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Abstract

This thesis is an investigation of the time changing nature of financial markets. Financial

markets are complex systems having an intrinsic structure defined by the interplay of several

variables. The technological advancements of the ’digital age’ have exponentially increased

the amount of data available to financial researchers and industry professionals over the last

decade and, as a consequence, it has highlighted the key role of iterations amongst variables.

A critical characteristic of the financial system, however, is its time changing nature:

the multivariate structure of the systems changes and evolves through time. This feature

is critically relevant for classical statistical assumptions and has proven challenging to be

investigated and researched. This thesis is devoted to the investigation of this property,

providing evidences on the time changing nature of the system, analysing the implications

for traditional asset allocation practices and proposing a novel methodology to identify and

predict ‘market states’.

First, I analyse how classical model estimations are affected by time and what are the

consequential effects on classical portfolio construction techniques. Focusing on elliptical

models of daily returns, I present experiments on both in-sample and out-of-sample like-

lihood of individual observations and show that the system changes significantly through

time. Larger estimation windows lead to stable likelihood in the long run, but at the cost of

lower likelihood in the short-term. A key implication of these findings is that the optimality

of fit in finance needs to be defined in terms of the holding period. In this context, I also

show that sparse models and information filtering significantly cope with the effects of non

stationarity avoiding the typical pitfalls of conventional portfolio optimization approaches.

Having assessed and documented the time changing nature of the financial system, I

propose a novel methodology to segment financial time series into market states that we

call ICC - Inverse Covariance Clustering. The ICC methodology allows to study the evo-



Abstract v

lution of the multivariate structure of the system by segmenting the time series based on

their correlation structure. In the ICC framework, market states are identified by a reference

sparse precision matrix and a vector of expectation values. In the estimation procedure,

each multivariate observation is associated to a market state accordingly to a minimisation

of a penalized distance measure (e.g. likelihood, mahalanobis distance). The procedure is

made computationally very efficient and can be used with a large number of assets. Fur-

thermore, the ICC methodology allows to control for temporal consistency,S making it of

high practical relevance for trading systems. I present a set of experiments investigating

the features of the discovered clusters and comparing it to standard clustering techniques. I

show that the ICC methodology is successful at clustering different states of the markets in

an unsupervised manner, outperforming baseline standard models. Further, I show that the

procedure can be efficiently used to forecast off-sample future market states with significant

prediction accuracy.

Lastly, I test the significance of increasing number of states used to model equity re-

turns and how this parameter relates to the number of observations and the time consistency

of the states. I present experiments to investigate a) the likelihood of the overall model as

more states are spanned, b) the relevance of additional regimes measured by the number of

observations clustered. I found that the number of “market states” that optimally define the

system is increasing with the time spanned and the number of observations considered.

Pier Francesco Procacci

Supervisor: Prof. Tomaso Aste
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Impact Statement

This research contributes to the fields of financial time series analysis and complex systems

and offers potential benefits both inside and outside academia.

A novel framework is proposed to deal with non-stationarity and to define, analyse and

forecast market states. This offers significant advantages over standard approaches, as it can

efficiently scale large multivariate datasets and enforces temporal consistency, opening up

the field for further research on the role of correlation structure in modelling non-stationarity

while managing the practical need for stable state definition.

The evidence presented in support of information filtering role in improving estimates

and long-term model stability offers potential benefits in both academia and commercial

activity as it can easily be integrated to improve classical and novel financial applications

that rely on multivariate modelling of the financial system.

Outside academia, this research has potential impacts across the financial and invest-

ment management industry, professional practice, and public policy design. The ICC frame-

work aims at helping portfolio managers and traders in tackling some of the main pitfalls of

classical, widely used models. The information filtering approach can be integrated in most

common financial applications, improving model accuracy and stability and significantly

improving processing time, serving well the increasing low latency and high frequency

needs. Lastly, the methods, experiments, and novel frameworks discussed throughout the

thesis aim at improving the scalability of classical models and allow handling large multi-

variate datasets, which is a critical objective and current focus of many financial institutions.

Other than investment management, this research has the potential to impact public

policy design and financial regulation. The proposed methods could help policy makers

better understand and analyse the correlated nature of financial markets and help in design-

ing policies that promote market stability and fairness.
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Chapter 1

Introduction

The objective of this chapter is to present an overview of this thesis by discussing the mo-
tivation behind the research problem, the objectives, experiments and contributions of this
study and the structure of this thesis. The chapter starts by briefly introducing background
information on stationarity and its implications for modelling purposes and suggesting that
identifying homogeneous ”states” or clusters can be a solution to this problem. The chapter
then outlines the objectives, experiments, and contributions of this work and concludes with
the thesis structure.

1.1 Motivation

Quantitative approaches to trading have widely developed over the last decades, with an

increasing share of the institutional assets managed systematically. This practice is partic-

ularly acute for HFT Hedge Funds, with algorithmic high frequency trading systems alone

accounting for more than 50% of US Equity trades [2]. This tendency has more recently

paired with the vast availability of data, which is increasingly seen as the new information

hedge and, therefore, leading financial institutions to build entire data departments to collect

and store alternative data that may provide an hedge versus the wider market participants. In

other words, systematic approaches that leverage the interaction among different variables

is becoming the new gold race of financial modelling.

In this picture, systematic approaches to trading and portfolio allocation must be based

on a robust and scalable multivariate modelling and forecasting of financial markets and

the economy. The multivariate structure of the systems, however, is an entropic object that

changes and evolves through time. This feature is critically relevant for classical statistical

assumptions and has proven challenging to be investigated and researched.

So far, financial researchers have proposed different ways to tackle this problem, which
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is becoming particularly acute with the emergence of machine learning based trading strate-

gies. Some of the time series models proposed in literature try to account for these effects,

but in most of cases these models become quickly unfeasible as the number of variables

increases and, often, requires complex estimation procedures making inference inefficient

in a multivariate context. Other models, like latent variable models, assume that returns are

generate from a mixture of distributions and aim at modelling this effect by considering a

latent state. These models are flexible and efficient to be estimated in high dimensions, but,

in common formulations, do not describe the temporal dynamics characterizing financial

time series. In the following chapter (Background and Literature Review) we review many

of these attempts, highlighting their pros and cons in different scenarios.

The ambition of this thesis is to establish a modelling approach being able to capture

different states of financial markets in an efficient way, while considering the temporal

evolution of the data. We require the model to cope with high dimensionality, allowing to

exploit the information content of the correlation structure.

1.2 Research Objectives

The main objectives of this research are:

1. Define and quantitatively measure the effects of non-stationarity on portfolio alloca-

tion, outlining drivers and impact on financial performances.

While non-stationarity is a well known feature of financial markets, it is often diffi-

cult to measure its impact on trading systems and portfolio performances. The starting

point of this research is a likelihood-based analysis playground to asses the evolution

of the financial system and study of the impact of non-stationarity on the goodness of

estimates and how it affects performances in common portfolio construction frame-

works.

2. Investigate information filtering and sparsity in dealing with non-stationarity and

study the role of these methods as a remedy against the entropic nature of the fi-

nancial system.

3. Introduce a novel methodology to deal with the impact of non-stationarity on conven-
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tional asset management practices, recognizing the importance of multivariate inter-

actions and temporal consistency.

Only few research proposals directly tackle the change of distribution through time

for the variables being modelled and most of the methods proposed in literature are

highly exposed to the curse of dimensionality. Understanding the dependency struc-

ture of the many variables characterizing financial markets and its evolution with time

is essential to capture the collective behaviour of the system. I propose an efficient

methodology allowing to model the multivariate dynamics of markets, taking into

account the correlation structure while delivering stable results which translates into

minimizing transaction costs.

1.3 Research Experiments and Scientific Contribution

This research contributes to the existing literature in a number of ways:

1. Detailed exploration of the effects of non-stationarity on portfolio performances.

I study the relationship between models likelihood and portfolio performances and

present several experiments. First, I study the evolution of parameters’ likelihood

through time, in- and out- of sample, and how this depends on the estimation window

length. Secondly, I analyse the impacts on portfolio performances and how the ef-

fects of different parameters likelihoods affect performances at different investment

horizons.

2. Information Filtering in Financial Modelling.

I explore the effect of information filtering and propose several experiments investi-

gating the impact of filtering on a) the estimated parameters; b) portfolio construc-

tion and corresponding portfolio performances and c) model stability. Throughout

the thesis, I outline how information filtering can improve estimates, avoid classical

portfolio construction pitfalls leading to improved financial performance and improve

long term model stability.

3. Proposal of novel methodology.
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I propose a novel methodology called ICC where classification into states is con-

structed from a likelihood measure associate with a referential sparse precision ma-

trix (inverse covariance matrix). We also enforce temporal coherence by penalizing

frequent switches between market states and favouring model stability. Our approach

simplifies and clarifies the definition of ‘market state’ by identifying each state with

a sparse precision matrix and a vector of expectation values which are associated to

a set of multivariate observations with largest adjusted likelihood. A sparse precision

matrix provides an easily interpretable and intuitive structure of the market state with

all the most relevant dependencies directly interconnected in a sparse network.

4. Comparison with industry standard estimation procedures and clustering methods.

I compare the ICC methodology to commonly used clustering techniques used as

baseline model and test the significance of the discovered clusters and the corre-

sponding financial features, showing that the ICC methodology delivers financially

meaningful clusters while traditional models do not.

5. Forecasting and Testing of established Machine Learning methods applied to a new

application domain.

A section of this thesis is devoted to forecasting market states, as identified and clus-

tered using the ICC methodology. To this extent, I apply and test different machine

learning and statistical methods in order to develop a framework for state based in-

vesting and daily trading. While the methods considered are known in literature, this

is the first times they have been applied to this domain.

6. Number of States.

Having defined a robust procedure to cluster observations into market states, I analyse

how the likelihood of the overall model is impacted by the number of states spanned

by the model. I present several experiments, both in- and out-of-sample and over dif-

ferent estimation and test windows testing how the likelihood is impacted overall and

observation-wise. I found that the evolution of the financial system through time im-

plies that the number of clusters that optimally describe the system increases through

time as well: the more observations are considered and the larger the time window

spanned, the higher the number of market states to be considered. These findings



1.4. Thesis Structure 5

support the statement that optimal estimation in finance is dependent on the holding

period and time spanned.

7. Comprehensive US stock universe.

We constructed a dataset of daily closing prices of 2490 US stocks entering among

the constituents of the Russel 1000 index (RIY index) traded between 02/01/1995

and 31/12/2020. For each asset, we considered the corresponding daily log-returns.

Looking at all the historical constituents has a number of advantages, including not

exposing to survivorship bias and avoiding selection biases from index inclusion.

Also, having taken as reference index the Russel 1000 allows us to consider about

90% of the total US market cap, avoiding size and liquidity biases.

8. Accurate generalized resampling procedures.

In all of the experiments presented throughout this thesis, I used a randomised resam-

pling procedure to avoid possible biases affecting the experiments presented and the

conclusions drawn. The resampling procedure consists in sampling a fixed number

of stocks (typically 100) at random and a random trading day spanned in our dataset.

Train and test sets are then defined, respectively, using the observations prior and fol-

lowing to the randomly selected trading day. This procedure is then reiterated a fixed

number of times (minimum 100), so that a different subset of stocks and different

train and test sets are considered, spanning different market cycle phases.

1.4 Thesis Structure

The structure of this thesis is organised as follows:

• Chapter 2 - Background and Literature Review. The relevant literature and the key

concepts in the areas of this research are reviewed in order to introduce the reader

to the problems and methodological frameworks of this thesis. Our main goal is to

highlight the current gap in the literature that this thesis aims to fill. Hence, I start

with the most widely used approaches to financial market modelling and then focus

on structural breaks and states models. After reviewing these traditional venues, I

outline the role and information content of correlation structure and current research
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on information filtering to efficiently leverage it.

• Chapter 3 - Portfolio Construction and Filtered Likelihood. I investigate the effects of

non-stationarity on common maximum likelihood estimates used to describe financial

assets features and further I analyse the effects of using such estimates as inputs for

common asset allocation and trading practices.

• Chapter 4 - Market States and Stationarity Regimes. I introduce a novel methodology

to define, analyse and forecast market states. After briefly reviewing the relevant lit-

erature, I introduce the novel ICC methodology, which efficiently allows to identify

market states by means of a reference sparse precision matrix and a vector of ex-

pectation values while ensuring temporal consistency. The chapter also presents two

experiments: in a first experiment I use the methodology to classify in-sample obser-

vations, using 100 assets and spanning 15 years of daily returns. The ICC model is

compared to the common Gaussian Mixture model, delivering clusters significantly

more homogeneous other than ensuring temporal consistency. Lastly, in a second ex-

ample, I use the ICC methodology to study the short term market dynamics during

Covid outbreak.

• Chapter 5 - Market States Forecasting. In this chapter, I present a set of experiments

where I use the ICC methodology to forecast future states of the market form previous

observations and assess the robustness of the forecast. In a second set of experiment,

I present a simple trading strategy that times the market based on the forecasted state.

• Chapter 6 - Number of States. Having shown that we can efficiently identify states

in which the financial system behaves differently, a natural question is how many

states should we consider. In this Chapter, I investigate in-sample and out-of-sample

likelihood of the parameters associated with each state as more states are considered

and how the number of observations and time spanned impact the solution.

• Chapter 7 - Conclusions. The final chapter provides an overall conclusion of this re-

search with a summary of the key findings of this work, and what can be learned from

the results of its models and experiments. The thesis ends with our recommendations

for future work to be done in this area.
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Chapter 2

Background and Literature Review

In this chapter, I describe the body of scientific literature scrutinized by this research. The
main goal is to provide a background for some key approaches that will be referenced along
the thesis and to highlight the current gap in the literature that this research aims to fill.
Hence, I start with the main modelling approaches for financial time series and introduce
mixture models. I then review ‘market states’ models, and in particular structural breaks
and Markov switching models. Lastly, I provide an overview on the role of the correlation
structure, its persistency and information filtering networks.

2.1 Modelling financial time series

Modelling financial time series is most of the times centred on the study of returns, instead

of prices. This is for two main reasons: (a) returns are a scale-free ‘summary’ of the invest-

ment decisions and (b) returns have far more attractive statistical properties than prices. Let

St be the price of an asset at time t. Different definitions of returns may be considered. The

log returns or continuously compounded returns rt are defined as

rt = log(1+Zt) = log
St

St−1
= log

St

C
− log

St−1

C
(2.1)

where log denotes the natural logarithm, Zt the simple return at time t and C is a scale

constant. In most of quantitative finance studies and applications, log returns are preferred

to other definitions because they are more tractable (for example, multi-periods returns are

given by the sum of single period returns) and because of their statistical properties [40,

170].

Considering, then, a panel R of T log returns for N assets {ri,t ; i= 1, ...,N; t = 1, ...,T},

some financial theories focus on the dynamic evolution over time for a single (univariate)

asset, other theories emphasize the joint distribution of the N returns at a single time t. In
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both cases, the most general approach to modelling is to consider the probability distribu-

tion describing the returns, under the common assumption of returns being independent and

identical distributed (IID). In the following, I shall refer and consider example with univari-

ate time series, but the material covered and the conclusions drawn are generally valid.

The distribution most commonly considered for log returns is the normal distribution

with mean µ and variance σ2. In this framework, simple returns are then IID lognormal

random variables with mean and variance given by

E(Zt) = exp(µ +
σ2

2
)−1 (2.2)

and

Var(Zt) = exp(2µ +σ
2)[exp(σ2)−1] . (2.3)

Notice that the lower bound for simple return is −1.

However, in practical applications, the lognormal assumption is most of times incon-

sistent with historical stock returns. In particular, many stocks exhibit an excess kurtosis

[170]. Alternatives are constituted by more complex distributions (not easily tractable) or

the use of mixture models. For instance, the Gaussian mixture distribution can be written

as linear superposition of K Gaussian distributions

p(R) =
K

∑
k=1

πkN (R; µk,Σk) . (2.4)

Each Gaussian density N (x; µk,Σk) is called a component of the mixture and the param-

eters πk are called mixing coefficients. We show in Appendix A.1 that these models can

be formulated in terms of a discrete, unobservable latent variable. Mixture models main-

tain the tractability of simple distributions (e.g., normal), have finite higher moments and

capture excess kurtosis. Indeed, they provide an interpretation for the observed excess kur-

tosis: returns do not come from one distribution, but from a collection of (at least two)

distributions. In latent formulations we assume that these different distributions are due to

different, unobservable ‘states’ of the system, describing different regimes of interactions

among variables.

2.1.1 Linear Time Series Models

Time series models have dominated the quantitative finance literature over the past decades.

Indeed, focusing on the time evolution of the series, they provide a natural framework to
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analyse the dynamic structure of returns. Let {rt} be a series of log returns treated as

a discrete collection of random variables (stochastic process). A time series model for

the observed data {rt} is a specification of the joint distribution of a sequence of random

variables {Rt} of which {rt} is one realisation.

The simplest time series models consider only the series {rt} and its information con-

tent and attempt to capture the linear relationship between rt and the previous realizations

{rt−1}. A series rt is said to be linear if it can be written as

rt = µ +
∞

∑
i=0

ψiεt−i . (2.5)

where µ is the mean of rt ; ψi are the coefficients governing the dynamics of rt and {εr} is a

series of IID random variables with zero mean, finite variance and known distribution (i.e.

white noise series). εt is often referred as shock or innovation.

A well-known example of linear time series are the so called ARMA models [35, 179]

that take the form

rt =
P

∑
p=1

φprt−p + εt +
Q

∑
q=1

θt−qεt−i (2.6)

where φp are the autoregressive (AR) coefficients; θq are the moving average (MA) coeffi-

cients and εt is a white noise series. ARMA processes describe a linear relationship between

each observation rt and previous observations together with previous shocks. Given this

linear setting, it is straightforward to generalize the model in Eq. (2.5) to include other vari-

ables (e.g., economic indicators) in the process while maintaining the same assumptions, in

particular stationarity of the process and IID innovations.

Real financial time series are characterized by serial correlation and a dependency

structure. Fitting an AR model accounts for the serial correlation of returns and has proven

useful in many empirical application [38]. The dependency structure, instead, refers to the

autocorrelation path that can be inferred from the autocovariance function of the squared

returns r2
t or absolute returns |rt |. This feature violates the stationarity conditions of linear

models and requires further treatment. Moreover, as many authors show [46, 60, 77, 118],

the behaviour of squared returns r2
t suggests the presence of clusters of volatility that need

to be accounted for.
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2.1.2 Stationarity

In order to make meaningful inference and forecasting on time series, a crucial role is played

by stationarity. In loose terms, a process is stationary if its properties, or some of them, do

not vary with time.

In particular, the time series {rt} is strictly stationary iff

(r1, ...,rn)
d
= (r1+h, ...,rn+h) (2.7)

for all integers h and n ≥ 1 and where d
= indicates that the two random vectors have the

same joint distribution function.

The time series {rt} is weakly stationary iff

a) E(rt) = µ is independent of t ,

and

b) Cov(rt ,rt−l) = γl is independent of t for each l ,

(2.8)

where l is an arbitrary integer. par

Intuitively, a strictly stationary time series maintains its multivariate structure constant

through time, while a weakly stationary time series maintain only some key properties.

Time series analysis consists on finding a mathematical structure describing the evolution

of the phenomenon being studied, estimating the parameters governing such dynamics and

using it to draw conclusions and make predictions on the phenomenon itself. Not surpris-

ingly, if we wish to make predictions, then clearly we must assume that something does

not vary with time. Thus, most of the classical time series models assume at least a weakly

stationary process.

2.1.3 Non-Linear Time Series Models

Non-linear models are motivated by the need to reflect properties or stylized features of

time series that violate the assumptions in linear models. In financial time series, these

properties include tail heaviness, asymmetry and serial dependence. Also financial assets’

volatility presents some commonly observed characteristics, including volatility clustering

(i.e. volatility tends to be high for certain time periods and low for other periods) and

asymmetric reaction to large price increases and decreases (referred to as the leverage ef-

fect). These properties play an important role in modelling financial time series and require
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flexible structures that can extend the linear assumption.

A general non-linear model can be formulated in a convenient way in terms of its

conditional moments [170] and I shall consider this formulation in the remaining of this

section.

Let Ft−1 be σ -field set of information available at time t−1. Typically, Ft−1 is a series

of linear combination of {rt−1} and {εt−1}. Then the conditional mean and variance of rt

given Ft−1 are

µt = E(rt |Ft−1) = g(Ft−1), σ
2
t = Var(rt |Ft−1) = h(Ft−1) (2.9)

where g(·) and h(·) are non-linear functions with h(·)> 0. Thus, we can formulate a general

model with nonlinearities restricted to mean and variance functions as

rt = g(Ft−1)+
√

h(Ft−1)at (2.10)

where at = εt/σt . Notice that that the linear model in Eq. (2.5) is obtained if g(·) is a linear

function of the elements in Ft−1 and h(·) = σ2
ε . For non-linear g(·), the model is said to be

non-linear in mean, whereas if h(·) is non-linear (e.g., time variant), the model is said to be

non-linear in variance.

To account for the dependency structure and volatility clustering, Bollerslev (1990)

proposed the generalized autoregressive conditional heteroskedasticity (GARCH) model.

Considering a log returns series rt of the form in Eq. (2.10) and letting εt = rt−g(Ft), then

εt follows a GARCH(m,s) model if

εt = σtat , σ
2
t = α0 +

m

∑
i=1

αiε
2
t−t +

s

∑
j=1

β jσt− j . (2.11)

The model is stable provided that ∑
max(m,s)
i=1 (αi + βi) < 1 implying that the unconditional

variance of εt is finite, while the conditional variance evolves through time. The model is

coherent with the volatility clusters previously described and provides a simple paramet-

ric formulation to describe the volatility evolution. It is worth empathizing, however, that

model in Eq. (2.11) is a univariate formulation. When considering a multivariate setting,

not only the variances, but also the correlations among variables must be modelled. In par-

ticular, for N assets being modelled, there are N(N − 1)/2 correlations to be considered

other than N variances. This clearly shows how the GARCH model suffers the curse of
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dimensionality in a multivariate context, as discussed in Section 2.2.

Many non-linear time series models have been proposed in literature with the under-

lying idea of modelling the conditional mean based on a parametric function. It is the case

of, for example, the state-dependent model [151], the bilinear models [76] or deterministic

dinamycal linear systems [91].

2.1.4 Market States

In financial markets, changes of regimes are often caused by factors different from the vari-

ables being modelled (e.g., economics variables, political factors, ecc...). For this reason,

regimes or states are often considered unobservable or referred as latent and this is reflected

in the time-varying nature of parameters. Modelling regimes has, therefore, a great appeal

from an economic perspective.

Many time series models presented in literature tried to describe this phenomenon.

Among the most well-known, it is worth mentioning the TAR model of Tong (1978) and

the the Markov switching model by Hamilton (1989). In TAR models, the goal is to estimate

two sets of parameters corresponding to different regimes segmented by means of a thresh-

old ‘k’ referred as structural break. Formally, this is modelled by means of a piecewise-

linear autoregression of the form

rt =


α1 +β1rt−1 + εt if rt−1 < k

α2 +β2rt−1 + εt if rt−1 ≥ k
(2.12)

However, unlike typical engineering application, we cannot say with certainty when a struc-

tural break has occurred in economic time series and the prior knowledge of major economic

events could lead to bias in inference [40].

The Markov switching model, instead, models the change in regime by means of an

unobserved state variable which is typically modelled as a Markov chain:

rt =


α1 +β1rt−1 + ε1,t if st = 1

α2 +β2rt−1 + ε2,t if st = 2
(2.13)

where st is an unobservable Markov chain with some transition probability P.

Hamilton (1989) proposes an estimation method based on the EM algorithm. However,

for slightly more complex dynamics considered, we need to rely on variational inference
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techniques or MCMC methods [170]. This implies that, in a multivariate context and par-

ticularly if we aim to extract information on the switching from the correlation structure,

estimation becomes difficult to perform.

More recently, advances in computational techniques and computing power have al-

lowed researchers to investigate market regimes in a multivariate context, using the infor-

mation and facing the computational problem of the correlation structure. Next Section is

devoted to a review of these techniques.

2.2 Correlation Structure

Understanding the correlation structure of financial returns has proven crucial for a wide

range of applications such as risk management [7, 45, 51, 62, 79, 96, 168], option pricing

[32, 61, 114, 185] and asset allocation [25, 28, 121, 183].

Most popular approaches in the industry assume - for convenience - a stationary cor-

relation structure [28, 62]. However, it is well established that correlations among stocks

are not constant over time [4, 113, 138] and increase substantially in periods of high mar-

ket volatility, with, asymmetrically, larger increases for downward moves (see, for exam-

ple, [6, 45, 162]). Being able to predict future correlation structure would provide very

powerful tools for risk management, option pricing and asset allocation. Indeed, various

approaches have been proposed in the literature to model and predict time-varying correla-

tions. Examples are, for instance, the generalized autoregressive conditional heteroskedas-

ticity (GARCH) models [30] described in previous section or the Dynamic Conditional

Correlation (DCC) model by Engle (2002). However, most of these models are not able to

cope with more than a few assets due to the curse of dimensionality having number of pa-

rameters that increases super-linearly with the number of variables [54]. Other approaches

have been focusing on the study of changes in a time-varying correlation matrix computed

from a rolling window. This is, for instance, the case of estimators like the RiskMetrics

[116] or [110]. However, since these approaches use only a small part of the data, these es-

timators have large variances and, in case of high dimensionality, may lead to inconclusive

estimates [102]. [134] proposed a comparison between correlation matrices from different

windows by computing a relative distance between these time-varying correlation matrices.
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This approach demonstrated that market have patterns in time that are persistent and some-

time recurrent. Other approaches [70, 75, 81, 87, 184] considered instead a segmentation of

the observation window by assigning each multivariate observation at each time instance t

to a cluster accordingly to a distance metric.

2.2.1 Information Filtering Network

Financial markets are complex systems and, as such, are characterized by the interaction

of many elements. As previously noted, understanding the dependency structure of these

variables and its evolution with time is essential to capture the collective behaviour of the

systems. One possible approach to represent the set interactions in a complex system is a

network structure where the vertices are the system’s elements and edges between vertices

indicate the interactions between the corresponding elements. In the extraction of informa-

tion from observed correlation, two major challenges are faced: (a) observed correlations

are often spurious and subject to random fluctuations making uncorrelated events to appear

correlated and vice-versa. This phenomenon is referred as ‘noise dressing’ [73, 102]; (b) In

correlation-based graphs and in the absence of any filtering procedure, all links among ele-

ments are present. This is likely to contain redundant and less-relevant information that do

not provide valuable insight, other than making the computations less efficient and exposing

the estimates to overfitting [15, 27, 106].

Information filtering networks aims at retrieving the relevant sub network of inter-

actions among the elements of the system. In the pioneering work of Mantegna (1999),

the author proposed to investigate financial systems by the extraction of a minimal set of

relevant interactions associated with the strongest correlations belonging to the Minimum

Spanning Tree (MST). The MST structure is, however, a drastic filtering tool and is likely

to discard valuable information. Tumminello et al. (2005) and Aste and Di Matteo (2006)

considered the geometrical and topological structure associated to the network to be con-

structed. In particular, they show that graphs of different complexities can be constructed

by iteratively linking the most strongly connected nodes under the constraint of generating

planar graphs, obtaining a structure defined Planar Maximally Filtered Graph (PMFG).

There is now a large body of literature proving network filtering to be a powerful tool

to associate a sparse network to a high-dimensional dependency measure with applications

ranging from financial markets [15] to biological systems [166] and econophysics [119].
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2.2.2 Triangulated Maximally Filtered Graph - TMFG-LoGo

The Triangulated Maximal Filtered Graph (TMFG) is a family of information filtering net-

works introduced in Massara et al. (2015a), and Massara et al. (2017). These are planar

graphs, but with the advantage of being decomposable graphs, other than being generated in

a computationally efficient way. Decomposable graphs are clique forests, made of n cliques

connected by separators (cliques of smaller size). Decomposable graphs have the property

that, when the vertices of the separators are disconnected, the graph becomes divided into

into disconnected components.

Barfuss et al. (2016) show how, given the decomposable graphical structure, we can

produce global sparse inverse covariance matrices from a sum of local inversions. In partic-

ular, let’s consider a graph G made of Nc cliques Cn, with M = 1, ...,Mc and Ns separators

Sm, with m = 1, ...,Ns. In G, the p vertices represent the variables X = (X1,X2, ...,Xp) and

the edges represent the couple of conditionally dependent variables. Given this network,

one can write the joint probability density function f (X) of the set of p variables X by

means of the factorization [106]

f (X) =
∏

Nc
n=1 fCn(XCn)

∏
Ns
m=1 fSm(XSm)

k(Sm)−1
(2.14)

where fCn and fSm are the marginal density functions of the variables in Cm and Sm; the

term k(Sm) is the numerosity of the disconnected components obtained by removing the

separators Sm. Equation (2.14) is a consequence of the Bayes theorem and, as such, is

generally valid and applicable. Looking for the functional form of f (X) using the maximum

entropy method [93], we obtain

f (X) =
1
Z

exp
(
−(X−µµµ)J (X−µµµ)>

)
(2.15)

where µµµ ∈ Rp is the vector of expectation values; the elements of J ∈ Rpx p are the La-

grange multipliers associated with the second moments of the distribution that are the co-

efficient of the covariance matrix ΣΣΣ and ′ is the transpose operator. Notice that if we want

to reproduce all the second moments Σi, j, then the solution for the distribution parameters

is J = ΣΣΣ
−1. In the multivariate normal case, it follows from Eq. (2.14) that the network G

coincides with the structure of non zero coefficients of J in Eq. (2.15) and the elements Ji, j

can be computed by considering the local inversion of the covariance matrices associated



2.2. Correlation Structure 17

with separators and cliques

Ji, j = ∑
C s.t. {i, j}∈C

(
ΣΣΣ
−1
CCC

)
i, j− ∑

S s.t. {i, j}∈S
(k(S)−1)

(
ΣΣΣ
−1
SSS

)
i, j (2.16)

with Ji, j = 0 if i, j are not both part of a common clique. Equation (2.16) reduces the global

problem of a p x p matrix inversion into a sum of local inversions of matrices of size of

the separators and cliques (max three or four for TMFG graphs [124]). This implies that to

obtain a nonsingular global estimate of the inverse covariance four observations would be

enough. The moments Ji, j to be retained (i.e., non-zero) are chosen in order to maximize the

likelihood associated with the multivariate distribution 2.15. For all decomposable graphs,

to maximize the log likelihood associated with the distribution 2.15, only log |J| needs to be

maximized [106]

log |J|=
Ns

∑
m=1

[k(s)−1] log |Σ̂Sn |−
Nc

∑
m=1

[k(s)−1] log |Σ̂Cn | . (2.17)

The TMFG-LoGo construction starts with a tetrahedron C1 = {v1,v2,v3,v4} with smallest

correlation determinant |R̂C|. Then are iteratively introduced, inside the existing triangular

faces, the vertex the maximizes |R̂S|− log |R̂C|, where S and C are the new separators and

cliques produced by the vertex insertion. Algorithm 1 reports the TMFG-LoGo construction

procedure outputting a decomposable graph which is constituted by four-clique connected

with three-clique separators.

Algorithm 1 TMFG-LoGo algorithm
Input
Σ̂ ∈ Rp x p, covariance matrix estimated from a set of observations X
R̂ ∈ Rp x p, correlation matrix associated with Σ̂

Initialize
J = array of p x p zeros
C1 = Tetrahedron, va,vb,vc,vd with smallest |R̂C1 |
T = assign the four triangular faces in C1
V = assign the remaining p−4 vertices not in C1

while V is not empty do
find the combination {va,vb,vc,vd ∈ T and vd ∈ V with the largest

|R̂va,vb,vc/R̂va,vb,vc,vd |
Remove vd from V
Remove {va,vb,vc} from T
Add {va}, {vb,vc}, {va,vc,vd}, {vb,vc,vd} to T
Compute Ji, j = Ji, j +

(
ΣΣΣ
−1
{va,vb,vc,vd}

)
i, j
−
(

ΣΣΣ
−1
{va,vb,vc}

)
i, j

return J, sparse estimation of Σ̂−1
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2.2.3 Persistence of Correlation Structure

Financial time series are characterized by volatility clustering. This phenomenon has been

assessed and documented by many authors (see Section 2.1.1) with many corresponding

modelling proposals. Recently, some authors analysed a similar clustering or persistence

effect in the correlation structure [13, 21, 138, 139] offering valuable insights to multivariate

analysis and forecasting of financial time series.

Information filtering networks provide a valuable tool to the study of this effect. In this

section we used a persistence measure proposed by Musmeci et al. (2016b) to investigate

correlation persistence in the data panel of interest. We make use of the TMFG networks

structure described previous Section and constructed using the TMFG-LoGo procedure (Al-

gorithm 1).

We considered the whole dataset length, between 01/02/1995 and 12/31/2015, for a

subset of 100 stocks chosen at random among those that have been continuously traded

throughout the observed period. To calculate the correlation between different variables

and to analyse its evolution through time, we considered n rolling time windows Ta, with

a = 1, ...,n. Each time window contains θ log returns for each asset. Within each rolling

window, we calculated the the correlation matrix ρ(Ta) using an exponential smoothing

method with α = 0.99 smoothing factor [116, 149]. From each correlation matrix ρ(Ta) we

computed the corresponding TMFG network, obtaining n TMFGs, G(Ta) with a = 1, ...,n.

To analyse the evolution of the correlation structure, we considered a persistence measure

〈ES〉(Ta) [138] built from the graph’s edges survived at each rolling window Ta

〈ES〉(Ta) =
a−1

∑
b=a−L

w(Tb)ES(Ta,Tb) (2.18)

where w(Tb) = exp
(

b−a−1
L/3

)
; L is a parameter and ES(Ta,Tb) is the edges survival ratio

measured as the fraction of edges in common between G(Ta) and G(Tb)

ES(Ta,Tb) =
1

Nedges
|ETa ∪ETb | (2.19)

where Nedges is the number of edges in the two graphs (fixed and equal to 3(N − 2) for

TMFG) and ETa , ETb are the edge-set of the graphs at Ta, Tb.

〈ES〉(Ta) relies on past data and indicates how slowly the correlation structure at time

window Ta is different from previous time windows. This is a weighted average of similarity
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(a) ES(Ta,Tb), α = 0.99 and θ = 1000 (b) ES(Ta,Tb), α = 0.99 and θ = 500

Figure 2.1: Edge survival ratio, ES(Ta,Tb). EWMA smoothing parameter α = 0.99 and θ = 1000
(left) and θ = 500 (right). This matrix-form representation provides a visual of the
persistent correlation clusters observed from 1999 to 2015.

(edge survival ratio) between G(Ta) and previous L TMFG networks, weighted following an

exponential smoothing scheme to give more weight to networks closer to Ta. We computed

the measure using time windows Ta of different length θ and we report the results for θ =

1000 and θ = 500. In general, for higher values of θ , the network estimation is more robust,

but 〈ES〉(Ta) is less reactive.

Figure 2.1 presents the edge survival ratio ES(Ta,Tb) computed between each pair

of window Ta,Tb with a,b = 1, ...,n; a 6= b. The figure shows that there are clear similarity

clusters, with higher similarity values in correspondence of crisis periods (2002-2003, 2005-

2006, 2009-2012). This is particularly clear from panel(a), where θ = 1000 estimation

window provide a clearer representation.

Figure 2.2 shows the evolution of 〈ES〉(Ta) in time as compared to the cumulative aver-

age return of the stocks considered. We found high levels of persistence in correspondence

of crisis events with peaks of 〈ES〉(Ta) = 0.88. As expected, 〈ES〉(Ta) computed with

θ = 500 (panel(b)) is more volatile and reactive, but similar evidences are obtained with

θ = 1000 (panel(a)). We make use of this feature in the definition of the trading strategy

described in Chapter 5.2.
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(a) < ES > (Ta),θ = 1000,α = 0.99 (b) < ES > (Ta),θ = 500,α = 0.99

Figure 2.2: Correlation structure persistence. < ES > (Ta) with EWMA smoothing parameter
al pha = 0.99 and θ = 1000 (left) and θ = 500 (right)



Chapter 3

Portfolio Construction and Filtered
Likelihood

Portfolio optimization approaches rely on multivariate-modelling of markets and the econ-
omy. In this section, we address three sources of error related to the modelling of these
complex systems: 1. oversimplifying hypothesis; 2. parameters’ sampling-error; 3. intrin-
sic non-stationarity.
For what concerns point 1. we propose a L0-norm sparse elliptical modelling and show
that sparsification is effective. We quantify the effects of points 2. and 3. by studying
the models’ likelihood in- and out-of-sample for parameters estimated over different train
windows. We show that models with larger off-sample likelihoods lead to better perform-
ing portfolios only for shorter train sets. For larger train sets, we found that portfolio
performances deteriorate and detach from the models’ likelihood, highlighting the role of
non-stationarity. Investigating the out-of-sample likelihood of individual observations we
show that the system changes significantly through time. Larger estimation windows lead
to stable likelihood in the long run, but at the cost of lower likelihood in the short-term:
the ‘optimal’ fit in finance needs to be defined in terms of the holding period. Lastly, we
show that sparse models outperform full-models and conventional GARCH extensions by
delivering higher out of sample likelihood, lower realized volatility and improved stability,
avoiding typical pitfalls of conventional portfolio optimization approaches.

3.1 Introduction

Quantitative approaches to asset management have accumulated unprecedented popularity

over the last few decades. Of all the algorithms and strategies developed, portfolio selection

models are among those that have received wider attention. The essence of portfolio invest-

ing is to find the best way of assigning weights to a given set of assets to maximize future

portfolio returns while minimizing the investment risk. The exploration of this field starts

with Markowitz’s mean-variance optimization process [121].

The theory of mean–variance-based portfolio selection is still today a cornerstone of mod-
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ern asset management. It rests on the presumption that rational investors choose among

risky assets purely on the basis of expected return and risk, with risk measured as portfolio

variance. The theoretical foundation of this framework is sound if either: investors exhibit

quadratic utility, in which case they ignore non-normality in the data [74], or all the higher

moments of the portfolio distribution can be expressed as a function of mean and variance

and hence all optimal solutions satisfy the mean-variance criterion. Also, the “optimality”

of the mean-variance portfolios is based on the assumption that investors live in a one-period

world, while in reality they have an investment horizon that lasts longer than one period.

Markets, indeed, constantly change over time and investors are subject to inflows/outflows

forcing them to adjust their allocation and take corrective actions.

Form a general, high level, perspective all portfolio optimization approaches are based

on a multivariate model of the variables in the market and the economy. The optimization

strategies are devised to maximize profits and minimize risks based on such models. In mod-

elling these complex systems there are, however, several sources of inaccuracies and errors

with the three main ones being: 1. oversimplifying hypothesis (such as the use of normal

distributions); 2. uncertainties resulting from the estimation of the parameters from datasets

of limited sizes; 3. intrinsic non-stationarity of these systems, which makes in-sample es-

timations, based on past observations, inadequate for the estimation of off-sample, future

properties. Most likely all three of these factors – and others – contribute to undermining

the predictive power of any attempt of modelling markets.

While a large deal of literature has been devoted to relaxing some of the most unre-

alistic model assumptions (point 1.) the current main pitfall of portfolio optimization is

attributed to error maximization (point 2.). This effect has long been established in litera-

ture [132, 140]. Essentially, inputs into the mean-variance optimization are measured with

uncertainty, and the optimization procedure tends to pick those assets which appear to have

the most attractive features – but these are outlying cases where estimation error is likely

to be the highest, hence maximizing the impact of estimation error on portfolios’ weights.

The estimation error is also amplified by market evolution which makes the training on the

past not fully representative of future market behaviour (point 3.).

In this Chapter, I address all three sources of inaccuracies. For what concerns point

1. we propose a L0-norm topologically regularized sparse elliptical modelling [9] and
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show that sparsification is effective. We quantify the effects of estimation error and non-

stationarity on portfolio performances (point 2. and 3.) by assessing the goodness of mod-

els’ statistical likelihood for estimates over train sets of different lengths. Specifically, we

study how the realized portfolio variance reacts to different out-of-sample likelihoods of

the input parameters and, particularly, to sparse models. Further, we analyse how sparse

precision matrices impact the magnitude and the stability of portfolio weights.

The remainder of this Chapter is organized as follows: in Section 3.2 we briefly re-

view the theory around portfolio construction, highlighting the pitfalls on assumptions and

estimation error and the main solutions proposed in literature; in Section 3.3 we outline our

methodology and experiments design and in Section 3.4 we present the results. Appendix D

is devoted to recalling some useful aspects of Elliptical distributions.

3.2 Literature Review

3.2.1 Modern Portfolio Theory

Considering a portfolio of n assets with weights w = (w1, ...,wn), returns R = (r1, ...,rn)

and portfolio returns

rp = wR>, (3.1)

the standard mean-variance optimization problem consists in minimizing the portfolios’

variance σp for fixed levels of expected returns E[rp] = r̄p

min
w

σ
2
p = wΣΣΣw>

s.t. E[rp] = r̄p,

and w1= 1,
(3.2)

where ΣΣΣ∈Rn×n is the assets’ covariance matrix and 1∈Rn×1 is a basis column vector with

all elements equal 1. Solving for w for different values of r̄p, one can obtain the optimal

weights (i.e. the weights that minimize the portfolio variance) corresponding to different

portfolio expected returns r̄p yielding the so-called efficient frontier – i.e. the set of optimal

weights which provide the lowest variance for each level of expected return.
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As discussed in the introduction, this optimization is only concerned with the first two

moments of the distribution of portfolios’ returns and it does not deal with multiperiod in-

vestment decisions. These pitfalls have largely been discussed in literature. [101] provides

a clear review of what are the assumptions under which repeatedly investing in one-period-

efficient portfolios will also result in multiperiod efficiency. Also, many models have been

proposed to deal explicitly with multiperiod optimality (see, for example, [128], [111] or

[8]). With respect to non-normality of returns, a rich literature is available on both alterna-

tive parametrization of data [12] and optimisation frameworks that consider other distribu-

tion moments [20, 90, 105] or other measures of risk/return [85, 156, 181].

From the optimization problem in Eq.(3.2) it is also clear that the optimization does

not treat the error and uncertainty around the parameters ΣΣΣ and µµµ . The difference between

the estimated and true distribution parameters is called estimation error. It arises from both

the sampling procedure or availability of data and non-stationarity. The error coming from

sampling, also referred to as sampling error, is due to parameters used in the portfolio op-

timization process being typically point estimates – we can only expect these estimates to

equal the true distribution parameters if our sample is infinitely large. Assuming station-

ary data, sampling error could be fixed by increasing the number of observations in the

estimation sample. Indeed, the convergence rate is in the inverse of the square-root of the

sample size, as dictated by the law of large numbers. This would come handy in our times

of increasing data availability. However, a second source of estimation error comes from

non-stationarity. A time series is said to be non-stationary if its distribution parameters (or

the distribution itself) changes over time – in this case, extending the length of observations

might reduce the contribution of sampling error to estimation error, but at the same time, it

could increase that of non-stationarity [37].

Many techniques have been proposed in literature to deal with this phenomenon,

both relying on heuristic methods and decision-theoretic foundations [160]. Heuristic ap-

proaches mainly propose to constrain the optimization problem in order to impose feasible

optimal weights.

Michaud and Michaud (1998) addresses explicitly the sampling error proposing a

Monte Carlo based procedure called resampling. In order to model the randomness of

the input mean vector and covariance matrix, portfolio resampling consists in repeatedly

drawing from the return distribution given by the point estimates and creating n artificial
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new samples. For each sample, an efficient frontier is estimated and the final, resampled-

efficient frontier is given by the average weight across all of the resampled portfolios.

From a decision-theoretic perspective, Bayesian techniques have recently played a pri-

mary role in literature. The rationale behind Bayesian statistics for portfolio construction is

to include non-sample information to tackle the effect of parameter uncertainty on optimal

portfolio choice. Instead of a point estimate, Bayesian approaches produce a density func-

tion for the parameters involved, by combining sample information (likelihood) with prior

belief, potentially coming from non-sample information. A special case of this general ap-

proach is the seminal work of Black and Litterman (1992). In their pioneering work, the

authors assume assets’ returns to be normally distributed with mean equal to the ‘equilib-

rium returns’ (that is, the mean returns that would output the market portfolio if used in a

mean-variance optimization) and combine this “sample” information with investors’ views

on the assets. In this way, in absence of an informative prior from investors, the model would

return the market or ‘equilibrium’ portfolio. In presence of investors’ priors, instead, the al-

location would diverge from the equilibrium portfolio accounting for investors’ views and,

proportionally, to their confidence level. Other than being highly appealing from a practi-

tioner’s perspective, the model proposed in [28] highlights the flexibility of the Bayesian

framework, with many sources of information that could potentially be used in combination

or to update the in-sample information. This is a very active area of research with recant

notable examples including Scherer et al. (2012) and De Franco et al. (2019).

More recently, entropy is receiving increasing attention as alternative measure of un-

certainty in information theory, econometrics, and finance [16]. Starting from the pioneer-

ing work of Philippatos and Wilson (1972), entropy based portfolio allocation models are

increasingly popular in the financial literature. Entropy in place of variance as measure

of uncertainty and diversification for the portfolio selection problem has proven to provide

greater diversification and stability, avoiding classical corner solutions of the mean-variance

approach [16, 148]. Further entropy is a non-parametric function designed to accommodate

non-normality and asymmetry and no covariance estimation is required as the joint entropy

dependence structure can be captured in the objective function [129]. Lastly, entropy pro-

vides a flexible framework also in mixing multiple sources of information into the joint

probability definition [131].
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3.2.2 Conditional Correlation Models

Modelling volatility in financial time series has been the object of much attention ever since

the introduction of the autoregressive conditional heteroskedasticity (ARCH) model in the

seminal paper of Engle (1982). Numerous variants and extensions of ARCH models have

been proposed investigating and leveraging different effects observed in financial time se-

ries - see Bollerslev et al. (1992) and Bera and Higgins (1993) for a survey of ARCH-type

models. Stochastic volatility (SV) models in continuous time are at the foundation of mod-

ern derivatives pricing [49, 80, 89], aiming at resolving the shortcomings from constant

volatility assumption of the Black–Scholes [29] based approaches.

While modelling volatility of the returns has been the main centre of attention, under-

standing the co-movements of financial returns is of great practical importance. A large

body of literature has therefore developed, studying the evolution and temporal dependence

of correlations, with the main approaches being multivariate extensions of the GARCH

model. Similarly to the univariate case, many different model specifications have been pro-

posed trying to balance flexibility and number of parameters. For a survey, please refer to

Boudt et al. (2019) and Bauwens et al. (2006).

More recently, copula [165] based models are increasingly emerging as useful tools

to deal with non standard multivariate distributions remedying to various shortcomings of

the GARCH structures, with the copula approach being effective in describing the non-

linear, asymmetric, and possible tail dependence between markets. Copula-GARCH models

combine the use of GARCH models and a copula function to allow flexibility on the choice

of marginal distributions and dependence structures and particularly the vine-copula method

has been gaining attention recently in that a multi-dimensional density can be decomposed

into a product of conditional bivariate copulas and marginal densities [95]. Vine structure is

an approach to effectively solve the problem of the dynamic correlation structure between

multiple variables, and it provides an effective solution to the matter of variable correlation

with complex dependency patterns. The vine-copula method has been gaining attention

recently in that a multi-dimensional density can be decomposed into a product of conditional

bivariate copulas and marginal densities [57, 86]. Several authors show that compared to

the traditional methods the vine structures are better in capturing the dependence between

variables and in risk management applications [36, 182].
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Given the wide adoption among financial academics and practitioners, we will con-

sider the Orthogonal GARCH (O-GARCH) as baseline method to compare our results (Sec-

tion 3.5). Considering a dataset of T returns×n assets the observations are assumed to be

generated by an orthogonal transformation of n (or a smaller number of) univariate GARCH

processes. The matrix of transformation is the orthogonal matrix (or a subsection) of eigen-

vectors of the covariance matrix of the returns. In the generalized version, this matrix must

only be invertible.

In the Orthogonal GARCH model of [3], the n×n time-varying variance matrix Ht is

generated by n univariate GARCH models

rt = Gzt (3.3)

where G is a non-singular n×n matrix. In the generalized specification of the O-GARCH

model of [173], the uncorrelated factors zt are standardized to have unit unconditional vari-

ances (E[ztz>t ] = 1). The principal components (i.e. unobservable factors) are estimated

from the data through G and the factors zt are assumed to follow a GARCH process with

the n×n diagonal matrix of conditional variances of zt defined as

Hz
t = (I−A−B)+A� (zt−1z>t−1)+BHz

T−1 (3.4)

where A and B are diagonal n× n parameter matrices and � denotes the Hadamard (i.e.

element-wise) product. Therefore the conditional covariance matrix of rt can be expressed

as

Ht = GHz
t G> . (3.5)

The linear mapping G is constructed via singular value decomposition of the returns

covariance matrix E[rtr>t ] = ΣΣΣ

G =UUUΛΛΛ
1/2VVV (3.6)

where the U is the matrix of the eigenvectors of ΣΣΣ and the diagonal matrix ΛΛΛ holds its

eigenvalues.

It is worth emphasizing that while these models have the potential to offer great flex-

ibility, they are inevitably exposed to the curse of dimensionality in that as the number of
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assets and/parameters increases, the estimation of these models becomes quickly unfeasible

[41].

3.3 Methodology

The estimation error is quantified by measuring how well the functional form of the mul-

tivariate probability distribution, fθθθ (X) defined via the parameters θθθ estimated in-sample,

describes the actual data out-of-sample. The statistical measure that describes how likely

are observations to belong to the estimated probability function is the likelihood. The likeli-

hood principle is a cornerstone of statistical analysis in that maximum likelihood estimators

are guaranteed to be asymptotically efficient under mild conditions ([177], [50], [53]). In

this section, we introduce our methodology and discuss our results for the multivariate nor-

mal case. In Section 3.4.3 I further discuss the generality of this approach and show that it

extends to other distributions of the elliptical family including, in particular, the multivariate

Student-t.

The logarithm of the likelihood for the normal case is proportional to

logL(θθθ ;xt) = log |J|− (xt −µµµ)J(xt −µµµ)>+ k , (3.7)

where xt = (xt,1,xt,2, ...,xt,n) is the n-dimensional multivariate returns observation vector

at time t; θθθ is the model parameter set, which includes µµµ the vector of means and J the

generalized precision matrix and; k is a constant which is independent from µµµ,J or xt (see

Section 3.4.3). In the multivariate normal case J = ΣΣΣ
−1 is the inverse of the covariance.

Our results generalize to other elliptical distributions with defined covariance where J is

proportional to the inverse covariance, which we assume is defined and invertible. Results

for the Student-t are explicitly reported in appendix 3.4.3.

Our goal is to study the log-likelihood in Eq. (3.7) using different estimation win-

dows and comparing how the precision matrices, estimated through maximum-likelihood

and TMFG-LoGo, perform. We considered a dataset of daily closing prices of US stocks

entering among the constituents of the S&P 500 index between 02/01/1997 and 31/12/2015.

After screening for those continuously traded and those not displaying abnormal returns, we
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Figure 3.1: Training and Testing scheme.We randomly sample the ending date of the training period,
the ‘trading day’. We then estimate the model parameters considering different training
windows using observations up to the randomly selected trading day. The subsequent
500 observations are used for testing.

reached a final dataset of 342 stocks. For each asset i = 1, ...,n, we calculated the corre-

sponding daily returns xt,i = St,i/S(t−1),i−1, where St,i is the closing price of stock i at time

t, for a total of 4026 daily multivariate observations.

We designed a resampling experiment in which we select 100 stocks at random among

the 342 and a random trading day spanned in our dataset. Starting from the randomly

selected trading day and going back in time, we define five train sets of different sizes by

including an increasing number of observations. We start at 101 observations, then 150,

250, 500, 1000 and finally 1500 observations. We then use a fixed-length test set of 500

observations following the randomly selected trading day. We keep the test set length fixed

to avoid biases and selected 500 observations so that, for all estimation windows, the main

crisis event (i.e. Global Financial Crisis in 2008) can be randomly included in or out of

sample. Figure 3.1 shows a sketched example of our train/test split with different estimation

windows.

We use the train set to estimate the mean vector µµµ , the maximum-likelihood covari-

ance matrix ΣΣΣ and the sparse TMFG LoGo covariance matrix ΣΣΣT MFG. These parameters are

then used to compute the log-likelihood in Eq.(3.7) for both in-sample and out-of-sample

observations. We then investigate how the different estimates used in a portfolio optimiza-

tion procedure affect the optimal weights and portfolio characteristics. To this extent, we

considered the standard, unconstrained Markowitz optimization problem described in Sec-

tion 3.2.1. This is done to avoid any bias coming from constraints in our analysis and to

keep the framework as plain as possible. We focus therefore our analysis on the minimum
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variance portfolio, that is the efficient portfolio that minimizes the expected variance. To

obtain the solution for the minimum variance portfolio, the portfolio optimization problem

in Eq. (3.2) rewrites as

min
w

σ
2
p = wΣΣΣw>

s.t. w1= 1,
(3.8)

which gives the optimal, minimum variance weights

w∗min = c 1ΣΣΣ
−1, (3.9)

where c= 1
1>ΣΣΣ

−1
1

is a normalization constant. Considering the estimation scheme described

above and outlined in fig. 3.1, the estimated covariance matrices are used as inputs in the

minimum variance optimal portfolio, Eq. (3.9), to compare the different log-likelihood

levels obtained out-of-sample and the corresponding effects on portfolio performances.
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3.4 Results

3.4.1 Likelihood Comparison

Figure 3.2 reports the average log-likelihood for the train data (fig. 3.2a) and for the test

data (fig. 3.2b) computed across 100 resamplings. The larger the log-likelihood is, the bet-

ter the parameters θθθ are at describing the data, for the assumed model. Fig. 3.2a shows

that, as expected and by definition, the maximum-likelihood estimate of the covariance ma-

trix provides a higher in-sample likelihood as compared to the TMFG covariance, although

the latter tracks quite closely the maximum-likelihood. Also, one might observe that the

likelihood is strictly decreasing with the number of observations included in the estima-

tion window. Indeed, as the number of observations decreases relative to the parameters,

the model overfits the sample yielding larger in-sample likelihoods. Filtering the covari-

ance matrix and reducing the number of parameters clearly limits the overfitting potential

of the model as shown by the lower levels of likelihood attained by TMFG when fewer

observations are used which, therefore, results in a larger gap in likelihood relative to the

maximum-likelihood covariance.

Perhaps more interestingly, fig. 3.2b reports the likelihoods obtained out-of-sample us-

ing the two different in-sample estimates of the covariance matrix. The first observation

is that TMFG-LoGo provides a substantially larger log-likelihood, especially for short es-

timation windows. This result is exacerbated by the fact that when 101 observations are

considered, the number of stocks is very close to the number of observations in our sam-

ples. While the resulting covariance is still full-rank (number of observations > number of

variables), it leads to unstable estimation in the maximum-likelihood covariance (i.e. the

so-called ‘the curse of dimensionality’) whereas TMFG-LoGo is still well defined. Note

that there is a break y-axis of the figure to allow a better inspection of the results. The fig-

ure shows that for longer estimation windows, the out-of-sample log-likelihood computed

with the maximum-likelihood covariance tends to converge to the TMFG likelihood which,

however, a) always provides the best out-of-sample likelihood in our experiment and b)

provides quite stable likelihood values also for shorter estimation windows. We conclude

that the TMFG-LoGo algorithm does a good job at filtering the correlation structure pro-

viding higher out-of-sample likelihood and stable results with shorter estimation windows,

confirming the results with stationary time series previously reported in [15].
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(a) Likelihood comparison in-sample
(b) Likelihood comparison out-of-sample. Note the

y-axis break to fit the scale for 101 days estima-
tion window.

Figure 3.2: Log Likelihood computed in- and out-of-sample. Both the likelihood computed using
the maximum likelihood and the TMFG covariances decrease in sample as the sample
size increases. The maximum likelihood covariance delivers by construction the high-
est likelihood, but the TMFG likelihood tracks it closely. In test, instead, the TMFG
covariance always attain the highest likelihood and delivered good results also when the
number of observations becomes close to the number of variables.

3.4.2 Impact of precision matrix estimate on optimal portfolios

We now address empirically the question of what is the impact of different parameter es-

timates on portfolios weights and performances, when these parameters are used as inputs

in the portfolio optimization problem in Eq. (3.2). Having focused our attention on the

minimum variance portfolio on the efficient frontier, we report in Figure 3.3 the realized

standard deviation of portfolios obtained using the same parameters which provided the

log-likelihood displayed in Figure 3.2. The chart shows that, overall, the out-of-sample

portfolio variance decreases as the likelihood increases up until when 750 observations are

used. This is coherent with respect to the likelihood results that reported, indeed, increasing

likelihoods for the same estimation windows. In particular, for shorter estimation windows,

the TMFG-LoGo covariance matrix provides portfolios with significantly lower realized

variance. Also, little changes are observed in the realized variance when observations from

101 to 750 are included, signalling that the TMFG-LoGo extract the relevant dependency

links also when few observations are available. The gap in performance tends to reduce

as the number of observations in the estimation window increases, with the TMFG-LoGo

portfolios always displaying lower volatility. However, when more than 750 daily observa-

tions are included, while the out of sample likelihood remains flat or slightly increases, the

portfolios’ variance tends to increase.
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Figure 3.3: Realized Standard Deviation. Increasing the estimation window and for higher values
of likelihood (figure 3.2), the realized standard deviation of portfolios decreases. Y-axis
break to fit the scale for 101 days estimation window.

To further investigate this pattern, we report in Figure 3.4 the volatilities for all 100

resamplings and considering steps of 25 observations in the estimation windows. The figure

confirms that the TMFG-LoGo covariances delivered overall less volatile portfolios across

resamplings and estimation windows. Secondly, the figure shows that the portfolios obtain

the lowest out-of-sample variance when approximately 2 to 3 years of daily observations

(450 to 700 observations) are included in the train set. This pattern is clear for the Maxi-

mum likelihood portfolios, with means, quintiles and outliers drifting upwards when more

than 750 observations are included. The TMFG filtered covariance regularizes and smooths

this effect as well, but still when more than 750 observations are included, the resulting

portfolios exhibit a slightly higher variance. This is consistent with the literature showing

that longer estimation windows provide worse forecasts in financial time series due to the

regime-changing nature of financial markets [153]. It is also worth emphasizing that the

different features of TMFG-LoGo and the Maximum-Likelihood portfolios are due solely

to the different estimates of the covariance matrix as these are the only inputs used in the

Minimum Variance optimization 3.9
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(a) Realized volatilities obtained with Maximum
Likelihood covariances

(b) Realized volatilities obtained with TMFG filtered
covariances

Figure 3.4: Portfolio realized volatility across resamplings for different estimation windows. The
box-plot shows the distribution of the variances obtained for 100 resampled portfolios
and the the blue line overlaid shows the average variance (i.e. the mean of the variances
distribution).

Finally, we address the impact of sparsity on optimal portfolio weights. Figure 3.5

reports the number of Long (fig. 3.5) and Short (fig. 3.5a) positions (i.e. positive and neg-

ative weights assigned to the stocks in portfolio) on average across the 100 resamplings.

The first observation is that the number of long positions tends to increase as the estimation

window increases and coherently the short positions diminish accordingly. Using TMFG-

LoGo precision matrices anticipates this behaviour, in that TMFG portfolios always display

a greater number of long positions also for short estimation windows. Recalling that the

Minimum-Variance optimisation (Eq. 3.2) is constrained to sum to 1, the intuition behind

this phenomenon is that the fewer the observations used in the estimation of the covariance,

the higher is the tendency of the Minimum-variance portfolios to exhibit extreme negative

and positive weights. In other words, the weights still sum up to 1, but with a combination of

large long and short bets. Over the long term, estimates are more stable and possible outliers

in assets’ variances and correlations are polished, leading to more stable portfolios. This

intuition is confirmed by looking at the distribution of weights across resamplings in Figure

3.6. This chart (note the different scales) shows that using the TMFG-LoGo covariance

matrix significantly improves the stability of the optimal solutions, reducing outliers and

avoiding “corner”, i.e. extreme solutions which are a typical pitfall of the unconstrained

Markowitz optimization. This results shows that the correlation coefficient among assets

plays an important role in that for high correlation levels, the optimization procedure would

prefer one stock in place of another for slightly more appealing variance features. Hav-

ing filtered the correlation structure in the TMFG-LoGo procedure, we obtained a portfolio
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that is much more general (hence the anticipated larger number of Long positions) and less

sensitive to single assets features given the filtered correlation among stocks. Lastly, con-

sidering the standard unconstrained optimization problem in Eq. (3.2), both the maximum-

likelihood and the TMFG matrices produce portfolios that are in the vast majority of cases

investing in all assets. In other words, even considering a sparse precision matrix like in the

TMFG-LoGo case, we very rarely found weights equal to zero assigned to some assets.

(a) Number of “Buy” positions (b) Number of “Sell” positions

Figure 3.5: Comparison of Buy/Sell Active Positions. As the number of training observations in-
creases, the optimizations delivers an increasing number “Long” positions. This ten-
dency is anticipated when using TMFG fiiltered covarinace which always delivers an
higher number of Long positions.

(a) Distribution of optimal weights using Maximum-
Likelihood covariance

(b) Distribution of optimal weights using TMFG co-
variance

Figure 3.6: Optimal Weights Distribution. Using the TMFG filtered covariance in the optimization
provides stable weights as compared to the maximum-likelihood covariance, avoiding
“corner solutions” and enhancing diversification.

3.4.3 Elliptical Distributions

The methodology outlined so far and the experiments performed assume that returns are

normally distributed in that we considered the classical mean-variance optimization setting
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and we used the normal log likelihood functional form 3.7 to assess the goodness of the

estimates. In this section we discuss the general validity of our findings for the class of

elliptical distributions by addressing both of these choices. We begin our discussion by

briefly introducing a general definition for the probability density function of elliptical dis-

tributions. Consider an n-dimensional vector of multivariate returns x = (x1,x2, ...,xn). If x

is elliptical distributed, then its probability density function is defined as

fx(x) = cn|J|1/2gn

[
(x−µµµ)J(x−µµµ)>

]
, (3.10)

where µµµ ∈ R1×n is the vector of location (mean) parameters and cn is a normalization con-

stant. The matrix, J = ΩΩΩ
−1 ∈ Rn×n is the generalized precision matrix, a positively defined

matrix which is the inverse of the dispersion matrix ΩΩΩ. When the covariance is defined then

ΩΩΩ = (−ψ ′(0))−1ΣΣΣ, that is, ΩΩΩ is proportional to the covariance matrix and the proportional-

ity factor is the inverse of the first derivative of the characteristic generator evaluated at 0.

The function, gn(·) is called density generator.

Also, let us stress that (x− µµµ)J(x− µµµ)> - i.e. the generalized, square Mahalanobis

distance - is a quadratic term and hence a non-negative quantity provided that the matrix ΩΩΩ

is positive definite. To ease the notation, for the remaining of the Chapter we shall refer to

the generalized Mahalanobis distance as d2

d2 = (x−µµµ)J(x−µµµ)> . (3.11)

For different density generators gn(·) we obtain different distributions of the elliptical

family. It is easy to see, for example, that the normal distribution is obtained by using:

g(u) = e−u/2, (3.12)

and ΩΩΩ = ΣΣΣ.

Similarly the Student-t distribution is obtained by using:

gn(u) =
(

1+
u
v

)− n+v
2
, (3.13)

where v is the degrees of freedom, and ΩΩΩ = ν−2
ν

ΣΣΣ.

The validity of the mean-variance framework for elliptical distributions has long been
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established in literature [145]. This proposition is derived easily from two properties of

the elliptical distributions. First, for every elliptical distribution with defined mean and

variance, the distribution is completely specified by them ([145] or [42]), with all the higher

moments being either zero or proportional to the first or second moment. Second, any

linear combination of multivariate elliptically distributed variables is also an elliptically

distributed variable. In the case of normal distribution and Stiudent-t distribution they also

have the same density generator function. Further details on these properties are provided

in Appendix D.

It follows that, if asset returns have a multivariate elliptical distribution x ∼

En(µµµ,,,ΩΩΩ,gn), then the portfolio expected return and dispersion are given by, respectively,

E[rp] = wµµµ> and σp = wΩΩΩw>, matching the optimization framework outlined in Sec-

tion 3.2.1.

With respect to our likelihood analysis, considering distributions with probability den-

sity function of the form specified in Eq. (3.10), the corresponding likelihood function is of

the form

LED(θθθ ;;;xxx) = |J|1/2 gn
(
d2) . (3.14)

where ED denotes the general Elliptical Distributions and we omitted the constant of inte-

gration. To stress the general validity of our analysis for other elliptical distributions, we

repeated the experiments discussed in Section 3.3 considering the t-student generator.

Assuming a Student - t distribution of the log returns, the log likelihood (Eq. (3.14))

is

logLStudent =
log |J|

2
− n+ν

2
log
(

1+
d2

ν−2

)
(3.15)

where n is the sample size and ν is the degree of freedom. Figure 3.7 reports the likelihood

comparison for the same resamplings as in Figure 3.2 but using a student-t log likelihood as

in Eq. (3.15). Here we used n = 500 observations (i.e. the out-of-sample size) and ν = 3.

We verified that this findings are robust across different degrees of freedom in the range

ν = [2.1,4].
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Figure 3.7: Log likelihood assuming a t-student distribution of log returns. Out-of-
sample log likelihood likelihood computed using the maximum likelihood
and the TMFG covariances. These results are coherent with the findings
related to the normal distribution presented in Section 3.4.1.

3.5 O-GARCH Comparison

Having assessed the impact of sparsity on portfolio weights’ stability, in this section I com-

pare the features of portfolios obtained with TMFG-LoGo covariances with a baseline stan-

dard approach. As discussed in Section 3.2, time varying conditional models represent the

most widely used models in dealing with covariance structure. As such, I focus my attention

on the general O-GARCH model recalled in Section 3.2.2.

Following the approach of [173] outlined in in Section 3.2.2, for each resampling I

estimated the maximum likelihood covariance eigenvectors and the corresponding principal

components (PC). The PCs are assumed to follow a GARCH process and the corresponding

parameters are estimated for each principal component time series. We tested for different

model specifications, allowing for both the ARCH and GARCH parameters to range from

1 to 3 lags and selected the best model based on the AIC and BIC criteria. Table 3.1 and

table 3.2 reports the average AIC and BIC statistics for every model specifications across

different estimation windows. For all estimation windows, both the AIC and BIC criteria

support the GARCH(1,1) specification. Furthermore, in Appendix E I report the median, 5th

and 95th percentiles of all the AIC and BIC statistics. The table shows that the GARCH(1,1)

specification delivered the lowest AIC and BIC statistics for each of the main percentiles

considered. In other words, the GARCH(1,1) specification selected in our experiment is the
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preferred specification according to the AIC and BIC criteria in all cases, and not only in

mean across resamplings.

(1,1) (1,2) (2,1) (2,2) (2,3) (3,2) (3,3)

q = 101 -664 -661 -660 -660 -659 -659 -657

q = 125 -806 -803 -803 -803 -800 -801 -799

q = 250 -1495 -1492 -1491 -1491 -1489 -1490 -1488

q = 500 -2914 -2908 -2911 -2911 -2908 -2909 -2907

q = 750 -4316 -4305 -4313 -4313 -4308 -4311 -4310

q = 1000 -5643 -5628 -5641 -5641 -5635 -5639 -5639

q = 1500 -8062 -8040 -8061 -8061 -8056 -8059 -8060

Table 3.1: Average AIC information criterion for different GARCH specifications across 100
resamplings for different estimation windows.

Train Obs (1,1) (1,2) (2,1) (2,2) (2,3) (3,2) (3,3)

101 -657 -651 -648 -648 -643 -644 -639

125 -798 -792 -789 -789 -784 -784 -780

250 -1485 -1478 -1474 -1474 -1469 -1469 -1464

500 -2902 -2892 -2890 -2890 -2883 -2884 -2878

750 -4302 -4287 -4290 -4290 -4281 -4284 -4278

1000 -5629 -5609 -5617 -5617 -5606 -5610 -5605

1500 -8046 -8019 -8035 -8035 -8024 -8028 -8023

Table 3.2: Average BIC information criterion for different GARCH specifications across 100
resamplings for different estimation windows.

Having selected the GARCH(1,1) specification, for each resampling we estimated the

model parameters (Table 3.5 reports the estimated parameters and corresponding p-Values),

forecasted one steps ahead principal components and then reconstruct the covariance matrix

as in Eq. (3.5).
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ARCH(1) pValue GARCH(1) pValue

q = 101 0.0688 0.430 0.505 0.386

q = 125 0.0633 0.381 0.552 0.318

q = 250 0.0630 0.166 0.625 0.182

q = 500 0.0632 0.102 0.705 0.115

q = 750 0.0604 0.049 0.766 0.065

q = 1000 0.0564 0.031 0.806 0.041

q = 1500 0.0445 0.0007 0.917 0.0084

Table 3.3: GARCH(1,1) - Average Parameter and p-value. Mean parameters and correspond-
ing p-Values for the GARCH(1,1) model estimated for the Principal Components
across 100 resamplings.

We carried out the same stability experiments described in Section 3.4.2 using the O-

GARCH(1,1) covariance in the portfolio optimization. Figure 3.8 presents the distribution

of weights across resamplings for the optimal minimum-variance weights obtained using the

O-GARCH covariance and compared to the TMFG and maximum-likelihood covariances.

The figure shows that the O-GARCH covariance presents instability problems similar to the

full covariance (Figure 3.6). Similarly, Figure 3.9 in extends Figure 3.5 by comparing the

number of Long (fig. 3.9a) and Short (fig. 3.9b) positions when also the optimal minimum

variance weights obtained using the O-GARCH forecasted covariance matrix are consid-

ered. The O-GARCH positions closely track the full covariance behaviour, thus the same

conclusions drawn in Section 3.4.2 apply.

In essence, all the stability problems that apply to the Maximum-Likelihood covari-

ance still apply to the O-GARCH forecasted covariance matrix when used for portfolio

construction.
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(a) Distribution of optimal weights using O-GARCH
covariance

(b) Distribution of optimal weights using TMFG co-
variance

Figure 3.8: Optimal Weights Distribution. O-GARCH comparison.

(a) Number of “Buy” positions (b) Number of “Sell” positions

Figure 3.9: Buy/Sell Active Positions. O-GARCH comparison. As the number of training observa-
tions increases, the optimizations delivers an increasing number “Long” positions. This
tendency is anticipated when using TMFG fiiltered covarinace which always delivers an
higher number of Long positions.
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3.5.1 Backtest

To further compare the features of sparse TMFG portfolios to the conventional O-GARCH,

we backtest a simple trading strategy and compared performance results. The strategy fol-

lows a rolling estimation scheme with daily rebalance: we pick a random trading day, we

use the previous q days to estimate the parameters and we compute the optimal minimum

variance portfolio weights (Eq. (3.9)). We then roll the estimation window on a daily basis

and rebalance the portfolio accordingly, assuming therefore to buy at the close price and

hold until close the following day. This process is reiterated through 500 observations fol-

lowing the randomly picked starting trading day. In accordance with the testing framework

considered throughout the thesis, for each estimation window we run 100 resampling where

we pick a different set of 100 stocks and a different start trading day. We do no include

transactions costs in the performance presented, as we separately investigate the turnover of

both the strategies.

In terms of parameters re-estimation, on a daily basis we consider the previous q ob-

servations and re-estimate the means vector and covariance matrix. For the O-GARCH,

we forecast the one day ahead conditional volatility of the principal components and re-

construct the corresponding covariance matrix. The model is fit only once, with the first

estimation window, and we then keep the ARCH and GARCH parameters fixed. As the

new observations come in, we estimate the new covariance matrix, the corresponding prin-

cipal components and use it forecast the one day ahead covariance matrix.

Table 3.4 presents the out-of-sample annualized standard deviation of the strategy with

minimum variance portfolios constructed based on TMFG precision matrices compared to

the OGARCH based portfolios in Table 3.5. For each estimation window, we report the

median, 5th and 95th percentiles across 100 resamplings.

As shown in the tables, TMFG based portfolios delivered more stable performances

with lower realized variance in the vast majority of cases.
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σ

Train Obs 5th Median 95th

101 0.078 0.097 0.197

125 0.079 0.106 0.198

250 0.080 0.100 0.196

500 0.084 0.112 0.209

750 0.085 0.097 0.214

1000 0.088 0.114 0.212

1500 0.092 0.119 0.223

Table 3.4: TMFG portfolios performance metrics. Annualized standard deviation of a daily re-
balancing minimum volatility strategy. Optimal weights computed using using TMFG
precision matrices. Median, 5th and 95th percentiles across 100 resamplings.

σ

Train Obs 5th Median 95th

101 0.104 0.168 0.415

125 0.101 0.178 0.384

250 0.097 0.137 0.293

500 0.098 0.151 0.316

750 0.099 0.117 0.325

1000 0.103 0.164 0.314

1500 0.105 0.161 0.334

Table 3.5: OGARCH portfolios performance metrics.
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More important than performance in the context of this thesis is the stability of port-

folios weights through rebalances. As previously mentioned, the performance metrics pre-

sented in Table 3.4 and Table 3.5 do not take into account transaction costs to allow a sep-

arate investigation on the impact of the precision matrix on portfolios stability. We turned

our attention to daily turnover, computed for each day t as

τt =
100

∑
i=1
|wi,t −wi,t−1| (3.16)

where wi,t is the weight allocated at time t to the i− th stock among the 100 randomly

sampled.

Figure 3.10 reports the average daily turnover of the two strategy across our 100 resam-

plings. Across all the estimation windows, TMFG portfolios reported significantly lower

turnover, in most of cases two to three times less than O-GARCH portfolio. Plotting all

daily turnover data across all resamplings in Figure 3.11 further shows that turnover on

TMFG portfolios is actually less than 5% for most of the days across our resamplings,

with a distribution that is heavily positively skewed. O-GARCH portfolios, on the other

hand, displays a much less favorable turnover distribution, with extremes that reach 300%

turnover. These results come with no surprise given the much higher portfolio stability

already observed in Figure 3.8.
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Figure 3.10: Average daily turnover across 100 resamplings for different estimation window lengths
q. Comparison of minimum variance portfolios constructed based on TMFG (blue line)
and O-GARCH (orange line) precision matrices.
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Figure 3.11: Daily turnover histogram across 100 resamplings for different estimation window
lengths q. Comparison of minimum variance portfolios constructed based on TMFG
(blue bars) and O-GARCH (red bars) precision matrices.
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3.6 Non Stationarity

From the results discussed in the previous Section and shown in Figure 3.3 and Figure 3.2,

we found that the portfolio performances improve coherently with the likelihood up until

approximately 3 years of observations are used in the train set to estimate the models pa-

rameters. However, when more observations are included in the train set, the likelihood of

the parameters detaches from the portfolio performances and we speculate that this is due

to the role of non-stationarity. To further investigate this phenomenon, Figure 3.12 reports

the likelihood corresponding to each out-of-sample observation in our experiment.

(a) Mean Likelihood for each observation across re-
samplings. Comparison of likelihoods obtained
when 125, 750 and 1500 days are used in the train
set.

(b) Boxplot of likelihoods representing the quartiles
and min-max levels for each observation across
resamplings, having removed outliers. The plot is
for 750 days train set (blue plot on the left).

Figure 3.12: Out-of-sample likelihood measured observation-by-observation

Figure 3.12a shows the average likelihood across 100 resamplings for each out-of-

sample observation. We note that when shorter estimation windows are used to estimate

the models’ parameters (i.e. 125 days) the likelihood is higher in the days immediately

following the estimation window, but tends to rapidly decrease as the observations depart

from the training window. Larger estimation windows (i.e. 750 or 1,500 days) instead,

lead to a more stable likelihood in the long run, but at the cost of a lower likelihood for the

observation closer to the estimation set. Figure 3.12b shows the observation-wise box-plot

of the likelihood computed across the resamplings when 750 observation are used in the

train set. The box plot reports the 25%-75% quantile interval (dark blue) and the max-min

interval (‘whiskers’ light blue) having excluded the ‘outliers’ that are below the whiskers’

[104]. Other than decreasing means, the figure shows that as the observations depart from

the train set, the amount of observations posting a significantly lower likelihood increases,
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together with the downside volatility. In other words, it is more likely to have observations

that are far from the model estimated in sample, supporting the conclusions drawn from

Figure 3.12a.

As we discussed in Procacci and Aste (2019), market states tend to be persistent in

daily observations. Shorter estimation windows, therefore, tend to better describe the sys-

tem belonging to the same ‘state’ which is likely to be persistent for adjacent observations.

Notice that by considering the aggregate behaviors across 100 resamplings, we want to

avoid specific market conditions and state shifts, but rather focus on the general behaviour.

The evolution of the financial system is obviously very dynamic and the goodness of pa-

rameters is certainly dependent on both systemic and idiosyncratic events.

These results also provide further insights on the findings discussed in Figure 3.2 and

Figure 3.3 in that our conclusions are dependent on the number of out-of-sample obser-

vations that in our case coincides with the portfolio holding period - i.e. 500 days in our

experiments. Shorter estimation windows provide better fit in the short term, while larger

estimation windows provide robustness in the long run. The optimal balance between these

two effects depends on the holding period and in our experiments it is achieved with approx-

imately 3 years observations in the estimation window. Short holding periods do not require

robustness in the long run (i.e. shorter estimation windows would deliver better results). As

the holding period increases, the long term robustness becomes more relevant than the short

term fit and larger estimations windows have to be preferred.

3.6.1 A Closer Look at Likelihood

In our discussion on non-stationarity, we focused on likelihood as a standard measure of

“goodness” of the estimated parameters in describing observations. As discussed in Sec-

tion 3.4.3, without loss of generality for variables following a multivariate elliptical distribu-

tion of the form in Eq (3.10), the likelihood function is essentially given by the determinant

of the precision matrix minus some function of the Mahalanobis distance (plus constant

terms, see Eq (3.14)). In other words, we could think of the likelihood as a measure of

‘distance’ between the determinant and a function of the mahalanobis distance.

Figure 3.13 report the Determinant and Mahalanobis distance values computed for all

resamplings and across different estimation windows (x-axis) for both the Full covariance
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(Figure 3.13a) and the TMFG covariance (Figure 3.13b). Looking at this two objects sep-

arately, therefore, I aim at gaining intuition on a) how the two components interplay in the

likelihood results presented in this Chapter and b) the effects of the TMFG-LoGo filtering.

From Figure 3.13, the first observation is that, across resamplings, the Mahalanobis

distance displays a much higher variability then the determinant. The determinant (when

defined) is, indeed, quite stable across resamplings both for TMFG and Full covariance

matrices. The variance in both determinat and Mahalanobis decrease as the number of ob-

servations in the training set increases (leading to a more stable parameters’ likelihood as

described in 3.4.1). Figure 3.14, provides more interpretable insights on the effects of infor-

mation filtering by reporting the difference between the Full and TMFG based Mahalanobis

(Figure 3.14a) and determinants (Figure 3.14c) computed for each resampling and across all

estimation windows. Here we can observe that the Full covariance actually always delivers

larger Mahalanobis and larger determinant in absolute terms. Clearly the largest differences

in both Mahalanobis distance and log determinant are displayed when shorter estimation

windows are used. Interestingly, the difference in Mahalanobis varies significantly across

resamplings, being sometimes close to zero even for shorter estimation windows, while the

difference in log determinant remains more neat.

The key observation from these charts, however, is the y-axis of Figure 3.14a and

Figure 3.14c in that it clearly shows that the difference in Mahalanobis distance is, in most

of the cases, larger than the difference in log determinant, explaining the higher likelihood

observed with the TMFG-LoGo precision matrix is used. In other words, the sparse TMFG

precision matrix leads to a smaller determinant and Mahalanobis distance. The reduction

in the log determinant, however, is more then compensated by a larger reduction in the

Mahalanobis distance, leading to a larger likelihood.
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(a) Determinant and Mahalanobis distance with Full
covariance. Note the y axis break.

(b) Determinant and Mahalanobis distance with
TMFG covariance.

Figure 3.13: Visualizing Likelihood: Determinant and Mahalanobis distance

(a) Difference in Mahalanobis distance computed
with Full and TMFG covariances

(b) Difference in log determinant computed with Full
and TMFG covariances.

(c) Difference in overall log Likelihood computed
with Full and TMFG covariances.

Figure 3.14: Comparison Full vs TMFG on individual likelihood components. Differences in like-
lihood components computed with Full and TMFG covariance for all resamplings and
across estimation windows.
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3.7 Discussion

Portfolio construction is a cornerstone of financial theory and practice. However, it is still

today a controversial topic for both academics and practitioners. Any portfolio optimiza-

tion strategy relies on assumptions and modelling of the future market structure. However,

inferring such structure from past observations is a very challenging task, plagued by un-

certainty around parameters estimation and relying on some non fully satisfied assumptions.

We identify three main sources of inaccuracies and errors: 1. model oversimplification;

2. limited size of the estimation set; 3. non-stationarity. We address oversimplification by

introducing a modelling that uses a L0-norm regularized elliptical multivariate distribution,

demonstrating that it over-performs traditional models both in likelihood and in portfolio

variance performances. We test the effect of sample size by training the models on win-

dows of different sizes and find that performances initially increase with sample size but

then eventually decrease for windows above 750 days. We attribute the initial improvement

in performance to sampling error, which is reduced when more observations are included,

and we interpret the decay in performance when more the 750 observations are included

as an instance of non-stationarity. We further investigate this phenomenon by studying the

likelihood corresponding to individual observations out-of-sample and show that shorter

estimation windows deliver higher out-of-sample likelihood in the days immediately fol-

lowing the train window, but it tends to rapidly decrease afterwards. As more observations

are included in the training set, the out-of-sample likelihood gains stability, with larger val-

ues in the long term, but at the cost of lower likelihood in the short term. We conclude

that the financial system changes significantly through time and the ‘optimal’ fit in finance

needs to be defined in terms of the holding period.

Our main contribution to the literature on portfolio construction is the demonstration of

the relationship between the goodness of the model, measured as out-of-sample likelihood,

and the realized portfolio volatility. We show that higher likelihood obtained with filtered

TMFG-LoGo precision matrices correspond to lower portfolio volatility out-of-sample. The

relationship between larger likelihood and lower realized volatility is also verified in the

maximum-likelihood estimate of the covariance matrix when computed over train sets of

different lengths. Further, we show that sparse, filtered covariance matrices can signifi-
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cantly reduce estimation errors coming from both sampling error and non-stationarity. It

also reduces many of the instability problems related to mean-variance optimal weights.

Finally, all of the analysis and conclusions drawn in this Chapter are based on different

estimates of the covariance matrix. While forecasting future returns remains of primary

importance in trading and wealth management, we showed that the correlation structure,

sometimes overlooked in the asset allocation literature, plays a key role in portfolio con-

struction and a good deal of performances depend upon it.



Chapter 4

Market States and Stationary Regimes

We propose a novel methodology to define, analyse and forecast market states. In our ap-
proach market states are identified by a reference sparse precision matrix and a vector
of expectation values. In our procedure each multivariate observation is associated to a
given market state accordingly to a minimisation of a penalized Mahalanobis distance. The
procedure is made computationally very efficient and can be used with a large number of
assets. We demonstrate that this procedure is successful at clustering different states of the
markets in an unsupervised manner. In particular, we describe an experiment with one hun-
dred log-returns and two states in which the methodology automatically associates states
prevalently to pre- and post- crisis periods with one state gathering periods with average
positive returns and the other state periods with average negative returns, therefore dis-
covering spontaneously the common classification of ‘bull’ and ‘bear’ markets. In another
experiment, with again one hundred log-returns and two states, we demonstrate that this
procedure can be efficiently used to forecast off-sample future market states with significant
prediction accuracy. This methodology opens the way to a range of applications in risk
management and trading strategies in the context where the correlation structure plays a
central role.

4.1 Introduction

Markets do not always behave in the same way. In common terminology, there are periods

of ‘bull’ market in which prices are more likely to rise and periods of ‘bear’ market in which

prices are more likely to fall. These different ‘states’ of markets are commonly attributed in

literature to unobservable, or latent, regimes representing a set of macroeconomic, market

and sentiment variables.

In our paper [153], Prof. Aste and I build on Hallac et al. (2017) and propose a sim-

ilar Covariance based Clustering. However, we consider single observations and do not

enforce Toeplitz structure on the precision matrix. We, therefore, call this methodology
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ICC - Inverse Covariance Clustering. We also enforce temporal coherence by penalizing

frequent switches between market states and favouring temporal consistency. Further, our

framework is fully flexible to optimize any gain measure: in the experiments presented in

this Chapter we do not directly maximise likelihood, but rather assign states to clusters ac-

cording to their Mahalanobis distance [56]. We experiment with this methodology in the

context of financial time series and provide a detailed analysis of the role played by sparsity

and temporal consistency, while assessing the significance of the clusters. Finally, we show

that the cluster classification can be used for one step ahead off-sample prediction.

Our approach simplifies and clarifies the definition of ‘market state’ by identifying

each state with a sparse precision matrix and a vector of expectation values which are

associated to a set of multivariate observations clustered together accordingly with a given

procedure. In the following, the precision matrix of market state ‘k’ is denoted with Jk

and it represents the structure of partial correlations between the system’s variables. In

the multivariate normal case, two nodes are conditionally independent if and only if the

corresponding element of Jk is equal to zero. A sparse precision matrix provides an easily

interpretable and intuitive structure of the market state, with all the most relevant depen-

dencies directly interconnected in a sparse network. Furthermore, sparsity reduces the

number of parameters from order n2 (with n the number of variables) to order n preventing

overfitting [106] and filtering out noisy correlations [15, 139].

The remainder of this Chapter is organized as follow: in Section 4.2 I briefly re-

view previous works on states classification and sequence clastering and the general

Baum–Welch algorithm. In Section 4.3 I introduce the ICC methodology, following the

E-step and M-step typical of the EM algorithm (see Section A) and highlighting the role of

sparsity in the M-step. In Section 4.4 I present a clustering experiment, comparing the ICC

and GMM models in segmenting the daily returns of Russel 1000 members. In Section 4.5 I

present a second experiment, in which the ICC model is used to find market states during the

COVID-19 outbreak. Lastly, in Section 4.6 I highlight the main findings and conclusions

derived throughout the chapter.
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4.2 Literature Review

4.2.1 State Models in Time Series

Many time series models presented in literature tried to capture this phenomenon. Among

the most popular methods, it is worth mentioning the TAR models [169], trying to estimate

‘structural breaks’ in the time series process, and the Markov switching models [83], where

the change in regimes are parametrized by means of an unobserved state variable typically

modelled as Markov chain. However, the application of TAR models in finance is frequently

criticized since it cannot be established with certainty when a structural break has occurred

in economic time series and the prior knowledge of major economic events could lead to

bias in inference [40]. Markov switching models, on the other hand, are highly affected

by the curse of dimensionality. In particular, for slightly more complex dynamics than

the original proposal [83], we need to rely on variational inference techniques or MCMC

methods [98, 170]. This implies that, in a multivariate context and particularly if we aim

to extract information on the switching from the correlation structure, estimation becomes

difficult to perform.

Other approaches focus on clustering of observations into groups: ‘similar’ data ob-

jects are discovered on the basis of some criteria for comparisons. Most works related to

clustering of time series are classified into two categories: subsequence time series cluster-

ing and point clustering. Subsequence clustering involves the clustering of sliding windows

of data points and usually aim at discover repeated patterns. Example are Dynamic Time

Warping [112], Hierarchical methods [141] or pattern discovery [158]. In point cluster-

ing methods, instead, each multivariate observation at each time instance t is assigned to

a cluster. In most popular approaches, however, this is done based on a distance metric

[70, 75, 81, 87, 184].

In a multivariate context, different ‘states’ of markets are not only reflected in the

gains and losses, but also in the relative dynamics of prices. Indeed, the correlation struc-

ture changes between bull and bear periods indicating that there are structural differences

in these market states. Most common approaches in the industry assume -for convenience-

a stationary correlation structure [28, 62]. However, it is well established that correlations

among stocks are not constant over time [4, 113, 138] and increase substantially in periods
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of high market volatility, with, asymmetrically, larger increases for downward moves (see,

for example, [6, 45, 162]). Indeed, various approaches have been proposed in literature to

model and predict time-varying correlations. Examples are, for instance, the generalized

autoregressive conditional heteroskedasticity (GARCH) models by Bollerslev (1990) or the

dynamic conditional correlation (DCC) model by Engle (2002). However, most of these

models are not able to cope with more than a few assets due to the curse of dimensionality

having numbers of parameters that increases super-linearly with the number of variables

[54]. Other approaches have been focusing on the study of changes in a time-varying corre-

lation matrix computed from a rolling window. This is, for instance, the case of estimators

like the RiskMetrics Longerstaey and Spencer (1996) or Lee and Stevenson (2003). How-

ever, since these approaches use only a small part of the data, these estimators have large

variances and, in case of high dimensionality, may lead to inconclusive estimates [102].

Hallac et al. (2017) introduced a clustering algorithm called TICC (Toeplitz Inverse

Covariance Clustering), originally proposed for electric vehicles, where classification into

states is constructed from a likelihood measure associated with a referential sparse precision

matrix (inverse covariance matrix). Instead of considering each observation in isolation,

however, in their approach they cluster short subsequences of observations so that the co-

variance matrix constructed on the subsequences provides a representation of the cross-time

partial correlations. In this setting, then, by imposing a Toeplitz constraint to the precision

matrix of each regime, the cross-time partial correlations are constrained to be constant and,

hence, covariance-stationarity is enforced. This method has a number of appealing features

from a financial perspective, although the structure of data considered by the authors is

significantly different from noisy data in finance.

4.2.2 HMM and the Baum-Welch Algorithm

A hidden Markov model [157] describes the joint probability of a collection of ‘hidden’

and observed discrete random variables and relies on the assumption that the i− th hidden

variable given the (i−1)− th hidden variable is independent of previous hidden variables,

and the current observation variables depend only on the current hidden state.

Consider a discrete hidden random variable Xt with a finate number K of possible hid-

den states. Assuming P(Xt|Xt−1) is independent on time t, the time-independent transition
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matrix is given by

A = {ai j}= P(Xt = j | Xt−1 = i) . (4.1)

Consider now the discrete observation variables Yt and assume it can take one of K

possible values. Assuming also that any observation Yt = yi is independent on the hidden

state, then the probability of any observation yi at time t for the state Xt = j is given by

b j(yi) = P(Yt = yi | Xt−1 = i) . (4.2)

Taking into account all the values spanned by Yt and Xt , the NxK state-conditional proba-

bility matrix is given by B = {b j(yi)}. Thus, a hidden Markov chain can be described by

θ = (A,B,π).

Considering an observation sequence Yt = (Y1 = y1, ...,YN = yN) The Baum–Welch

algorithm [17, 18, 157] leverages EM approach (discussed in Appendix A) to find the max-

imum likelihood estimate of the parameters of a hidden Markov model given a set of ob-

served feature vectors - i.e. θ ∗ = maxθ P(Y | θ).

The algorithm starts with an initial selection for the parameters θ . Then, we estimate

α(t) = P(Y1 = y1, ...,Yt = yt ,Xt = i | θ), i.e. the joint probability of observing all of the

data up to time t and state i at time t, and β (t) = P(Y1 = y1, ...,Yt = yt | Xt = i,θ), i.e. the

conditional probability of all future data from time t +1 to N . This is found via recursive

procedure, sometimes referred to as the forward-backward algorithm and concludes the ‘E’

step of the procedure. Now, similarly to the ‘M’ step discussed in Appendix A, the results

α(t) and β (t) are used to find the new set of parameters θ new. The algorithm then continue

to alternate between E and M steps until convergence is satisfied.

It is worth noticing that the forward-backward algorithm is computationally expensive.

For each iteration, the α recursion is a O(K2) operation and the β recursion is O(K2N).

In our ICC approach discussed in the remainder of this Chapter, we propose a penalized

Viterbi procedure to approximate the maximum likelihood solution for our latent variable

problem. Despite not providing the full conditional likelihood of the hidden parameters, the

Viterbi algorithm discussed in Section 4.3.2 allows to significantly improve the computa-

tional efficiency of the ICC methodology, making it a better fit for trading application and

for handling high dimensional datasets.
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4.3 Methodology

Consider a time series X of T multivariate observations,

X =


x1 = [x1,1,x1,2, ...,x1,n]

x2 = [x2,1,x2,2, ...,x2,n]
...

xT = [xT,1,xT,2, ...,xT,n]

 (4.3)

where xt ∈ Rn is the multivariate observation at time t constituted by the log-returns of the

n stocks in the panel. Our goal is to assign each of the T multivariate observation xt to K

clusters using the information content of the correlation structure and avoiding the curse of

dimensionality [27]. We identify each state by a sparse precision matrix and a vector of

expectation values which are associated to a set of multivariate observations with largest

adjusted likelihood. In the following, the precision matrix of market state ‘k’ is denoted

with Jk and it represents the structure of partial correlations between the system’s variables.

In the multivariate normal case, two nodes are conditionally independent if and only if the

corresponding element of Jk is different form zero. A sparse precision matrix provides

an easily interpretable and intuitive structure of the market state with all the most relevant

dependencies directly interconnected in a sparse network. Furthermore, sparsity reduces the

number of parameters from order n2 (with n the number of variables) to order n preventing

overfitting [106] and filtering out noisy correlations [15, 139].

Our approach is inspired by latent variable models, but we account for the temporal

dimension by encouraging adjacent observations to belong to the same cluster. The cluster-

ing procedure uses a redesigned version of the Expectation Maximization (EM) algorithm

[58, 127] reviewed and discussed in Appendix A. It starts by setting the number of clusters

K (in this Chapter we limit to K = 2, see Chapter 6 for a discussion on the optimal number

of states) and assigns multivariate observations to clusters randomly. From these K sets of

data we compute the sample means µµµk and the precision matrices Jk and we then iteratively

re-assign points to the cluster with smallest

Mt,k = d2
t,k + γ1{Kt−1 6= k} . (4.4)

where d2
t,k = (xt − µµµk)

T Jk (xt − µµµk) is the the square Mahalanobis distance of observation
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xt in cluster k with respect to the cluster centroid µµµk; xt = [xt,1,xt,2, ...,xt,n] is the n-stocks

multivariate observation at time t (= 1, ...,T ); µµµk is the vector of the means for cluster k;

Jk is the (sparse) precision matrix for cluster k; γ is a parameter penalizing state switching;

Kt−1 is the cluster assignment of the observation at time t − 1. We considered as well

clustering with respect to maximum likelihood and minimum Euclidean distance, however

we report only about the procedure with Mahalanobis distance which is the one providing

the best results. Specifically, Euclidean distance is very efficient in distinguishing positive

and negative returns but does not distinguish well between pre- and post-crisis periods. The

maximum likelihood, instead, identifies very well the crisis period but then it is much less

clean in classifying the ‘bull’ and ‘bear’ market states. Let us note that the used Mahalanobis

distance clustering is producing high likelihood although not maximal.

The clustering assignment procedure is made computationally efficient by using the

Viterbi algorithm [27, 176] that transforms an otherwise O(KT ) procedure into O(KT ) (Sec-

tion 4.3.2). Further, the sparse precision matrix Jk is computed efficiently from the obser-

vations in each cluster by means of the TMFG-LoGo network filtering approach [15, 125].

In the following section, I discuss the details of both the “E-step”, where we estimate

parameters using TMFG-logo and the “M-step”, where we assign observation to the “k-th”

cluster while enforcing temporal consistency using the Viterbi algorithm.

4.3.1 M-step: TMFG-LoGo

In the M-step of the algorithm, the parameters associated with the distribution of each state

are estimated. In our design, these distributions are defined solely in terms of the inverse

covariance matrix J and the vector of expected values µµµ . As discussed in Section 2.2, the

empirical estimate of the correlation structure suffers many pitfalls mostly related to overfit-

ting and to the number of available observations. To overcome these difficulties and obtain a

reliable representation of the correlation structure associated to each state, we considered a

filtered, sparse inverse covariance computed by means of the TMFG-LoGo approach. This

is an efficient algorithm [124] that produces a chordal graph with 3(p−2) edges, where p

is the number of variables.

The TMFG-LoGo approach reviewed in Section 2.2.2 has proven to perform better

than other filtering approaches including GLasso and Ridge providing the additional ad-

vantages of efficiency and fixed sparsity level with no need to calibrate hyperparameters
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[125]. In this Section we motivate the choice of TMFG-LoGo filtering procedure in terms

of statistical significance by comparing the performances of the TMFG-LoGo to the cross-

validated Ridge l2 penalized inverse covariance (Ridge) on our dataset. We considered

the widely used Ridge penalization as robust estimate of the empirical inverse covariance

matrix and compared it to TMFG-LoGo and show that, when applied to our dataset, TMFG-

LoGo produces more stable likelihood results than Ridge. We used 40% of the data (from

31/12/2007 to 31/12/2015) as test set, and we considered as train sets the q observations

preceding the test set (until 30/12/2007). The penalization parameter of Ridge was defined

by cross validating within the train set. To compare TMFG-LoGo and the cross-validated

Ridge we computed the log-likelihoods Ls,k = 1/2(log |Jk|−d2
s,k− p log(2π)) using the two

covariance estimates and compared them. Figure 4.1 shows the likelihood observation-wise

computed in train and in test using the TMFG-LoGo and Ridge precision matrices estimated

over q = 500 observations. The TMFG-LoGo likelihoods are much more stable over time

suggesting that the procedure was successful in filtering out noise. Table 4.1 reports details

on mean, 5th and 95th percentiles of the likelihoods computed in the train and test set. As

previously mentioned, TMFG-LoGo likelihoods are much more stable with 5th and 95th

varying a few percent only for TMFG-LoGo and instead varying of more than one order of

magnitude in Ridge. We found similar results for TMFG-LoGo and Ridge when different

values of q are considered. Note that Ridge log likelihoods have large differences between

train and test. This is a typical indication of overfitting. Conversely, TMFG presents small

differences indicating that the LoGo procedure acts as a topological penalize.
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Figure 4.1: Train and test log likelihood observation-wise using TMFG (red line) and Ridge (black
line) precision matrices. The green vertical line divides train and test set. Ridge peaks
reach values outside the range up to 320.

Train set
Average 5th percentile 95th percentile

LRidge 41.70 2.19 188.85
LT MFG 26.71 26.53 27.22

Test Set
Average 5th percentile 95th percentile

LRidge 8.08 1.39 27.64
LT MFG 26.55 26.44 26.73

Table 4.1: TMFG and Ridge log likelihood metrics - means, 5th and 95th percentiles - computed in
train (top panel) and test (bottom panel) set. TMFG and Ridge precision matrices are
estimated using q = 500 observations.
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4.3.2 E-step: The Viterbi Algorithm

Figure 4.3 provides a visualization of the problem of assigning points to clusters. Based

on the parameters estimates (µµµk and Jk via TMFG-LoGo) from the E-step of the Expecta-

tion Maximization procedure, we compute the likelihood of every multivariate observation

obtaining, for each cluster k and for each observation t, a value Lt,k. If we assume obser-

vations to be independent, maximizing the overall likelihood corresponds to maximize the

individual likelihood at each time t. In Figure 4.3, this means choosing the cluster k that

provides the highest individual likelihood Lt,k at each time-step.

Figure 4.3: Cluster assignment paths - Sketched example. Example of two among the KT possible
paths considering K = 3 clusters and T observations. Lt, j represents the log likelihood
of the multivariate observation at time t if assigned to cluster j. If an observation is
assigned to same cluster as the previous one, no penalty is applied, otherwise a cost
weighted by the parameter γ is added.

However, when we analyse latent states through time, we need to consider the most

probable sequence of latent states which is not the set of most probable individual states. In

particular, if we introduce a cost parameter γ that penalizes cluster switching, the problem

complexity becomes combinatorial, since we need to account for the whole sequence or path

of assignations. In particular, given K potential cluster assignment of T points (multivariate

observations), the number of potential paths grows exponentially with the length of the

chain to KT possible assignments of points to clusters. Based on a dynamic programming
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approach, the Viterbi algorithm [176] provides an efficient solution with complexity O(KT )

(i.e., linear) to this problem, searching the space of the paths and finding the most efficient

path. The Viterbi algorithm in the convenient formulation by [82] is sketched in 2.

Algorithm 2 Viterbi algorithm
Input
Li, j =negative log likelihood of observation i if assigned to state j
γ = time consistency parameter

Initialize
PreviousCost = array of K zeros
CurrentCost = array of K zeros
PreviousPath = array of K elements
CurrentPath = array of K elements

for each observation i = 1, ...,T do
for each state j = 1, ...,K do

MinVal = index of minimum value of PreviousCost
if PreviousCost[MinVal]+ γ > PreviousCost[ j] then

CurrentCost[ j] =PreviousCost[ j]−Li, j
CurrentPath[ j] =PreviousPath[ j].append[ j]

else
CurrentCost[ j] =PreviousCost[MinVal]+ γ−Li, j
CurrentPath[ j] =PreviousPath[MinVal].append[ j]

PreviousCost=CurrentCost
PreviousPath=CurrentPath

FinalMinVal=index of minimum value of CurrCost
FinalPath=CurrPath[FinalMinVal]

For our purposes, we cannot calibrate the hyperparameter γ by cross validation. This

due to the fact that the states are unobservable and model dependent. We selected, therefore,

the parameter by grid searching the space of parameter γ in the range [0,3] with steps 0.2

and selecting the value that maximizes the penalized joint likelihood of the sample

max
γ

T

∑
t=0
Mt,k− γ1{Kt−1 6= kt} , (4.5)

where kt is the cluster assignment of the tth observation. For both experiments the maximum

was found for γ = 1. Let us note that this is a meaningful result because, from an entropic

perspective, a switch of state should ‘cost’ about one bit of information.

A more general formulation can be implemented by describing the paths as Markov

chains and introducing a transition probability between the states. However, under the

Markov chain formalism the expression in Eq. (5.1) for the likelihood ratio is no longer

consistent because it implies implicitly IID multivariate observations.
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4.4 Experiment - Market States Identification

In this Section, I report results for one experiment performed over a dataset of daily closing

prices of n = 2490 US stocks entering among the constituents of the Russel 1000 index

(RIY index) traded between 02/01/1995 and 31/12/2015. For each asset i = 1, ...,n, we

calculated the corresponding daily log-returns ri(t)= log(Si(t))− log(Si(t−1)), where Si(t)

is the closing price of stock i at time t.

As mentioned in the introduction of the Chapter, our primary goal is to efficiently

cluster noisy, multivariate time series into meaningful regimes, while controlling for tem-

poral consistency. In this experiment, I considered the entire dataset between 02/01/1995

and 31/12/2015 and estimated two referential market states. In order to explore the role of

each building block of our algorithm and to compare it to a traditional baseline method, we

investigate five models:

• a) ICC Model - Sparse precision matrix and temporal consistency

• b) ICC Model - Full precision matrix and temporal consistency

• c) ICC Model - Sparse precision matrix

• d) ICC Model - Full precision matrix

• e) Gaussian Mixture Model - Full covariance

Model (a) is the present proposed ICC methodology. Model (b) considers full precision

matrices Jk instead of sparse ones. Model (c) relaxes temporal consistency allowing for

γ = 0 in Eq. (4.6). Model (d) has γ = 0 full precision matrices. Finally, Model (e) is a

conventional Gaussian Mixture Model [27] that has been chosen as a baseline method given

the similarities with the ICC approach. We analysed and compared the resulting clusters

both in terms of market properties to which the two clusters are associated and in terms of

temporal consistency. First, we focused on a subset of 100 stocks chosen at random among

those that have been continuously traded throughout the observed period. Random choice

of the basket is to avoid selection bias. We then consider random resamplings to assess the

robustness when different stocks are considered.
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(a) Bull state correlation structure (b) Bear state correlation structure

Figure 4.4: Estimated sparse correlation matrices for bull and bear clusters. Given the TMFG al-
gorithm used in constructing these structures, the number of edges (non zero entries
of the correlation matrix) is constant and equal to 3N− 6, where N is the number of
variables or nodes in the graphical representation. The comparison among panel(a) and
panel(b) shows that many partial correlations increase significantly in Cluster 2 (stress
state) panel(b), consistently with the other clusters features analysed and validating our
findings coherently with previous results [6, 45, 138]

.

4.4.1 ICC Clusters Evaluation

We optimized the temporal consistency parameter by grid-searching as described in Sec-

tion 4.3.2 and used γ = 16 for ICC Sparse (a) and γ = 14.7 for ICC Full (b) in both the

experiments presented in this Chapter. The two referential precision matrices, J1 and J2,

obtained with this experiment and had 344 non-zero entries (dependency network edges)

of which 181 were common to both states showing a good level of differentiation but also

significant overlaps between the two market states. Figure 4.4 presents the the two cor-

responding correlation matrix showing a significant higher correlation in cluster 2 than in

cluster 1.

The number of points assigned to each cluster were respectively 3295 for cluster 1

and 1704 for cluster 2. Figure 4.7 reports with colored background the points’ assignment

for the two clusters. We can observe there is a good spatial consistency. For instance, the

average number of consecutive days in cluster 1 is 27.6 days. We also note that cluster

1 (blue background) tends to be associated with periods of rising market prices whereas

cluster 2 (orange background) appears more present during crisis and market downturns.

We indeed discovered that -automatically- the methodology assigns ‘bull’ market periods

(positive mean returns) to cluster 1 and ‘bear’ market periods (negative mean returns) to
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cluster 2. We can for instance observe in Figure 4.5a that 52 consecutive observations

during the 2001-2002 .com bubble crisis and 211 consecutive observations during the 2007-

2008 global financial crisis have been assigned to the bear cluster 2. From Fig.4.5b we

observe that the bull cluster 1 has, indeed, average positive returns for all stocks whereas

the bear cluster 2 has average negative returns. Furthermore, also the standard deviations

are different between the two cluster assignments.

(a) Time series segmentation results
(b) Mean (left) and standard deviation (right) of each

stock for each temporal cluster

Figure 4.5: Clustering segmentation for experiment 1 over the whole dataset. Panel (a) reports
the cumulative average return at each time t across the 100 stocks; in this picture, the
blue background corresponds to time instances assigned to Cluster 1 and the orange
background correspond instead to time instances assigned to Cluster 2. Panel (b) reports
mean and standard deviation of each of the 100 stocks respectively computed using the
returns assigned to each of the 2 clusters. We observe that Cluster 1 exhibits positive
mean returns (‘bull’ state) and lower levels of volatility for all the considered stocks,
while for cluster 2 all the stocks present negative mean returns (‘bear’ state) and higher
levels of volatility.

To compare the two clusters on a risk-adjusted basis, we computed the Sharpe ratio

[163, 164] for each stock in each cluster. We found for the bull cluster an average annu-

alized Sharpe ratio equal to 1.2, with 5th and 95th percentiles respectively equal to 0.84

and 1.78, while the bear cluster had average −0.96, with −1.03 and −0.24 as 5th and

95th percentiles. It is, therefore, clear that the two clusters have very different risk-return

profiles. Figure 4.6 reports the Sharpe ratios in the two clusters for the 100 stocks. In order

to verify robustness and generality of the results we computed the same quantities for 100

other randomly chosen baskets of 100 stocks. For all resampled baskets of stocks we found

a consistent clusterization in bull and bear regimes with Sharpe ratios for at least 75% of

stocks larger than zero for the bull state and significantly smaller than zero for the bear state.

Across the 100 resamplings, the two clusters had average number of elements respectively
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equal to 3451 and 1293.

Figure 4.6: Estimated Sharpe Ratio (SR) for each of the 100 stocks in the sample. The blue bars
report the SR computed from log-returns in Cluster 1, whereas the red bars report the
SR computed from log-returns in Cluster 2. The gold lines represent the significance
levels for which |SR| is significantly different form zero in cluster 1 or cluster 2 at a
significance level of 0.01.

4.4.2 GMM Clusters Evaluation

We estimated clusters and parameters based on the Gaussian Mixture Model (denoted as

GMM) as baseline method and we performed the same analyses and testing procedures as

in previous section. The segmentation and estimation procedure follows the Expectation

Maximization algorithm as described in Section A.1. In this classical model, full precision

matrices, J1 and J2, are considered and temporal consistency is not enforced. It is worth

empathizing that by neglecting the temporal dynamics we treat each observation as indepen-

dent and, therefore, maximizing the likelihood of the sample is equivalent to maximizing

the likelihood of each observation. Thus, when assigning clusters’ points in the E-step, each

observation is assigned to the cluster that maximizes his likelihood yielding a problem with

complexity O(T ).

Figure 4.7 reports the point assigned to cluster 1 with white background and orange

background the points’ assignment for clusters 2 with, respectively, 2766 and 2033 number

of points assigned to each cluster. The average number of consecutive days in cluster 1 is

9.3 and 14.4 in cluster 2, revealing a lower temporal consistency than observed in previous

section. From Figure 4.7b we can observe mixed average returns in the two clusters and

similar levels of volatility. Computing the Sharpe ratio for each stock in each cluster, we

found for cluster 1 an average Sharpe ratio equal to 0.015, with 5th and 95th percentiles

respectively equal to −0.023 and 0.055, while cluster 2 had average 0.003, with −0.02 and

0.03 as 5th and 95th percentiles. Figure 4.8 presents the computed Sharpe ratios for each
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(a) Time series segmentation results
(b) Mean (left) and variance (right) of each stock for

each temporal cluster

Figure 4.7: Clustering segmentation for experiment 1 over the whole dataset. Panel (a) reports the
cumulative average return at each time t across the 100 stocks; the white background
corresponds to time instances assigned to Cluster 1 and the orange background cor-
respond instead to time instances assigned to Cluster 2. Panel (b) reports mean and
standard deviation of each of the 100 stocks respectively computed using the returns
assigned to each of the 2 clusters. Differently from the results is Figure 4.5b, stocks do
not exhibit a structural different behaviour across the two clusters.

stocks in the two clusters and the corresponding 0.01 significance levels. It is possible to

observe that only seven stocks out of 100 in the sample present a Sharpe ratio significantly

bigger than 0 in cluster 1 while none is significantly bigger or smaller than 0 in cluster 2.

Figure 4.8: Estimated Sharpe Ratio (SR) using GMM clusters. SR for each of the 100 stocks
in the sample considering the GMM clusters. The gold lines represent the sig-
nificance levels at 0.01.

4.4.3 Sparsity and Temporal Consistency

In order to assess the role of sparsity and temporal consistency, we performed the same

analysis on the ‘alternative’ ICC Models (b)-(d) and the GMM (e).

Table 4.2 summarizes the number of stocks having positive/negative Sharpe ratio in

both clusters over 100 resamplings. In the table, each couple refers to the number of stocks

having positive SR in bull (left) and negative SR in bear (right) states. We found that, in

absence of temporal consistency constraints, both the ICC models (c, d) meaningfully clas-
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sify clusters with and without sparsity. However, when temporal consistency is considered,

ICC Full (b) is significantly affected by the constraint while ICC Sparse (a) provides robust

results. GMM delivered the worst clusters in terms of risk/return significance.

Median 5th percentile 95th percentile

GMM (69,64) (48,53) (75,81)

ICC Full, γ = 0 (77,78) (67,71) (92,98)

ICC Sparse, γ = 0 (85,87) (69,75) (96,95)

ICC Full, γ = 14.7 (73,74) (68,65) (78,80)

ICC Sparse, γ = 16 (75,81) (65,69) (86,90)

Table 4.2: Positive/Negative Sharpe ratio for (‘bull’,‘bear’) states. Median, 5th and 95th percentiles
obtained from 100 random resamples of the stocks composing the dataset.

Focusing on temporal consistency, Table 4.3 reports the number of switches and the

segment length resulting from the cluster assignments of the five models. When no temporal

consistency is enforced (c,d), ICC provides the less temporal consistent results with small

differences related to sparsity. This also explains the good results obtained by the models

in terms of risk/return significance. When constrained to be temporal consistent, ICC Full

(b) shows large variability in temporal consistency across samples with some having only a

few switches over the whole period and others having several hundreds. ICC Sparse (a) is

instead more consistent with a few hundred switches over the whole period which are less

than 1/3 of the switches in GMM (e).
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Number of Switches
Median 5th percentile 95th percentile

GMM 785 540 874
ICC Full, γ = 0 1203 992 2176
ICC Sparse, γ = 0 1157 727 1421
ICC Full, γ = 14.7 204 120 306
ICC Sparse, γ = 16 208 54 298

Segment length
Median 5th percentile 95th percentile

GMM 5.07 2.4 11.8
ICC Full, γ = 0 3.3 1.68 4.38
ICC Sparse, γ = 0 3.5 2.8 6.65
ICC Full, γ = 14.7 22.64 14.6 38.26
ICC Sparse, γ = 16 23.6 18 55.27

Table 4.3: Temporal consistency metrics. Number of switchings and Segment lengths over 100
resampligs.
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4.5 Market structure dynamics during COVID-19 outbreak

COVID-19 outbreak is an unprecedented event in modern human history with potentially

catastrophic human consequences. The pandemic has had and is still having profound ef-

fects on society, the economy and the financial system. In [155], we investigated the how

markets reacted to the covid-19 outbreak and particularly how correlation-driven market

states evolved and reacted to the instability and volatility of the market.

4.5.1 Methods

We considered the ICC methodology described in Section 4.3 to automatically extract four

inherent market-structures associated with a set of 623 equities continuously traded in the

US market during the period from February 1999 to March 20, 2020. The clustering was

performed by maximising the following adjusted log-likelihood:

L̃t,k=−
1
2
(xt−µµµk)

TJk (xt−µµµk)+
1
2

log |Jk|−γ1{Kt−1 6= k}. (4.6)

where xt ∈Rn,1 is the vector of log-returns at time t; µµµk ∈Rn,1 is the vector of the expected

values for cluster k; Jk ∈ Rn,n is the sparse precision matrix for cluster k computed via the

TMFG-LoGo method ; γ is a parameter penalizing state switching. In the present analysis

we use γ = 100, but results are consistent across a large range of values of this parameter.

Note that the present approach is slightly different from methodology outlines in Section 4.3

where the Mahalanobis distance was minimized instead. For the purpose of this experiment,

I focused on four clusters but the outcomes are robust with respect to the number of clusters

and analogous results can be obtained for two or six clusters as well.

4.5.2 Results

Fig 4.10 reports the clustering structure obtained. In the chart, the bars height illustrates

the daily mean market price (y-axis, in 103 $ units) while the bars’ color intifies the state

to which each daily observation is allocated. Note the central part of the 2008 crisis is

associated with a state (blue bars) that has again become prevalent during the last few weeks

spanned by the dataset (see inset). We compare the likelihood of this ‘crisis’ state with

the likelihood associated with the state which is instead prevalent during the long ‘bull’

period post 2008 (green bars). The result is shown in Fig 4.11 where the logarithm of

the ratio between the likelihoods of the crisis and bull states is reported. We note that
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the ‘bull’ state prevails until February 2020 producing a negative log-ratio, afterwards the

crisis-state becomes more representative and eventually becomes extremely dominant in

March. The timing of the surge in the dominance of the crisis-state is consistent with that

of the surge of US confirmed cases. It must be noted that this experiment focuses on the

first ‘outbreack’ covid phase and thus the number of covid related observations is clearly

very limited. However, the evidences from this experiment suggest the market features

experiences during the initial covid outbreack may ultimately be classified as distinct from

that of the 2008 crisis with some similarities with the late 90’ states.

Figure 4.10: Market states during the period 02/1999 to 03/2020. The y-axis, in 103 $ units, reports
and average daily market price and the color of the bars correspond to the market-state
assigned by the ICC procedure.
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Figure 4.11: COVID-19 infected cases vs. Market States likelihood. Comparison between the num-
ber of COVID-19 infected cases in US and the logarithm of the ratio between the
likelihood of the bull-state (green bars in Fig.4.10) and the stress-state (blue bars in
Fig.4.10). The log-likelihood ration is scaled by a factor 5 to keep the same y-axis.
The period is from December 15 2019 to March 20 2020

4.6 Discussion

In this Chapter I presented a novel methodology to define, identify and classify market

states. The ICC methodology should be intended as an open framework with several

methodological choices that can be modified and further investigated in future work. For

instance, the segmentation with the Mahalanobis distance turned out to be a powerful tool

in the reported experiments, however there is a broad range of possible metrics for cluster-

ing and experiments with Euclidean distance or Likelihood also produce interesting results.

Further, the choice of TMFG network over other possible information filtering networks or

other sparsification methodologies can be investigated. All these and other methodological

choices have been motivated by simplicity and intuitiveness.

Lastly, I reported two experiments to illustrate that the method is efficient and reliable

in identifying accurate and interpretable structures in multivariate, non-stationary financial

datasets. In the first experiment discussed in Section 4.4 we imposed only two clusters mo-

tivated by simplicity. The fact that they turned out to be respectively populated mostly with

average positive and negative returns associated with pre- and post-crisis periods was unex-

pected by us and opens potentials for completely novel ways to use multivariate analytics
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for the forecasting of stock market returns. This also greatly simplified the interpretation

of these states as ‘bull’ and ‘bear’ markets. In the COVID-19 case study in Section 4.5 we

allow for higher flexibility. Of course, in reality, there are more than two market states and

common definition of bull and bear markets are often blurry. Chapter 6 is devoted to the

analysis of how the number of states spanned by the model impacts the states as the system

evolves through time.



Chapter 5

Market States Forecasting and Trading

In this Chapter I apply the ICC methodology to forecast future states of the market form pre-
vious observations and present a simple application to equity systematic trading. The first
section of the chapter focuses on forecasting. I experiment using the states likelihood ratio
as predictor to forecast one-day-ahead market states. Experiments with both Logistic re-
gression and SVM framewroks are presented delivering an accuracy higher than 50%. The
second section presents a simple trading buy/sell strategy based on the forecasted market
state and shows that the strategy outperformed the buy-and-hold benchmark.

5.1 States Forecasting

In this Chapter I present a set of experiments where the ICC methodology is used to forecast

future states of the market from previous observations. To this end, we used the first 60%

of the data (from 01/02/1995 to 12/31/2007) as train set from which we extracted the two

referential precision matrices and means (J1, µµµ1) and (J2, µµµ2). We then forecasted the

probability that, given an observation at time t, the observation at a following time t + h

would belong to state k.

We used the log likelihood ratio of the two clusters [142] from a rolling window of

length ∆:

Rt =
t

∑
s=t−∆+1

Ls,1−Ls,2 , (5.1)

where Ls,k are the same as the adjusted log-likelihood L̃t,k in Eq. (4.6) but with γ = 0. In

our experiment, we considered ∆ = 28 days since this is the average length of segments

obtained from our clustering procedure in the first experiment. Figure 5.1 provides a vi-

sual representation of the likelihood ratio computed for each cluster and of its evolution as

compared to market movements. The vertical line divides the train set from the test set.
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Figure 5.1: Log likelihood ratio and mean returns across train and test sets. The log
likelihood ratio of the two states Rt was computed using using the ∆ =
28 days. The green vertical bar indicates the end of the train set and the
beginning of the test set. We estimated mathb f J1 and J2 in train and
held it fixed for the computation of Rt also in the test set. The black
horizontal line identifies Rt = 0 level, i.e. the level above which the bull
state is more likely. Coherently with previous findings, we can identify
persistent market states with a more frequent bull market and regions of
bear market.

We learned two models: a Logistic Regression and a Support Vector Machine with

radial basis function (RBF) kernel. To assess the goodness of our approach we compared

test set predictions with the classification performed over the whole period in the first ex-

periment (see Figure 4.7). We used three metrics [92] to assess the performance of our

classification method: the True Positive Rate T PR (number of elements correctly assigned

to cluster 1 divided by total number of elements in cluster 1), the True Negative Rate T NR

(number of elements correctly assigned to cluster 2 divided by total number of elements in

cluster 2) and Accuracy ACC (number of correct predictions in cluster 1 or 2 divided by

total number of elements).

5.1.1 Logistic Regression

In a first experiment, we fit a logistic regression of market statesKt against the log likelihood

ratioRt . This model can be written as

P(Kt+h = 1,2 | Rt = x) =
1

1+ e−(β0+β1x)
, (5.2)

where the parameters β0 and β1 are estimated through maximum likelihood [27]. We esti-

mated all parameters (J1, J2, µµµ1, µµµ2, γ , β0 and β1) in the train set and then we used these
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parameters to predict, in the test set, the next day state given the log-likelihood ratioRt = x.

Specifically, we predict K̂t+1 = 1 if P(Kt+1 = 1 | Rt = x) > 0.5 and K̂t+1 = 2 otherwise.

For instance, for the day 30-Jan-2008 (test set) we predicted a bear state with probability

P(K30−Jan = 2 | R29−Jan) = 0.72, whereR29−Jan was computed using the observations from

02-Jan to 29-Jan-2008 (∆ = 28 days, all in the test set) and the parameters µµµk, Jk, γ , β0 and

β1 were the ones calibrated on the train set with data until 12/31/2007.

Computing the performance metrics, we obtained T PR = 0.94, T NR = 0.28 and

ACC = 0.66 in the test set. In order to test for the robustness of our method, we ran-

domly resampled the 100 stocks and performed the classification experiment considering

the new dataset. We repeated this process 100 times and stored the three performance met-

rics T PR, T NR and ACC. Table 5.1.1 presents a summary of the results obtained. As we

can see, ACC is higher than 50% and T PR is higher than 80% at the 5th percentile, however

T NR is low with median 38% and above 52% only at the 95th percentile. This indicates

that there is a tendency to over-assign time-instances to cluster 1 (bull state) and conversely

missing predictions for the less frequent bear state. Nonetheless, we verified (by using the

hypergeometric distribution as reported in [11]) that, despite their low values, these T NR

are statistically significant at 0.01 level indicating that there is, indeed, significant predic-

tion power also for the bear state. Let us stress that the present forecasting exercise is not

optimized and there are several ways these performances can be improved. For instance,

we verified that by introducing an adjustable threshold different from 0.5 in the logistic re-

gression we obtain better results for T NR and ACC. However, this is beyond the purpose of

this experiment where we privileged simplicity over performances.

Median 5th percentile 95th percentile

T PR 0.93 0.85 0.99

T NR 0.38 0.13 0.52

ACC 0.69 0.53 0.85

Table 5.1: Out-of-sample performance metrics of LR classifier. Median, 5th and 95th

percentiles obtained from 100 random resamples of the stocks composing
the dataset.
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5.1.2 Support Vector Machine

In a second experiment, we learned a Support Vector Machine considering market states Kt

as class labels and the log likelihood ratioRt as feature. In order to exploit and analyse non

linear relations, we considered a RBF kernel. Considering our two classes classification

problem, we shall define the n− th target class (clusters) label as tn ∈ {−1,1} such that

tn = −1 if the n− th observation belongs to cluster 0 and tn = 1 otherwise. The Support

Vector Machine model learns a decision bound of the form:

y(x) = wT
φ(x)+b (5.3)

where w is the parameter to be estimated; b is an explicit bias term; φ(x) is a feature

space transformation such that the kernel function is a RBF kernel: K(x,x′) = φ(x)T φ(x′) =

k(||x− x′||). The RBF kernel nonlinearly maps observations into a higher dimensional

(virtually infinite) space and it can thus handle cases in which the relationship between

features and class labels is non linear. Moreover, the RBF kernel is a convenient choice due

to the lower number of parameters to be estimated (C,γ) with respect to a polynomial kernel

and due to the fewer numerical difficulties [175].

The model is estimated solving a quadratic programming optimization problem de-

scribed in Appendix C. First, we optimized the kernel parameters (C,γ) by grid searching

the parameter space γ ∈ [1,200] and C ∈ [1,100] with unitary steps and by cross-validating

within the train set. Given the optimal parameters γ∗ = 7 and C = 12, we then estimated the

parameters (w and b) of Eq. (5.3) in the training set and used these parameters to forecast

the test set according to the sign of y(x). Specifically, we predict K̂t+1 = 1 (that is, tt+1 = 1)

if y(xt) > 0 and K̂t+1 = 0 otherwise. In practice, the expression for y(x) is computed con-

sidering the dual representation and by means of the support vectors (Eq. (C.16)) coming

from the dual Lagrangian as described in Appendix C.
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Median 5th percentile 95th percentile

T PR 0.60 0.52 0.79

T NR 0.40 0.23 0.58

ACC 0.53 0.5 0.78

Table 5.2: Out-of-sample performance metrics of SVM classifier. Median, 5th and
95th percentiles obtained from 100 random resamples of the stocks com-
posing the dataset.

We computed the same prediction metrics as from previous section obtaining T PR =

0.63, T NR = 0.41 and ACC = 0.55 in the test set. Table 5.1.2 presents, instead, the results,

all statistically significant at 0.01 level, for the same metrics for the 100 resampligs. ACC

and T PR have, respectively, 0.53 and 0.6 median, with T PR being above 23% at 5th per-

centile. SVM produced clearly more balanced results and the over prediction of cluster 1

noticed in the LR experiment does not appear.

5.2 Trading Strategy and Backtesting

In this section, I present a simple trading strategy coming from a direct application of our

methodology and inspired by the discovered features of the two clusters. As for the pre-

diction experiments in Section 5, we used the first 60% of the data (from 01/02/1995 to

12/31/2007) as train set from which we extracted the two referential precision matrices and

means (J1, µµµ1) and (J2, µµµ2) and we held them fixed throughout the whole test set. Note that

this is a conservative and convenient assumption motivated by simplicity and expository

clarity, since in real trading conditions new information would be included and a rolling or

sliding window scheme would be considered to include each daily new observation in the

estimation procedure. In order to focus on the results of our market states forecast ability

and to obtain a performance that is not affected by other allocation decisions, we limit our

analysis to buy/sell timing decisions without considering optimal allocation procedures. To

this extent, we considered the equally weighted portfolio:

weq
i =

1
N

(5.4)
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where N is the number of stocks in portfolio, and, in our application, N = 100 and the

the return at time t on the equally weighted portfolio is given by the average return on the

market:

req
t =

N

∑
i=1

weq
i xi,t =

1
N

N

∑
i=1

xi,t (5.5)

Other than being a convenient assumption for our experiment, the equally weighted portfo-

lio provide good diversification and robust performances [78, 167] other than being often

considered as benchmark among academics and practitioners [63].

In Section 5.2.1 we present the strategy and the backtest in both training and test set as

compared to the equally weighted portfolio; in Section 5.2.2 we performed a series of tests

to asses the general validity of our strategy and robustness of the results presented.

5.2.1 Strategy and Results

One of the main improvements of our methodology with respect to classical latent variables

modelling approaches when applied to financial data is the spatial consistency of the dis-

covered states. As discussed in Section 4.3, adjacent observations are encouraged to belong

to same state and we obtained an average cluster length (subsequent observations assigned

to the same cluster) of 28 days, as outlined in Section 4.4.1. This result is coherent with the

documented persistence of returns’ correlation structure (Section 2.2.3) and with the invest-

ment objective of minimizing rebalancing of portfolios. To exploit this facts, we designed

a simple trading strategy considering again the log likelihood ratio Rt defined in Eq. (5.1)

with rolling windows of length θ = 28 days. The trading rule is a decision threshold on the

value ofRt :

T S(Rt) =


buy forRt ≥ σR

4

sell forRt <
σR
4

(5.6)

where σR is the standard deviation of Rt . Following Eq. (5.2.1), at time t +1 we are

long the equally weighted portfolio if Rt ≥ σR
4 and we are short otherwise. The financial

intuition behind this trading rule is that bull states are more frequent and last longer than

bear states. Moreover, short (sell) positions are riskier than long position. We require,

therefore, a significant evidence to enter a short position.

We estimated the parameters (J1, J2, µµµ1, µµµ2, γ and σR) in the training set and used

this to computeRt in both training and test set and to execute the strategy Eq. (5.2.1).
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(a) Backtesting, train + test sets. (b) Backtesting, test set only.

Figure 5.2: Strategy cumulative return compared to equally weighted portfolio. In-sample and out-
of-sample performance of the proposed strategy compared to the benhmark equally
weighted portfolio. Panel (a) shows the result over the whole time series and Panel
(b) present the performance considering only the test set.

Figure 5.2 presents the cumulative return of the strategy as compared to the equally

weighted portfolio in both training and test set while Table 5.2.1 presents a summary of

the risk-return performances in test set only. We found that our strategy outperformed the

equally weighted portfolio by 69.46% within the 8 years spanned by the test set, from

01/01/2008 to 30/12/2015, and by more than 120% considering also the training set. It is

interesting to notice how a good portion of the overperfomance is due to the ability of the

strategy to predict the main crisis events (1998, 2001-2003, 2008-2009, 2011). The two

performances presented a similar level of volatility in test set with standard deviations of

1.57% for our strategy and 1.59% for the equally weighted portfolio leading to a Sharpe

ratio of, respectively, 1.75% and −0.145% in test set. It is worth empathizing that these are

daily metrics and that a daily SR of 1.75% corresponds to an annual of 0.3 considering 252

trading days a year.

Average Return Volatility (σ ) Sharpe Ratio

Strategy 0.029% 1.57% 1.75%

EQ Portfolio -0.0025% 1.59% -0.145%

Table 5.3: Performance metrics of the strategy and equally weighted portfolio. Out-
of-sample risk-return performance metrics of the proposed strategy com-
pared to the benchmark equally weighted portfolio. Daily average return,
volatility and Sharpe Ratio obtained from the backtested series.
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5.2.2 Robustness testing

Backtesting procedures and results are often considered to be not reliable by practitioners

and academics since the obtained performances might be the result of specific conditions or

selected variables that undermine the general validity of a strategy and do not apply in other

circumstances. However, when considering financial time series, overperforming the ’aver-

age market return’ (that is, the ’average investor’) implies the existence of information or

structures not considered by the market [63, 66] and the existence of sources of inefficien-

cies that can be specific to only certain asset classes or individual securities. A complete

discussion of market efficiency is beyond the scope of this thesis, but it is important to

remind that the general validity of a strategy or investment approach should be assessed

carefully and that profitable strategies can be, and often are, not generally valid.

In order to test for the robustness of our strategy, in this section we present two tests in

which we tweak relevant variables of our procedure and a third test to compare the results

obtained by our methodology to a trivial clustering procedure.

Boostrapping

The first test conducted aims at validating our procedure and the obtained results consid-

ering different stocks. To this extent, following an approach similar to the validating pro-

cedure in Chapter 5, we randomly resampled the 100 stocks, segmented and clustered the

observations following the procedure in Section 4.3 and backtested the strategy described

in previous section. We repeated this experiment 200 times and reported the corresponding

backtest results as compared to the equally weighted portfolio. Figure presents the backtest

results for all of the 200 resamplings. We found that in 172 out of 200 cases the strategy

outperformed the equally weighted portfolio. Panel (a) shows that the backtests tend to

perform in a similar fashion and in all cases to perform well during market crises (for ex-

ample 2002-2003 or 2008-2009) confirming a good ability of the strategy to interpret the

main crises events with different stocks considered, while Panel (b) suggests that under-

performances are mainly accumulated during bull market periods (1998-2000, 2003-2007,

2010-2015) suggesting a possible high sensitivity to short term market volatility.

Table 5.2.2 presents a summary of risk and return metrics computed for the 200 resam-

pled sets on the test set. We found a similar volatility levels among the resamplings (1.63%

and 1.45% as 95th and 5th percentiles), coherently with the similar backtest paths discussed

from Figure 5.3 panel (a). On the daily average return size, the mean average return was



5.2. Trading Strategy and Backtesting 83

(a) Backtest for 200 resampled different sets of 100
stocks.

(b) Performance spread with respect to an equally
weighted portfolio

Figure 5.3: Boostrapping backtest results. 200 resampled equity sets with dimensionality fixed at
100 stocks. Estimation window 28 days. Panel (a) shows the backtests in both train
and test sets for each resampling; Panel (b) the results relative to the equally weighted
portfolio.

0.015% with a 95th and 5th percentiles of, respectively, 0.032% and 0.003%, showing that

the 5th percentile still provides a higher average returns than the equally weighted portfolio.

Average Return Volatility (σ )

Mean 0.015% 1.59%

5th 0.003% 1.45%

95th 0.032% 1.63%

Table 5.4: Out-of-sample risk-return performance metrics. 200 resamplings consid-
ered. Mean, 5th and 95th percentiles of daily average return and volatility
from the backtested series of the 200 resamplings.

Dimensionality Effect

In this second test, we analysed the effect of changing the number of stocks included in

sample. We considered data panels composed by 50, 200 and 500 stocks chosen at random

from the entire dataset. Other than adding or subtracting individual stocks, changing the

number of variables affects the estimated correlation structure given the fixed sparsity level

imposed via TMFG-Logo (see Section 2.2.2). Figure 5.4 presents the cumulative return of

the strategy obtained for each data panel (panel(a) refers to the 50 stocks sample, panel(b)

to 200 and panel(c) to 500). The figure shows that, in all cases, our strategy significantly

outperformed the equally weighted portfolio, proving it robust to dimensionality.
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(a) Backtesting 50 stocks (b) Backtesting 200 stocks

(c) Backtesting 500 stocks

Figure 5.4: Dimensionality Effect. Strategy performance with varying number of stocks included in
sample: 50 (panel(a)), 200 (panel(b)) and 500 (panel(c)) stocks, compared to the sample
average return. Estimation window 28 days

Trivial comparison

In this section we compared the results of our methodology with the performance obtained

using the parameters from a trivial clustering procedure. We artificially created the two

clusters by assigning to cluster 1 observations corresponding to positive returns and nega-

tive returns to cluster 2. We computed the trivial clusters in the train set and used the same

strategy as in Eq. (5.2.1). Figure 5.5 panel(a) shows that the backtest produced worse re-

sults, but comparable to those obtained with our clustering procedure. It is crucial to notice,

however, that this procedure provided much more unstable results, with 1149 switching in

the backtest as compared to the 338 of the our methodology. Indeed, Figure 5.5 panel(b)

presents the negative log likelihood values of the two states computed using the trivial clus-

tering parameters and showing the noisy behaviour with frequent overlapping. This is a

significant difference with respect to our methodology confirming the goodness of our tem-

poral consistency and filtering approaches.
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(a) Backtesting using trivial clusters
(b) Trivial clusters likelihood observations

Figure 5.5: Trivial clusters comparison. Cumulative return vs weighted average portfolio (panel
(a)) and clusters’ likelihood for 100 stocks sample (panel (b)) obtained considering the
trivial clusters.

5.3 Discussion

In this Chapter I applied the ICC methodology to forecast future states of the market form

previous observations and present a simple application to equity systematic trading.

First, I experimented on the forecasting ability of our procedure using the log-

likelihood ratio from the two clusters as sole feature to predict the next day market state

represented by a binary class label. We fit two models, a logistic regression and a Sup-

port Vector Machine, to describe the relationship among these two variables. In both cases

we obtained an accuracy level higher than 50%. Using the logistic regression model, we

obtained an over-assignment of the bull state, but still significant prediction power for the

bear state. SVM provided more balanced results, but still providing below 50% accuracy

in predicting the bear state. This experiment shows that our procedure provides significant

prediction power. Provided that this accuracy levels are achieved with the use solely of the

information from past returns, as discussed in Chapter 7, one of the main contributions of

our approach to the forecasting problem is represented by the efficiency of the procedure in

exploiting information from the correlation structure.

In the second part of the chapter, I presented an application of the ICC methodology to

equities trading. The application consists of a long/short strategy without optimal allocation.

We backtested the strategy and compared the results to the performance of a buy-and-hold

strategy with equally weighted portfolio allocation. We found that our methodology sig-

nificantly outperformed the equally weighted portfolio and, in particular, the strategy has

shown very reactive to main crises events. I presented a series of tests to assess the ro-
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bustness of our methodology. The resulting performances are stable and robust to different

variables tweaks, proving the methodology to be reliable when considering U.S. large cap

equities datasets.



Chapter 6

Number of States

In this Section we analyse the main hyperparameter of the ICC methodology: the number
of market states. The number of regimes underlying the financial system is certainly not a
new problem. However, the literature developed on the topic is either leading to conflicting
conclusions or based on the common belief in the financial industry that markets are only
driven by a few types of states. In this chapter I present a series of experiments aimed
at testing the significance of increasing number of regimes used to model equity returns
and how this parameter relates to the number of observations and the time consistency
of the states. The experiments investigate a) the likelihood of the overall model as more
states are spanned and b) the relevance of additional regimes measured by the number of
observations clustered. I conclude that the multivariate structure of the system changes
through time, leading to new “states” being required to describe the system accurately as
new observations are considered.

6.1 Introduction

In Section 4 I have introduced and defined the ICC methodology as an efficient and sta-

ble method to segment multivariate time series into homogeneous clusters. An additional

advantage of the method is that it only requires the input of two hyperparameters: the tem-

poral consistency γ and the number of states k. The number of clusters to be considered -

i.e. the number of market states into which observations are clustered - is no doubt the most

influential hyperparamenter in the ICC method, other than being, more generally, a natural

research question of high theoretical and practical relevance.

Considering as reference point the literature on hidden Markov models and state space

modelling in finance, however, it does not provide a clear answer to this question, showing

that the selection of number of states even within the realm of classical time series ap-

proaches is still today an unanswered question. Many authors assume that two regimes are

enough to correctly capture the evolution of financial markets (see, for example, [1, 5, 88]),
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borrowing from common believes and industry practices of ‘bull’ and ‘bear’ markets. This

clearly remains a rough simplification of a much more complex reality and the subject suf-

fers a lack of attention despite its obvious interest for both academics and practitioners.

To the best of our knowledge, only a few authors have addressed directly this issue,

leading, however, to conflicting results. [178] selects the number of states based on the

marginal improvement of the model in-sample log likelihood, leading to the selection of

three states. [72] analyses the number of states required to explain returns’ characteristics

of different asset classes independently, whilst still from a univariate standpoint. They con-

clude that two states suffices to explain the returns on only a few asset classes (exchange

rates, commodities, US and EMU government bonds, etc..) and up to five states are re-

quired to capture the dynamics of other asset classes (high yield bonds). [134], which uses

a definition of market states in the context of complex systems and thus leveraging the corre-

lation structure of multiple variables, proposes a top down subsequent in-sample clustering

(subject to a threshold hyperparameter), leading to 8 different market states being selected.

6.2 Methodology

In this Chapter, I directly address the selection of Number of States in the context of the

ICC methodology. I study the overall likelihood delivered by the model both in- and out-

of-sample as the number of states changes and for different values of temporal consistency

γ . Moreover, as I have discussed in Section 3, inference decisions on financial variables are

intimately linked to the time component both in- and out-of-sample. As such, I also analyse

what is the impact of different numbers of observations and time spanned across samples.

In our ICC methodology, the number of states serves in essence as a selection criteria

for the parametrization of the model. Every ‘market state’ represents a probability distri-

bution into which observations can be clustered and, therefore, considering an increasing

number of market states translates into introducing more parameters into the model. To

better understand the underlying mechanics, consider the example provided in Figure 6.1.

This is a one resampling, two states example - i.e. I just considered two states, sampled

randomly 100 stocks and a starting date. I then trained the ICC model over 1000 daily
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observations in-sample, resulting into two sets of means and covariances being estimated. I

then tested the features of the states over 500 observations out-of-sample. This is done by

maximizing the out-of-sample likelihood subject to the time consistency constraint, but us-

ing the parameters estimated in sample. In other words, we simply assign the observations

to one of the two clusters by running the Viterbi algorithm (as described in Section 4.3.2).

Figure 6.1 aims at displaying how different states impact the likelihood of the model,

the features of the corresponding clusters and highlights the relevance of time spanned and

temporal consistency. Figure 6.1a presents the segmentation returned by the model. The

chart reports the cumulative average return of the 100 sampled stocks with each daily ob-

servations coloured according to the market state (‘Cluster 1’ or ‘Cluster 2’) into which

it has been clustered. By simply looking at this chart, it is intuitive that ‘Cluster 2’ con-

tains what resemble bullish observations, with positive returns and up-warding trend, and

‘Cluster 1’ contains the GFC crisis period and more generally negative returns observations.

Figure 6.1c presents the distribution of the two states , both in-sample and out-of-sample,

and Table 6.1d reports the corresponding annualized Mean, Standard deviation and Sharpe

Ratios, confirming the the bull and bear intuition. Perhaps more interestingly, Figure 6.1b

highlights the underlying decision process of the model, showing the observation-wise like-

lihood of each cluster. In other words, this figure is the ‘real world’ representation of the

sketched Figure 4.3. It is worth emphasizing that this is the final result of the training pro-

cess discussed in Section 4. Nevertheless it provides clarifying insights on how the number

of states impact the goodness of the model: in essence, clusters compete with each other to

deliver the highest likelihood given the observation. Looking at Figure 6.1b, the blue ‘Clus-

ter 2’ likelihood is significantly higher than the other in most of the bullish observations.

A second observation is that the ‘Cluster 2’ likelihood is also much more volatile than that

of Cluster 1, with spikes or outliers signalling that the Cluster 2 parameters well describe

the 2008-2009 GFC period and only a few other observations in our sample. Our intuition

is that Cluster 1 mostly represents the crisis period which is indeed different from other

bearish moves of the market.

In the remainder of this Chapter, I will address how likelihood and clusters’ perfor-

mances are affected by the number of states at first keeping the temporal consistency pa-

rameter γ = 0, and then studying the impact of γ and the time spanned on the decision
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(a) Time series segmentation results (b) Log Likelihood of both clusters observation-wise

(c) Empirical distribution of each cluster

µ σ SR

Train Set
Cluster 1 -27% 0.58 -0.47
Cluster 2 14% 0.20 0.73

Test Set
Cluster 1 -12% 0.61 -0.20
Cluster 2 24% 0.24 0.98

(d) Mean, Standard Deviation and Sharpe Ratio for 2 estimated
market states, in- and out-of-sample.

Figure 6.1: Impact of Market States - Two States Example. Panel (a) reports the cumulative daily
average return across the 100 randomly sampled stocks and the bars colour scheme
reports the cluster assignation. Panel (b) reports the daily observation-wise likelihood
computed for each of the two states. Panel (c) reports the histogram of the observations
clustered into each market state in- and out-of-sample. Panel (d) reports the performance
metrics for 2 estimated market states, in- and out-of-sample.

process. To obtain results as unbiased as possible, we will employ the resampling proce-

dure discussed multiple times throughout this thesis: 500 resamplings, each time I randomly

sample 100 stocks and a starting date. To assess the quality of the clusters and the model

as whole, I will consider the average likelihood across 500 resamplings, average mean,

standard deviation and Sharpe ratio, testing the significance of the Sharpe ratios across re-

samplings.

I considered the same dataset described and used in Section 3, consisting of daily

closing prices of US stocks entering among the constituents of the S&P 500 index between

02/01/1997 and 31/12/2015. Same resampling methodology is also used in conducting

the experiments described through the Chapter, with 500 resamplings in which I randomly

select 100 stocks and a random trading day indicating the end of the training set.
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6.3 Results

6.3.1 Likelihood

The first measure we studied to asses an “optimal” number of states is the average likelihood

in-sample and out-of-sample as we allow the model to consider more states. In this first

experiment, I keep the number of observations constant to 500 in-sample and 500 out-of-

sample observations and the temporal consistency parameter γ = 0 in order to only analyse

the effects of increasing number of states on the mechanics of the ICC estimation keeping

other variables fixed. Figure 6.2 summarises our findings.

Figure 6.2a reports the average likelihood across the 500 resamplings and consider-

ing the whole sample of 500 observations in- and out-of-sample, as the number of states

considered increase. In train set, as expected, the likelihood increases monotonically as

the number of states increases. This is to be expected as adding states indeed introduces

more parameters and thus tends to overfit the train set. More interestingly, out-of-sample

the model exhibits a sharp increases in likelihood from 1 to to 2 states and then decreases

almost monotonically. This implies that, on average when γ = 0 and 500 observations in-

and out-of-sample are considered, two states delivered the overall best likelihood. It is also

worth noticing that the likelihood of the model remains high, albeit not at his maximum, for

3, 4 and 5 states as well, declining sharply after that, suggesting a clear overfit of the train

set.

An additional question to asses the relevance of the states is whether a good num-

ber of observations are contained in each cluster, signalling therefore that they capture a

meaningful market feature, or weather only a handful of observations are clustered, sig-

nalling that the cluster is somehow ‘residual’ and made up of outliers. Figure 6.2b reports

on the y-axis how many clusters contain 90% and 75% of the observations as the model

is allowed to consider more states (x-axis). As previously noted, the training procedure

clearly tends to overfit the training set efficiently using all clusters as the number of states

increase. Even when 15 states are considered, 90% of the train observations are distributed

across approximately 14 clusters. Very different picture for the test set. Only 2 to 4 states

are used efficiently, with 75% and 90% of the observations being contained in maximum,

respectively 4 and 6 states even when 15 states are trained.
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(a) Time series segmentation results
(b) Mean (left) and variance (right) of each stock for

each temporal cluster

Figure 6.2: Model likelihood and number of observations allocated to each state across 500 resam-
plings. Panel (a) reports the overall model likelihood (y axis), in- and out-of-sample as
the number of states considered by the model increases (x axis). Panel (b) reports the
number of states (y axis) containing 75% and 95% of observations as the number of
states considered by the model increases (x axis).

6.3.2 Performance Metrics

While the models’ likelihood is paramount for the purposes of our analysis and certainly of

primary importance for my conclusions, it is still relevant to observe what features charac-

terize market states. To this extent, Table 6.3.2 reports the average annualized mean (µ),

standard deviation (σ ) and Sharpe Ratio for each cluster corresponding to different number

of states spanned by the model. The columns report the number of states considered by the

model and each row identifies a different cluster. It is worth remarking that these metrics are

uniquely concerned with the mean and variance of the discovered clusters which certainly

do not offer a complete market overview. Nevertheless, being these the most commonly ob-

served market features, this section aims at gaining intuition on the market states discovered

by the model and on their effects as the number of states considered increases.
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Number of States Trained

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Cluster1

µ -2.83% -3.01% 1.61% 10.12% -5.87% -0.52% 7.93% 0.68% -0.58% 1.06% 4.81% 1.16% 6.21% 9.99%

σ 0.551 0.361 0.357 0.349 0.363 0.345 0.338 0.341 0.344 0.351 0.331 0.336 0.321 0.32

SR -0.9 -1.4 0.75 4.65 -2.55 -0.3 3.75 0.3 -0.3 0.45 2.25 0.6 3 4.95

SR % signi f icance 98.2 96.138 28.166 97.204 97.16 84.166 97.162 5.186 0.152 16.14 76.136 13.16 71.148 96.182

Cluster 2

µ 3.06% 6.16% 4.5% 0.09% 5.3% 5.81% 1.53% 2.56% 1.41% 9.71% 11.13% 3.8% 13.83% 2.75%

σ 0.34 0.355 0.352 0.352 0.357 0.334 0.328 0.345 0.353 0.344 0.334 0.333 0.313 0.312

SR 0.45 2.7 2.1 0 2.4 2.7 0.75 1.2 0.6 4.5 5.25 1.8 3.45 1.35

SR % signi f icance 99.1 97.186 98.17 25.182 76.156 68.168 21.166 6.172 3.15 98.152 99.178 23.15 99.126 31.146

Cluster 3

µ 1.75% 0.83% -2.94% 0.71% 5.21% 2% 1.78% 7.65% -0.9% -2.79% 3.75% 1.77% 5.34%

σ 0.369 0.357 0.363 0.365 0.341 0.337 0.34 0.353 0.34 0.334 0.328 0.321 0.328

SR 0.75 0.3 -1.45 0.3 2.4 0.9 0.9 3.45 -0.45 -1.35 1.8 0.9 2.55

SR % signi f icance 1.16 2.194 98.162 0.186 66.174 23.156 14.17 99.142 13.172 66.162 43.128 23.158 57.162

Cluster 4

µ -2.01% 1.03% 9.67% -3.4% 4.52% -0.6% -1.12% 6.22% -3.12% 16.74% 1.24% 0.32%

σ 0.343 0.341 0.347 0.34 0.328 0.357 0.359 0.35 0.331 0.337 0.317 0.324

SR -0.45 0.45 4.35 1.05 2.25 -0.3 -0.45 2.85 -1.5 7.95 0.6 0.15

SR % signi f icance 98.134 13.176 99.174 98.168 69.158 12.176 12.168 88.148 78.176 99.134 17.162 4.134

Cluster 5

µ 0.98% 7.73% 5.19% 1.71% 9.65% -1.6% -8% 11.7% -5.94% 5.97% 11.02%

σ 0.351 0.358 0.346 0.335 0.345 0.355 0.347 0.335 0.336 0.321 0.315

SR 0.45 3.45 3.3 0.75 4.5 -0.75 -3.6 5.55 -2.85 3 5.55

SR % signi f icance 2.156 99.184 87.162 27.154 98.132 2.144 99.48 92.61 88.146 63.152 89.41

Cluster 6

µ 3.07% 13.81% -2.09% -3.24% -4.12% 2.45% -1.13% -0.82% 2.14% 4.79%

σ 0.349 0.338 0.336 0.344 0.355 0.348 0.318 0.328 0.304 0.315

SR 1.15 6.45 -1.05 -0.6 -1.8 1.05 -0.6 -0.45 1.05 2.4

SR % signi f icance 16.172 99.44 0.154 86.182 98.142 22.134 29.162 11.6 18.146 48.142

Cluster 7

µ 2.9% 3.62% 4.01% 3.84% 8.83% -4.13% 8.7% 1.78% -0.8%

σ 0.338 0.333 0.344 0.346 0.342 0.325 0.33 0.319 0.32

SR 1.35 1.8 4.2 1.8 4.05 -1.95 4.2 0.9 -0.45

SR % signi f icance 26.182 12.174 22.168 20.13 88.156 91.124 96.134 2.16 3.174

Cluster 8

µ 8.07% 0.09% 0.25% 4.57% 11.83% -2.29% 3.86% 0.18%

σ 0.34 0.342 0.353 0.354 0.324 0.338 0.317 0.324

SR 3.75 0 0.15 2.1 5.85 -1.05 1.95 0.15

SR % signi f icance 84.174 2.4 3.6 49.158 98.156 85.136 72.4 1.152

Cluster 9

µ -1.29% 8.91% 1.8% 7.84% -7.5% 5.23% -0.6%

σ 0.34 0.349 0.351 0.325 0.328 0.311 0.315

SR -0.6 4.05 0.75 3.9 -3.6 2.7 -0.3

SR % signi f icance 2.176 83.178 2.12 79.11 98.128 92.14 8.124

Cluster 10

µ 0.52% -2.88% -2.59% 8.79% -7.04% 0.71%

σ 0.342 0.36 0.329 0.335 0.313 0.316

SR 0.3 -1.2 -1.2 4.2 -3.6 0.3

SR % signi f icance 4.16 26.13 32.148 96.13 99.154 6.5

Cluster 11

µ 4.3% -2.31% -6.57% -7.81% 3.54%

σ 0.353 0.324 0.331 0.324 0.318

SR 1.95 -1.2 -3.15 -3.9 1.8

SR % signi f icance 76.15 68.134 97.148 99.13 42.142

Cluster 12

µ -2.92% -0.35% 0.33% -4.67%

σ 0.327 0.323 0.315 0.322

SR -1.35 -0.15 0.15 -2.25

SR % signi f icance 64.0 2.14 5.162 74.148
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Number of States Trained

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Cluster 13

µ -1.41% -5.43% 5.08%

σ 0.335 0.309 0.317

SR -0.6 -2.85 2.55

SR % signi f icance 48.136 68.14 56.144

Cluster 14

µ -1.05% 4.38%

σ 0.313 0.321

SR -0.6 2.1

SR % signi f icance 22.142 38.154

Cluster 15

µ 1.7%

σ 0.315

SR 0.9

SR % signi f icance 16.2

Table 6.1: TMFG portfolios performance metrics. Average annualized returns, standard deviation
and Sharpe ratio of a daily rebalancing minimum volatility strategy. Optimal weights
computed using using TMFG precision matrices. Median, 5th and 95th percentiles across
100 resamplings.

The first observation from Table 6.3.2 is that, as observed in multiple experiments through-

out this thesis (e.g. Section 4.4.1 or Section 6.3.1), when only two clusters are considered by

the model, they tend to align to the common definitions of bull and bear markets. The table

shows that with two states (first column), the two clusters exhibit respectively positive mean

returns / low variance and negative mean return / high variance. As the number of states

considered by the model increases, it is still possible to identify a bull and bear state, but

their features are accentuated - i.e. higher (lower) mean return and lower (higher) variance.

In other words, the observations get more concentrated, with the clusters becoming more

specific. The additional states, at the contrary, tend to display non extreme mean-return

features. In the 3 states case, ‘Cluster 1’ and ‘Cluster 2’ clearly resemble our description of

bear and bull states, while ‘Cluster 3’ displays a moderately positive mean return, a stan-

dard deviation slightly above that of the bull state and a Sharpe Ratio often not significantly

higher than zero - features that could be interpreted as those of a sideways, directionless
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market. These less extreme features are displayed by most of the additional states when the

number of clusters spanned by the model increases until around 8 states. Similarly, while

the SR significance remains high (never below 95%) for the bull and bear states , I found

a non significant SR for most of the additional market states. When more than 8 states

are spanned by the model, other ‘extreme’ states are identified by the procedure, i.e. more

than one very high (very low) mean return states are discovered. The SR significance of

all the ”extreme” states diminishes, with the additional one being low in significance. Our

interpretation is that these additional states are used to capture outliers, or, more generally,

only a few observations of the bull and bear clusters with particularly extreme features.

Taking out outliers from the bull and bear states increases the likelihood of the model and

homogeneity if the clusters, being however increasingly prone to overfitting.
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6.3.3 Effects of number of observations and time spanned

Having assessed the in- and out-of-sample likelihood of the model when different numbers

of states are considered in a static and basic setting (i.e. γ = 0 and fixed estimation and

testing windows of 500 observations), we turned our analysis to the effect of time.

Figure 6.3 reports the average likelihood (6.3.a and 6.3.b) and the number of states con-

taining 90% of the observations (6.3.c and 6.3.d) both in- and out-of-sample. The in-train

results are coherent with what we reported in Section 6.3.1 and Section 3.4.1 and thus come

perhaps with no surprise. The likeilhood in train is increasing with the number of states

and decreasing with the number of observations: the higher the number of parameters and

the lower the number of observations is, the easier is for the model to overfit the train set.

Similarly the model is pretty efficient at exploiting the increasing number of states, with all

states included in the model containing a significant amount of observations (fig 6.3.c).

The right-hand charts in the figure present the out-of-sample results. Figure 6.3.b reports the

average out-of-sample likelihood. When only a few observations are considered, a smaller

number of states suffices in describing the system dynamics, delivering the highest average

likelihood. In this case, adding more states leads very quickly to overfitting the train-set,

with an exponential deterioration of the out-of-sample likelihood (purple and yellow lines).

When more observations are considered, however, more states do provide a better overall

model performance: when 750 (orange line) and 1000 (blue line) observations are con-

sidered, the maximum average likelihood is obtained, respectively, with 3 and 4 states.

Figure 6.3.d coherently complements these findings showing that new states are efficiently

used only when more observations are included. With 1000 and 750 observations, when up

to 4 states are included in the model, all of the states are used to allocate 90% of the obser-

vations. When 150 and 250 observations are considered, new states become less relevant

and more than 5 and 6 states are, in essence, never efficiently allocated.

6.3.4 Effects of varying γ

A second parameter linked to the number of states in our modelling is the time consistency

parameter γ . While of high practical relevance, enforcing exogenously temporal consis-

tency as we do in our ICC model obviously affects the overall optimality of the model from

a likelihood perspective and forces observations to aggregate, intuitively allowing for less
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Figure 6.3: Average likelihood and observations allocation for different train and test lengths.

similar observations to be included in the same cluster. To investigate the effects of varying

γ on the number of states, the run the same experiment described in Section 6.3.3 but letting

γ vary from 1 to 50. Figure 6.4 reports the average likelihood (6.4.a and 6.4.b) and the num-

ber of states containing 90% of the observations (6.4.c and 6.4.d) both in- and out-of-sample

for γ values of 1, 10, 30 and 50. Focusing first on likelihood, Figure 6.4.a and .b do not show

any clear pattern related to varying time consistency values. Both the in- and out-of-sample

likelihood behave as documented for the case in which γ = 0 (see Figure6.2a). The higher γ

is, the lower the likelihood is, particularly out-of-sample, which is to be expected given that

enforcing temporal consistency constraints the likelihood optimisation in our model. The

findings presented in Figure 6.4.c and 6.4.d also support the intuitions on the effects of γ .

The charts show that the higher the temporal consistency enforced, the less homogeneous

is the population density of the clusters. In-sample (Figure 6.4.c) the effects are less signifi-

cant, with only γ = 50 materially affecting the number of states used to allocate 90% of the
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observations. The out-of-sample results (Figure 6.4.d), instead, provide a clear picture of

the effect. In particular, for very high values of γ (e.g. 30 or 50 in our experiment), 90% of

the observations are contained in maximum of 3 states on average with the blue and orange

lines in Figure 6.4.c immediately platooning as more states are spanned by the model.

Figure 6.4: Average likelihood and observations allocation for different temporal consistency pa-
rameters.

6.4 Discussion

Asking how many states describe the dynamics of an asset class or, more generally, the

financial system is an incomplete question. In this section, we show that the financial system

evolves through time. Other than the univariate distribution of individual variables, the

way the variables interact with each other and, more generally, the multivariate structure

of the system changes through time, leading to new ‘states’ being required to describe the

system accurately. We conclude that the ‘optimal’ number of states needs to be analysed
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and defined in terms of the time span considered. This is indeed coherent and supports our

findings described in Chapter 3 in that the optimal fit in finance needs to be defined (also)

in terms of the investment horizon.



Chapter 7

Conclusions and Future Work

This chapter concludes the thesis and revisits the key findings, highlights the achievements
and contributions and opens to future investigation by listing few potential extensions and
directions for further research.

7.1 Conclusions

This thesis investigated the time changing nature of financial markets. Financial markets

are complex systems having an intrinsic structure defined by the interplay of several vari-

ables which, however, changes and evolves through time. This feature is critically relevant

for classical statistical assumptions and has proven challenging to be investigated and re-

searched.

The main motivations of the topic and investigations presented in this thesis were: (i) non-

stationarity is a key feature of the financial system, difficult to quantify but that impacts

practitioners and researchers across financial markets; (ii) the increasing data availability

and consequential adoption of data-driven methodologies across markets is demanding new

modelling paradigms being able to exploit the correlation and interaction of a large number

of variables in an efficient and scalable way; and (iii) information filtering networks is a

modelling paradigm that can prevent many of the pitfalls of classical estimation techniques

when dealing with non-stationarity, however with only few evidences are provided literature

on the impacts in the finance domain.

Therefore, to explore these issues, this research is divided in three studies: (i) Study of

non-stationarity from through the lens of parameters likelihood and its impact on portfolio

performances through time; (ii) ICC methodology to define and forecast market states; (iii)
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Integration of information filtering.

In our view, each study, respectively, generated the following major contributions: (i) When

considering financial time series, optimisations on parameters and consequential investment

frameworks must take into account the holding period and are otherwise incomplete; (ii) A

novel methodology to define, analyse and forecast market states; and (iii) Evidences in

support of information filtering role in avoiding classical pitfalls of standard estimation

approaches applied to financial, non-stationary time series.

By tackling such important problems, this thesis aimed to unveil the dynamic nature of the

financial system through time.

Finally, this thesis also show that Financial, Tech and Mathematical considerations are in-

deed complementary in the contemporary financial landscape and a new hybrid skill set will

reshape the current financial markets practice. The forces driving these changes can be iden-

tified: a) easy access to vast amounts of data; b) availability of virtually unlimited computing

resources and c) open-access state-of-art in AI/ML algorithm libraries. The developments

have led to a scramble for talent across the Investment Banking world, with Data Scientists

poached from technology and retail companies. Therefore, the new ”Quants” are and will

increasingly be from hybrid backgrounds with a strong Computer Science component.

7.2 Main Contributions

Based on our results, background and literature review, the main contributions that this

research offers are:

1. A new framework to measure non-stationarity and its impact on portfolio perfor-

mances. I show that the observation-wise parameters likelihood drifts downward

with time and significantly increases in variance. I derive the new principle that,

when considering financial time series, optimisations on parameters and consequen-

tial investment frameworks (e.g. portfolio constructions) must take into account the

holding period and are otherwise incomplete.

2. A novel methodology to define, analyse and forecast market states called ICC. The

procedure assigns each observation to a cluster or state based on its correlation struc-
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ture and defines each cluster as a sparse Markov random field, making the results

highly interpretable. The ICC methodology offers significant advantages with re-

spect to standard approaches as it can efficiently scale large multivariate datasets and

enforces temporal consistency, opening the field for further research on the role of the

correlation structure in modelling non-stationarity while managing the practical need

for stable states definition.

3. Evidences in support of information filtering role in improving estimates and long

term model stability. Information filtering can easily be integrated to improve clas-

sical and novel financial applications that rely on a multivariate modelling of the

system.

7.3 Main Experiments

The conclusions and contributions highlighted above are derived and supported by a series

of exploratory studies.

1. Non-stationarity and sparse optimal portfolio.

I report on two sets of experiments to study: a) the in- and out-of-sample parameters’

likelihood through time and the dependency on estimation window; b) the impacts on

portfolio performances. First, I found that shorter estimation windows deliver higher

out-of-sample likelihood in the observations immediately following the train window,

but it tends to rapidly decrease afterwards. As more observations are included in the

training set, the out-of-sample likelihood gains stability, with larger values in the long

term, but at the cost of lower likelihood in the short term. Secondly, I demonstrate the

relationship between the goodness of the model, measured as out-of-sample likeli-

hood, and the realized portfolio volatility. Further, I compare portfolio performances

and features obtained when sparse precision matrices are used as input for portfolio

construction and show that sparsity can significantly reduce estimation errors com-

ing from both sampling error and non-stationarity and avoid many of the classical

portfolio construction pitfalls.

2. ICC states discovery.
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I present one experiment where I apply the ICC methodology with two clusters to a

random set of equity returns and compare it to standard GMM derived clusters used

as baseline model. I found that the ICC clusters display neat, interpretable financial

features with a good time consistency. Further, I integrate the use of the TMFG-LoGo

information filtering to estimate the referential state precision matrix and show that

it provides improved clusters significance and better model stability by reducing the

cluster switches, other than improving the algorithm efficiency.

3. Market states forecasting.

I report two sets of experiments where I apply the ICC methodology to forecast fu-

ture market state and build a simple equity trading strategy. I study the forecasting

ability of our procedure using the log-likelihood ratio from two market states to pre-

dict the next day cluster. I experimented with two models, a logistic regression and

a Support Vector Machine and in both cases obtained an accuracy level higher than

50%. Following that, I present a simple equity trading strategy consisting of a binary

long/short investment rule without optimal allocation and compared the strategy to

the performance of an equally weighted portfolio. I show that our methodology sig-

nificantly outperformed the equally weighted portfolio and report on a series of tests

to assess the robustness of our methodology, proving that performances are stable and

robust to different variables tweaks.

4. Number of states.

Having defined a robust procedure to cluster observations into market states, I present

again two sets experiments to study how the in- and out-of-sample likelihood is im-

pacted by different number of states considered by the model. The experiments in-

vestigate the dependency with a) the estimation window length; and b) the time con-

sistency enforced. I found that the evolution of the financial system through time

also implies that the number of clusters that optimally describe the system increases

through time: the more observations are considered and the larger the time window

spanned, the higher the number of market states to be considered. These findings also

reinforce the statement that optimal estimation in finance is dependent on the holding

period and time spanned.
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7.4 Implications for financial practices

A relatively large set of state space models and time series clustering techniques have been

proposed in literature and reviewed in Chapter 2. Two main pitfalls, however, typically

affect these models: a) Curse of dimensionality and b) Model instability. With the ICC

methodology, we aimed at solving both these issues. The motivations for this research are

deeply rooted in financial practices. Dealing with non-stationarity per se impacts virtually

any data related process in the financial industry as classical statistical assumptions fail

and ad hoc practical strategies are often employed. I report below three direct practical

application of particular relevance within the investment management domain:

1. Trading strategies.

Regime shifting and timing strategies, particularly at high frequency, are widely used

and researched. Common criticism for these strategies is the typical instability of the

models that leads to frequent rebalances and consequential high trading costs. The

ICC method is of high practical relevance in this sense, since it allows explicit control

of temporal consistency as part of the states definition problem.

2. Causality, correlation and variables interaction.

Financial markets are complex systems having an intrinsic structure defined by the

interplay of several variables. The large and exponentially increasing amount of data

available today has played a significant role in accelerating the ‘scientification’ of

the investment process, with virtually any investment decision or recommendation

today being supported by data. The ICC methodology provides a flexible and scalable

framework to study the interaction among variables and leverage the large amount of

alternative data.

3. Risk premia interaction and timing.

Starting from the pioneering work of [67], the risk premia literature has disrupted

the financial industry over the last decade. In very loose terms, risk premia are very

relevant in that provide an interpretable source of risk/return for a given asset or in-

vestment product. As such, risk premia are nowadays extensively used both to assess

and optimise the risk/return exposures and to define a whole new set of financial prod-

ucts (e.g. smart beta). A key implication of this practice, however, is that different
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risk premia behave differently during different stages of the economic cycle and their

correlation is time-changing and challenging to analyse. The ICC methodology pro-

vides a convenient framework to analyse the multivariate structure of risk premia (and

other variables) through time, making it highly relevant for the state-of-art portfolio

optimisation practices and for the wide array of factor based investment strategies and

products.

7.5 Further Work

Finally, our work also opens new avenues to future investigations. Below, I list a few po-

tential extensions and directions for further research.

7.5.1 ICC extensions

In this thesis I introduced the ICC methodology and applied it to daily equity returns to

discover and test market states features, predictability and likelihood behaviour. However,

the methodology is fully flexible and easily scalable. As such, there are several directions

for further testing and expansion of the methodology. In particular:

• Distance measures

Throughout this thesis, I presented several experiments with application of the ICC

methodology where clusters are optimised and discovered by optimising either the

parameters’ Likelihood or the Mahalanobis distance. This choice is theoretically in-

spired, since I looked at clusters by investigating how well parameters describe a

segment of returns, hence leading to parameters’ likelihood being the objective to be

optimised. However, many other statistical or financial measures could be considered,

such us the relative entropy or the clusters Sharpe ratio, just to mention two. Further

investigation of this would also shed light on other ways to look at non-stationarity

and the evolution of the financial system through time.

• Alternative data

One of the motivating drivers for the ICC methodology is the efficiency of the algo-

rithm. The procedure is highly scalable, and can be used with hundreds of variables,

without suffering the curse of dimensionality as other, more popular models do. This
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open new avenues of investigation on how alternative data can be used to better de-

scribe the financial system. A natural evolution would be to consider other asset

classes and macroeconomic data. Similarly, a wide set of alternative data such as text

data coming from financial reports and sentiment analysis or online users interactions

can be a easily included in the model framework.

• Portfolio construction

All the portfolio construction experiments presented in this thesis focus on the sim-

plest possible optimisation techniques and solutions. The goal of these experiments

is to test and compare the impact of different estimation approaches and forecasting

techniques. Using unsophisticated portfolio construction approaches allows a fair and

clearer comparison, avoiding unnecessary biases. However, the flexibility of the ICC

methodology is easily applicable with more sophisticated optimisation techniques

that could lead to better performances. As an example, one output of the ICC proce-

dure is the likelihood of each cluster for each observation. A robust portfolio could be

built by ensambling the clusters parameters, with a weighting scheme proportional to

the clusters’ likelihood. Another approach could be to treat the iterations of the ICC

methodology as Bayesian updates for the portfolio construction parameters.

7.5.2 Market states and system entropy

In all the investigations and experiments presented through this thesis, I always considered

a framework with a fixed number of states and analysed the states features, their likelihood

and evolution through time. One feature that has been highlighted is that, even considering

a high number of states, their likelihood is volatile and the interaction among variables

continuously changing. One possible interpretation of this is that the financial system is

characterised by a random disorder, with a set of (potentially infinite) reference ‘states’ that

evolve through time. The system moves continuously towards the reference states, but never

settles in one. This view of the financial system resembles frameworks described in physics

and chemistry, particularly the spin glasses magnetic states, and modelling approaches could

be inspired by them. A general theory of ‘inherent states’ would generalise the framework

discussed in this thesis and, more generally, any state dependent theory of financial markets.
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[162] Schmitt, T. A., Chetalova, D., Schäfer, R., and Guhr, T. (2013). Non-stationarity in

financial time series: generic features and tail behavior. Europhysics Letters, 103:58003.

[163] Sharpe, W. F. (1966). Mutual fund performance. Journal of Business, 39(1):119–138.

[164] Sharpe, W. F. (1994). The Sharpe ratio. Journal of Portfolio Management, 21(1):49–

58.
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Appendix A

Expectation Maximization

The Expectation Maximization (EM) algorithm [58, 127] is a technique for finding maxi-

mum likelihood solutions for probabilistic models having latent variables.

Consider a model in which the observed variables are collectively denoted by X and all the

latent (unobserved) variables are denoted with Z. The joint probability distribution of the

system p(X,Z|θ) is described in terms of the set of parameters θ . The EM algorithm aims

at maximizing the likelihood function for X given θ that is

p(X|θ) = ∑
Z

p(X,Z|θ) , (A.1)

(assuming Z discrete). The maximization of A.1 is, in most cases, a complex problem and a

closed form solution is often not attainable. Instead, the maximization of the complete-data

likelihood p(X,Z|θ) is often significantly easier.

Defining a generic distribution q(Z) over the latent variables, the following decomposition

holds

log p(X|θ) = L(q,θ)+KL(q||p) , (A.2)

where:

L(q,θ) = ∑
Z

q(Z) log
{

p(X,Z|θ)
q(Z)

}
, (A.3)

KL(q||p) =−∑
Z

q(Z) log
{

p(Z|X,θ)

q(Z)

}
. (A.4)

Decomposition A.2 is general and it holds for any choice of q(Z). KL(q||p) is the Kullback-

Leibler divergence between q(Z) and the posterior distribution p(Z|X,θ) while L(q,θ) is

a functional of the distribution q(Z).

The EM algorithm is a two-stages optimization method for finding maximum likelihood

solutions which makes use of the identity in Eq. (A.2). In the E-step, L(q,θ) (Eq. (A.3)) is
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maximized with respect to q(X) considering θ = θ old fixed. Since log p(X|θ old) does not

depends on q(Z), the solution of this maximization problem is obtained when the Kullback-

Leibler distance vanishes, that is when q(Z) is equal to p(Z|X,θ old).

In the subsequent M-step, we fix the distribution q(Z) and L(q,θ) is maximized with re-

spect to θ to obtain the new, ‘updated values’ θ new. The operation is then iterated. As

shown in [27], the quantity being maximized in the M-step is, indeed, the expectation of the

complete-data log-likelihood. This will cause L to increase (unless it is already at its maxi-

mum) and, hence, the log-likelihood function to increase as well, converging eventually to

its maximum.

A.1 EM for Gaussian Mixtures

When it comes to modelling real data, simple distributions are often unable to capture the

probabilistic structure of the dataset, while linear superimposition of two or more distri-

bution can give better results. Mixture distributions are probabilistic models in which we

assume that data are generated by a linear combination of basic distributions.

In a Gaussian mixture model, we consider the superimposition of K Gaussian densities of

the form

p(x) =
K

∑
k=1

πkN (x; µk,Σk) . (A.5)

Each Gaussian density N(x; µk,Σk) is called a component of the mixture and the parameters

πk are called mixing coefficients, where it is trivial to notice that

0≤ πk ≤ 1 and
K

∑
i=1

πk = 1 (A.6)

In order to obtain a convenient representation involving an explicit latent variable, consider

a K-dimensional binary random variable z such that zk ∈ {0,1} and ∑k zk = 1. The marginal

distribution p(z) is defined in terms of the mixing coefficients such that

p(zk = 1) = πk . (A.7)

Given the binary representation of z we can write the marginal distribution over z and the
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conditional distribution p(x|z) as

p(z) =
K

∏
k=1

π
zk
k (A.8)

and

p(x|z) =
K

∏
k=1
N (x; µk,Σk)

zk . (A.9)

Using the results A.8 and A.9 we can obtain the marginal distribution over x as

p(x) = ∑
z

p(x,z) = ∑
z

p(z)p(x|z) =
K

∑
k=1

πkN (x; µk,Σk)
zk , (A.10)

hence the marginal distribution over x is a Gaussian mixture of the form A.5.

Consider an N observations x D variables dataset that we wish to model using a mixture of

Gaussians. The corresponding latent variables will be denoted by a N x K matrix Z. If we

assume the data points are IID, then the log likelihood function is given by

log p(X;π,µ,Σ) =
N

∑
n=1

log

{
K

∑
k=1

πkN (xk; µk,Σk)

}
. (A.11)

Given the presence of the summation over k inside the logarithm in A.11, we cannot derive

a closed form solution for the maximization of the likelihood function. To see this, if we

take the derivative of log p(X;π,µ,Σ) with respect to the means µµµk and set it to zero, we

obtain
N

∑
n=1

πkN (xn; µk,Σk)

∑ j π jN (xn; µ j,Σ j)
Σ
−1
k (xn−µk) = 0 (A.12)

where the term

γ(znk) =
πkN (xn; µk,Σk)

∑ j π jN (xn; µ j,Σ j)
(A.13)

called responsability, depends on the parameters µk in a complex way. The responsabilities

denote, indeed, the conditional probability of z given x. Rearranging A.12 and using the

definition of responsabilities

µk =
1

Nk

N

∑
n=1

γ(znk)xn (A.14)

where Nk = ∑
N
n=1 γ(znk). Following a similar approach, we can maximize with respect to

Σk and πk (taking into account the constraints A.6)

Σk =
1

Nk

N

∑
n=1

γ(znk)(xn−µk)(xn−µk)
T (A.15)
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where µk is obtained from A.14, and

πk =
Nk

N
. (A.16)

One way to solve this problem is the EM algorithm discussed in previous section. First we

initialize the means µµµk, the covariances ΣΣΣk and the mixing coefficients πk and compute the

initial value of the log likelihood. In the E step we evaluate the responsabilities using the

current parameters values using A.13. In the M step we re-estimate the parameters using

the current responsablities and A.14, A.15 and A.16. Given the estimated parameters, we

evaluate the log likelihood A.11 and check for convergence of the parameters or the log

likelihood. If convergence is not satisfied, we iterate from the E step.
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Testing Sharpe Ratio

Considering the basic definition of Sharpe ratio in common usage

SR =
µ

σ
(B.1)

where µ is the sample mean of returns and σ is the sample standard deviation, [94] and,

more recently [115], derived the asymptotic distribution of SR under the assumption of

normal and IID returns

SR a∼N
(

µ

σ
,
1
n

(
1+

µ2

2σ2

))
. (B.2)

Mertens (2002) relaxed the normality assumption and presented a derivation that is valid

under IID generally

√
T
(

SR− ŜR
)

a∼N
(

0,1+
1
2

SR2−SR γ3 +SR2
[

γ4−3
4

])
(B.3)

where γ4 = µ3
σ3 and γ4 = µ4

σ4 . In other worlds, to relax the normality assumption we need

to adjust for kurtosis and skewness. Recently, Christie (2005), using a GMM approach,

derived the asymptotic distribution of SR relaxing also the IID requirement, considering the

variance of ŜR

Var(
√

T ŜR)=E

(
SR2µ4

4σ4 −
SR
[
(Rt −R f t)(Rt −µ)2− (Rt −R f t)σ

2
]

σ3 +
(Rt −µ)2

σ2 − 2(Rt −µ)

σ
+

3SR2

4

)
.

(B.4)

Opdyke (2007) provided a more convenient formulation for the same general case. Deriving

the equivalence among B.4 and B.5

Var(
√

T ŜR) = 1+
SR2

4

[
µ4

σ4 −1
]
−SR

µ3

σ3
(B.5)
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provided the asymptotic distribution of ŜR as in B.6

√
T
(

SR− ŜR
)

a∼N
(

0,1+
SR2

4

[
µ4

σ4 −1
]
−SR

µ3

σ3

)
(B.6)

and from which the estimated standard error is

ŜE(ŜR) =

√√√√[1+
ŜR2

4

(
µ̂4

σ̂4
−1
)
− ŜR

µ̂3

σ̂3

]
/(T −1) . (B.7)

Based on B.7, we can easily derive the confidence bound B.8 for ŜR significance testing

ŜR± zcrit ŜE(ŜR) (B.8)

where zcrit is the critical value of the standard normal distribution corresponding to the

significance level α of choice.

It is also worth to empathize that we cannot directly test for comparison among Sharpe

ratios of the two clusters as in Opdyke (2007) since the number of observations in each

cluster is not ensured to be the same.
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Optimization in Support Vector Machines

Support Vector Machines (SVM) finds a linear separating hyperplane with the maximal

margin in the features’ higher dimensional space defined by the a feature mapping φ(xxx).

Given a training set of feature-label pairs (xn, tn), i= 1, ...,N where tn ∈{−1,1} and xn ∈Rp,

the SVMs [33, 47, 175] require the solution to the following optimization problem

min
www,b,ξ

1
2

wwwT www+C
N

∑
n=1

ξn

subject to tn(wwwT
φ(xxx+b))≥ 1−ξn,

ξn ≥ 0

(C.1)

where (wwwT φ(xxx+ b)) is the model of the form y(·) in Equation (5.3); C > 0 is a penalty

parameter controlling the trade off between the margin and variables ξn; xin is the slack

variable, with one slack variable training data point. The slack variables where introduced

by Bennett (1992) and Cortes and Vapnik (1995) and these are defined as xin = 0 if the n−th

data point is inside or on the correct margin boundary and xin = |tn−y(xxxnnn)| otherwise. Slack

variables where introduced to remove the assumption that training data points are linearly

separable in the feature space φ(·), defining the soft margin SVM presented in C.1. In this

way we can maximize the margin while penalizing the points that lie on the wrong size of

the margin boundary.

The Lagrangian corresponding to the constrained maximization problem in C.1 is given by

L(w,b,ξ ,a,τττ) =
1
2
||w||2 +C

N

∑
n=1

ξn−
N

∑
n=1

an{tny(xn)−1+ξn}−
N

∑
n=1

τnξn (C.2)

where an ≥ 0 and τn ≥ 0 are the Lagrange multipliers. The corresponding set of Karush-
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Kuhn-Tucker (KKT) conditions are

an ≥ 0 (C.3)

tny(xn)−1+ξn ≥ 0 (C.4)

an(tny(xn)−1+ξn) = 0 (C.5)

τn ≥ 0 (C.6)

ξn ≥ 0 (C.7)

ξnτn = 0 (C.8)

(C.9)

where n = 1, ...,N. Optimizing with respect to w, b and ξn and using the definition 5.3 for

y(·), we obtain [27]

∂L
∂w

= 0⇒ w =
N

∑
n=1

antnφ(xn) (C.10)

∂L
∂b

= 0⇒
N

∑
n=1

antn = 0 (C.11)

∂L
∂ξn

= 0⇒ an =C− τn (C.12)

using these results we obtain the dual Lagrangian form

L̃(a) =
N

∑
n=1

an−
1
2

N

∑
n=1

P

∑
p=1

anaptntpk(xn,xp) (C.13)

subject to the constraints:

0≤ a≤C (C.14)
N

∑
n=1

antn = 0 (C.15)

where k(xn,xp) is the kernel function, as discussed in Section 5.1.2. This is, again, a

quadratic programming problem. The dual formulation allowed to turn the optimization

C.1 over P variables (number of features) into the dual problem C.13, over N variables

(length of features’ examples). It is worth emphasizing that in case the set of basis func-

tions φ(x) is fixed with P < N, this conversion could appear disadvantageous. However, it

allows to reformulate the model using kernels and, therefore, to efficiently map features into
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feature spaces whose dimensionality exceeds data points, including infinite feature spaces

(as it is the case of RBF kernels in the experiment discussed in Chapter 5.1.2). Moreover,

in order to classify new data points using the trained model, we can express y(xxx) defined in

5.3 in terms of the parameters an and the kernel function obtaining:

y(xxx) =
N

∑
n=1

antnk(x,xn)+b . (C.16)

Given the KKT conditions, for every data point we have that either an = 0 or an ≥ 0. If

an ≥ 0, then by C.5 these data points must satisfy

tny(xxxnnn) = 1−ξn (C.17)

If an <X then the point lies on the margin since by C.12 τn > 0 that from C.8 implies ξn = 0.

Points with an = C lie inside the margin and they can have either ξn ≤ 1 (correctly classi-

fied) or ξn > 1 (misclassified). It is crucial to notice that the subset of data points for which

an = 0 does not contribute to the predictive model C.16 and hence plays no role in making

predictions for new data points. The remaining data points constitute the support vectors.

This property is central to the efficient applicability of SVMs and provided an added ad-

vantage to the use of the dual representation since, once the model is trained, a significant

amount of data can be discarded and only support vectors used to make predictions.

In general, the solution of a quadratic programming problem in M variables has computa-

tional complexity O(M3) [27] and, although predictions are made using only support vec-

tors, the training phase uses the whole dataset. Different efficient algorithms to solve the

quadratic programming problem C.13 have been proposed and most popular approaches

break down the optimization into a series of smaller quadratic programming problems.

Among these it is worth mentioning the chunking method [174], which exploits the fact

that the value of the Lagrangian is unchanged by removing the columns and rows of the

kernel corresponding to zero valued Lagrange multipliers an, and Decomposition Methods

[144], which solves smaller quadratic programming problems of fixed size in a numerical

way. One of the most widely used approach and the one that we implemented in the ex-

periment discussed in Section 5.1.2 is the sequential minimal optimization (SMO) [147]

which considers just two Lagrange multipliers at time in order to identify the non zero ones,

providing an alternative and efficient approach to the same goal of the chunking method. In

this case, in fact, the subproblem can be solving analytically avoiding numerical solutions.
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SMO is found to have a complexity that is either linear or quadratic with the number of data

points, depending on the application [27].

Having solved the quadratic programming problem and obtained a solution for a, to deter-

mine the parameter b 5.3 we note that support vectors an for which 0 < an <C have ξn = 0

and, therefore, tny(xn) = 1. Using C.16

tn
(
∑m ∈ Samtmk(xn,xm)+b

)
= 1 (C.18)

where S denotes the set of indices of the support vectors. Instead of solve the equation

for b by considering an arbitrary support vector, a numerical stable solution by multiplying

the whole set (S) by tn (notice that t2
n = 1) and then averaging over all the support vectors

obtaining

b =
1

NM
∑n ∈M

(
tn ∑m ∈ Samtmk(xn,xm)

)
(C.19)

whereM indicates the set of indices for which 0 < an <C.
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Properties of Elliptical Distributions

In this section we recall some useful properties of Elliptical Distribution which we referred

to in our discussion and particularly in Section 3.4.3.

Property 1 (Distribution Definition). Consider an n-dimensional random vector X =

(X1, ...,Xn). X has a multivariate elliptical distribution with location parameter µµµ and

dispersion parameter ΩΩΩ,written as X ∼ E(µµµ,,,ΩΩΩ) if its characteristic function φ can be ex-

pressed as

φX(w) = E(eiwX) = eiwµµµ
ψ

(
1
2

wΩΩΩwT
)
, (D.1)

for some location parameter µµµ ∈ R1×n, positive-definite dispersion matrix ΩΩΩ ∈ Rn×n and

for some function ψ(·) : [0,∞)→R such that ψ
(
∑

n
i=1 w2

i
)

is a characteristic function, which

is called characteristic generator. If X∼ E(µµµ,,,ΩΩΩ) and if its density fX(X) exists, it is of the

form defined in Eq. (3.10).

Property 2 (Density Generator). The function g(·) defined in Section 3.4.3 is guaranteed

to be density generator if the following condition holds∫
∞

0
xn/2−1gn(x)dx < ∞. (D.2)

Property 3 (Affine Equivariance). If X = (X1, ...,Xn) is an n-dimensional elliptical ran-

dom variable with location parameter µµµ and dispersion parameter ΩΩΩ so that X∼EX(µµµ,,,ΩΩΩ),

then for any vector a ∈ R1×m and any matrix B ∈ Rm×n the following affine equivariace

holds

Y = a+BX∼ EY (a+Bµµµ,BΩΩΩB). (D.3)

In other words, any linear combination of multivariate elliptical distributions is another

elliptical distribution.
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In the special cases of normal, Student-t and Cauchy distributions, the induced density

generators are m-dimensional version of the original generator of XXX.

For the proof of Properties 1,2 and 3, we refer to [69].

This implies that any portfolio Y = β1X1 + ...+βnXn of elliptically distributed variables is

distributed accordingly with a (univariate) elliptical distribution, which is a location-scale

distribution. Furthermore, for any univariate elliptical distribution all moments can be ob-

tained from the first and second moments (if defined). In particular, for centered variables

with zero mean (µY = 0), the resulting distribution of Y is symmetrical around zero and it

has all odd moments equal to zero and all even moments given by

µ2m = cmµ
m
2 ,

with

cm =
(2m)!
(2mm!)

ψ(m)(0)
(ψ(1)(0))m

.

Where ψ(m)(0) indicated the mth derivative of ψ(ω) computed at ω = 0.

As an example, in the normal (0,1) case, µ2 = 1, cm = 0 for all m = 1,2, ..., the kurtosis is

µ(4) =
4!

244! = 3, and µ(2m) =
(2m)!
(2mm!) . For the proof we refer to [26], which derived this prop-

erty by succesive differentiations of φ(·), and to [122], which attained the same result by

expressing the elliptical distribution in terms of a random vector with uniform distribution

on the unit sphere.

Therefore the mean-variance optimization is of general applicability and relevance for any

portfolio generated from multivariate elliptically distributed variables.



Appendix E

Orthogonal GARCH Estimation

In this section, I report details on the O-GARCH estimation discussed in Section 3.5. In

particular, Tables 3.1 and 3.2 report the average AIC and BIC statistics across the 100

resamplings I considered in the experiment. Table E.1 below reports Median, 5th and 95th

percentiles all the statistics obtained. The table shows that the GARCH(1,1) specification

delivered the lower AIC and BIC statistics for each of the main percentiles considered.

In other words, the GARCH(1,1) specification selected in our experiment is the preferred

specification according to the AIC and BIC criteria in ALL cases, and not only in mean

across resamplings.
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AIC BIC

Train Obs 5th Median 95th 5th Median 95th

GARCH(1,1)

101 -726 -679 -539 -718 -672 -531

125 -866 -831 -643 -857 -823 -635

250 -1610 -1561 -1250 -1599 -1551 -1240

500 -3111 -2978 -2562 -3098 -2965 -2550

750 -4624 -4309 -3869 -4610 -4295 -3855

1000 -6092 -5684 -5017 -6077 -5669 -5002

1500 -8735 -8006 -7388 -8719 -7990 -7372

GARCH(2,2)

101 -723 -676 -535 -709 -663 -522

125 -862 -827 -640 -848 -813 -626

250 -1606 -1558 -1247 -1588 -1540 -1230

500 -3107 -2975 -2561 -3086 -2954 -2539

750 -4620 -4307 -3867 -4597 -4284 -3843

1000 -6088 -5681 -5015 -6063 -5656 -4991

1500 -8733 -8007 -7387 -8707 -7980 -7361

GARCH(3,3)

101 -719 -672 -532 -701 -654 -514

125 -858 -824 -637 -838 -804 -617

250 -1602 -1554 -1245 -1578 -1530 -1220

500 -3103 -2972 -2558 -3074 -2942 -2528

750 -4616 -4304 -3864 -4584 -4272 -3832

1000 -6085 -5678 -5013 -6050 -5644 -4979

1500 -8732 -8007 -7386 -8695 -7969 -7349

Table E.1: AIC and BIC information criteria corresponding to different GARCH specifications. Me-
dian, 5th and 95th percentiles across 100 resamplings.


