli can be effective on continuous domains

and on smaller data budgets (2M frames). Muesli performed competitively. We

refer readers to Figure B.4, in the appendix, for the results.

4.6 Conclusion
Starting from our desiderata for general policy optimization, we proposed an up-

date (Muesli) that combines policy gradients with Maximum a Posteriori Policy
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Optimization (MPO) and model-based action values. We empirically evaluated the

contributions of each design choice in Muesli, and compared the proposed update

to related ideas from the literature. Muesli demonstrated state-of-the-art perfor-

mance on Atari (matching MuZero’s most recent results), without the need for deep

search. Muesli even outperformed MCTS-based agents, when evaluated in a regime

of smaller networks and/or reduced computational budgets. Finally, we found that

Muesli could be applied out of the box to self-play 9x9 Go and continuous control

problems, showing the generality of the update (although further research is needed

to really push the state of the art in these domains). We hope that our findings will

motivate further research in the rich space of algorithms at the intersection of policy

gradient methods, regularized policy optimization and planning.

In the next chapter, we will show how to reach the state of the art even on Go,

by allowing a tree search to represent the optimal stochastic policy (desiderata (1a)

and (2a)).



Chapter 5

Policy Improvement by Planning

with Gumbel

AlphaZero is a powerful reinforcement learning algorithm based on approximate

policy iteration and tree search. However, AlphaZero can fail to improve its policy

network, if not visiting all actions at the root of a search tree. To address this issue,

we propose a policy improvement algorithm based on sampling actions without

replacement. Furthermore, we use the idea of policy improvement to replace the

more heuristic mechanisms by which AlphaZero selects and uses actions, both at

root nodes and at non-root nodes. Our new algorithms, Gumbel AlphaZero and

Gumbel MuZero, respectively without and with model-learning, match the state of

the art on Go, chess, and Atari, and significantly improve prior performance when

planning with few simulations.

5.1 Introduction
In 2018, AlphaZero (Silver et al., 2018) demonstrated a single algorithm achieving

state-of-the-art results on Go, chess, and Shogi. The community reacted quickly.

Leela Chess Zero (Linscott et al., 2018) was created to reproduce AlphaZero results

on chess, winning Top Chess Engine Championship in 2019. Soon, all top-rated

classical chess engines replaced traditional evaluation functions with Efficiently

Updatable Neural Network (Nasu, 2018).

AlphaZero was itself generalized by MuZero (Schrittwieser et al., 2020).
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While AlphaZero requires a black-box model of the environment, MuZero learns

an abstract model of the environment. Essentially, MuZero learns the rules of Go,

chess, and Shogi from interactions with the environment. This allows MuZero to

excel also at Atari and continuous control from pixels (Hubert et al., 2021).

In this work, we redesign and improve AlphaZero. In particular, we consider

the mechanisms by which AlphaZero selects and uses actions, which are based

upon a variety of heuristic ideas that have proven especially effective in Go, chess,

and Atari (Silver et al., 2018; Schrittwieser et al., 2020). However, when using

a small number of simulations, some of AlphaZero’s mechanisms perform poorly.

We use the principle of policy improvement to suggest new mechanisms with a

better theoretical foundation. More specifically, we consider each mechanism in

turn, alongside our proposed modifications:

• Selecting actions to search at the root node. To explore different actions

during training, AlphaZero selects actions by adding Dirichlet noise to its

policy network, and then performs a search using the perturbed policy. How-

ever, this does not ensure a policy improvement. We instead propose to sam-

ple actions without replacement by using the Gumbel-Top-k trick (Section 2),

and perform a search using the same Gumbel values to influence the selec-

tion of the best action (Section 3.3), and show that this guarantees a policy

improvement when action-values are correctly evaluated.

• Selecting actions at the root node. AlphaZero uses a variant of the PUCB

algorithm (Rosin, 2011) to select actions at the root node. This algorithm

was designed to optimize cumulative regret in a bandit-with-predictor setting

(i.e., given prior recommendations from the policy network). However, no

ancestors are dependent upon the evaluation of the root node, and the perfor-

mance of the Monte-Carlo tree search therefore only depends upon the final

recommended action at the root node, and not upon the intermediate actions

selected during search (Bubeck et al., 2011). Consequently, we propose to

use the Sequential Halving algorithm (Karnin et al., 2013) at the root node to

optimize simple regret in a stochastic bandit with a predictor (Section 5.3.4).
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• Selecting actions in the environment. Once search is complete, AlphaZero

selects an action by sampling from an (annealed) categorical distribution

based upon the visit counts of root actions resulting from the search pro-

cedure. We instead propose to select the singular action resulting from the

Sequential Halving search procedure.

• Policy network update. AlphaZero updates its policy network towards a

categorical distribution based upon the visit counts of root actions. However,

even if the considered actions are correctly evaluated, this does not guarantee

a policy improvement, especially when using small numbers of simulations

(Grill et al., 2020). We instead propose a policy improvement based upon the

root action values computed during search, and we update the policy network

towards that policy improvement (Section 5.4).

• Selecting actions at non-root nodes. AlphaZero uses the PUCT algorithm

to select actions at non-root nodes. We instead propose to select actions ac-

cording to a policy improvement (similar to the proposal of Grill et al. (2020))

based upon a completion of the action values. Furthermore, rather than sam-

pling directly from this policy improvement, we propose a deterministic ac-

tion selection procedure that matches the empirical visit counts to the desired

policy improvement (Section 5.5).

The proposed modifications are also applicable to MuZero or any agent with

a policy network and an expensive Q-network. The modifications are most helpful

when using a small number of simulations, relative to the number of actions. When

using a large number of simulations, AlphaZero works well. We tried to ensure that

the new search is principled, better with a smaller number of simulations, and never

worse. We succeeded on all tested domains: Go, chess, and Atari.

5.2 Background on Gumbel-Max
Before explaining the improved search, we will explain the Gumbel-Max trick and

the Gumbel-Top-k trick. The Gumbel-Max trick was popularized by Gumbel-
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Softmax for a gradient approximation. In this work, we are not interested in ap-

proximate gradients. Instead, we use the Gumbel-Top-k trick to sample without

replacement.

Gumbel-Max trick. (Gumbel, 1954; Luce, 1959; Maddison et al., 2017; Jang

et al., 2017) Let π be a categorical distribution with logits ∈ Rk, such that logits(a)

is the logit of the action a. We can obtain a sample A from the distribution π by first

generating a vector of k Gumbel variables and then taking argmax:

(g ∈ Rk)∼ Gumbel(0) (5.1)

A = argmax
a

(g(a)+ logits(a)). (5.2)

Gumbel-Top-k trick. (Yellott, 1977; Vieira, 2014; Kool et al., 2019) The

Gumbel-Max trick can be generalized to sampling n actions without replacement,

by taking n top actions:

(g ∈ Rk)∼ Gumbel(0) (5.3)

A1 = argmax
a

(g(a)+ logits(a)) (5.4)
...

An = argmax
a/∈{A1,...,An−1}

(g(a)+ logits(a)). (5.5)

We will denote the set of n top actions by argtop(g+ logits,n) = {A1,A2, . . . ,An}.

5.3 Planning at the root
We are interested in improving AlphaZero Monte-Carlo tree search (MCTS). In this

section, we will focus on the action selection at the root of the search tree.

5.3.1 Problem setting

Both AlphaZero and MuZero have access to a policy network. At the root of the

search tree, they can explore n simulations, before selecting an action for the real

environment. We will formalize the problem as a deterministic bandit with a pre-

dictor and we will later extend it to a stochastic bandit and MCTS.
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Bandit. A k-armed deterministic bandit is a vector of Q-values q ∈ Rk, such

that q(a) is the Q-value of the action a. The agent interacts with the bandit in n

simulations (aka rounds). In each simulation t ∈ {1, . . . ,n}, the agent selects an

action At ∈ {0, . . . ,k−1} and visits the action to observe the Q-value q(At).

The objective is to maximize the Q-value from a special last action An+1. That

means we want to maximize E[q(An+1)]. This objective is equivalent to minimiza-

tion of simple regret. The simple regret differs from the cumulative regret from all n

simulations. Bubeck et al. (2011), Hay and Russell (2011), and Tolpin and Shimony

(2012) already argued that at the root of the search tree we care about the simple

regret.

The problem becomes interesting when the number of possible actions is larger

than the number of simulations, i.e., when k > n. For example, 19x19 Go has 362

possible actions, and we will do experiments with as few as n = 2 simulations.

Fortunately, the policy network can help.

Predictor. In the bandit-with-predictor setting (Rosin, 2011), the agent is

equipped with a predictor: the policy network. Before any interaction with the

bandit, the policy network predicts the best action by producing a probability distri-

bution π . The agent can use the policy network predictions to make more informed

decisions.

Policy improvement. Naturally, we would like to have an agent that acts better

than, or as well as, the policy network. That is, we would like to obtain a policy

improvement. If the agent’s action selection produces a policy improvement, then

E [q(An+1)]≥∑
a

π(a)q(a), (5.6)

where the probability π(a) is the policy network prediction for the action a.1 The

policy network can then keep improving by modeling an improved policy.

1Inequality 5.6 can be strict if we assume that an action has a positive advantage and its π(a)> 0.
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5.3.2 Motivating counterexample

We will show that the commonly used heuristics fail to produce a policy improve-

ment.

Example 1. Acting with the best action from the top-n most-probable actions fails

to produce a policy improvement. Let’s demonstrate that. Let q = (0,0,1) be the

Q-values and let π = (0.5,0.3,0.2) be the probabilities produced by the policy net-

work. The value of the policy network is ∑a π(a)q(a) = 0.2. For n = 2 simulations,

the set of the most-probable actions is {0,1}. With that, the heuristic would select

An+1 = argmaxa∈{0,1} q(a). The expected value of such an action is E [q(An+1)] = 0,

which is worse than the value of the policy network.

You can find other counterexamples by generating random q and π vectors

and testing the policy improvement (Inequality 5.6). If the number of simulations is

smaller than the number of actions, then UCT and AlphaZero do not ensure a policy

improvement.

5.3.3 Planning with Gumbel

We will design a policy improvement algorithm for the deterministic bandit with a

predictor π . After n simulations, the algorithm should propose an action An+1 with

E [q(An+1)]≥ ∑a π(a)q(a).

One possibility is to sample n actions from π , and then to select from the sam-

pled actions the action with the highest q(a). Instead of sampling with replacement,

we can reduce the variance by sampling without replacement.

Still, the sampled actions contain a limited amount of information about π . We

should exploit the knowledge of π and its logits when selecting An+1. The main

idea is to sample n actions without replacement by using the Gumbel-Top-k trick,

and then to use the same Gumbel g to select the action with the highest g(a) +

logits(a)+σ(q(a)). The σ can be any monotonically increasing transformation.

The pseudocode for the algorithm is in Algorithm 4.
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Algorithm 4 Policy Improvement by Planning with Gumbel
Require: k: number of actions.
Require: n≤ k: number of simulations.
Require: logits ∈ Rk: predictor logits from a policy network π .

Sample k Gumbel variables:
(g ∈ Rk)∼ Gumbel(0)

Find n actions with the highest g(a)+ logits(a):
Atopn = argtop(g+ logits,n)

Get q(a) for each a ∈ Atopn by visiting the actions.
From Atopn, find the action with the highest g(a)+ logits(a)+σ(q(a)):

An+1 = argmaxa∈Atopn
(g(a)+ logits(a)+σ(q(a)))

return An+1

The algorithm produces a policy improvement because

q(argmax
a∈Atopn

(g(a)+ logits(a)+σ(q(a))))≥ q(argmax
a∈Atopn

(g(a)+ logits(a))). (5.7)

This holds for any Gumbel g, so it holds also for expectations: E[q(An+1)] ≥

EA∼π [q(A)]. The argmaxa∈Atopn(g(a)+ logits(a)) is equivalent to sampling from

the policy network π (see the Gumbel-Max trick or Appendix C.1). By using the

same Gumbel vector g in the argtop and argmax, we avoid a double-counting bias.

The prior knowledge contained in the logits can help on partially observable

environments, or when working with approximate or stochastic Q-values.

5.3.4 Planning on a stochastic bandit

We can now extend the algorithm to a stochastic bandit. A stochastic bandit pro-

vides only a stochastic estimate of the expected Q-value q(a). In that setting, we

will use the empirical mean q̂(a) instead of q(a). Obviously, the empirical mean

would be better estimated if visiting an action multiple times. We have to choose

which actions to visit and how many times. We can control this in two places. First,

we can control the number of actions sampled without replacement. Second, we

can use a bandit algorithm to efficiently explore the set of sampled actions.

There are multiple bandit algorithms for simple regret minimization. In our

preliminary experiments, Sequential Halving (Karnin et al., 2013) was easier to

tune than UCB-E (Audibert et al., 2010) and UCB
√
· (Tolpin and Shimony, 2012).
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Conveniently, Sequential Halving does not have problem-dependent hyperparame-

ters.

We present Sequential Halving with Gumbel in Algorithm 5, with an illustra-

tion in Figure 5.1. Sequential Halving is used to identify the action with the highest

g(a)+ logits(a)+σ(q̂(a)).

Algorithm 5 Sequential Halving with Gumbel
Require: k: number of actions.
Require: m≤ k: number of actions sampled without replacement.
Require: n: number of simulations.
Require: logits ∈ Rk: predictor logits from a policy network π .

Sample k Gumbel variables:
(g ∈ Rk)∼ Gumbel(0)

Find m actions with the highest g(a)+ logits(a):
Atopm = argtop(g+ logits,m)

Use Sequential Halving with n simulations to identify the best action from the
Atopm actions, by comparing g(a)+ logits(a)+σ(q̂(a)).
An+1 = argmaxa∈Remaining(g(a)+ logits(a)+σ(q̂(a)))
return An+1

Figure 5.1: The number of considered actions and their visit counts N(a) when using Se-
quential Halving with Gumbel on a k-armed stochastic bandit. The search
uses n = 200 simulations and starts by sampling m = 16 actions without re-
placement. Sequential Halving divides the budget of n simulations equally to
log2(m) phases. In each phase, all considered actions are visited equally often.
After each phase, one half of the actions are rejected. From the original k ac-
tions, only the best actions will remain.
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For a concrete instantiation of σ , we use

σ(q̂(a)) = (cvisit +max
b

N(b))cscaleq̂(a), (5.8)

where maxb N(b) is the visit count of the most-visited action. The transformation

progressively increases the scale for q̂(a) and reduces the effect of the prior pol-

icy. This scale is inspired by the policy updates in MPO (Abdolmaleki et al., 2018;

Vieillard et al., 2020). The finite scale for the Q-values provides regularized policy

optimization and puts into effect the prior knowledge contained in the logits. Ex-

perimentally, cvisit = 50, cscale = 1.0 allowed us to use the same hyperparameters

even if changing the number of simulations.

5.4 Learning an improved policy

After the search, we have An+1 from a (potentially) improved policy. Like Al-

phaZero, we would like to distill the improved policy to the policy network. One

possibility is to train the policy network π to predict the An+1. That defines a simple

policy loss:

Lsimple(π) =− logπ(An+1). (5.9)

Using completed Q-values. We will explain a different way to train the policy

network, by extracting more knowledge from the search. Beside An+1, the search

also gives us q(a) (or its approximation) for the visited actions. We can construct

an improved policy by first completing the vector of Q-values:

completedQ(a) =

q(a) if N(a)> 0

vπ , otherwise,
(5.10)

where the unknown Q-values of the unvisited actions are replaced by vπ =

∑a π(a)q(a). While in practice we do not have the exact vπ , we have instead its

approximation v̂π from a value network. Even when training on off-policy data, we
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devised a helpful vπ approximation (Appendix C.3).

With the completed Q-values, a new improved policy is constructed by

π
′ = softmax(logits+σ(completedQ)), (5.11)

where σ is a monotonically increasing transformation. We provide a proof of a

policy improvement in Appendix C.2. Intuitively, the completed Q-values give zero

advantage to the unvisited actions.

After constructing the new improved policy π ′, we can distill it to the policy

network π:

Lcompleted(π) = KL(π ′,π). (5.12)

This loss trains all actions, not only the action An+1. Later, we will investigate the

effect of the loss in Figure 5.3a.

5.5 Planning at non-root nodes

To design an action selection for the non-root nodes of a search tree, we take in-

spiration from Grill et al. (2020). That allows us to interpret MCTS as regularized

policy optimization. At a non-root node, we construct an improved policy π ′ by

using the completed Q-values (Equation 5.11).

To select an action at the non-root node, one possibility is to sample the action

from π ′. However, sampling at non-root nodes adds unwanted variance to the es-

timated Q-values. Instead, we can design a deterministic action selection with the

smallest mean-squared-error between the π ′ probabilities and the produced normal-

ized visit counts. Such an action selection would select

argmin
a

∑
b

(
π
′(b)− N(b)+ I{a = b}

1+∑c N(c)︸ ︷︷ ︸
Normalized visit counts, if taking a.

)2

, (5.13)

where the indicator I{a = b} is 1 if a = b, and zero otherwise. After a bit of algebra
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(Appendix C.4), we obtain a simpler, more efficient expression:

argmax
a

(
π
′(a)− N(a)

1+∑b N(b)

)
. (5.14)

This deterministic action selection selects the actions proportionally to π ′ and

avoids an extra variance. We recommend a deterministic action selection only for

non-root nodes. At the root node, the Gumbel noise is helpful for trying different

actions in different episodes, while ensuring an improved expected value.

5.6 Related work
Rosin (2011) introduced the bandit with a predictor and designed PUCB (“Predic-

tor + UCB”) for cumulative regret minimization. AlphaGo (Silver et al., 2016),

AlphaGo Zero (Silver et al., 2017a), AlphaZero (Silver et al., 2018), and MuZero

(Schrittwieser et al., 2020) used a deep policy network as the predictor in a vari-

ant of the PUCB algorithm. Bertsekas (2019, 2021, 2022) provides an in-depth

discussion of policy iteration, policy improvement, and their connection to rollout.

If not using a predictor, UCT (Kocsis and Szepesvári, 2006) would need to

visit each action before being able to compare them. Rapid Action Value Estimation

(Gelly and Silver, 2011) then helps to form rough estimates of the action values by

aggregating statistics from all future states. Gelly and Silver (2011) also initialized

the action value estimates with a heuristic evaluation function. The best heuristic

used a learned linear network. Hamrick et al. (2020) later extended it to a deep

Q-network.

Cazenave (2014) and Pepels et al. (2014) applied Sequential Halving to MCTS.

Fabiano and Cazenave (2021) introduced Sequential Halving Using Scores. The

‘scores’ can be any prior offset to the Q-values. The way to obtain scores from a

policy network was left as an open problem. We can now view the g+ logits as

special scores.

MCTS is related to regularized policy optimization. Grill et al. (2020) analyzed

AlphaZero tree search and discovered that AlphaZero approximates a regularized

policy optimization. The approximation error is large if using a small number of
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simulations. To avoid the approximation error, Grill et al. (2020) used a regularized

policy optimization directly inside the tree search. In the setting without a predictor,

Xiao et al. (2019) compared UCT to a new MCTS with an entropy regularizer.

Dam et al. (2021) generalized it to relative entropy and Tsallis entropy. Regularized

policy optimization is helpful when working with approximate Q-values (Vieillard

et al., 2020) or when doing an approximate policy iteration (Kakade and Langford,

2002; Schulman et al., 2015).

TreeQN (Farquhar et al., 2018) uses a breadth-first search inside a network ar-

chitecture. The network can do a lot of computation before producing a Q-value. To

reduce the computation demands, Dynamic Planning Networks (Tasfi and Capretz,

2018) extended TreeQN to sample only some actions. To approximate the gra-

dient, Dynamic Planning Networks use Gumbel-Softmax (Maddison et al., 2017;

Jang et al., 2017). Although we use Gumbel variables, we do not employ approxi-

mate gradients from Gumbel-Softmax. We use the Gumbel-Top-k trick to construct

efficient planning with a provable policy improvement.

For sampling without replacement, the unordered set estimator by Kool et al.

(2020) provides an elegant, unbiased estimate of a gradient. However, gradient de-

scent needs multiple steps to reach the solution of a regularized policy optimization

problem (Tomar et al., 2020). Furthermore, the exact computation of the unordered

set estimator requires O(2m) operations, which would be prohibitively expensive

for m = 16. Practical time complexity can be achieved by using an importance-

weighted estimator (Vieira, 2017; Nauman and Den Hengst, 2020).

Continuous actions can be supported by sampling k actions with replacement

and then using the sampled actions as discrete actions with uniform logits for the

rest of the search. This was done in Sampled MuZero (Hubert et al., 2021). Simi-

larly, Critic Weighted Policy (Wang et al., 2020) uses sampling with replacement.

5.7 Experiments

In the experiments, we compare AlphaZero or MuZero to the proposed planning

with Gumbel and other alternatives:
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Figure 5.2: Elo on 9x9 Go, when training with n ∈ {2,4,16,32,200} simulations. Evalua-
tion uses 800 simulations. Shades denote standard errors from 2 seeds.

MuZero: The newest version of MuZero (Schrittwieser et al., 2021), with

ResNet v2 style pre-activation residual blocks (He et al., 2016) and the Adam op-

timizer (Kingma and Ba, 2014). Gumbel MuZero: MuZero with the modified

root of the search tree to use Sequential Halving with Gumbel. The policy loss

uses the completed Q-values (Equation 5.12). Gumbel MuZero sampled with re-

placement (Replacement): An ablation to Gumbel MuZero by sampling m actions

with replacement, as in Sampled MuZero (Hubert et al., 2021). TRPO MuZero:

MuZero with modified learning, acting, and the root of the search tree to use the

regularized policy optimization with the TRPO regularizer KL(π,πnew) (Schulman

et al., 2015; Grill et al., 2020). MPO MuZero: TRPO MuZero but with the MPO

regularizer KL(πnew,π) (Abdolmaleki et al., 2018; Grill et al., 2020). Full Gumbel

MuZero: Gumbel MuZero with a principled action selection also for the non-root

search nodes (Section 5.5). In the plots, we will show Full Gumbel MuZero only if

it produces results significantly different from Gumbel MuZero.

We conducted the experiments on Go, chess, and Atari. We present the main

results here and we report additional ablations and experimental details in Ap-

pendix C.5.

5.7.1 9x9 Go

On Go, we use Elo to compare MuZero and other agents. While an agent trains by

self-play, its Elo is computed by evaluation versus reference opponents. One of the

opponents is Pachi (Baudiš and Gailly, 2011) with 10k simulations per move. We
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Figure 5.3: Gumbel MuZero ablations on 9x9 Go. (a) Policy loss ablations, when training
with n ∈ {2,4,16,200} simulations. Gumbel MuZero uses the policy loss with
completed Q-values. (b) Sensitivity to the number of sampled actions. Gumbel
MuZero samples m actions without replacement.

anchored the Elo to have this Pachi at 1000 Elo. For example, a difference of 500

Elo corresponds to a 95% win probability for the player with the higher Elo.2

In Figure 5.2, we investigate the impact of the number of simulations on the

obtained Elo. When training an agent by self-play, the agent uses n simulations

per move. In the five plots, the n varies from 2 to 200. In evaluation, we allow

all agents to use 800 simulations. The speed of the evaluation does not affect the

speed of training. In the 9x9 Go results, MuZero fails to learn from 16 or fewer

simulations. Strikingly, Gumbel MuZero learns reliably even with 2 simulations.

In Figure 5.3a, we compare the simple policy loss (Equation 5.9) and the policy

loss with the completed Q-values (Equation 5.12). The simple policy loss would

be enough for many applications. We used the completed Q-values also in TRPO

MuZero and MPO MuZero. Without the completed Q-values, TRPO MuZero and

MPO MuZero would fail to produce a policy improvement.

In Figure 5.3b, we study Gumbel MuZero’s sensitivity to the number of sam-

pled actions. When sampling m = 4 actions without replacement, the simulation

budget is spent on the small number of actions. The learning was then slower. In all

other Go experiments, we sample m = min(n,16) actions without replacement.

5.7.2 Large-scale 19x19 Go and chess

In Figure 5.4a, we demonstrate that Gumbel MuZero is not worse than MuZero

on 19x19 Go. MuZero is excellent on 19x19 Go and Gumbel MuZero reaches or

exceeds its performance. The Elo is still anchored to have Pachi at 1000 Elo.

2The corresponding win probability is 1

1+10−
EloDifference

400
(Elo, 1978).
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Figure 5.4: Large-scale experiments with n = 400 simulations per move. (a) Elo on 19x19
Go, when training MuZero. (b) Elo on chess, when training AlphaZero.
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Figure 5.5: Atari results. (a) Mean return on ms pacman, when training Gumbel MuZero
and MuZero with n ∈ {2,4,16,18,50} simulations. MuZero fails to learn from
4 or fewer simulations. (b) Mean return on beam rider for Gumbel MuZero
with cscale ∈ {0.01,0.1,1,10,100}, compared to MuZero with n = 50 simula-
tions. Shades denote standard errors from 10 seeds.

Similarly, in Figure 5.4b we show Gumbel AlphaZero performance on chess.

We train AlphaZero on chess, because AlphaZero learns faster than MuZero on

chess. On Go, MuZero learns faster than AlphaZero.

5.7.3 Atari

Our last set of experiments is on Atari. We use the Arcade Learning Environment

(Bellemare et al., 2013) with sticky actions (Machado et al., 2018). The network

sizes and hyperparameters match the MuZero setup by Schrittwieser et al. (2021).

On Atari, MuZero does not use more simulations at evaluation. The reported score

is the mean return from the last 200 training episodes. MuZero with n = 50 simula-

tions works well on Atari and holds the state of the art.

In Figure 5.5a we show the obtained mean return on ms pacman. Gumbel
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MuZero again learns reliably even with n = 2 simulations. Atari has only 18 ac-

tions, so we sample m=min(n,18) actions without replacement. In the experiments

with n ≤ 18, Gumbel MuZero selects An+1 from the n visited actions, without any

Sequential Halving. This confirms that planning with Gumbel is the key ingredient

responsible for the policy improvement from a small number of simulations.

Atari is challenging, because different games can have very different reward

scales. MuZero normalizes the Q-values by dividing them by max(v̂π ,maxa q̂(a))−

min(v̂π ,mina q̂(a)) found inside the tree search (Schrittwieser et al., 2020). A nor-

malized advantage is then in [−1,1]. For Gumbel MuZero, we use the same normal-

ization and we scale the normalized Q-values by cvisit = 50 and cscale = 0.1. A scaled

normalized advantage is then approximately in [−5,5]. Thanks to the bounded ad-

vantage, Gumbel MuZero has a bounded total variation distance between π and π ′

(Muesli’s Theorem 4.4.1).

In Figure 5.5b, we use beam rider as an example of a partially observ-

able game and we study the importance of the prior knowledge contained in the

logits. Gumbel MuZero selects an action based on g(a) + logits(a) + (cvisit +

maxb N(b))cscaleq̂(a) (Equation 5.8). If cscale is large, Gumbel MuZero focuses

on q̂(a) and neglects the logits. Indeed, Gumbel MuZero performance is worse on

beam rider if using large cscale. This indicates that g(a)+ logits(a) are helpful in

the argmax.

5.8 Conclusion
We redesigned AlphaZero tree search. With the principle of policy improvement,

we replaced five heuristic mechanisms in AlphaZero. On Go, chess, and Atari,

we validated that Gumbel MuZero and Gumbel AlphaZero keep improving, even

when learning from two simulations. On top of that, Gumbel MuZero provides

a principled way to achieve state-of-the-art results. We hope that future research

will benefit from the clean theoretical foundation, the faster experimentation with a

small number of simulations, and the released open-source code.3

3https://github.com/deepmind/mctx

https://github.com/deepmind/mctx


Chapter 6

General Conclusions

We will end with some practical conclusions.

In Chapter 3, we have seen that MuZero is not suitable for stochastic environ-

ments. If you want to plan with a learned model on a stochastic environment, design

a causally correct model with a sufficient partial view. Or use the already tested

Stochastic MuZero (Antonoglou et al., 2022). In general, be careful when training

a model on a data distribution and then using the model on data from a different

distribution. The causality literature provides many alarming counterexamples.

In Chapter 4, we have noticed multiple things: 1) Model learning is helpful as

an auxiliary loss. 2) Deep search is helpful on Go, but deep search is not needed

to achieve the current state-of-the-art results on Atari. 3) The Muesli policy update

is helpful especially if using a smaller network with inaccurate Q-values. 4) Reg-

ularized policy optimization is not needed for tabular methods; regularized policy

optimization becomes helpful on off-policy data or with approximate Q-values. 5)

Do not regularize the policy entropy; use a better regularizer. For example, use the

Muesli regularizer if having Q-values, or the Direct MPO regularizer if having only

state-values.

In Chapter 5, we have seen another MuZero weakness: MuZero and Alp-

haZero can fail to produce a policy improvement if the number of simulations is

smaller than the number of actions. The proposed Gumbel MuZero and Gumbel

AlphaZero fix that. These algorithms also avoid the problem-dependent temper-

ature and Dirichlet noise hyperparameters. On stochastic environments, you can
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combine Gumbel MuZero with Stochastic MuZero (Antonoglou et al., 2022).

If you want to do planning, hear the Deep Learning Hypothesis by Ilya

Sutskever: “Anything a human can do in 0.1 seconds, a big 10-layer neural network

can do, too!” So, if your environment requires thinking for N seconds, consider us-

ing a neural network with 100N layers, or a recurrent network, or a deep search

with 100N sequential steps.
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A.1 Backdoor and frontdoor adjustment formulas

Starting from a data-generation process of the form illustrated in Figure 3.3b,

p(x,y,u)= p(u)p(x|u)p(y|x,u), we can use the do-operator to compute p(y|do(x))=∫
p(u)p(y|x,u)du.

Without assuming any extra structure in p(x|u) or in p(y|x,u) it is not possible

to compute p(y|do(x)) from the knowledge of the joint p(x,y) alone.

If there was a variable z blocking all the effects of u on x, as illustrated in
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Figure 3.3d, then p(y|do(x)) can be derived as follows:

Joint density p(u)p(z|u)p(x|z)p(y|x,u) (A.1)

Intervention p(x|z)→ ψ(x) (A.2)

Joint after intervention p(u)p(z|u)ψ(x)p(y|x,u) (A.3)

Conditioning the new joint p(y|do(x)) =
∫

p(u)p(z|u)ψ(x)p(y|x,u)dudz
ψ(x)

=
∫

p(z)p(y|x,z)dz

= Ep(z)[p(y|x,z)], (A.4)

where we used the formula

∫
p(u)p(z|u)p(y|x,u)du = p(z)

∫
p(u|z)p(y|x,u)du (A.5)

= p(z)p(y|x,z). (A.6)

If instead of just fixing the value of x, we perform a more general intervention

p(x|z)→ ψ(x|z), then pdo(ψ(x|z))(y) can be derived as follows:

Joint density p(u)p(z|u)p(x|z)p(y|x,u) (A.7)

Intervention p(x|z)→ ψ(x|z) (A.8)

Joint after intervention p(u)p(z|u)ψ(x|z)p(y|x,u) (A.9)

New marginal pdo(ψ(x|z))(y) =
∫

p(u)p(z|u)ψ(x|z)p(y|x,u)dudzdx

=
∫

p(z)ψ(x|z)p(y|x,z)dzdx

= Ep(z)ψ(x|z)[p(y|x,z)]. (A.10)

Applying the same reasoning to the graph shown in Figure 3.3e, we obtain the

formula

p(y|do(x)) = Ep(z|x)[p(y|do(z))] = Ep(z|x)p(x′)[p(y|x′,z)], (A.11)
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where p(z|x), p(x′) and p(y|x′,z) can be directly measured from the available

(x,y,z) data. This formula holds as long as p(z|x) > 0,∀x,z and it is a simple in-

stance of frontdoor adjustment (Pearl et al., 2016).

A.2 Tree search experiments
We bootstrap the MCTS search from a learned value function and use pUCT to

select the simulation actions, as done in MuZero (Schrittwieser et al., 2020). Ad-

ditionally, we enhance the MCTS with chance nodes (Browne et al., 2012). The

value of a chance node is the expected value of its children, based on the learned

p̂(zt |ht) probabilities. The chance nodes do not increase the number of network

evaluations per a simulation, because if a child of the chance node is not expanded

yet, we bootstrap from the child value.

When using expectimax or MCTS with chance nodes, we use the intended

actions zt as the chance outcomes. During a simulation, we generate the chance

outcomes from the learned p̂(zt |ht) model. Conveniently, we are able to reuse the

MuZero policy network as the p̂(zt |ht) model because the policy network is trained

to model the intended actions. The deterministic non-causal partial model (NCPM)

simply ignores the outcomes of the chance nodes. We do not recommend using the

non-causal partial model together with MCTS with chance nodes. We still see that

the MCTS with chance nodes helps the non-causal model, because it reduces the

search depth and the agent bootstraps more from the correct V̂ (s0,a0).

The best-performing hyperparameters were found by trying multiples of 3 for

the learning rate, the probability of exploration and the policy cost weight. The

final used hyperparameters are listed in Table A.1. The pUCT hyperparameters

from MuZero (Schrittwieser et al., 2020) worked well. Each reported experiment

was run with at least 8 independent random seeds. The shaded area in the plots

indicates the standard error.

A.2.1 Details of experiments on MDPs

In Figure A.1, we see the results for the different models, when using expecti-

max. The models with clustered probabilities and clustered observations approxi-
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Table A.1: Hyperparameters for the MDP and MiniPacman experiments.

Hyperparameter Description Value
µ Learning rate 0.0003
β1 Adam β1 0.9
β2 Adam β2 0.999

batch size Mini-batch size 512
max depth Expectimax search depth 3

num simulations Number of MCTS simulations 50
buffer size Replay buffer size 500000

ε Probability of exploration 0.01
creward Reward cost weight 1.0
cvalue Value cost weight 1.0
cpolicy Policy cost weight 300.0

Lo Overshoot Length 5
Lu Length of n-step returns 10
γ Discount factor 0.995

Search depth
Model 1 2 3

Non-causal X X X

Intended action X X X
Clustered probs X X X
Clustered obs X X X

Figure A.1: Models solving the AvoidFuzzyBear MDP with expectimax. The deterministic
non-causal model misled the agent when using search depth 3 or higher.

mate modeling of the probabilities or observations. These models are described in

Appendix A.2.3.

A.2.2 Details of experiments on MiniPacman

We use the same stochastic version of MiniPacman as released by Guez et al.

(2019). To make the task harder, we included two ghosts from the start of the

game. We also increase the number of ghosts by one after solving two levels, four

levels, or other multiples of 2. The game options are in Table A.2. To avoid having

to stack frames, we draw the ghost movement direction to a pixel before the ghost.

This makes the environment more Markovian.

The pretrained policy was trained by expectimax with search depth 1. This
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Table A.2: The configuration used for the MiniPacman environments.

Argument Description Value
frame cap The maximum number of steps in an episode. 3000

mode The game mode. ’regular’
npills The number of power pills. 2
nghosts The number of ghosts at the start of the game. 2

ghost speed init The ghost probability of moving. 0.5
ghost speed increase An increase to the ghost speed after a level. 0

is similar to Q-learning, except that the network consists of a reward model and a

value network. This forms a strong baseline agent. Understandably, when training

a model on data from the pretrained policy, expectimax performed worse than when

training on on-policy data. The expectimax trained on the data from the pretrained

policy was not able to test the proposed action in the real environment.

Replay with resampling. To improve data efficiency, we use a shuffling replay

buffer and replay each trajectory four times. The trajectory does not have to store the

used zt . We store the used m(zt |st) distribution and resample the zt from a posterior

when replaying the trajectory. The posterior is:

p(zt |st ,at) =
m(zt |st)π(at |zt)

∑z′t m(z′t |st)π(at |z′t)
(A.12)

where π(at |zt) is the ε-exploration distribution.

A.2.3 Models trained by clustering

When using a tree search, we want to have a small branching factor at the chance

nodes. A good zt variable would be discrete with a small number of categories. This

is satisfied if the zt is the intended action and the number of the possible actions is

small. We do not have such compact discrete zt if using as zt the observation, the

policy probabilities, or some other modeled layer. Here, we will present a model

that approximates such causal partial models. The idea is to cluster the modeled

layers and use only the cluster index as zt . The cluster index is discrete and we can

control the branching factor by choosing the number of clusters.

Concretely, let’s call the modeled layer xt . We will model the layer with a mix-
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ture of components. The mixture gives us a discrete latent variable zt to represent

the component index. To train the mixture, we use a clustering loss to train only the

best component to model the xt , given ht and zt :

Lclustering = min
zt

(−βclustering log p̂(zt |ht)− log p̂(xt |ht ,zt)) (A.13)

where p̂(zt |ht) is a model of the categorical component index and βclustering ∈ (0,1)

is a hyperparameter to encourage moving the information bits to the latent zt . Dur-

ing training, we use the index of the best component as the inferred zt . In theory, a

better inference can be obtained by smoothing.

In contrast to training by maximum likelihood, the clustering loss uses just

the needed number of the mixture components. This helps to reduce the branching

factor in a search.

In general, the cluster index is not guaranteed to be sufficient as a backdoor,

if the reconstruction loss − log p̂(xt |ht ,zt) is not zero. For example, if xt is the

next observation, the number of mixture components may need to be unrealistically

large, if the observation can contain many distractors.

A.3 Value-iteration analysis on MDPs
We derive the following two model-based evaluation metrics for any episodic MDP

environment:

• V ∗NCPM(π)(s0): the optimal value computed with the deterministic non-causal

model, after the model is trained with training data from policy π , starting

from state s0.

• V ∗CPM(π)(s0): the optimal value computed with the causal partial model, after

the model is trained with training data from policy π , starting from state s0.

The theoretical analysis of the MDP does not use empirically trained mod-

els from the policy data, but rather assumes that the models learned perfectly the

mean of their targets. That means that the non-causal (MuZero) reward model
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r̂k(st ,a<t+k) predicts the expected reward E[Rt+k|st ,a<t+k], and that the causally

correct reward model r̂k(st ,at ,z<t+k,a<t+k) predicts E[Rt+k|st ,at ,z<t+k,a<t+k].

Computation of V ∗NCPM(π) : For the deterministic non-causal model,

V ∗NCPM(π)(s0) = max
a0,...,ak

k

∑
i=0

Esi [ri+1(si,ai) | s0,a0,a1, . . . ,ai]

= max
a0,...,ak

k

∑
i=0

∑
si

p(si | s0,a0,a1, . . . ,ai)ri+1(si,ai).

Notice that the probability of si is affected by ai here because the network gets ai

as an input when predicting the ri+1. This will introduce the non-causal bias. The

network implements the expectation implicitly by learning the mean of the reward

seen in the training data. We can compute the expectation exactly if we know the

MDP. The p(si | s0,a0, . . . ,ai) can be computed recursively in two steps as:

p(si | s0,a0, . . . ,ai) =
p(si | s0,a0, . . . ,ai−1)π(ai | si)

∑s′i
p(s′i | s0,a0, . . . ,ai−1)π(ai | s′i)

.

Here, we see the dependence of the learned model on the policy π . The remaining

terms can be expressed as:

p(si | s0,a0, . . . ,ai−1) = ∑
si−1

p(si,si−1 | s0,a0, . . . ,ai−1)

= ∑
si−1

p(si−1 | s0,a0, . . . ,ai−1)p(si | si−1,ai−1).

Denoting p(si | s0,a0, . . . ,a j) by Si, j, we have the two-step recursion

Si,i =
Si,i−1 π(ai | si)

∑s′i
S′i,i−1 π(ai | s′i)

,

Si,i−1 = ∑
si−1

Si−1,i−1 p(si | si−1,ai−1)

with S1,0 = p(s1 | s0,a0). We then compute V ∗NCPM(s0) as maxa0,...,ak ∑
k
i=0 ∑si Si,iri+1(si,ai).
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Computation of V ∗CPM(π) : For the causal partial model,

V ∗CPM(π)(s0) =max
a0

∑
z1

p(z1 | s0,a0)max
a1

∑
z2

p(z2 | s0,a0,z1,a1) · · ·

max
ak−1

∑
zk

p(zk | s0,a0,z1,a1, . . . ,zk−1,ak−1)

max
ak

k

∑
i=0

E[ri+1(si,ai) | s0,a0,z1,a1, . . . ,ai)],

where for any i ∈ [1,k],

p(zi | s0,a0,z1,a1, . . . ,zi−1,ai−1) = ∑
si

p(si,zi | s0,a0,z1,a1, . . . ,zi−1,ai−1)

= ∑
si

p(si | s0,a0,z1 . . . ,zi−1,ai−1)π(zi | si).

Denoting p(si | s0,a0,z1 . . . ,zi−1,ai−1) by Zi, we have

Zi = ∑
si−1

p(si−1,si | s0,a0,z1 . . . ,zi−1,ai−1)

= ∑
si−1

p(si | si−1,ai−1)p(si−1 | s0,a0,z1 . . . ,zi−1,ai−1)

= ∑
si−1

p(si | si−1,ai−1)p(si−1 | s0,a0,z1 . . . ,zi−1),

where we used the fact that si−1 is independent of ai−1, given zi−1. Furthermore,

p(si−1 | s0,a0,z1 . . . ,zi−1) =
p(si−1,zi−1 | s0,a0,z1 . . . ,ai−2)

p(zi−1 | s0,a0,z1 . . . ,ai−2)

=
π(zi−1 | si−1)p(si−1 | s0,a0,z1 . . . ,zi−2,ai−2)

∑s′i−1
π(zi−1 | s′i−1)p(s′i−1 | s0,a0,z1 . . . ,zi−2,ai−2)

=
π(zi−1 | si−1)Zi−1

∑s′i−1
π(zi−1 | s′i−1)Z

′
i−1

.
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Therefore, we can compute Zi recursively,

Zi = ∑
si−1

p(si | si−1,ai−1)
π(zi−1 | si−1)Zi−1

∑s′i−1
π(zi−1 | s′i−1)Z

′
i−1

with Z1 = p(s1 | s0,a0). The last term to compute in the definition of V ∗CPM(π)(s0) is

k

∑
i=0

E[ri+1(si,ai) | s0,a0,z1,a1, . . . ,ai)] =
k

∑
i=0

E[ri+1(si,ai) | s0,a0,z1,a1, . . . ,zi)]

=
k

∑
i=0

∑
si

p(si | s0,a0,z1,a1, . . . ,zi)ri+1(si,ai)

=
k

∑
i=0

∑
si

π(zi | si)Zi

∑s′i
π(zi | s′i)Z′i

ri+1(si,ai).
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B.1 Stochastic estimation details
In the policy-gradient term in Eq. 4.7, we clip the importance weight π(A|s)

πb(A|s)
to be

from [0,1]. The importance weight clipping introduces a bias. To correct for it, we

use β -LOO action-dependent baselines (Gruslys et al., 2018).

Although the β -LOO action-dependent baselines were not significant in the

Muesli results, the β -LOO was helpful for the policy gradients with the TRPO

penalty (Figure B.8).

B.2 The illustrative MDP example
Here we will analyze the values and the optimal policy for the MDP from Figure B.1

when using the identical state representation φ(s) = ∅ in all states. With the state
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Figure B.1: The episodic MDP from Figure 4.2, reproduced here for easier reference. State
1 is the initial state. State 4 is terminal. The discount is 1.

representation φ(s), the policy is restricted to be the same in all states. Let’s denote

the probability of the up action by p.

Given the policy p = π(up|φ(s)), the following are the values of the different

states:

vπ(3) = p+(1− p)(−1) = 2p−1 (B.1)

vπ(2) = p · (−1)+(1− p) =−2p+1 (B.2)

vπ(1) = p · (1+ vπ(2))+(1− p)vπ(3) (B.3)

=−4p2 +5p−1. (B.4)

Finding the optimal policy. Our objective is to maximize the value of the

initial state. That means maximizing vπ(1). We can find the maximum by looking

at the derivatives. The derivative of vπ(1) with respect to the policy parameter is:

dvπ(1)
d p

=−8p+5. (B.5)

The second derivative is negative, so the maximum of vπ(1) is at the point where

the first derivative is zero. We conclude that the maximum of vπ(1) is at p∗ = 5
8 .

Finding the action values of the optimal policy. We will now find the

q∗π(φ(s),up) and q∗π(φ(s),down). The qπ(φ(s),a) is defined as the expected return
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after the φ(s) when doing the action a (Singh et al., 1994):

qπ(φ(s),a) = ∑
s′

Pπ(s′|φ(s))qπ(s′,a), (B.6)

where Pπ(s′|φ(s)) is the probability of being in the state s′ when observing φ(s).

In our example, the Q-values are:

qπ(φ(s),up) =
1
2
(1+ vπ(2))+

1
2

p · (−1)+
1
2
(1− p) (B.7)

=−2p+
3
2

(B.8)

qπ(φ(s),down) =
1
2

vπ(3)+
1
2

p+
1
2
(1− p)(−1) (B.9)

= 2p−1 (B.10)

We can now substitute the p∗ = 5
8 in for p to find the q∗π(φ(s),up) and

q∗π(φ(s),down):

q∗π(φ(s),up) =
1
4

(B.11)

q∗π(φ(s),down) =
1
4
. (B.12)

We see that these Q-values are the same and uninformative about the probabilities of

the optimal (memory-less) stochastic policy. This generalizes to all environments:

the optimal policy gives zero probability to all actions with lower Q-values. If the

optimal policy π∗(·|φ(s)) at a given state representation gives non-zero probabilities

to some actions, these actions must have the same Q-values q∗π(φ(s),a).

Bootstrapping from vπ(φ(s)) would be worse. We will find the vπ(φ(s)),

and we will show that bootstrapping from it would be misleading. In our example,

the vπ(φ(s)) is:

vπ(φ(s)) =
1
2

vπ(1)+
1
2

pvπ(2)+
1
2
(1− p)vπ(3) (B.13)

=−4p2 +
9
2

p−1. (B.14)
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We can notice that vπ(φ(s)) is different from vπ(2) or vπ(3). Estimating

qπ(φ(s),up) by bootstrapping from vπ(φ(2)) instead of vπ(2) would be mislead-

ing. Here, it is better to estimate the Q-values based on Monte-Carlo returns.

B.3 The motivation behind Conservative Policy

Iteration and TRPO

In this section, we will show that unregularized maximization of EA∼π(·|s)

[
q̂πprior(s,A)

]
on data from an older policy πprior can produce a policy worse than πprior. The size

of the possible degradation will be related to the total variation distance between

π and πprior. The explanation is based on the proofs from the excellent book by

Agarwal et al. (2020b).

As before, our objective is to maximize the expected value of the states from

an initial state distribution µ:

J(π) = ES∼µ [vπ(S)] . (B.15)

It will be helpful to define the discounted state visitation distribution dπ(s) as:

dπ(s) = (1− γ)ES0∼µ

[
∞

∑
t=0

γ
tP(St = s|π,S0)

]
, (B.16)

where P(St = s|π,S0) is the probability of St being s, if starting the episode from S0

and following the policy π . The scaling by (1− γ) ensures that dπ(s) sums to one.

From the policy gradient theorem (Sutton et al., 2000) we know that the gradi-

ent of J(π) with respect to the policy parameters is

∂J
∂θ

=
1

1− γ
∑
s

dπ(s)∑
a

∂π(a|s)
∂θ

qπ(s,a). (B.17)

In practice, we often train on data from an older policy πprior. Training on such
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data maximizes a different function:

TotalAdvprior(π) =
1

1− γ
∑
s

dπprior(s)∑
a

π(a|s)advπprior(s,a), (B.18)

where advπprior(s,a) = qπprior(s,a)− vπprior(s) is an advantage. Notice that the states

are sampled from dπprior(s) and the policy is criticized by advπprior(s,a). This often

happens in the practice when updating the policy multiple times in an episode, using

a replay buffer, or bootstrapping from a network trained on past data.

While maximization of TotalAdvprior(π) is more practical, we will see that un-

regularized maximization of TotalAdvprior(π) does not guarantee an improvement

in our objective J. The J(π)− J(πprior) difference can even be negative if we are

not careful.

Kakade and Langford (2002) stated a useful lemma for the performance differ-

ence:

Lemma B.3.1 (The performance difference lemma). For all policies π , πprior,

J(π)− J(πprior) =
1

1− γ
∑
s

dπ(s)∑
a

π(a|s)advπprior(s,a). (B.19)

We would like the J(π)− J(πprior) to be positive. We can express the perfor-

mance difference as TotalAdvprior(π) plus an extra term:

J(π)− J(πprior) =TotalAdvprior(π)

− TotalAdvprior(π)+
1

1− γ
∑
s

dπ(s)∑
a

π(a|s)advπprior(s,a)

=TotalAdvprior(π)

+
1

1− γ
∑
s
(dπ(s)−dπprior(s))∑

a
π(a|s)advπprior(s,a)

=TotalAdvprior(π)

+
1

1− γ
∑
s
(dπ(s)−dπprior(s))∑

a
(π(a|s)−πprior(a|s))advπprior(s,a).

(B.20)
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To get a positive J(π)− J(πprior) performance difference, it is not enough to

maximize TotalAdvprior(π). We also need to ensure that the second term in (B.20)

will not degrade the performance. The impact of the second term can be kept small

by keeping the total variation distance between π and πprior small.

For example, the performance can degrade if π is not trained at a state and

that state gets a higher dπ(s) probability. The performance can also degrade if a

stochastic policy is needed and the advπprior advantages are for an older policy. The

π would become deterministic if maximizing ∑a π(a|s)advπprior(s,a) without any

regularization.

B.3.1 Performance difference lower bound

We will express a bound of the performance difference as a function of the total

variation between π and πprior. Starting from Eq. B.20, we can derive the TRPO

lower bound for the performance difference. Let α be the maximum total variation

distance between π and πprior:

α = max
s

1
2 ∑

a
|π(a|s)−πprior(a|s)|. (B.21)

The ∥dπ−dπprior∥1 is then bounded (see Agarwal et al., 2020b, “Similar policies

imply similar state visitations”):

∥dπ −dπprior∥1 ≤
2αγ

1− γ
. (B.22)

Finally, by plugging the bounds into Eq. B.20, we can construct the lower

bound for the performance difference:

J(π)− J(πprior)≥ TotalAdvprior(π)−
4α2γεmax

(1− γ)2 , (B.23)

where εmax = maxs,a |advπprior(s,a)|. The same bound was derived in TRPO (Schul-

man et al., 2015).
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B.4 Proof of Maximum CMPO total variation

distance

We will prove the following theorem: For any clipping threshold c > 0, we have:

max
πprior, ˆadv,s

DTV(πCMPO(·|s),πprior(·|s)) = tanh(
c
2
). (B.24)

Having 2 actions. We will first prove the theorem when the policy has 2 ac-

tions. To maximize the distance, the clipped advantages will be −c and c. Let’s

denote the πprior probabilities associated with these advantages as 1− p and p, re-

spectively.

The total variation distance is then:

DTV(πCMPO(·|s),πprior(·|s)) =
pexp(c)

pexp(c)+(1− p)exp(−c)
− p. (B.25)

We will maximize the distance with respect to the parameter p ∈ [0,1].

The first derivative with respect to p is

d DTV(πCMPO(·|s),πprior(·|s))
d p

=
1

(pexp(c)+(1− p)exp(−c))2 −1. (B.26)

The second derivative with respect to p is

d2 DTV(πCMPO(·|s),πprior(·|s))
d p2 =−2(pexp(c)+(1− p)exp(−c))−3(exp(c)− exp(−c)).

(B.27)

Because the second derivative is negative, the distance is a concave function of

p. We will find the maximum at the point where the first derivative is zero. The

solution is

p∗ =
1− exp(−c)

exp(c)− exp(−c)
. (B.28)
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At the found point p∗, the maximum total variation distance is

max
p

DTV(πCMPO(·|s),πprior(·|s)) =
exp(c)−1
exp(c)+1

= tanh(
c
2
). (B.29)

This completes the proof when having 2 actions.

Having any number of actions. We will now prove the theorem when the

policy has any number of actions. To maximize the distance, the clipped advantages

will be −c or c. Let’s denote the sum of πprior probabilities associated with these

advantages as 1− p and p, respectively.

The total variation distance is again

DTV(πCMPO(·|s),πprior(·|s)) =
pexp(c)

pexp(c)+(1− p)exp(−c)
− p, (B.30)

and the maximum distance is again tanh( c
2).

We also verified the theorem predictions experimentally by using gradient as-

cent to maximize the total variation distance.

B.5 Extended related work

We used the desiderata to motivate the design of the policy update. We will use the

desiderata again to discuss the related methods used to satisfy the desiderata. For

a comprehensive overview of model-based reinforcement learning, we recommend

the surveys by Moerland et al. (2020) and Hamrick (2019).

B.5.1 Observability and function approximation

1a) Support learning stochastic policies. The ability to learn a stochastic policy is

one of the benefits of policy gradient methods.

1b) Leverage Monte-Carlo targets. Muesli uses multi-step returns to train the

policy network and Q-values. MPO and MuZero need to train the Q-values before

using the Q-values to train the policy.
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B.5.2 Policy representation

2a) Support learning the optimal memory-less policy. Muesli represents the stochas-

tic policy by the learned policy network. In principle, acting can be based on a

combination of the policy network and the Q-values. For example, one possibil-

ity is to act with the πCMPO policy. ACER (Wang et al., 2016) used similar acting

based on πMPO. Although we have not seen benefits from acting based on πCMPO

on Atari (Figure B.7), we have seen better results on Go with a deeper search at the

evaluation time.

2b) Scale to (large) discrete action spaces. Muesli supports large actions

spaces because the policy loss can be estimated by sampling. MCTS is less suitable

for large action spaces. This was addressed by Grill et al. (2020), who brilliantly

revealed MCTS as regularized policy optimization and designed a tree search based

on MPO or a different regularized policy optimization. The resulting tree search

was less affected by a small number of simulations. Muesli is based on this view

of regularized policy optimization as an alternative to MCTS. In another approach,

MuZero was recently extended to support sampled actions and continuous actions

(Hubert et al., 2021). Most recently, Gumbel MuZero (Chapter 5) supports large

actions spaces, even if using a small number of simulations.

2c) Scale to continuous action spaces. Although we used the same estimator

of the policy loss for discrete and continuous actions, it would be possible to exploit

the structure of the continuous policy. For example, the continuous policy can be

represented by a normalizing flow (Papamakarios et al., 2019) to model the joint

distribution of the multi-dimensional actions. Soft Actor-Critic (Haarnoja et al.,

2018) and TD3 (Fujimoto et al., 2018) achieved great results on the MuJoCo tasks

by obtaining the gradient with respect to the action from an ensemble of approxi-

mate Q-functions. The ensemble of Q-functions would probably improve Muesli

results.

B.5.3 Robust learning

3a) Support off-policy and historical data. Muesli supports off-policy data thanks

to the regularized policy optimization, Retrace (Munos et al., 2016), and policy gra-
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dients with clipped importance weights (Gruslys et al., 2018). Many other methods

deal with off-policy or offline data (Levine et al., 2020). Recently MuZero Reanal-

yse (Schrittwieser et al., 2021) achieved state-of-the-art results on an offline RL

benchmark by training only on the offline data.

3b) Deal gracefully with inaccuracies in the values/model. Muesli does not

trust fully the Q-values from the model. Muesli combines the Q-values with

the prior policy to propose a new policy with a constrained total variation dis-

tance from the prior policy. Without the regularized policy optimization, the

agent can be misled by an overestimated Q-value for a rarely taken action. Soft

Actor-Critic (Haarnoja et al., 2018) and TD3 (Fujimoto et al., 2018) mitigate the

overestimation by taking the minimum from a pair of Q-networks. In model-

based reinforcement learning, an unrolled one-step model would struggle with

compounding errors (Janner et al., 2019). VPN (Oh et al., 2017) and MuZero

(Schrittwieser et al., 2020) avoid compounding errors by using multi-step pre-

dictions P(Rt+k+1|st ,at ,at+1, . . . ,at+k), not conditioned on previous model predic-

tions. While VPN and MuZero avoid compounding errors, these models are not

suitable for planning a sequence of actions in a stochastic environment. In the

stochastic environment, the sequence of actions needs to depend on the occurred

stochastic events, otherwise the planning is confounded and can overestimate the

state value (Chapter 3). Other models conditioned on limited information from

generated (latent) variables can face similar problems on stochastic environments

(e.g., DreamerV2 (Hafner et al., 2020)). Muesli is suitable for stochastic environ-

ments because Muesli uses only one-step look-ahead. If combining Muesli with a

deep search, we can use an adaptive search depth or a stochastic model sufficient

for causally correct planning (Chapter 3). Another class of models deals with model

errors by using the model as a part of the Q-network or policy network and trains

the whole network end-to-end. These networks include VIN (Tamar et al., 2016),

Predictron (Silver et al., 2017b), I2A (Racanière et al., 2017), IBP (Pascanu et al.,

2017), TreeQN, ATreeC (Farquhar et al., 2018) (with scores in Table B.1), ACE

(Zhang and Yao, 2019), UPN (Srinivas et al., 2018), and implicit planning with
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DRC (Guez et al., 2019).

3c) Be robust to diverse reward scales. Muesli benefits from the normalized

advantages and from the advantage clipping inside πCMPO. Pop-Art (van Hasselt

et al., 2016) addressed learning values across many orders of magnitude. On Atari,

the score of the games vary from 21 on Pong to 1M on Atlantis. The non-linear

transformation by Pohlen et al. (2018) is practically very helpful, although biased

for stochastic returns. Only recently, an unbiased version of the transformation was

added by Eszter Vértes to RLax.1

3d) Avoid problem-dependent hyperparameters. The normalized advantages

were used before in PPO (Schulman et al., 2017). The maximum CMPO to-

tal variation (Theorem 4.4.1) helps to explain the success of such normaliza-

tion. If the normalized advantages are from [−c,c], they behave like advantages

clipped to [−c,c]. Notice that the regularized policy optimization with the popu-

lar −H[π] entropy regularizer is equivalent to MPO with uniform πprior (because

−H[π] = KL(π,πuniform)+ const.). As a simple modification, we recommend re-

placing the uniform prior with πprior based on a target network. That leads to the

model-free direct MPO with normalized advantages, outperforming vanilla policy

gradients (compare Figure B.5 to Figure 4.1a).

B.5.4 Rich representation of knowledge

4a) Estimate values (variance reduction, bootstrapping). In Muesli, the learned

values are helpful for bootstrapping Retrace returns, for computing the advantages,

and for constructing the πCMPO. Q-values can be also helpful inside a search, as

demonstrated by Hamrick et al. (2020).

4b) Learn a model (representation, composability). Multiple works have

demonstrated benefits from learning a model. Like VPN and MuZero, Gregor et al.

(2019) learn a multi-step action-conditional model; they learn the distribution of

observations instead of actions and rewards, and focus on the benefits of represen-

tation learning in model-free RL induced by model-learning; see also (Guo et al.,

2018; Guo et al., 2020). Springenberg et al. (2020) study an algorithm similar to

1https://github.com/deepmind/rlax/pull/78

https://github.com/openai/baselines/blob/9b68103b737ac46bc201dfb3121cfa5df2127e53/baselines/ppo2/model.py#L139
https://github.com/deepmind/rlax/pull/78
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MuZero with an MPO-like learning signal and obtain strong results on MuJoCo

tasks. Byravan et al. (2020) use a multi-step action model to derive a learning sig-

nal for policies on continuous-valued actions, leveraging the differentiability of the

model and of the policy. Kaiser et al. (2019) show how to use a model for increasing

data-efficiency on Atari (using an algorithm similar to Dyna (Sutton, 1990)), but see

also van Hasselt et al. (2019) for the relation between parametric model and replay.

Finally, Hamrick et al. (2021) investigate drivers of performance and generalization

in MuZero-like algorithms.

Table B.1: The mean score from the last 100 episodes at 40M frames on games used by
TreeQN and ATreeC. The agents differ along multiple dimensions.

Alien Amidar Crazy Climber Enduro Frostbite Krull Ms. Pacman Q∗Bert Seaquest

TreeQN-1 2321 1030 107983 800 2254 10836 3030 15688 9302
TreeQN-2 2497 1170 104932 825 581 11035 3277 15970 8241
ATreeC-1 3448 1578 102546 678 1035 8227 4866 25159 1734
ATreeC-2 2813 1566 110712 649 281 8134 4450 25459 2176

Muesli 16218 524 143898 2344 10919 15195 19244 30937 142431

B.6 Experimental details

B.6.1 Common parts

Network architecture. The large MuZero network is used only on the large-scale

Atari experiments (Figure 4.1b) and on Go. In all other Atari and MuJoCo ex-

periments the network architecture is based on the IMPALA architecture (Espeholt

et al., 2018). Like the LASER agent (Schmitt et al., 2020), we increase the number

of channels four times. Specifically, the numbers of channels are: (64, 128, 128,

64), followed by a fully connected layer and LSTM (Hochreiter and Schmidhuber,

1997) with 512 hidden units. This LSTM inside of the IMPALA representation net-

work is different from the second LSTM used inside the model dynamics function,

described later. In the Atari experiments, the network takes as the input one RGB

frame. Stacking more frames would help as evidenced in Figure B.9.

Q-network and model architecture. The original IMPALA agent was not

learning a Q-function. Because we train a MuZero-like model, we can estimate the
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Figure B.2: The model architecture when using the IMPALA-based representation net-
work. The r̂1(st ,at) predicts the reward E[Rt+1|st ,at ]. The v̂1(st ,at) pre-
dicts the value E[vπ(St+1)|st ,at ]. In general, r̂k(st ,a<t+k) predicts the reward
E[Rt+k|st ,a<t+k]. And v̂k(st ,a<t+k) predicts the value E[vπ(St+k)|st ,a<t+k].

Q-values by:

q̂(s,a) = r̂1(s,a)+ γ v̂1(s,a), (B.31)

where r̂1(s,a) and v̂1(s,a) are the reward model and the value model, respectively.

The reward model and the value model are based on MuZero dynamics and predic-

tion functions (Schrittwieser et al., 2020). We use a very small dynamics function,

consisting of a single LSTM layer with 1024 hidden units, conditioned on the se-

lected action (Figure B.2).

The decomposition of q̂(s,a) to a reward model and a value model is not cru-

cial. The Muesli agent obtained a similar score with a model of the qπ(s,a) action-

values (Figure B.6).

Value model and reward model losses. Like in MuZero (Schrittwieser et al.,

2020), the value model and the reward model are trained by categorical losses. The

target for the value model is the multi-step return estimate provided by Retrace

(Munos et al., 2016). Inside of the Retrace, we use q̂πprior(s,a) action-values pro-

vided by the target network.

Optimizer. We use the Adam optimizer (Kingma and Ba, 2014) with the de-

coupled weight decay by Loshchilov and Hutter (2017). The learning rate is linearly

decayed to reach zero at the end of the training. We do not clip the norm of the gra-
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dient. Instead, we clip the parameter updates to [−1,1], before multiplying them

with the learning rate. In Adam’s notation, the update rule is:

θt = θt−1 +α clip(
m̂t√
v̂t + ε

,−1,1), (B.32)

where m̂t and v̂t are the estimated moments, not value functions.

Replay. As observed by Schmitt et al. (2020), the LASER agent benefited

from mixing replay data with on-policy data in each batch. Like LASER, we also

use uniform replay and mix replay data with on-policy data. To obtain results com-

parable with other methods, we do not use LASER’s shared experience replay and

hence compare to the LASER version that did not share experience either.

Evaluation. On Atari, the human-normalized score is computed at 200M envi-

ronment frames (including skipped frames). The episode returns are collected from

the last 200 training episodes that finished before the 200M environment frames.

This is the same evaluation as used by MuZero. The replayed frames are not counted

in the 200M frame limit. For example, if replayed frames form 95% of each batch,

the agent is trained for 20 times more steps than an agent with no replay.

B.6.2 Muesli policy update

The Muesli policy loss usage is summarized in Algorithm 6.

Prior policy. We use a target network to approximate vπprior , qπprior and πprior.

Like the target network in DQN (Mnih et al., 2015), the target network contains

older network parameters. We use an exponential moving average to continuously

update the parameters of the target network.

In general, the πprior can be represented by a mixture of multiple policies.

When forming πCMPO, we represented πprior by the target network policy mixed

with a small proportion of the uniform policy (0.3%) and the behavior policy (3%).

Mixing with these policies was not a significant improvement to the results (Fig-

ure B.10).
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B.6.3 Hyperparameters

On Atari, the experiments used the Arcade Learning Environment (Bellemare et al.,

2013) with sticky actions. The environment parameters are listed in Table B.2.

The hyperparameters shared by all policy updates are listed in Table B.3. When

comparing the clipped and unclipped advantages in Figure 4.4, we estimated the

KL(πCMPO,π) with exact KL. The unclipped advantages would have too large vari-

ance without the exact KL.

The hyperparameters for the large-scale Atari experiments are in Table B.4,

hyperparameters for 9x9 Go self-play are in Table B.5, and hyperparameters for

continuous control on MuJoCo are in Table B.6. On Go, the discount γ =−1 allows

us to train by self-play on the two-player perfect-information zero-sum game with

alternate moves without modifying the reinforcement learning algorithms.

Table B.2: Atari parameters. In general, we follow the recommendations by Machado et al.
(2018).

PARAMETER VALUE

Random modes and difficulties No
Sticky action probability ς 0.25
Start no-ops 0
Life information Not allowed
Action set 18 actions
Max episode length 30 minutes (108,000 frames)
Observation size 96×96
Action repetitions 4
Max-pool over last N action repeat frames 4
Total environment frames, including skipped frames 200M

B.6.4 Policy losses

We will explain the other compared policy losses here. When comparing the dif-

ferent policy losses, we always used the same network architecture and the same

reward model and value model training. The advantages were always normalized.

The hyperparameters for all policy losses are listed in Table B.7. We tuned the

hyperparameters for all policy losses on 10 Atari games (alien, beam rider,

breakout, gravitar, hero, ms pacman, phoenix, robotank, seaquest
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Table B.3: Hyperparameters shared by all experiments.

HYPERPARAMETER VALUE

Batch size 96 sequences
Sequence length 30 frames
Model unroll length K 5
Replay proportion in a batch 75%
Replay buffer capacity 6,000,000 frames
Initial learning rate 3×10−4

Final learning rate 0
AdamW weight decay 0
Discount 0.995
Target network update rate αtarget 0.1
Value loss weight 0.25
Reward loss weight 1.0
Retrace EA∼π [q̂πprior(s,A)] estimator 16 samples
KL(πCMPO,π) estimator 16 samples
Variance moving average decay βvar 0.99
Variance offset εvar 10−12

Table B.4: Modified hyperparameters for large-scale Atari experiments. The network ar-
chitecture, discount and replay proportion are based on MuZero Reanalyze.

HYPERPARAMETER VALUE

Network architecture MuZero net with 16 ResNet blocks
Stacked frames 16
Batch size 768 sequences
Replay proportion in a batch 95%
Replay buffer capacity 28,800,000 frames
AdamW weight decay 10−4

Discount 0.997
Retrace λ 0.95
KL(πCMPO,π) estimator exact KL

and time pilot). For each hyperparameter, we tried multiples of 3 (e.g., 0.1, 0.3,

1.0, 3.0). For the PPO clipping threshold, we explored 0.2, 0.25, 0.3, 0.5, 0.8.

Policy gradients (PG). The simplest tested policy loss uses policy gradients

with the entropy regularizer, as in Mnih et al. (2016). The loss is defined by

LPG(π,s) =−EA∼π(·|s)
[ ˆadv(s,A)

]
−λHH[π(·|s)]. (B.33)
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Table B.5: Modified hyperparameters for 9x9 Go self-play experiments.

HYPERPARAMETER VALUE

Network architecture MuZero net with 6 ResNet blocks
Batch size 192 sequences
Sequence length 49 frames
Replay proportion in a batch 0%
Initial learning rate 2×10−4

Target network update rate αtarget 0.01
Discount -1 (self-play)
Multi-step return estimator V-trace
V-trace λ 0.99

Table B.6: Modified hyperparameters for MuJoCo experiments.

HYPERPARAMETER VALUE

Replay proportion in a batch 95.8%

Policy gradients with the TRPO penalty. The next policy loss uses

KL(πb(·|s),π(·|s)) inside the regularizer. The πb is the behavior policy. This policy

loss is known to work as well as PPO (Cobbe et al., 2020).

LPG+TRPOpenalty(π,s) =−EA∼π(·|s)
[ ˆadv(s,A)

]
−λHH[π(·|s)] +

λTRPO KL(πb(·|s),π(·|s)). (B.34)

Proximal Policy Optimization (PPO). PPO (Schulman et al., 2017) is usually

used with multiple policy updates on the same batch of data. In our setup, we use

a replay buffer instead. PPO then required a larger clipping threshold εPPO. In our

setup, the policy gradient with the TRPO penalty is a stronger baseline.
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Table B.7: Hyperparameters for the different policy losses.

HYPERPARAMETER PG TRPO penalty PPO MPO Muesli

Total policy loss weight 3.0 3.0 3.0 3.0 3.0
Entropy bonus weight 0.003 0.0003 0.0003 0 0
TRPO penalty weight 0 0.01 0 0 0
PPO clipping εPPO - - 0.5 - -
MPO KL(πMPO,π) constraint - - - 0.01 -
CMPO loss weight 0 0 0 - 1.0
CMPO clipping threshold c - - - - 1.0

LPPO(π,s) =−EA∼πb(·|s)

[
min(

π(A|s)
πb(A|s)

ˆadv(s,A),

clip(
π(A|s)
πb(A|s)

,1− εPPO,1+ εPPO) ˆadv(s,A))
]

−λHH[π(·|s)]. (B.35)

Maximum a Posteriori Policy Optimization (MPO). We use a simple variant

of MPO (Abdolmaleki et al., 2018) that is not specialized to Gaussian policies.

Also, we use πMPO(·|st+k) as the target for the policy model.

LMPO(π,st) = KL(πMPO(·|st),π(·|st))+
1
K

K

∑
k=1

KL(πMPO(·|st+k),πk(·|st ,a<t+k))

s.t. ES∼dπb
[KL(πMPO(·|S),π(·|S))]< εMPO. (B.36)

Direct MPO. Direct MPO uses the MPO regularizer λ KL(π,πprior) as a

penalty.

LDirectMPO(π,s) =−EA∼π(·|s)
[ ˆadv(s,A)

]
+λ KL(π(·|s),πprior(·|s)). (B.37)
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B.6.5 Go experimental details

The Go environment was configured using OpenSpiel (Lanctot et al., 2019). Games

were scored with the Tromp–Taylor rules with a komi of 7.5. Observations con-

sisted of the last 2 board positions, presented with respect to the player in three

9x9 planes each (player’s stones, opponent’s stones, and empty intersections), in

addition to a plane indicating the player’s color. The agents were evaluated against

GnuGo v3.8 at level 10 (Bump et al., 2005) and Pachi v11.99 (Baudiš and Gailly,

2011) with 10,000 simulations, 16 threads, and no pondering. Both were configured

with the Chinese ruleset. Figure B.3 shows the results versus GnuGo.

B.7 Additional experiments
Table B.8 lists the median and mean human-normalized score across 57 Atari

games. The table also lists the differences in the number of stacked frames, the

amount of replay and the probability of a sticky action. The environment with

a non-zero probability of a sticky action is more challenging by being stochastic

(Machado et al., 2018).

In Figure B.7, we compare the different ways to act and explore during train-

ing. Muesli (in blue) acts by sampling actions from the policy network. Acting

proportionally to πCMPO was not significantly different (in green). Acting based

on the Q-values only was substantially worse (in red). This is consistent with our

example from Figure 4.2 where acting with Q-values would be worse.



B.7. Additional experiments 116

Table B.8: Median and mean human-normalized score across 57 Atari games, after 200M
environment frames. The agents differ in the network size, the number of
stacked frames, the amount of replay, the probability of a sticky action, and
agent training. The± indicates the standard error across 2 random seeds. While
DreamerV2 was not evaluated on defender and surround, DreamerV2 me-
dian score remains valid on 57 games if we assume a high DreamerV2 score on
defender.

AGENT MEDIAN MEAN STACK REPLAY STICKY ACTION

DQN (Mnih et al., 2015) 79% - 4 87.5% 0.0
IMPALA (Espeholt et al., 2018) 192% 958% 4 0% 0.0
IQN (Dabney et al., 2018a) 218% - 4 87.5% 0.0
Rainbow (Hessel et al., 2018) 231% - 4 87.5% 0.0
Meta-gradient{γ,λ} (Xu et al., 2018) 287% - 4 0% 0.0
LASER (Schmitt et al., 2020) 431% - 4 87.5% 0.0
DreamerV2 (Hafner et al., 2020) 164% - 1 - 0.25
Muesli with IMPALA architecture 562 ±3% 1,981 ±66% 4 75% 0.25
Muesli with MuZero arch, replay=80% 755 ±27% 2,253 ±120% 16 80% 0.25
Muesli with MuZero arch, replay=95% 1,041 ±40% 2,524 ±104% 16 95% 0.25
MuZero Reanalyse (Schrittwieser et al., 2021) 1,047 ±40% 2,971 ±115% 16 95% 0.25
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Figure B.3: Win probability on 9x9 Go when training from scratch, by self-play, for 5B
frames. Evaluating 3 seeds against GnuGo (level 10). (a) Muesli and other
search-free baselines. (b) MuZero MCTS with 150 simulations and Muesli
with and without the use of MCTS at the evaluation time only.
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Algorithm 6 Agent with Muesli policy loss
Initialization:
Initialize the estimate of the variance of the advantage estimator:

var := 0
βproduct := 1.0

Initialize πprior parameters with the π parameters:
θπprior := θπ

Data collection on an actor:
For each step:

Observe state st and select action at ∼ πprior(·|st).
Execute at in the environment.
Append st ,at ,rt+1,γt+1 to the replay buffer.
Append st ,at ,rt+1,γt+1 to the online queue.

Training on a learner:
For each minibatch:

Form a minibatch B of sequences from the online queue and the replay buffer.
Use Retrace to estimate each return Gv(s,a), bootstrapping from q̂πprior .
Estimate the variance of the advantage estimator:

var := βvarvar+(1−βvar)
1
|B|∑(s,a)∈B(Gv(s,a)− v̂πprior(s))

2

Compute the bias-corrected variance estimate in Adam’s style:
βproduct := βproductβvar
v̂ar := var

1−βproduct

Prepare the normalized advantages:
ˆadv(s,a) =

q̂πprior(s,a)−v̂πprior(s)√
v̂ar+εvar

Compute the total loss:
Ltotal = (

LPG+CMPO(π,s) // Regularized policy optim., Eq. 4.6.
+ Lm(π,s) // Policy model loss, Eq. 4.10.
+ Lv(v̂π ,s)+Lr(r̂π ,s)) // MuZero value and reward losses.

Use Ltotal to update θπ by one step of gradient descent.
Use a moving average of π parameters as πprior parameters:

θπprior := (1−αtarget)θπprior +αtargetθπ
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Figure B.4: Mean episode return on MuJoCo environments from OpenAI Gym. The
shaded area indicates the standard error across 10 random seeds.
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Figure B.6: Median score of Muesli across 57 Atari games when modeling the reward and
value or when modeling the qπ(s,a) directly.
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Figure B.9: Median score across 57 Atari games for different numbers of stacked frames.
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Figure B.10: Median score across 57 Atari games for different πprior compositions.
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Table B.9: The mean score from the last 200 episodes at 200M frames on 57 Atari games.
The ± indicates the standard error across 2 random seeds.

GAME Random Human MuZero Muesli

alien 228 7128 135541 ±65349 139409 ±12178
amidar 6 1720 1061 ±136 21653 ±2019
assault 222 742 29697 ±3595 36963 ±533
asterix 210 8503 918628 ±56222 316210 ±48368
asteroids 719 47389 509953 ±33541 484609 ±5047
atlantis 12850 29028 1136009 ±1466 1363427 ±81093
bank heist 14 753 14176 ±13044 1213 ±0
battle zone 2360 37188 320641 ±141924 414107 ±13422
beam rider 364 16927 319684 ±13394 288870 ±137
berzerk 124 2630 19523 ±16817 44478 ±36140
bowling 23 161 156 ±25 191 ±37
boxing 0 12 100 ±0 99 ±1
breakout 2 30 778 ±20 791 ±10
centipede 2091 12017 862737 ±11564 869751 ±16547
chopper command 811 7388 494578 ±488588 101289 ±24339
crazy climber 10780 35829 176172 ±17630 175322 ±3408
defender 2874 18689 544320 ±12881 629482 ±39646
demon attack 152 1971 143846 ±8 129544 ±11792
double dunk -19 -16 24 ±0 -3 ±2
enduro 0 861 2363 ±2 2362 ±1
fishing derby -92 -39 69 ±5 51 ±0
freeway 0 30 34 ±0 33 ±0
frostbite 65 4335 410173 ±35403 301694 ±275298
gopher 258 2412 121342 ±1540 104441 ±424
gravitar 173 3351 10926 ±2919 11660 ±481
hero 1027 30826 37249 ±15 37161 ±114
ice hockey -11 1 40 ±2 25 ±13
jamesbond 29 303 32107 ±3480 19319 ±3673
kangaroo 52 3035 13928 ±90 14096 ±421
krull 1598 2666 50137 ±22433 34221 ±1385
kung fu master 258 22736 148533 ±31806 134689 ±9557
montezuma revenge 0 4753 1450 ±1050 2359 ±309
ms pacman 307 6952 79319 ±8659 65278 ±1589
name this game 2292 8049 108133 ±6935 105043 ±732
phoenix 761 7243 748424 ±67304 805305 ±26719
pitfall -229 6464 0 ±0 0 ±0
pong -21 15 21 ±0 20 ±1
private eye 25 69571 7600 ±7500 10323 ±4735
qbert 164 13455 85926 ±8980 157353 ±6593
riverraid 1338 17118 172266 ±592 47323 ±1079
road runner 12 7845 554956 ±23859 327025 ±45241
robotank 2 12 85 ±15 59 ±2
seaquest 68 42055 501236 ±498423 815970 ±128885
skiing -17098 -4337 -30000 ±0 -18407 ±1171
solaris 1236 12327 4401 ±732 3031 ±491
space invaders 148 1669 31265 ±27619 59602 ±2759
star gunner 664 10250 158608 ±4060 214383 ±23087
surround -10 7 10 ±0 9 ±0
tennis -24 -8 -0 ±0 12 ±12
time pilot 3568 5229 413988 ±10023 359105 ±21396
tutankham 11 168 318 ±30 252 ±47
up n down 533 11693 606602 ±28296 549190 ±70789
venture 0 1188 866 ±866 2104 ±291
video pinball 0 17668 921563 ±56020 685436 ±155718
wizard of wor 564 4757 103463 ±3366 93291 ±5
yars revenge 3093 54577 187731 ±32107 557818 ±1895
zaxxon 32 9173 106935 ±45495 65325 ±395
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C.1 Proof for planning with Gumbel
We will prove that Algorithm 4 generates An+1 such that E[q(An+1)]≥EA∼π [q(A)].

For the right-hand side, the Gumbel-Max trick tells us that EA∼π [q(A)] is equal

to E(g∈Rk)∼Gumbel(0)[q(argmaxa(g(a)+ logits(a))]. First, we will show that we can

replace the argmaxa with argmaxa∈Atopn
. Remember thatAtopn is defined asAtopn =

argtop(g+ logits,n) and that we use the same Gumbel vector g in the argtop and

argmax. The set Atopn then includes the action with the highest g(a)+ logits(a),

and we can replace the argmaxa with argmaxa∈Atopn
.

After these rewrites, we have to prove that

E[q(An+1)]≥ E(g∈Rk)∼Gumbel(0)[q(argmax
a∈Atopn

(g(a)+ logits(a))]. (C.1)
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On the left-hand side, E[q(An+1)] is equal to

E(g∈Rk)∼Gumbel(0)[q(argmax
a∈Atopn

(g(a)+ logits(a)+σ(q(a))))]. (C.2)

We can finish the proof by proving that for any vector g ∈ Rk we have

q(argmax
a∈Atopn

(g(a)+ logits(a)+σ(q(a))))≥ q(argmax
a∈Atopn

(g(a)+ logits(a)). (C.3)

This is true because σ is a monotonically increasing transformation.

C.2 Proof for completed Q-values
We will prove that π ′completed = softmax(logits+σ(completedQ)) produces a policy

improvement. We will start by showing that π ′completed is produced by a specific

instance of Algorithm 7. We will then prove that any instance of Algorithm 7 pro-

duces a policy improvement.

Algorithm 7 Policy improvement when having vπ

Require: π,vπ .
Require: q(a) for each visited action. The visited actions can be from any distri-

bution.
Initialize π ′ with π .
For the visited actions:

If q(a)> vπ , increase the π ′(a) logit.
If q(a)< vπ , decrease the π ′(a) logit.

return π ′

C.2.1 Specific instance

Algorithm 7 is more general than the usage of the completed Q-values. Specifically,

Algorithm 7 would produce π ′completed if updating the logits by σ(completedQ(a))−

σ(vπ). This update increases the logit if q(a) > vπ . This update decreases

the logit if q(a) < vπ . And the update does not modify the logits of the un-

visited actions. The resulting softmax(logits+σ(completedQ)− σ(vπ)) is equal

to softmax(logits+σ(completedQ)) because the constant offset σ(vπ) does not

change the softmax output.
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C.2.2 Policy improvement proof for any instance

We will now prove that π ′ from Algorithm 7 satisfies

∑
a

π
′(a)q(a)≥∑

a
π(a)q(a). (C.4)

Notice that π ′(a) for any unvisited action a will be czπ(a), with a normalization

constant cz > 0.

For one visited action: Let’s denote the visited (aka expanded) action by aex.

First, if π(aex) = 1 then vπ = q(aex) and the policy will remain unchanged.

Let’s now consider the case with π(aex)< 1. The vπ can be rewritten as

vπ = π(aex)q(aex)+(1−π(aex)) ∑
a̸=aex

π(a)q(a)
∑b ̸=aex π(b)

. (C.5)

Let’s denote the weighted sum by qmiss:

qmiss = ∑
a̸=aex

π(a)q(a)
∑b ̸=aex π(b)

. (C.6)

We notice that the qmiss does not change if scaling π by a constant cz > 0.

We will now rewrite the left-hand side of Inequality C.4 to use qmiss:

∑
a

π
′(a)q(a) = (C.7)

= π
′(aex)q(aex)+(1−π

′(aex)) ∑
a̸=aex

czπ(a)q(a)
∑b̸=aex czπ(b)

(C.8)

= π
′(aex)q(aex)+(1−π

′(aex))qmiss (C.9)

= π
′(aex)(q(aex)−qmiss)+qmiss. (C.10)

The right-hand side of Inequality C.4 can be also rewritten:

vπ = π(aex)q(aex)+(1−π(aex))qmiss (C.11)

= π(aex)(q(aex)−qmiss)+qmiss. (C.12)
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With these rewrites, Inequality C.4 becomes

π
′(aex)(q(aex)−qmiss)≥ π(aex)(q(aex)−qmiss). (C.13)

The q(aex)−qmiss can be negative, zero or positive.

If q(aex) = qmiss, the inequality is satisfied.

If q(aex)> qmiss, we want π ′(aex)≥ π(aex).

If q(aex)< qmiss, we want π ′(aex)≤ π(aex).

Because we do not know qmiss, we cannot use it in an algorithm. We will

instead show that q(aex)> qmiss is equivalent to q(aex)> vπ when π(aex)< 1:

q(aex)> vπ (C.14)

q(aex)> π(aex)q(aex)+(1−π(aex))qmiss (C.15)

(1−π(aex))q(aex)> (1−π(aex))qmiss (C.16)

q(aex)> qmiss. (C.17)

Thus we directly arrived at Algorithm 7.

For multiple visited actions: We will focus on one of the visited actions. If

the logits of the other visited actions are unmodified, the algorithm is equivalent to

using only one visited action. If the logits of the other visited actions are modified

by Algorithm 7, they can further help to improve the policy.

C.3 Mixed value approximation
We will construct an approximation of vπ . The exact vπ is defined by vπ =

∑a π(a)q(a). We have an approximate v̂π from a value network, we know π , and

we have q(a) for the visited actions. With these inputs, we approximate vπ by a

consistent estimator:

vmix =
1

1+∑b N(b)

(
v̂π +

∑b N(b)
∑b∈{b:N(b)>0}π(b) ∑

a∈{a:N(a)>0}
π(a)q(a)

)
. (C.18)
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Figure C.1: Detailed policy loss ablations. Gumbel MuZero uses the policy loss with Q-
values completed by the vmix value estimator from Appendix C.3. That works
better than Q-values completed by the raw value network v̂π .
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Figure C.2: A comparison of different action selections at the non-root nodes. Gumbel
MuZero uses the unmodified (deterministic) MuZero action selection at non-
root nodes. Full Gumbel MuZero uses the deterministic action selection from
Equation 5.14, which we compare to stochastic sampling from π ′ at non-root
nodes.

The estimator interpolates v̂π and the weighted average of the available Q-

values. This is an unsophisticated estimator, with results in Figure C.1. You are

welcome to explore other possibilities.
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Figure C.3: Additional Gumbel MuZero ablations on 9x9 Go. (a) Sensitivity to Q-value
scaling by cvisit. (b) On the perfect-information game, Gumbel MuZero used
zero Gumbel noise at evaluation. Although, evaluation with stochastic Gumbel
noise is not worse. During training, MuZero and Gumbel MuZero benefit from
explorative acting proportional to the visit counts.

C.4 Derivation of the deterministic action selection
We will derive Equation 5.14 from Equation 5.13:

argmin
a

∑
b

(
π
′(b)− N(b)+ I{a = b}

1+∑c N(c)

)2

(C.19)

=argmin
a

∑
b

((
π
′(b)− N(b)

1+∑c N(c)

)
− I{a = b}

1+∑c N(c)

)2

(C.20)

=argmin
a

∑
b
−2
(

π
′(b)− N(b)

1+∑c N(c)

)
I{a = b}

1+∑c N(c)
(C.21)

=argmin
a
−∑

b

(
π
′(b)− N(b)

1+∑c N(c)

)
I{a = b} (C.22)

=argmax
a

(
π
′(a)− N(a)

1+∑c N(c)

)
. (C.23)

The simplification was possible because additive terms independent of a do not

affect argmina. While widely applicable, the deterministic action selection provides

only a small benefit on 9x9 Go (Figure C.2).

C.5 Experimental details
In general, we use hyperparameters consistent with the newest MuZero experiments

(Schrittwieser et al., 2021). MuZero’s pseudocode is available thanks to Schrit-

twieser et al. (2020). Gumbel MuZero does not need to set the Dirichlet noise

hyperparameters because Gumbel MuZero does not use Dirichlet noise.
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Figure C.4: Gumbel MuZero Elo on 9x9 Go, evaluated with different numbers of simula-
tions. The evaluation with n = 1 simulation acts with the most-probable action
from the policy network.

In a tree search, the Q-values q̂(a) are provided by the visited child nodes. We

do not modify the structure of AlphaZero’s search tree. Inside the tree search, the

Q-values are normalized to be from the [0,1] interval. We use the normalized Q-

values also in Full Gumbel MuZero, but the algorithm does not require Q-values

from a specific interval. In all Go and chess experiments, Gumbel MuZero scales

the Q-values by cvisit = 50 and cscale = 1.0. On the perfect-information game of Go,

Gumbel MuZero is not very sensitive to the scale of the Q-values. Any cvisit ≥ 50

produced similar results (Figure C.3a).

In each phase of Sequential Halving, we use at least one new visit. For exam-

ple, in the first phase, we update q̂(a) by max
(

1,
⌊

n
⌈log2(m)⌉m

⌋)
visits. This allows us

to experiment with incomplete or no Sequential Halving. When Sequential Halving

runs out of the budget of n simulations, we stop the search. The agent then selects

as An+1 the action with the highest g(a)+ logits(a)+σ(q̂(a)) from the set of the

most-visited actions. Fabiano and Cazenave (2021) provide a different way to deal

with the rounding in Sequential Halving.

During training, MuZero acts with explorative actions in the first 30 moves of

each self-play game. MuZero samples the explorative actions proportionally to the

visit counts, like AlphaGo Zero (Silver et al., 2017a). Gumel MuZero benefits from

the same exploration (Figure C.3b).

Figure C.4 shows the importance of the number of simulations at evaluation
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time. For example, in the first subplot, a network is trained with n = 2 simulations

and the same network is evaluated with 800, 200, 32, 16, 2, and 1 simulations.

To run the experiments, we used Google Cloud Tensor Processing Units v3

(TPUs). On 9x9 Go, MuZero is not limited by lack of data if using three times more

TPUs for self-play than for training. By using a smaller number of simulations, we

can substantially reduce the number of TPUs needed for self-play. Table C.1 lists

the obtained speedups if not being limited by the TPUs for training.

We apologize for running the expensive experiments with only 2 seeds. We

make no claims about confidence intervals. Sometimes a single data point is enough

to prove that something is possible (e.g., going to the Moon).

Table C.1: The speedup from a smaller number of simulations on 9x9 Go.

Training step speedup

MuZero n = 200 1.0
Full Gumbel MuZero n = 200 1.0
Gumbel MuZero n = 200 1.0
Gumbel MuZero n = 32 5.9
Gumbel MuZero n = 16 11.3
Gumbel MuZero n = 8 16.2
Gumbel MuZero n = 4 24.3

C.5.1 Network Architecture

We used a small 6-layer network on 9x9 Go, and a bigger 32-layer network in

the large-scale 19x19 Go experiments. The networks used 256 hidden planes, 128

bottleneck planes and a broadcasting block in every 8th layer.

https://cloud.google.com/tpu/
https://cloud.google.com/tpu/
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