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Abstract—This paper investigates the resource allocation of
a reconfigurable intelligent surface (RIS)-aided joint communi-
cation and sensing (JCAS) system in a coal mine scenario. In
the JCAS system, an RIS is implemented at the corner of the
zigzag tunnels to improve the complicated wireless environment,
where ground obstacles frequently block direct links. In addition,
a wireless backhaul base station with a limited energy budget
is deployed in the depth of the mine to sense the target area
and provide internet of things (IoT) services and communication
services for users. Furthermore, a data center is placed on the
ground to analyze the obtained data and route the communication
data. Under this deployment, a joint optimization problem of RIS
phase shift matrix, RIS element switches, and area sensing time
is proposed. We aim to maximize the successful sensed bits under
total completion time, and maximum transmit power constraints.
In order to solve this problem, an iterative algorithm is proposed.
The successive convex approximation (SCA) based algorithm is
used for the RIS phase shift matrix optimization subproblem.
For the sensing time optimization subproblem, the quadratic
approximation method is proposed to optimize the number of
area perceptions. The coordinate descent method is utilized to
optimize the RIS element switches. Simulation results show that
the energy efficiency is improved by up to 38%, and 7% increases
the specific data size compared with the benchmark solutions.

Index Terms—Energy efficiency, reconfigurable intelligent sur-
face, joint communication and sensing, safety monitoring sched-
ule.
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W ITH the rapid development of wireless networks,
spectrum resources are becoming congested. High-

frequency bands are exploited and investigated to meet the in-
creasing demand of wireless networks, including radar bands.
Due to the similar properties of the occupied frequency bands,
radar and communication systems have many overlaps in
system models, channel characteristics, and signal processing
design. Integrating radar and communication can improve
efficiency (integration gain [1]) of resources, e.g., spectrum,
energy, and device cost (also reducing weight for drones [2]).

Radar signals can be modulated, while wireless communi-
cation is also built based on identification and authentication.
The integration of sensing and communication is not only an
improvement or extension of existing communication tech-
nologies but also a paradigm revolution. As the neural system
of animals, sensing the environment and transmitting informa-
tion are two essential functions. By combining communication
and sensing, human beings can build the neural system of the
physical world and the intelligent world.

Millimeter wave (mmWave) bands have been officially
adopted in fifth-generation (5G) cellular systems. Adopting
high-frequency bands brings wide bandwidth and increases de-
tection resolution [3] by more than two orders of magnitude (to
0.1mm or less) [4]. Moreover, the “pencil-like” [5] mmWave
beams suffer from only a few multi-path target echoes, which
means far less clutter interference. In other words, the future
networks can clearly “see” the world. In the 6G era, the
positioning accuracy is expected to be 10 cm (indoor) and
1 m (outdoor) [6]. With the large-scale deployment of cellu-
lar networks, there are increasing emerging sensing-enabled
applications for future networks. Solid applications include
high-resolution indoor positioning [7], navigation, and even
high-resolution computational imaging, extending perception
range beyond line-of-sight in vehicular networks.

Among those applications, coal mining is a vertical in-
dustrial application where 5G/6G networks are promising to
land. The standard requirements of industrial networks are low
latency [8]–[10], indoor positioning, large-scale connections,
and low power consumption [11]. In addition to these typical
requirements, the unique requirement of coal mining is safety
monitoring. This is due to the three unique properties of coal
mining: water seepage, goaves, and toxic and explosive gases.

• Firstly, electromagnetic waves in the mmWave bands
and higher bands experience a severe loss, especially
in an environment with high-humidity air. However, the
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disadvantages of communication can be the advantages
of perception. Once it is found that the radar echo in
a specific area of the tunnel has an unknown loss, an
unmanned vehicle can be sent to check.

• Secondly, the goaf is a “cavity” created by artificial
excavation or natural geological movement, which can
cause severe loss of properties and human lives. The
spatial location of the goaves is concealed and randomly
distributed. Besides, the roof collapse of the goaf is
uneasy to be predicted. The JCAS system is able to
predict the danger and effectively detect it. Moreover,
once people and equipment fall into the goaf, the structure
inside the goaf can be “seen” through electromagnetic
inverse scattering imaging technology [12], so rescue can
be carried out in time.

This paper considers a small battery-powered wireless back-
haul JCAS base station that can transmit the sensory data
to the data center for further processing. From the system
design point of view, time-division sensing and communication
integrated system [2] is more suitable for power constraint
scenarios. In order to ensure the freshness of the sensory
data, the interval (sensing phase) between two successive
communication phases should be short. However, there should
also be enough time for sensing to ensure data accuracy
and to send the sensory and communication data. Hence,
the tradeoff between the sensing and transmission phase with
the constraints of sensing and communication demands was
optimized in this paper.

Reconfigurable intelligent surface (RIS), as a candidate
technology of 6G, is also promising to be applied in coal mines
[13]–[18]. The reasons are: 1) interference can be controlled
for RIS communications; 2) it is easy to implement and
manage RIS in tunnels of coal mines; 3) RIS is an economical
and green way [19] to transmit data through winding tunnels
(multi-hop RIS [20]); 4) since each element can independently
control the incident signal, by continuously adjusting the
reflection characteristics, the receiver can obtain different echo
signals, thereby obtaining more environmental information;
5) the high spreading loss and molecular absorption often
limit [21] the signal transmission distance and coverage range
of mmWave and THz bands, while massive multiple input
multiple output (MIMO) [21] and multi-hop RIS [20] can
help combat the distance issue; 6) if accident happens, some
hops of the RIS may encode the information of the place and
the reason of the accident in the frontier of the mine; 7) If
multiple antennas are too close, it will reduce the resolution
of perception and cause the loss of matrix rank. RIS can be
utilized in a distributed multi-antenna system, which can be
considered to increase the aperture of the radar.

Although the utilization of RIS in coal mines is beneficial,
there are still some open issues regarding integration. Among
these issues, we focus on two vital questions in this work.

• Question 1: Is time-division sensing and communication
feasible for security checks in coal mines?

• Question 2: Is it feasible to use RIS to assist wireless
communications in coal mines?

We are devoted to answering these two questions in this

work, and the results are summarized in the following contri-
butions of this work:

• The RIS-assisted JCAS system in the coal mine scenario
is modeled, and the allocation strategy of sensing time
and communication time is optimized. The simulation
results show that the JCAS system can perceive as much
sensory data as possible by reasonably allocating sensing
and communication time in coal mines to ensure mine
safety.

• RIS is deployed in the coal mine tunnels, and the RIS
phase shift matrix is optimized to improve the communi-
cation rate. After the optimization of three dimension-
s (3D)-RIS, the energy efficiency is further improved,
which verifies the feasibility of RIS-assisted communi-
cations in the coal mine tunnels.

The rest of this paper is organized as follows. Section
II presents the related works of JCAS and RIS. Section III
introduces the system model of this paper. Section IV provides
the problem formulation. Simulation results are provided in
Section V, and Section VI concludes this paper.

II. RELATED WORKS

A. Related Works on Safety Monitoring in Coal Mines

Safety monitoring of the tunnel environment needs a high
sampling density of data, which needs to deploy many tradi-
tional sensors to different places and upload data on time.
Usually, we tend to use wires to bridge sensing points to
gather data at processing servers. However, wired networks
are less scalable because sensors must be deployed as the
tunnel advances. In contrast, wireless sensor networks (WSNs)
are scalable for tunnel environments, and multi-hop routing is
necessary for WSNs because direct wireless transmission is
unfeasible in winding tunnels [22]. WSNs routing protocols
and sensor nodes deployment have been studied in various
cases [22], [23]. However, the cost of device deployment and
maintenance for WSNs is still high, and WSNs are unable
to integrate industrial network services directly into the coal
mine.

Wireless electromagnetic wave attenuation characteristics
for underground coal mines are studied in various cases (rock
roughness [24], dust concentration), but this kind of research
is only suitable for ultra-high frequency (300 MHz to 3 GHz).
The performance of the MIMO system operating at 60 GHz
(mmWave) is studied in the real-world underground gold mine
[25] in Quebec, Canada. For a 2×2 MIMO system, the channel
capacity can reach at least 4 bits/s/Hz.

Sensing is the foundation of mechanized and automated
mining systems. 2D or 3D profiling visualization systems
enabled by mmWave or laser have been implemented in
underground and surface mines in Australia and South Africa
decades ago [26]–[28]. By monitoring the 2D and 3D cloud
images of mining vehicles [26], [27], tunnels and dig areas,
automation and safety can be guaranteed to some extent. Those
systems above have no communication functions.
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TABLE I: List of Notations for Problem Formulation

Notations Meanings
T Data update time.
t Communication time.
Dk Total perceived data of the kth area.
bk Perceptual number sequence.
N Number of RIS units.
n Background noises.
K The number of target areas.
t0 The basic sensing slot.
qk Probability of success for sensing kth area.
ϵ Perceived probability coefficient.
dk Distance from the BS to the target area.
M Number of base station antennas.
bopt Optimal perceptual times sequence

B. Related Works on Integrated Sensing and Communication

From the signal processing point of view, the radar can
modulate communication information on the radar electro-
magnetic waves such as pulse interval [29] and sidelobe of
the MIMO radar beampattern [30]. On the other hand, the
base station can also use its own reflected (echo) signals
[31] to detect blockages such as walls because blockage can
“modulate” signals by reflections. By collecting multi-path
uplink signals from other devices with the aid of RIS, the
pixel blocks (computational imaging) of the surroundings can
be reconstructed [32], [33].

III. SYSTEM MODEL

In this paper, we consider a wireless JCAS system, wherein
data is sensed from a set K of K different target areas
(TA), and the sensory data is transmitted to a data center
(DC) with the help of a RIS to tackle the blockage of
the cave, as shown in Fig. 1. The RIS has N reflecting
elements and can be controlled through a diagonal matrix
Θ = diag(ejθ1 , · · · , ejθN ) ∈ CN×N with θl ∈ [0, 2π] and
j = 1, · · · , N .

The notations and meanings appearing in the article are
summarized in TABLE I. In order to sense different areas,
the JCAS transmitter should be able to change the direction,
and the beamforming vector is denoted by ω. The received
signal at the DC is:

y = (gH + hHΘG)ω + n, (1)

where g ∈ CM , G ∈ CN×M and h ∈ CN , denote the channel
responses from the transmitter to the DC, from the transmitter
to the RIS, and from the RIS to the DC, respectively. In (1),
n ∼ CN (0, σ2) is the additive white Gaussian noise.

The JCAS system needs to sense K TAs and transmit the
data repeatedly to ensure the freshness [2] of the sensory data.
As shown in Fig. 2, a period T consists of a downloading
phase (control and downloading data from DC to BS), a
sensing phase, and an uploading phase (sensory data and
communication data from BS to DC). Note that K TAs have
different conditions and security requirements, so the sensing

RIS BS

TA

TA

DC

Fig. 1: System Model of Coal Mine Sensing and Communi-
cation.

 

One Phase T

t0

Sensing

Data Uploading

Fig.2.  Sensing and Transmission Procedures

Data Downloading

Fig. 2: Time Allocation of One Phase T .

priorities (sensing periods) may vary. The primary sensing slot
of a TA is t0, and the sensing duration tk of kth TA within
a sensing phase is bkt0. The task completion probability of a
TA in a sensing slot is [34]:

qk = e−ϵdk , (2)

where, ϵk is the perceived probability coefficient and dk is the
distance from the BS to the target area. The task completion
probability of a TA in a sensing duration is:

Pk = 1− (1− qk)
bk . (3)

The transmission (uploading and downloading) duration
within a sensing phase is given by:

t =

K∑
k=1

PkDk +Df

Blog2(1 +
∥gH+hHΘG)ω∥2

σ2 )
, (4)

where Dk is the data size of the kth TA and B is the band-
width. The size of uploading and downloading data is fixed
to Df . In order to formalize the problem, the mathematical
expectation of the total data is used to approximate the sensed
total data, expressed as Pk ·Dk = Pk ·Dk + (1− Pk) · 0.

Our objective is to jointly optimize the reflection coefficient
matrix Θ and sensing times bk of the kth TA to maximize the
overall size of the sensory data under the data freshness re-
quirements and the total power constraint Pmax. The problem
can be formulated as follows:
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max
b,θ

K∑
k=1

PkDk (5)

s.t. (
K∑

k=1

bk)t0 + t 6 T, (5a)

Pk > Qk, k = 1, 2, 3 . . . ,K, (5b)
θ ∈ [0, 2π], (5c)

bk ∈ N+. (5d)

The freshness constraint is guaranteed by (5a), where

sensing duration
K∑

k=1

bkt0 plus transmitting duration are not

allowed to exceed the period T to ensure the freshness of
the sensory data. The task completion probability needs to
satisfy the security requirements (Qk in (5b)). That is, (5b))
guarantees the basic security requirement (Qk) of each target
area. On this basis, we try to improve the accuracy of sensing,
so as to improve the security. For the sake of the sensing
quality, we set a minimum successful sensing probability
threshold Qk for the BS. The power constraint is provided
in (5c).

Batteries provide power for the BS and the RIS in the
coal mine. When there are abundant RIS elements, the energy
consumed by the RIS to regulate the phase is unignorable,
even if the single RIS energy consumption is low. In order to
further improve the energy efficiency, we add switch vectors to
RIS elements and strive to find the optimal switch combination
to further improve the energy efficiency.

The amplitude of RIS elements is controlled by the x vector,
x = [x1, · · · , xN ]T , so as to realize the 3D control of RIS
elements, The 3D-RIS optimization problem can be expressed
by problem (6):

max
x

y = ω(gH + hHXΘG) + n (6)

s.t. x1, · · · , xN ∈ {0, 1}, (6a)

where, X = diag(xT ) ∈ RN . Since the problem has been
formulated under the system model we presented in this
section, we proceed to section IV.

IV. PROBLEM FORMULATION

Problem (5) is nonconvex, and it is generally hard to obtain
the global optimal solution, so (5) is divided into two sub-
problems. Firstly, we optimize the RIS phase to maximize
the channel gain. Secondly, we optimize the perceptual time
allocation problem.

A. Phase Optimization

In this subsection, we are devoted to solving the first
step. When X is an identity matrix, the phase shift matrix
optimization problem can be expressed as:

max
θ

y = ω(gH + hHΘG) + n (7)

s.t. θj ∈ [0, 2π], j = 1, · · · , N, (7a)

where θ = [ejθ1 , · · · , ejθN ]T . From the objective function (7)
and the constraint in (7a), we observe that the optimal θ is

Algorithm 1 SCA Method

Initialize v(0), set iternumber n = 1.
repeat

set v(j) = e−j∠(U(g+UHθ(j−1))), and, j = j + 1.
until the obiective value converges, θ = (v(j))∗.

Algorithm 2 Alternating Optimization Algorithm

Initialize θj = 0, j = 1 : N.
repeat

for j = 1, · · · , N
θj = argmax(y).

endfor
until the obiective value converges.

the one that maximizes the channel gain. Before optimizing θ,
we notice that hHΘ = θT diag(hH). According to problem
(6), the optimal θ can be calculated by solving the following
problem (8):

max
θ

y = |g + UHv|2 (8)

s.t. |vj | = 1, j = 1, · · · , N (8a)

where, U = diag(hH)G and v = θ∗. This paper uses the
successive convex approximation (SCA) method to optimize
the problem (8), and the alternating optimization algorithm is
the comparison algorithm.

Under the SCA approach, problem (8) can be approximated
as:

max
θ

2R(g +UHv(j−1))HUHvj)− |g +UHv(j−1)|2 (9)

s.t. |vj | = 1, j = 1, · · · , N. (9a)

Lemma 1: In problem (9), the optimal solution is:

vopt = e−j∠(U(g+UHv(j−1))). (10)

Proof: ∠(U(g+UHv(j−1))) denotes the phase of (U(g+
UHv(j−1)). When the phase of (g+UHθ(n−1))UH and v are
opposite, the value of the objective function can be optimized,
and Eq. (10) is the optimal solution. The SCA algorithm for
solving the problem (8) is summarized in Algorithm 1.

For comparison, we alternatively optimize the phase of one
element in RIS and fix the phase angle of other elements.
This method decomposes the multi-dimensional optimization
problem into multiple one-dimensional optimization problems
to simplify the calculation. The detailed steps are shown in
Algorithm 2.

B. Sensing Time Optimization

There are multiple target areas, and the size of sensory
data in each TA varies for the coal mine scenario. Each
TA’s perceived probability needs to cater for the probability
constraint due to different perceived priorities. The system’s
optimal sensing time allocation strategy needs to be obtained
first.

As observed, problem (5) is a non-convex problem, which
needs to be further transformed into a convex problem to be
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solved. This paper uses the Taylor quadratic approximation
method to solve the relaxation problem corresponding to the
original integer programming problem for the perceptual time
allocation problem. Replacing (2) into objective function in
problem (5), we can obtain expression (11):

y =
K∑

k=1

[1− (1− qk)
bk ] ·Dk. (11)

Then, we let Qk = 1 − qk and the objective function can

be rewritten as y =
K∑

k=1

[1 − Qk
bk ] · Dk. Furthermore, the

objective function is expanded to y =
K∑

k=1

Dk−
K∑

k=1

Qk
bk ·Dk

and
K∑

k=1

Dk is the fixed value. Let y1 =
K∑

k=1

Qk
bk · Dk, y1

becomes the new objective function. According to the Taylor

expansion ax =
N∑

n=0
(xlna)

n
/n!, the objective function can be

approximated as y1 =
K∑

k=1

[1 + bklnQk + (bklnQk)
2/2] ·Dk.

Let y2 =
K∑

k=1

[bklnQk + (bklnQk)
2/2] ·Dk, the optimization

problem (12) is obtained by expressing y2 in matrix form:

min
b

y2 = aT · b + bT · A · b (12)

s.t. Qk 6 Pk (12a)

t+
K∑

k=1

bkt0 6 T (12b)

where a = [D1lnQ1, · · · , DK lnQK ]T , b = [b1, · · · , bK ]T

and A = diag[(lnQ1)
2 · D1/2, · · · , (lnQK)

2 · DK/2]. From
problem (12), we observe that the non-convex problem is
transformed into a convex problem. Then, we obtain the
optimal solution of the original problem by comparing the ob-
jective function value of the integer solution near the optimal
solution of the relaxation problem. The optimization method
for solving the problem (12) is summarized in Algorithm 3.

For comparison, the enumeration method is used to solve
this integer programming problem. The specific iterative pro-
cess is summarized in Algorithm 4. Besides, for the convex
optimization process in algorithms 3 and 4, we utilize the
interior-point method.

C. Optimization Analysis of 3D-RIS.

The coordinate descent method is utilized for the problem
(6). Detailed steps of this method are presented in the follow-
ing.

First, we adopt a utility function:

ymi = yxi − yx, (13)

where xi represents the switching sequence after the update,
and x represents the switching sequence before the update.
The updating rule of the switch sequence is given by (14).

xi = [x1, · · · , xi ⊕ 1, · · · , xN ]T . (14)

In the iteration process, we will change the switch state of
the i∗th element, where, i∗ is derived as:

Algorithm 3 The Quadratic Approximation Method

Initialze, bk = 1, k = 1,· · · ,K, b = [b1, · · · , bK ]T ,
b = argmin(y2), bl = ⌊b⌋, bh = ⌈b⌉, bA = [bl, bh].
for j1, · · · , jK ∈ {1, 2} do
while t+

∑K
k=1 bk ∗ t0 < T and Qk 6 Pk do

b1 = bA(1, j1),
...

bK = bA(K, jK).
if ybefore 6 yupdate

y = yupdate
Update b

endif
endwhile
endfor
output bopt=b.

Algorithm 4 Enumeration Method

Initialize bk = 1, k = 1,· · · ,K, bmax = max{b1, · · · , bK},
b = [b1, · · · , bK ]T .
repeat

Update the maximum value of perception times
bmax = ⌊(T − t)/t0−K + 1⌋.

for b1, · · · , bK ∈ {1, · · · , bmax} do
while t+

∑K
k=1 bk ∗ t0 < T and Qk 6 Pk do

if ybefore 6 yupdate
y = yupdate
Update b

endwhile
endfor

until Objective value converges.

i∗ = argmax
i

{ym}, (15)

where ym = [ym1 , · · · , ymN
]T . The algorithm for solving

the problem (6) is summarized in Algorithm 5. Finally, the
algorithm to solve the problem (5) is summarized in Algorithm
6. The interior-point method is used in the iterative process.

D. Complexity Analysis

According to Algorithm 1, to solve the problem (8), the
complexity lies in computing the next iteration point vj , which
involves the complexity of O(N). Algorithm 2 is dominated by
the complexity of the alternating process, where the number
of iterations increases sharply and is represented by S, so the
complexity is O(NS). In Algorithm 3, the complexity of the
quadratic approximation method for solving the problem (12)
is O(2N ). N represents the number of variables, and each
variable can be converted between two values. According to
Algorithm 4, all states of the variable need to be traversed one
by one. N variables require close to NN iterations. So, the
enumeration method in Algorithm 4 involves the complexity
of O(NN ). The number of iterations decreases gradually in
solving the problem (6). N variables require N! iterations. So,
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Algorithm 5 Coordinate Descent Method

Initialize x = [1, · · · , 1]T , ym = [ym1 , · · · , ymN
]T

repeat
for i = 1 : N

xi = [x1, · · · , xi ⊕ 1, · · · , xN ]T ,
Calculation ymi = yxi − yx

endfor
Update i∗ = argmax

i
{ym}

if yxi∗ > 0
Update x = [x1, · · · , xi∗ ⊕ 1, · · · , xN ]T

until Objective value converges.

Algorithm 6 Iterative Optimization for Problem (5)

Initialize (θ(0), b(0),x(0)), Set iteration number n=1.
repeat

Given θ(n−1), the optimized θ is obtained by
Algorithm 1 and denoted by θ(n).
Given θ(n) and x(n−1), the optimization problem (6)
is solved by using Algorithm 5 and the solution is
denoted by x(n).
Given θ(n), x(n) and b(n−1), we solve the
optimization problem (5) according Algorithm 3.
Set n = n+ 1.

until The objective value converges.

TABLE II: Parameter Settings

Number Application Numerical Unit
1 BS transmit power 50 dBm
2 Background noise power -104 dBm
3 Bandwidth 1 MHz
4 Circuit power of the DC 39 dBm
5 Circuit power of BS 80 dBm
6 Power of a RIS element 10 dBm

the complex for the coordinate descent method in Algorithm
5 is O(N!).

V. SIMULATION RESULTS AND DISCUSSION

This section provides the simulation results to verify the the-
oretical findings. The parameter settings [35] are summarized
in TABLE II.

A. Phase Shift Matrix Optimization

This experiment uses the iterative method based on SCA to
solve the RIS problem (8). The θ in the experiment are set
to random values, all one and all zero. The variation curves
between the normalized channel gain value and the number of
iterations are shown in Fig. 3, where the normalized channel
gain represents the ratio of channel gain to the noise power,
denoted by |g + UHv|2/σ2.

As observed in Fig. 3, Algorithm 1 converges within ten
iterations. In addition, we compare the SCA method with the
alternative optimization method. The convergence curves of
the alternating optimization and the SCA methods are shown
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Fig. 3: Convergence behaviour of Algorithm 1 with different
initial solutions.
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Fig. 4: Comparisons of convergence results of Algorithms 1
and 2.

in Fig. 4. In Fig. 4, Alternate means the objective value by
utilizing the alternating optimization method. The horizontal
coordinate corresponding to the alternating optimization in
Fig. 4 is the number of updates of the objective function values
rather than the number of iterations. We can see that after
a finite number of iterations, two methods have converged,
and the optimal function value is stable. However, alternative
optimizations require more iterations to converge.

B. Perceptual Time Optimization

We show the results of Algorithm 3 and 4 in Figs. 5 and
6, respectively. In Fig. 5 and 6, before optimize means the
objective value with random solution, while after optimize
means the objective value with the optimal solution. In both
figures, we show the objective values with various random
settings. According to these two figures, we can find that the
optimization of Algorithm 3 and 4 is correct.

In Fig. 5, we compare the optimization results of 10 tests. K
is fixed as 5, and the objective function is the perceived total
data. The total data after optimization is significantly larger
than that before optimization. According to Algorithm 3, the
optimal solution is feasible.

Fig. 6 compares function values before and after optimiza-
tion using the enumeration method similar to Fig. 5. The
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Fig. 5: Optimization results of Algorithm 3 versus multiple
simulation times.
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Fig. 6: Optimization results of Algorithm 4 versus multiple
simulation times.
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Fig. 7: Convergence comparison of two methods with different
T.

objective function value increases obviously after optimiza-
tion. Therefore, the feasibility of the enumeration method is
verified.

Fig. 7 shows how the perceived data changes as the data
update time T varies for the quadratic approximation and
enumeration methods. Here, for precise comparison, we set K
as 8. There is almost no difference between the convergence
results of the two methods because the quadratic approxi-
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Fig. 8: Convergence comparison of two methods when the
number of regions to be perceived is different.
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Fig. 10: Influence of RIS element switch on energy efficiency.

mation method approximates the original function. With the
increase of T , there might be some errors.

Fig. 8 shows the perceived data versus the area perception
times, where we let T = 20×K based on experience. From
this figure, we notice that the two methods almost converge
to the same result, similar to Fig. 7. Thus, we verify that the
quadratic approximation method can solve the problem (12)
with low complexity.
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Fig. 9 shows the curves of the energy efficiency (defined as
the ratio of spectral efficiency over power consumption) and
the number of RIS elements under various values of powers.
It can be seen from Fig. 9 that the energy efficiency increases
significantly with the increase of power and the number of RIS
elements. Simultaneously, with the increase of RIS elements,
the energy consumption for RIS is also higher.

Furthermore, we improve energy efficiency by turning off
some elements. We set the RIS element to 100 and use
the coordinate descent method to optimize the RIS element
switches. The simulation results are shown in Fig. 10. We
can see that the algorithm has reached convergence, and the
energy efficiency has improved. This result shows that the
energy consumed by RIS to regulate the phase can not be
ignored when there are many RIS elements. We can improve
energy efficiency by finding the optimal RIS element switching
sequence.

VI. CONCLUSION

In this paper, we investigate the problem of resource al-
location in the RIS-assisted coal mine JCAS system. RIS
phase shift matrix, areas sensing times, and RIS element
switch matrix are jointly optimized to sense as much secure
data as possible while meeting the maximum data update
time, maximum power, minimum area sensing demands, and
unit-modulus constraints. In order to solve this problem, we
use the SCA-based iterative algorithm to optimize the RIS
phase shift matrix and the Taylor quadratic approximation
method to optimize the times of area perception. Simulation
results show that time-division sensing and communication are
feasible for security checks, and using RIS to assist wireless
communication in the coal mine is feasible.
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