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Lockdown lifted: measuring spatial resilience from London’s public transport 
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ABSTRACT
The disruptive effects of the COVID-19 pandemic has rapidly shifted how individuals navigate 
in cities. Governments are concerned that travel behavior will shift toward a car-driven and 
homeworking future, shifting demand away from public transport use. These concerns place 
the recovery of public transport in a possible crisis. A resilience perspective may aid the 
discussion around recovery – particularly one that deviates from pre-pandemic behavior. 
This paper presents an empirical study of London’s public transport demand and introduces 
a perspective of spatial resilience to the existing body of research on post-pandemic public 
transport demand. This study defines spatial resilience as the rate of recovery in public 
transport demand within census boundaries over a period after lockdown restrictions were 
lifted. The relationship between spatial resilience and urban socioeconomic factors was inves-
tigated by a global spatial regression model and a localized perspective through 
Geographically Weighted Regression (GWR) model. In this case study of London, the analysis 
focuses on the period after the first COVID-19 lockdown restrictions were lifted (June 2020) and 
before the new restrictions in mid-September 2020. The analysis shows that outer London 
generally recovered faster than inner London. Factors of income, car ownership and density of 
public transport infrastructure were found to have the greatest influence on spatial patterns in 
resilience. Furthermore, influential relationships vary locally, inviting future research to exam-
ine the drivers of this spatial heterogeneity. Thus, this research recommends transport policy-
makers capture the influences of homeworking, ensure funding for a minimum level of service, 
and advocate for a polycentric recovery post-pandemic.
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1. Introduction

The global COVID-19 pandemic has rapidly trans-
formed travel behavior, placing the future of public 
transport in crisis. Whilst other epidemics (SARS, 
swine flu) and terrorist attacks (London, Brussels, the 
US), altered how people travel, those impacts were 
relatively short-lived (Vickerman 2021). In the case 
of the COVID-19 pandemic, public transport systems 
have faced a “virtual collapse” (Vickerman 2021), 
which has the potential to fundamentally transform 
the mode and demand of travel. Initial estimates 
anticipate a full recovery in public transport demand 
by mid-2022 (Saunders et al. 2021; Vickerman 2021). 
Extended decreases in travel pose a significant risk to 
the financial sustainability of the public transport sys-
tems (Van Audenhove 2020; TfL 2021b).

Within the first month of the first national lock-
down, Transport for London (TfL) fare revenue plum-
meted by 90% (TfL Press Office 2020). Since then, TfL 
has devised five long-term scenarios to address the 
exceptional level of uncertainty in recovery. These 
scenarios contain a “return to normal,” “lower growth 
in London,” a pivot toward “low carbon futures,” 
a “revolution in remote working,” and an “expanding 

and unequal London” (TfL 2020d). The lifting of the 
first lockdown travel restrictions in summer 2020 pro-
vided a glimpse of the potential recovery pathway for 
London. The initial analysis of mobility data broadly 
indicates a quicker recovery in outer London as com-
pared to inner London (Batty et al. 2020; TfL 2020d). 
A spatial investigation of recovery during this time 
period may help to identify the characteristics that 
influence spatial heterogeneity in public transport 
demand resilience. The purpose of this study is to 
inform how spatial characteristics may shape the tra-
jectory of public transport demand recovery from the 
travel restrictions as a result of the COVID-19 pan-
demic. It does so through a unique intersection of 
three concepts: (1) spatial resilience perspective on 
public transport demand, (2) the context of behavioral 
changes due to COVID-19, and (3) the utilization of 
globalized and localized spatial regression models to 
analyze spatial patterns of resilience.

Spatial resilience, a subgroup of resilience theory, 
analyses the spatial attributes of a system that either 
produces resilience or emerges from a resilient system 
(Allen et al. 2016). This perspective provides 
a definition for resilience in the context of public 
transport in London. To quantify the resilience of 
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public transport demand, spatial regression models 
were utilized to identify features of areas that have 
a spatial relationship with resilience. The analyzed 
features included indicators of socioeconomic attri-
butes, built environment accessibility, and the percep-
tion of risk. This paper explores how a spatial 
resilience metric may be applied to monitor and pro-
ject the subsequent recovery path of public transport 
in London. The methodology presented in this paper 
is generic and applicable in other major cities.

What follows in section 2 is a literature review of 
public transport demand recovery, spatial resilience, 
and spatial regression models. Section 3 introduces the 
methodology and data utilized in this paper. Section 4 
provides the results of the methodology and recom-
mends policy responses. Section 5 provides 
a discussion of the results and conclusions.

2. Literature review

2.1. COVID-19‘s impact on public transport 
demand and mitigation policies

Research on how the pandemic has changed public 
transport demand informed the selection of explana-
tory features for this analysis. Global surveys found 
that travel behavior changed both due to the fear of 
infection and income inequality; shopping also 
became the main purpose of travel (Abdullah et al.  
2020; Barbieri et al. 2021). TfL’s surveys found 
employees desire a shift toward homeworking for at 
least some of the week (TfL 2020d). In Boston, mobi-
lity data from a transit app revealed a reduction in 
travel to universities (Basu and Ferreira 2021). Google 
mobility data in London revealed a reduction in over-
all transit time, and a faster recovery in travel toward 
grocery stores and parks as compared to transit sta-
tions (Batty et al. 2020). Public transport providers 
found reduced travel within inner cities and greater 
demand for localized travel, with a tendency toward 
off-peak travel times (Saunders et al. 2021). The 
research coalesces around a consistent narrative that 
telecommuting embraces homeworking flexibility and 
the pandemic has shifted the remaining journeys away 
from central business districts and toward localized 
shopping and outdoor activities.

The significant reduction in ridership rose concerns 
about the sustainability of public transport systems 
that heavily rely on fare revenue rather than subsidies 
or local taxation (TfL 2021b). Before the pandemic, 
fare revenue accounted for 65% of TfL’s revenue 
stream, whereas New York and Paris primarily funded 
operations through local taxation (Smeds, McArthur, 
and Ray 2020). From 2015 to 2019, London 
Underground revenue subsidized the costs of bus 
and rail services (Dickie et al. 2021). The travel restric-
tions caused by COVID-19 had a devastating impact 

on this revenue (TfL 2021b; TSC 2021). TfL also had to 
pause fare collection on buses from April to June 2020 
to protect drivers (TfL 2020d). As a condition of 
national government funding support, TfL increased 
fares and reduced free travel periods for the young and 
elderly (Vickerman 2021). Despite these mitigating 
steps, there remain uncertainties in sustainable trans-
port development. Ridership recovery has become 
even more important for fare-reliant public transport 
systems like London. The agglomeration benefits of an 
urban environment – economic output and scaling of 
resources – are dependent on the public transport 
(Saunders et al. 2021). This dependency justifies rede-
signing financial structures that directly link public 
transport to these benefits (Cox, Prager, and Rose  
2011; Saunders et al. 2021). Policy solutions should 
support a diversity of sustainable transport modes 
instead of a mode-specific approach to the transport 
financing (Vickerman 2021).

2.2. Spatial resilience in public transport demand

The resilience concept was first explored in the context 
of ecological systems through an examination of their 
ability to rebound and return to an original state 
(D’Lima and Medda 2015; Holling 1973). The “resi-
lience triangle” captures the phases of a system from 
disruption to recovery (Bruneau et al. 2003). Bešinović 
(2020) expands the “resilience triangle” concept in the 
context of railway systems. The phases of robustness, 
vulnerability, survivability, response, and recovery are 
shown in Figure 1 (Bešinović 2020; Twumasi-Boakye 
and Sobanjo 2019).

Transport systems, the critical infrastructure that 
supports urban mobility, must be resilient against 
disruptions: from small impacts of daily delays to 
larger impacts of climate disasters or terrorist attacks 
(Bešinović 2020; Twumasi-Boakye and Sobanjo 2019). 
A spatial resilience perspective can add a new dimen-
sion to transport resiliency by analyzing a transport 
system’s urban form and attributes that locate areas of 
resilience (Lu et al. 2021). This perspective allows for 
an investigation into how spatial attributes contribute 
and feedback resilience within transport systems 
(Allen et al. 2016).

One effective approach to analyze the resilience of 
a transport system is to take a data-driven perspective. 
The data-driven approach utilizes historical data of 
performance, traffic, ridership, and weather to pro-
duce insights into how a system recovered from 
a disruption (Bešinović 2020). This approach does 
not require intensive modeling of the system; however, 
it does require quality granular data (Bešinović 2020). 
Spatial resilience adds to this perspective through data 
of density metrics, land use, alternative transport 
modes, socio-economic characteristics, and infra-
structure accessibility (Lu et al. 2021; Modica and 
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Reggiani 2015). A spatial approach provides a holistic 
perspective of how spatial attributes may influence 
a system’s resilience, yielding insights that are not 
found purely from ridership and weather records.

Existing research on transport system resilience 
from a data-driven perspective is limited. However, 
among the research identified in Table 1, resilience 
definitions are provided and the last three definitions 
utilize a spatial perspective. Resilience definitions 
require a context “of what” resilience is measured 
and compared “to what” (Allen et al. 2016). The sum-
marized literature follows two main definitions of 
resilience after a disruption: the ability of a system to 
recover to its original state after a disruption and the 
ability of behavior to recover in an alternative mode of 
transport. These definitions can be categorized as 
engineering or ecological (Modica and Reggiani  

2015; Perrings 1998). An engineering definition is 
a conventional approach that measures the speed of 
recovery to a system’s equilibrium (Modica and 
Reggiani 2015). The ecological definition takes an 
evolutionary and complexity perspective; identifying 
how the system adapts to the disruption by measuring 
its redundancy and elasticity (Modica and Reggiani  
2015). Table 1 provides a range of resilience defini-
tions and their corresponding data sources that inform 
how this research defines and analyses resilience.

For much of the research summarized, the analysis 
took place long after the disruption ended and data 
could be used to adequately identify whether a new 
equilibrium had been reached. In particular, Zhu et al. 
(2017) calculated the area of the resilience “triangle” 
after New York’s system recovered. Huang et al. 
(2021) utilized mobility data among counties in the 

Figure 1. Resilience phases of a system (Bešinović 2020). Robustness: a system’s ability to resist disturbances and maintain 
performance. Vulnerability: performance loss due to disruption. Survivability: rate at which a system degrades. Response: the 
actions required to achieve a steady-state in performance. Recovery: a system’s ability to return to its original performance.

Table 1. Definitions of resilience from a data-driven perspective summarized from literature.

Author
Resilience 

perspective
Resilience context 
(of what/to what) Resilience definition Data sources

Cox, Prager, 
and Rose 
(2011)

Ecological Resilience of London’s underground system 
after terrorist bombings as compared to 
alternative modes of transport

Direct static economic resilience: measures the 
percentage avoided of maximum disruption 
to the system

Ridership data, 
alternative 
transport modes: 
traffic, cycling data

D’Lima and 
Medda 
(2015)

Engineering Resilience of ridership for the London 
underground after a theoretical disruption 
compared to its equilibrium

The speed of recovery of a system to its 
equilibrium state after a shock

Ridership data

Zhu et al. 
(2017)

Engineering Resilience in demand of NYC subway and taxi 
transport modes as compared to demand 
before the climate disruption.

Loss of resilience: measures the area of the 
triangle of the recovery by region over time

Land use, 
socioeconomic, 
alternative 
transport modes, 
infrastructure 
accessibility

Saberi et al. 
(2018)

Ecological Resilience of mobility patterns in London 
during the 2014 strikes as compared to 
alternative modes of transport

Change in demand for bicycle sharing during 
public transport disruptions

Ridership data, 
infrastructure 
accessibility

Azolin, da 
Silva, and 
Pinto 
(2020)

Ecological Resilience of two cities in Brazil compared 
the ability to access alternative modes of 
transport

Percentage of trips that can stay or transfer 
towards sustainable, active modes of 
transport (public transport, walking, cycling)

Origin & destination 
data, alternative 
transport modes, 
socioeconomic
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US to compare the respective areas of recovery from 
the impacts of the pandemic. An analysis of the area of 
the “resilience triangle” invites an understanding of 
both a system’s robustness – its ability to resist dis-
turbances – and recovery. This paper’s context is spe-
cifically interested in recovery trajectories and 
informing pathways to expeditious recovery from the 
pandemic’s impact. Therefore, the current scope most 
closely aligns with D’Lima and Medda’s (2015) engi-
neering definition of resilience: “The speed at which 
a system returns to equilibrium after a disturbance 
away from equilibrium.” To support the research 
motivation for understanding areas within London 
that have the greatest resilience, a spatial perspective 
is added to this definition. This study defines spatial 
resilience as the localized rate of recovery of public 
transport demand within census boundaries.

2.3. Spatial analytics methods of the resilience of 
public transport

Spatial analytics serve as a method to understand the 
relationships between the spatial attributes of a system 
and its resilience. Spatial regression models have been 
applied in disciplines of epidemiological studies, 
transport, and resilience.

A study of the association between socio-demo-
graphic attributes and COVID-19 cases and deaths 
utilizes three spatial regression models: spatial lag 
model, spatial error model, and Geographically 
Weighted Regression (GWR) (Sannigrahi et al. 2020). 
Within its study area of Europe, the GWR model best 
explains the spatial heterogeneity found in COVID-19 
cases and deaths. Specifically, a strong positive associa-
tion is found between the independent variables of 
income and total population and the dependent vari-
ables of COVID-19 cases and deaths. A spatial analysis 
of Nanjing utilized Ordinary Least Squares (OLS) and 
a spatial error model to identify factors that influence 
the transfer from metro to bikeshare within the catch-
ment area (Ma et al. 2018). The modeling included 
socio-demographic data, transportation behavior, and 
built environment. It is found that the spatial error 
model best fits the data, implying that omitted variables 
are the primary reason for spatial dependency within 
the data. Factors including the proportion of local 
residents, metro, and job density influence the number 
of transfers from metro to bikeshare. Zhu et al. (2017)’s 
research is of particular interest due to its combination 
of resilience in transport systems and a globalized spa-
tial perspective. Resilience is modeled as the recovery 
rate of trips and calculates the area of the resulting 
triangle (Zhu et al. 2017). Models of OLS, spatial 
error, and spatial lag are produced and compared. 
The study finds that the recovery of trips is significantly 
influenced by factors of surge area percentage, distance 
to the coast, and elevation. Similar to Ma et al.’s 

research (2018), we can find that the spatial error 
model best fits the observed data.

This paper draws inspiration from D’Lima and 
Medda’s (2015) resilience definition, Sannigrahi 
et al.’s (2020) investigation of spatial heterogeneous 
impacts during the COVID-19 pandemic, and Zhu 
et al.’s (2017) spatial analysis of the recovery of trans-
port demand after a disruption. In the context of 
COVID-19 and transport demand, recent quantitative 
studies analyze the relationship between mobility and 
COVID-19 transmission (Chen et al. 2021; Jiang et al.  
2021; Wielechowski, Czech, and Grzęda 2020; Young 
et al. 2021) and the likely mode-share and behavior 
changes (Christidis et al. 2021; Ciuffini, Tengattini, 
and Bigazzi 2021; Rothengatter et al. 2021). In con-
trast, this study provides a quantitative framework to 
interrogate the spatial resilience of public transport 
demand with the aim of identifying indicators for 
recovery. It utilizes both global and local spatial 
regression models to identify the impact of significant 
features on spatial resilience.

3. Study materials

This study utilizes a case study from London to demon-
strate a measure of spatial resilience and analysis of 
recovery. London is a monocentric city (Cox, Prager, 
and Rose 2011) with spatial patterns in travel mode 
choice. The primary mode of transport in Inner 
London is public transport, whereas outer London has 
a higher share of the private car usage (Cox, Prager, and 
Rose 2011; TfL 2020d). Figure 2 demonstrates the mono-
centric nature of London, which concentrates population 
and resources within the central region, increasing its 
vulnerability to significant disruptions (Lu et al. 2021).

On 23rd, March 2020, the UK government 
announced that people should not travel unless for 
essential reasons to prevent the spread of COVID-19. 
Figure 3 demonstrates the trend of weekly entries at 
both railway stations and bus stops from January 2019 
to October 2020. The month of May 2020 is artificially 
low as data on bus boardings was not captured when 
fare revenue collection paused for buses (TfL 2020d). 
The recovery horizon to be analyzed starts at 
the second week of June, when schools have reopened 
and ridership data reflect levels similar to the week 
lockdown restrictions began. The analysis horizon 
ends with the week of 7th, September, the week before 
the “rule of six” was implemented – where gatherings 
could only contain a maximum of six people (UK 
Home Office 2020). Figure 3 depicts the analysis hor-
izon against weekly trips.

3.1. Data

For this analysis, spatial resilience is measured as the 
slope of recovery of public transport demand within 
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each Middle Layer Super Output Area (MSOA) in 
London. MSOAs are census boundaries designed to 
represent the most equal population size (approxi-
mately 9,100 residents per MSOA in London, 982 
MSOAs total) and homogeneity of socio-economic 
status and spatial compactness (Harris 2020). The 
resilience measure is based on rail passenger ridership 

data (TfL 2020a, 2020b), and bus alighting data are 
received from a freedom of information data request 
to TfL. Data only represents the count of daily entries. 
To maintain anonymity in the data, certain bus stops 
with a count of less than five daily entries are reported 
as “<5”. For this analysis, all less than 5 daily trips are 
assumed to be the minimum value of one.

Figure 2. Map of London railway stations and bus stations. A map of London railway stations and bus stops relative to the 
population density within London. Railway stations are in blue, and bus stops are in green. The population density in gray 
represents the monocentric distribution of London’s residents.

Figure 3. Trend of total weekly entries. Red dotted line is 23rd March 2020, when restrictions were first imposed. Blue dotted lines 
indicate the horizon of recovery to be analyzed: from 8th June 2020 to 7th September 2020.

GEO-SPATIAL INFORMATION SCIENCE 5



Spatial attributes selected for this analysis 
include categories of socioeconomic data, build 
environment, and the risk perception of transmit-
ting COVID-19 (as represented by COVID-19 
death rate). These are detailed in Table 2, includ-
ing the source, and existing literature that sup-
ports the hypothesis that these features may 
explain variance in the resilience measure. All 
features are sourced from spatial datasets and 
are aggregated at the MSOA level.

These variables are selected based on the assump-
tion that the spatial attributes of where a trip starts 
influence the demand for public transport. The pro-
vided ridership data only indicate daily entry counts at 
each station, not capturing where the journey ended or 
purpose (i.e. workplace, school, and return to home). 
This analysis assumes that explanatory features may 
impact public transport demand recovery despite an 
inability to distinguish between socioeconomic attri-
butes of passengers and destinations that incentivize 
travel.

4. Methodology

The study follows a straightforward workflow to 
determine the factors that influence the spatial 
resilience of public transport demand. The work-
flow is composed of two primary steps: (1) an 
estimated resilience measure based on counterfac-
tual demand and (2) a spatial analysis of this 
resilience measure to determine explanatory fea-
tures at a global and local level.

4.1. Resilience measure

To estimate the counterfactual demand scenario – 
estimated demand had the pandemic not 
occurred – pre-COVID-19 figures were used as 

a baseline. The activities in the months of 
June 2019 to September 2019 are used to estimate 
the counterfactual demand. This approach mirrors 
existing mobility indices from Google and 
Citymapper. These indices compared current tra-
vel against the previous year to describe how 
mobility changed due to COVID-19 (Ghosh  
2020; Google 2021).

The spatial resilience of public transport demand 
recovery is defined as the Spatial Resilience 
Measure (SRM). This analysis defines SRM as the 
slope of the Recovery Ratio (RR) of actual trips 
versus counterfactual trips. The ratio (RR) of actual 
trips versus counterfactual trips is calculated for all 
zones (e.g. MSOA zones). A linear regression 
model is fit to the (RR) by week and the resulting 
slope parameter is the SRM for each MSOA.

Three steps were undertaken to estimate the SRM, 
detailed as:

(1) Calculated the RR for each spatial unit (e.g. 
MSOA zone).

(2) Decomposed the trend of RR by time-series 
analysis (Perktold, Seabold, and Taylor 2019). 
In this study of London, the decomposed trend 
calculates a moving average across periods of 2  
weeks. This process yields 10 weeks of data to 
compute the slope.

(3) Fitted a regression to estimate the slope of the 
decomposed trend line:

RR ¼ α0 þ SRMx; where RR ¼ Actual Trips
Counter factual Trips

where α0 is the intercept, SRM is the slope parameter, 
and x is the number of weeks. This approach is limited 
in that it assumes that the slope of a linear model will 
encapsulate the variation in travel demand recovery. 
This assumption is explored further in Appendix C.

Table 2. Explanatory features used in this analysis.
Category Feature Label Description & year Source of Data

Socioeconomic IMD score imd_score Index of multiple deprivation. A lower score indicates less deprived 
populations. (2019)

(University of 
Sheffield  
2021)

Homeworking percent hw_pct The ONS homeworking survey indicates level of homeworking by 
industry (2020). This is applied to Census 2011‘s information of jobs 
at a MSOA level.

(ONS 2020,  
2013)

Total income total_income Annual household income by MSOA. (2015/2016) (ONS 2015)
Cars per household cars_per_hhld Average number of cars per household by MSOA. (2011) (GLA 2014)

Built  
Environment

Cycle length per 
hectare

cyclelength_perhect Metres of cycling lanes from TfL’s cycling infrastructure data per 
hectare by MSOA. (2020)

(TfL 2019)

Road length per 
hectare

roadlength_perhect Metres of road per hectare by MSOA. (2021) (OS 2021)

Density of educational 
spaces

education_den Density of education locations by MSOA, including primary, second, 
and tertiary (2021)

(OS 2020)

Density of public 
transport 
infrastructure

pubtrans_den Density of public transport infrastructure by MSOA. Inclusive of rail 
stations, bus stops, bus depots, and garages. (2021)

Density of recreational 
spaces

recreation_den Density of recreational spaces by MSOA. (2021)

Risk Perception Density of COVID 
deaths

coviddeaths_den Density of deaths from COVID-19 by MSOA. (2020) (ONS 2021)
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4.2. Multivariate spatial regression

Once the dependent variable SRM is calculated, 
explanatory features are added to the analysis. All 
features are standardized by utilizing the z-score 
method. A Variance Inflation Factor (VIF) test is 
applied to test features for multi-collinearity, 
strongly correlated features are removed.

A comprehensive analysis is provided by com-
bining results from a global model (i.e. spatial lag 
model) and a local model (i.e. GWR model). The 
regression models investigate the hypothesis that 
the selected explanatory features may significantly 
explain the spatial variance in the rate of public 
transport demand recovery. However, there are 
nuances in each of the models. A spatial lag 
model assumes a “diffusive” behavior (Sparks and 
Sparks 2010) in public transport demand. Increased 
demand in one area is likely to positively influence 
demand in neighboring areas. The GWR model is 
a localized approach that allows for an examination 
of the relationship between the explanatory vari-
ables and dependent variables within each defined 
bandwidth (Fotheringham 2009). This process 
identifies the contribution of each explanatory vari-
able on each spatial unit.

Table 3 summarizes the baseline OLS model and 
the global and local spatial regression models utilized. 
We detail how spatial data is incorporated in the 
model and the formula for this analysis. All analytical 
models in this research are developed based on PySAL 
library (Rey and Anselin 2007).

Through the analysis of the spatial regression 
model outputs, statistically significant features are 
identified. The bivariate Moran’s I, a form of spa-
tial correlation, measures the spatial autocorrelation 
between an explanatory feature and the spatially 
lagged dependent variable (Anselin 2019). This 
metric allows for spatial analysis of the relationship 
between significant features and the dependent 
variable, SRM.

5. Results

5.1. Spatial resilience of public transport demand

The SRM is the slope of the RR for each MSOA 
displayed in Figure 4. The methodology detailed in 
section 4.1 to calculate the spatial resilience measure 
results for 981 distinct linear regression models. It is 
found that 75% of these models yield an R-Squared of 
0.92 or higher, indicating a strong fit for the majority 
of the MSOAs. The calculated distribution of the SRM 
ranges from 0.24 to 7.91. Therefore, at maximum, an 
MSOA recovered 7.91% points every week after lock-
down restrictions were lifted.

Plotting the SRM reveals spatial heterogeneity – 
where values vary based on the location in 
a systematic manner (Sparks and Sparks 2010). The 
boxplot in Figure 5 segments the SRM by subregion. 
Immediately, two interesting patterns appear: much of 
the Inner West of London (e.g. Camden, Kensington 
& Chelsea, and Hammersmith & Fulham) and Outer 
West (e.g. Brent) has low spatial resilience, whereas 
much of South London (e.g. Sutton and Merton) has 
relatively higher spatial resilience. Inner London has 
a mean spatial resilience of 2.74, whereas outer 
London has a mean spatial resilience of 3.10. This 
finding aligns with previous research that Outer 
London is recovering faster than Inner London (TfL  
2020d). Further definition of categorized MSOA 
regions is given in Appendix A, B and C.

The visual observation of spatial dependency can be 
validated through a calculation of statistical signifi-
cance, the global Moran’s I. The global Moran’s 
I value is 0.39, indicating a small amount of positive 
spatial correlation. This value is estimated to be statis-
tically significant against a randomized dataset with 
a p-value of 0.001.

The Local Indicator of Spatial Association (LISA) 
gives a statistic for each location with an assessment of 
significance (Anselin 1995). It is applied here to iden-
tify which MSOAs have a significant spatial 

Table 3. Summary of regression models utilized.
Model Formula

OLS model SRM ¼ α0 þ βX þ ε 
Where SRM is the dependent variable spatial resilience, α0 is the intercept, β is a vector of parameters for each explanatory feature in 

vector X, and ε is the error term
Spatial lag 

model
SRM ¼ α0 þ βX þ ρW SRM Where ρW SRM is the spatial lag of dependent variable SRM, ρ is the spatial lag parameter, and W is the 

spatial weights matrix of SRM.
GWR model

SRMi ¼ αi0 þ
PK

k¼1
βik Xik þ �i 

Where αi0 is the intercept coefficient at each location i, βik is a vector of parameter which is estimated as detailed by:  
bβi ¼ X 0W i X½ �

� 1X 0W iSRM 
Where βik measures the influence of vector X on the dependent variable SRM according to the spatial weights matrix W i . The 

bandwidth is selected by optimisation criteria based on the corrected Akaike Information Criterion (AICc) (Oshan et al. 2019)
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relationship with the resilience measure. Following 
Rey, Arribas-Bel, and Wolf’s (2020) method, MSOAs 
were clustered based on their values relative to the 
average spatial resilience. Figure 6 spatially plots the 
statistically significant values. The LISA statistics iden-
tifies areas where there may be spatial features influen-
cing the observed spatial autocorrelation.

Figure 6 plots each statistically significant LISA 
values and categorizes them into four clusters: high– 
high (“hh”), low–high (“lh”), low–low (“ll”), and high– 

low (“hl”). This clustering draws interest into the 
commonality between high performing and low per-
forming MSOAs to produce these spatial patterns. 
High–high and low–low clusters are regions that, 
respectively, have a higher-than-average or lower- 
than-average spatial resilience surrounded by similar 
regions. High–low clusters are areas with high rates 
surrounded by low spatial resilience, whereas low– 
high clusters are areas with low spatial resilience sur-
rounded by high spatial resilience (Rey, Arribas-Bel, 

Figure 4. Lockdown lifted: trend of percent actual trips versus counterfactual estimate. Trend line of actual versus estimated trips 
over the analysis time horizon. Individual MSOAs are in gray, and the average trend is in blue.

Figure 5. Boxplot of SRM by subregion. MSOAs are divided by inner and outer regions. MSOAs in the Inner East and Inner West 
have lower spatial resilience than Outer MSOAs, although Outer West and North West are more similar to Inner MSOAs.
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and Wolf 2020; Sparks and Sparks 2010). MSOAs 
within Merton and Sutton local authorities in 
Southwest London belong to the high–high clusters, 
whereas MSOAs in the Inner West and Inner East of 
London are in the low–low clusters.

This process of estimating the SRM and its Moran’s 
I confirm this paper’s hypothesis that there is spatial 
dependency in the recovery of public transport demand. 
It warrants an investigation into the spatial attributes that 
may contribute to high or low resilience within different 
areas of London. They are detailed in the following 
section.

5.2. Spatial socioeconomic factors contributing to 
spatial resilience

The features of socioeconomic indicators, built envir-
onment, and risk perception are standardized and 
tested for multicollinearity prior to modeling. 
Table 4 details the performance of the three regression 
models.

The R-squared value, AIC, and Moran’s I of resi-
duals are compared to assess the performance of the 
regression models. The baseline OLS model explains 
only 8% of the variation in spatial resilience. The 

Figure 6. LISA. The LISA spatial plot includes only those MSOAs that have statistically significant clustering.

Table 4. Summary of regression models.
OLS Spatial lag GWR

Statistics coefficient P > |t| coefficient P > |t| coefficient (mean) range

constant 0.00 1.00 −0.01 0.77 0.02 (−0.51, 0.73)
total_income_std −0.18 0.00 −0.17 0.00 −0.22 (−0.51, 0.09)
hw_pct_std −0.01 0.92 0.04 0.47 0.00 (−0.33, 0.41)
cyclelength_std 0.00 0.90 0.00 0.99 −0.01 (−0.32, 0.16)
carsperhhld_std 0.27 0.00 0.14 0.05 0.33 (0.11, 0.79)
roadlengths_std −0.01 0.77 0.02 0.58 −0.01 (−0.15, 0.28)
education_den_std 0.05 0.37 0.07 0.15 0.15 (−0.27, 0.75)
pubtrans_den_std −0.08 0.09 −0.09 0.04 −0.44 (−2.85, 0.24)
recreation_den_std −0.04 0.44 −0.01 0.74 0.02 (−0.31, 0.30)
coviddeaths_den_std −0.01 0.70 −0.03 0.31 0.01 (−0.15, 0.28)
spatial_lag_SRM 0.62 0.03
R-Squared 0.08 0.33 0.35*
AIC 2720.13 2422.66* 2511.25
Moran’s I of residuals 0.35 −0.05 0.13

Variables that are statistically significant are in bold. Furthermore, the model with the highest R-Squared and lowest AIC are indicated by *. The bandwidth 
selected for the GWR model is 333.
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spatial lag model and GWR improve on this value, 
with the GWR model explaining the highest amount 
of variance at 35%. The AIC is another metric for 
goodness of fit, where a lower value indicates 
a stronger fit (Fotheringham 2009). Furthermore, the 
Moran’s I of the residuals determines whether spatial 
autocorrelation is still present in the data or if it has 
been explained by the model. The spatial lag model 
successfully reduces the global Moran’s I to −0.05 and 
the GWR reduces it to 0.13.

These results support the conclusions of spatial 
dependency within the data. The model with the low-
est AIC – the spatial lag model – indicates that the 
SRM is influenced by neighboring regions. Therefore, 
an increase in public transport demand in one MSOA 
is likely to similarly appear in neighboring regions. 
Although the GWR model has a higher AIC score 
than the spatial lag model, its higher R-squared justi-
fies a localized analysis of the significant features. As 
the variables are standardized, a one-unit change in 
the explanatory feature is equivalent to a one standard 
deviation change in that feature (Taboga 2017). For 
each feature, a positive coefficient indicates a positive 
association with the SRM whereas a negative coeffi-
cient indicates a decrease in the SRM.

Across the models, features of total income, cars per 
household, and public transport infrastructure density 
have a p-value less than or equal to 0.05, implying 
statistical significance for the variance in spatial resi-
lience. The main feature for risk perception, COVID- 
19 deaths density, does not appear to be statistically 
significant. In the context of this modeling, COVID- 
19 death rates within the specific MSOA do not sig-
nificantly influence public transport demand. Due to 
the limited testing at the beginning of the pandemic, 
the death density metric was selected instead of case 
numbers as it is a more accurate depiction of COVID- 
19 spread. However, the lack of statistically significant 
influence could be impacted by the absence of 
a temporal element in the models. There is a time 
delay between infection and death, and a model that 
includes these temporal impacts may better demon-
strate the weekly influence on public transport 
demand. Furthermore, it may also be possible that 
a higher aggregation (i.e. London or the UK) may 
have an influence on local public transport behaviors.

The GWR model depicts a spatially heterogeneous 
relationship between total income and public trans-
port infrastructure density with SRM. In the case of 
total income, its parameter estimates range from −0.51 
to 0.09. This finding implies that there is a dependency 
on the location of the relationship with SRM. That is, 
an increase in total income may either reduce or 
increase the spatial resilience of public transport 
demand. For the public transport infrastructure den-
sity variable, the parameter estimates range from 
−2.85 to 0.24, implying a similar spatially dependent 

relationship as the total income feature. Therefore, it is 
important to explore the localized relationship of these 
variables with SRM.

Globally, total income has a negative relationship 
with the spatial resilience measure, although the rela-
tionship is more nuanced at a local level. In Figure 7, 
a high total income in Inner London directly corre-
sponds with the low spatial resilience, aligning with 
the global relationship. However, in the Outer South 
of London, high income is also present in high areas of 
recovery. Counterintuitively, SRM has a positive rela-
tionship with cars per household and a negative rela-
tionship with public transport density. This appears to 
imply a decoupled relationship where areas continue 
to use public transport despite high car ownership and 
low density of public transport infrastructure. There is 
also a varied relationship between public transport 
density and spatial resilience. Within Inner London, 
areas that have high public transport infrastructure 
density have low spatial resilience. However, there 
are also areas with low public transport infrastructure 
density and low spatial resilience.

To provide context for the above findings, further 
analysis of the difference in journey purposes between 
areas with high cars per household or high public 
transport infrastructure density is needed. As dis-
cussed previously, the data does not distinguish 
between attributes of the origin of a journey versus 
the points of interest that may influence a journey’s 
destination. Without a transparent linkage between 
rider’s sociodemographic attributes and their chosen 
destinations, it is challenging to definitively draw 
a conclusion of the influences on spatial resilience.

5.3. Policy recommendations

5.3.1. Data collection of homeworking behavior
Whilst the homeworking feature was not statistically 
significant, it had a high correlation with total income 
(0.83) and the total income’s VIF (4.31) was close to 
the VIF threshold of 5. Therefore, models that utilize 
homeworking percentage instead of total income are 
likely to find that homeworking is statistically signifi-
cant. Research conducted by ONS in April 2021 found 
that 24% of the businesses expected an increase in 
homeworking going forward, with 85% of working 
adults desiring a hybrid approach of both homework-
ing and office working (Casey 2021). Cox et al.’s inves-
tigation of the resilience of the London Underground 
demand after the 2005 terrorist bombings hypothe-
sized that some journeys may have shifted to telecom-
muting (Cox, Prager, and Rose 2011). Data that 
defines homeworking as a trip mode could be col-
lected via the London Travel Demand Survey 
(LTDS), an annual travel survey of sample households 
(TfL 2021a). This data can identify whether Londoners 
are moving toward a “remote revolution” (TfL 2020d). 
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Furthermore, this data will allow for future analysis of 
transport resilience from an ecological perspective 
(Modica and Reggiani 2015), providing quantitative 
evidence of how the public transport demand not just 
recovers but adapts.

5.3.2. Align services and investments to public 
transport resilience
The high levels of spatial resilience in Merton and 
Sutton (Figure 7) reveal an opportunity to reconsider 
public transport services. Additional research is 
required to understand the purpose and destination 
of the public transport trips occurring in Outer 
London. If demand consistently recovers in the outer 
south, services may need to initially “right-size” 
(Dickie et al. 2021) to the reduced commuting in 
central London. Furthermore, a future investment 
may be reallocated toward areas that are showing 
greater resilience in the public transport demand 

(TfL 2020d). More resilient routes can serve as 
a baseline for funding negotiations and investments 
(Campaign for Better Transport 2020), potentially 
garnering greater support from local authorities. If 
schemes that enable more localized forms of travel 
are pursued, it may move London toward a future of 
low carbon localism (TfL 2020d).

5.3.3. Polycentric future
The spatial heterogeneity in SRM minimizes global 
predictability in the behavioral response to public 
transport policy solutions. A low carbon localized 
future shifts London away from its current mono-
centric spatial pattern toward a polycentric design. 
A polycentric design yields a different level of spatial 
resilience: one that introduces spatial redundancy 
through modular infrastructure, multiple sizes of sup-
port systems, and a spatially equitable recovery from 
disruptions (Lu et al. 2021; Münter and Volgmann  

Figure 7. Bivariate analysis of most significant features. Plot of spatial resilience measure and top three significant features based 
on bivariate Moran’s I. Similar to before, each MSOA has been categorized into high–high, low–high, low–low, and high–low 
clusters. For example, from the total income plot, a low–high cluster indicates an area with less than average income level in an 
area that is above the average spatial resilience.
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2021). Therefore, a polycentric response to public 
transport demand may reduce the spatial heterogene-
ity observed in the SRM. Policies that support 
a polycentric future may enhance the resilience of 
localized public transport demand and will require 
a balance in resources and land use planning to offset 
potential harms (Lu et al. 2021).

6. Conclusion and discussion

This research contributed a spatial resilience per-
spective to the discussion of post-pandemic urban 
mobility. Spatial resilience relates spatial attributes 
to the resilience of the studied system, allowing for 
an analysis of factors that influence spatial hetero-
geneous behavior in recovery. Specifically, SRM is 
defined as the slope of the RR of actual trips versus 
counterfactual trips. This measure is applied to 
a case study of London public transport. For 75% 
of the MSOAs, a linear model resulted in a strong 
R-squared value above 0.92, indicating that a linear 
model is a good estimator of the slope of the RR. 
However, a future analysis should consider non- 
parametric methods such as Thein-Sen to estimate 
the slope for MSOAs with non-linear behavior 
(Hussain and Mahmud 2019).

London’s spatial differences in public transport 
recovery after the first lockdown restrictions were 
analyzed. Through comparison of the spatial resi-
lience of public transport demand across MSOAs, 
this research identified pathways to recovery. The 
significant features of income, car ownership, and 
public transport density were shown to have global 
significance. Therefore, despite the lack of data on 
an individual’s trip destination or purpose, it was 
still possible to find significant spatial influences on 
the SRM. Among the variables of income and pub-
lic transport density, spatially varying relationships 
invite further research into individuals’ behaviors 
and trip purposes.

The spatial resilience heterogeneity influenced by 
these spatial attributes may result in a comprehensive 
review of the public transport service provision in the 
future. The consistent and continuous monitoring of 
the spatial recovery and influential attributes includ-
ing homeworking behavior will inform decisions and 
provide evidence to shape the “new normal” of 
London. This “new normal” will need to allow for 
a diversity of travel purposes whilst correcting for 
existing inequities.

Despite the relatively improved performance of the 
spatial regression models versus OLS, the base model 
only explains 8% of the variance. This indicates an 
opportunity for refinement in the data inputs and 
additional features to improve the baseline modeling. 
Data that distinguishes the origin versus destination 

and additional research of trip purpose could improve 
the fit. Detailed and long-term public transport 
demand data such as bus route-level journey counts 
and rail station and train usage data (TfL 2020c) may 
provide more insight into where trips are recovering 
relative to points of interest. Furthermore, the forth-
coming census 2021 may provide a more accurate and 
up-to-date representation of socioeconomic attributes 
that have spatial dependencies with the resilience of 
public transport demand.

This methodology could be applied to the recovery 
after the second lockdown to determine whether the 
trends in this research are consistent. The zones uti-
lized for this analysis are vulnerable to the Modifiable 
Areal Unit Problem (MAUP), where the model results 
are likely to be sensitive to varying definitions of zones 
(Fotheringham and Wong 1991; Young et al. 2021). 
Therefore, conducting this same analysis at different 
levels of aggregation may help determine whether the 
findings are consistent (Fotheringham and Wong  
1991). Future work should return to Bešinović’s resi-
lience model (2020) (Figure 1) and analyze each stage 
of the triangle of ridership recovery and identify the 
influential spatial features of a region’s robustness and 
recovery from the effects of the COVID-19 pandemic.
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Appendices

Appendix A. Categorisation of Local Authorities to Subregion

Appendix B. Modelling parameters

Time-series method to calculate the slope of the RR:

The decomposition method utilized the python package statistical model and applied the function seasonal decomposition 
(Perktold, Seabold, and Taylor 2022). This is a seasonal decomposition using moving averages. The decomposition model 
assumed a linear behavior in the underlying dataset and applied an additive model. The time-series dataset is 14 weeks of data 
and assumes a period of 2 weeks – thereby calculating the moving average of 2 weeks at a time.

GWR model:

The kernel size and bandwidth for the GWR model were selected by utilizing the Sel_BW class within the python mgwr 
package (Oshan et al. 2019). Oshan et al. (2019) provide the following guidance for kernel functions: A kernel set to bisquare 
ensures observations greater than the number of nearest neighbors from the calibration location have no influence. Gaussian 
and exponential kernel functions allow all observations to have a non-zero weight from the calibration location regardless of 
distance. Therefore, a bisquare function is selected to limit the influences on neighboring datapoints. Furthermore, the kernel 
type is set to adaptive, which allows for the study of irregular shaped areas or non-uniform spatial distributions. The 
bandwidth is selected by utilizing a golden search optimization with an AICc. Further details of model specification are 
available in Appendix B.

Appendix C. Non-parametric modelling for the RR

Linear regression method

To calculate the slope of the RR for each MSOA, a linear regression model was utilized. This is a simple method that assumes 
linear behavior in the underlying data. In this case, the underlying data is the decomposed trend of each MSOA. The 

Region Subregion Local authority

Inner Inner East Hackney

Haringey
Islington

Lambeth
Lewisham

Newham
Southwark

Tower Hamlets
Inner West Camden

City of London

Hammersmith and Fulham
Kensington and Chelsea

Wandsworth
Westminster

Outer Outer East and North East Barking and Dagenham
Bexley
Enfield

Greenwich
Havering

Redbridge
Waltham Forest

Outer South Bromley
Croydon
Kingston upon Thames

Merton
Sutton

Outer West and North West Barnet
Brent

Ealing
Harrow

Hillingdon
Hounslow
Richmond upon Thames
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R-squared was calculated on the residuals for each MSOA, and the descriptive statistics and histogram of this R-squared value 
is provided in Figure C1. 

min 25% 50% 75% max

R-Squared 0.075 0.923 0.961 0.982 0.999

It is found that at least 75% of the calculated 981 linear regression models have an R-squared value of 0.92 or above. This 
implies that a linear regression model is a strong fit for the majority of the datapoints. For the 25% of the regression models 
that do not have a high R-squared value, a non-parametric method may be an appropriate estimator.

Mann–Kendall test & Thein–Sen slope

The Mann–Kendall test is a statistic that identifies the trend without the requirement of linear data. It does, however, require 
that the underlying data not be serially correlated over time. In this case, the RR for each week contains autocorrelation. 
Therefore, a modified Mann–Kendall test, Hamed–Rao, is applied instead. This test accounts for autocorrelation within the 
data. The python pyMannKendall package is utilized for this analysis (Hussain and Mahmud 2019). First, it is found that 977 
out of 981 MSOAs have an increasing trend. Second, it is found that the Thein-Sen slope estimator provides a fairly similar 
distribution in slope estimates overall. Figure C2 compares the distribution of slope estimates for all 981 MSOAs against those 
where the linear regression model had an R-squared less than 0.92, the Thein–Sen slope estimator recommends a lower slope 
value. This non-parametric may be a potential improvement for the MSOAs that demonstrate non-linear behavior.

Figure C1. Histogram of R-Squared for all linear regression models. This histogram provides the R-squared for every linear 
regression model utilized to calculate the slope of the RR.
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Figure C2. Histogram of linear regression slope and Theil–Sen Slope estimator. The full dataset versus those where the linear 
regression R-squared was less than 0.92. The histogram on the left compares the two slope estimators across the entire dataset. 
The distributions are largely similar. The histogram on the right compares the two slope estimators where the linear regression 
R-squared is less than 0.92. The distributions are still similar, although the Theil–Sen slope estimator has a slightly smoother 
distribution for slope estimates between 2 and 4.
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