
Sensor Path Planning for Emitter
Localization

Folker Hoffmann

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Electronic and Electrical Engineering

University College London

First supervisor: Prof. Hugh Griffiths

Second supervisor: Dr. Matthew Ritchie

February 16, 2023

ii

I, Folker Hoffmann, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has been

indicated in the work.

Abstract

The localization of a radio frequency (RF) emitter is relevant in many military and

civilian applications. The recent decade has seen a rapid progress in the develop-

ment of small and mobile unmanned aerial vehicles (UAVs), which offer a way

to perform emitter localization autonomously. The path a UAV travels influences

the localization significantly, making path planning an important part of a mobile

emitter localization system.

The topic of this thesis is path planning for a UAV that uses bearing measure-

ments to localize a stationary emitter. Using a directional antenna, the direction

towards the target can be determined by the UAV rotating around its own vertical

axis. During this rotation the UAV is required to remain at the same position, which

induces a trade-off between movement and measurement that influences the optimal

trajectories.

This thesis derives a novel path planning algorithm for localizing an emitter

with a UAV. It improves the current state of the art by providing a localization with

defined accuracy in a shorter amount of time compared to other algorithms in sim-

ulations. The algorithm uses the policy rollout principle to perform a nonmyopic

planning and to incorporate the uncertainty of the estimation process into its deci-

sion. The concept of an action selection algorithm for policy rollout is introduced,

which allows the use of existing optimization algorithms to effectively search the

action space. Multiple action selection algorithms are compared to optimize the

speed of the path planning algorithm. Similarly, to reduce computational demand,

an adaptive grid-based localizer has been developed.

Abstract iv

To evaluate the algorithm an experimental system has been built and the al-

gorithm was tested on this system. Based on initial experiments, the path planning

algorithm has been modified, including a minimal distance to the emitter and an out-

lier detection step. The resulting algorithm shows promising results in experimental

flights.

Acknowledgements

I would like to thank Hugh Griffiths and Matthew Ritchie for their always helpful

guidance during the creation of this thesis. I am grateful to Alexander Charlish for

his support in all the years I was working in his group. I also would like to thank

Wolfgang Koch, whose lecture about sensor data fusion and enthusiasm about the

topic motivated me to pursue this field of study.

Building the experimental system, described in Chapter 6, was a joint work

between Hans Schily, Markus Krestel and me to which I contributed the path plan-

ning algorithm and analysis presented in this thesis. Without them, this experi-

mental system would never have existed. Thank you for the joint work, it was

always a pleasure to work together with you! Hans Schily built the emitter and

implemented several important ROS components. Markus Krestel implemented the

direction finding algorithm and its connection to the ROS system. In the design of

the payload, field tests, and all the other work which emerges when building such a

system we were all involved. Hans Schily also implemented the algorithm [Vander

Hook et al., 2015], which was used as a reference algorithm in Chapter 4.

During the experimental trials in this thesis, I also received valuable help by

many other people. With the hope of not omitting anyone, I would like to thank

Janning Nettekoven for assembling the payload, Manfred Okum for designing and

producing the Yagi antenna, Fahmi Rouatbi for help with the Ellipse-D and the UAV,

Torsten Fiolka for help with the UAV and hardware recommendations, Matthias

Mandt and Benjamin Knödler for help with RF measurements and analyses, Jannik

Springer for support with an RF signal generator, and Ulrich Engel and Lars Brötje

for help with the GPS. I also had the opportunity to supervise the master theses of

Acknowledgements vi

Markus Krestel and Thore Gerlach, which helped me by enlightening other aspects

of the sensor path planning problem discussed in this thesis.

I also would like to thank all those who read drafts of this thesis and provided

valuable feedback and helpful discussions: Lars Borutzky, André Brandenburger,

Snezhana Jovanoska, Laura Over, Hans Schily, Isabel Schlangen, and Christoph

Vollweiter.

Finally, I would like to thank my girlfriend Marie and my family for their

support during the time of writing this thesis.

Impact Statement

The increasing availability of UAVs offers the option to localize RF emitters with

small airborne systems. Path planning for those systems is of high importance, as

the path taken by the UAV influences the localization performance. Several works

in the literature consider path planning for such systems. But these works either do

not take the inherent uncertainty of this problem into account or do not minimize

the time until the emitter is localized, which in many applications is an important

metric. The research in this thesis closes this gap. An algorithm is developed that

leads to a faster time until the target is localized than algorithms from the literature.

The produced algorithm could be used in several important real world appli-

cations. For example, consider a search and rescue task. Persons that ski in areas

at risk of avalanches can carry a special type of RF emitter, called an avalanche

transceiver. If an avalanche occurs, rescue teams can search for these emitters. An

emitter-localizing UAV that uses a path optimized to reduce the localization time,

leads to a shorter time until the transceiver is localized. This leads to a shorter

time of the person buried under the avalanche and therefore to a higher chance of

survival.

In animal migration research, migration studies are often performed by tag-

ging animals with small RF emitters. By localizing these emitters in regular time

intervals, the movement of the animals can be deduced. If researchers can use a

UAV that localizes the animals in shorter time, they either would need to spent less

time in the field or could survey greater populations.

In the military task of electronic intelligence, an important task is to localize

hostile radar stations, for example for suppression of enemy air defences (SEAD).

Impact Statement viii

To counter localization, radars are not always transmitting, making a quick localiza-

tion important while they are active. Commonly, airborne electronic intelligence is

performed by expensive fixed-wing aircraft. Using small inexpensive UAVs would

provide a cheaper solution to the localization task.

The localization of electromagnetic interference is an important civilian task.

Defect electronic devices can emit RF waves that interfere with other usages of

the electromagnetic spectrum such as communication. Finding the source of the

interference quickly is important to minimize the disruption. A UAV equipped with

the developed algorithm could be used to find such a source quickly.

In these applications, the developed algorithm would provide a path that local-

izes the RF emitter faster, leading to tangible improvements in the execution of the

task.

Contents

1 Introduction 1

1.1 Emitter localization . 2

1.2 Statement of the objective . 4

1.3 Structure of the thesis . 6

1.4 Notation . 7

1.5 List of own publications . 8

2 Optimization and Approximate Dynamic Programming 11

2.1 Function minimization . 11

2.1.1 Differentiable functions 12

2.1.2 Stochastic differentiable functions 16

2.1.3 Multi-armed bandits . 18

2.2 Markov decision processes . 21

2.2.1 Definition . 22

2.2.2 Optimal policies and Bellman’s equation 24

2.2.3 Solution methods . 27

2.2.4 Partial observability . 35

3 Sensor Data Fusion and Sensor Management 40

3.1 Sensor data fusion . 41

3.1.1 The Bayes filter . 43

3.1.2 Probability distributions 47

3.1.3 Fisher information and Cramér-Rao lower bound 56

Contents x

3.1.4 Uncertainty metrics . 59

3.2 Direction finding sensors . 62

3.2.1 Fisher information . 64

3.2.2 Sensor-to-target geometry 66

3.3 Sensor management . 68

3.3.1 Sensor management as a POMDP 69

3.3.2 Approaches to sensor management 72

3.3.3 Sensor path planning . 77

4 Policy Rollout for Sensor Path Planning 85

4.1 Comparison with existing work . 87

4.1.1 Mobile sensor systems with stationary measurements 87

4.1.2 Contributions of this chapter 89

4.2 Problem description . 91

4.2.1 State space and transition 91

4.2.2 Belief state . 93

4.2.3 Optimization objective . 93

4.3 Path planning algorithm . 95

4.3.1 Localizer . 95

4.3.2 Base policy . 98

4.3.3 Policy rollout . 100

4.3.4 Search for the optimal action 103

4.4 Evaluation . 106

4.4.1 Scenarios . 106

4.4.2 Simulation results . 108

4.5 Conclusion . 118

5 Efficient Online Policy Rollout 121

5.1 Comparison with existing work . 122

5.1.1 Sampling of the action value 123

5.1.2 Search for the optimal action 125

Contents xi

5.1.3 Contributions of this chapter 127

5.2 Sampling methods . 127

5.2.1 Plain Monte Carlo . 128

5.2.2 Common random numbers 128

5.2.3 Deterministic samples . 129

5.3 Action selection algorithms . 129

5.3.1 Uniform allocation . 131

5.3.2 Multi-armed bandits . 131

5.3.3 Quadrant search . 133

5.3.4 Gradient-based algorithms 134

5.4 Evaluation . 138

5.4.1 The true action value function 138

5.4.2 Optimization performance 140

5.4.3 Localization performance 147

5.4.4 Sensitivity analysis . 153

5.5 Conclusion . 155

6 Experimental Sensor System 159

6.1 Comparison with existing work . 160

6.1.1 RSSI-based sensor systems 160

6.1.2 Bearing-based sensor systems 162

6.1.3 Contributions of this chapter 164

6.2 Changes to the path planner . 164

6.2.1 Constraints on the action space 165

6.2.2 Base policy . 165

6.2.3 Detection of measurement outliers 166

6.3 Experimental setup . 167

6.3.1 Hardware description . 169

6.3.2 Software description . 173

6.3.3 Experimental area . 175

6.4 Experimental results . 176

Contents xii

6.4.1 Localization attempts . 176

6.4.2 Bearing measurements . 181

6.4.3 Time prediction accuracy 182

6.5 Conclusion . 185

7 General Conclusions 188

7.1 Contributions . 190

7.2 Future work . 192

Bibliography 194

List of Figures

2.1 Example for the sequential halving algorithm 20

2.2 Policy rollout using Monte Carlo sampling 33

3.1 A sensor transforms the true target state into a measurement. 40

3.2 Combination of two bearing measurements 46

3.3 Definitions for a 2D grid . 52

3.4 Comparison of the IEKF and the grid-based Bayes filter 55

3.5 Definitions for a bearing measurement 63

3.6 Information for different geometries of two measurement locations . 66

3.7 Information for different geometries of three measurement positions 67

3.8 Sensor management loop. 69

3.9 Typical paths for localization with bearing measurements 80

4.1 Visualization of the measurement process 86

4.2 Visualization of the path planner from [Vander Hook et al., 2015] . . 89

4.3 Extension of the grid-based Bayes filter 97

4.4 Base policy for the policy rollout 98

4.5 Visualization of near and close updates 100

4.6 Deterministic samples of a normal distribution 104

4.7 Visualization of the action space 105

4.8 Visualization of Scenario 1 and 2 108

4.9 Time until localization in Scenario 1, medium configuration 110

4.10 Behaviour of different path planners for Scenario 1 111

4.11 Number of measurements in Scenario 1, medium configuration . . . 112

List of Figures xiv

4.12 Time until localization in Scenario 1, fast configuration 113

4.13 Time until localization in Scenario 1, slow configuration 113

4.14 Time until localization in Scenario 2, medium configuration 114

4.15 First sensing action per algorithm for Scenario 2 116

4.16 Effect of varying the action grid resolution 117

5.1 Visualization of an action selection algorithm. 130

5.2 Visualization of the quadrant search method 135

5.3 Estimation of the true action value 136

5.4 Optimization performance of uniform allocation and seq. halving . . 141

5.5 Optimization performance of quadrant search 144

5.6 Optimization performance of the gradient based methods 145

5.7 Action value approximation with deterministic samples 146

5.8 A selected subset of the optimization performance results 147

5.9 A selected subset of the localization performance results 149

5.10 Exemplary paths for sequential halving and uniform allocation . . . 150

5.11 Correlation between the optimization and localization performance . 151

5.12 Scenario 3 . 152

5.13 Localization performance for Scenario 3 153

5.14 Variation of the action grid resolution 154

5.15 Variation of the measurement duration 155

6.1 Platform with mounted payload . 168

6.2 The RF emitter used in the experiments 168

6.3 Payload . 169

6.4 Block diagram of the hardware . 170

6.5 Antenna pattern, mounted on the UAV 171

6.6 Measurement of the antenna pattern 171

6.7 Ground station of the sensor system 172

6.8 Rotation during the measurement process 174

6.9 Experimental area . 175

List of Figures xv

6.10 Sensor paths to localize the target at position B 179

6.11 Sensor paths to localize the target at position C 179

6.12 Action evaluation in localization attempt 7 180

6.13 Measurement error dependent on the cosine similarity criterion . . . 182

6.14 Measurement error for non-outliers 183

6.15 Orientation and distance traveled during a movement phase 183

6.16 Evaluation of the accuracy of the movement time prediction 185

6.17 Comparison between the cost function and actual cost 186

List of Tables

3.1 Probability that the target is in the confidence ellipsoid 51

4.1 Parameters of the scenarios . 108

4.2 Mean time until localization in Scenario 2 114

4.3 Mean number of required measurements for Scenario 2 115

4.4 Mean planner computation time per step in seconds for Scenario 2 . 116

5.1 Action selection algorithms with different sampling methods 139

5.2 Computational budget for sequential halving. 142

6.1 Parameters of the rollout path planner 176

6.2 Flights . 177

6.3 Localization attempts . 177

List of Abbreviations

API Application Programming Interface. 167, 183

BFGS Broyden-Fletcher-Goldfarb-Shanno algorithm.
12–15, 78, 79, 81, 134, 137–139, 144, 149, 155,
157, 189

CPU Central Processing Unit. 118, 172
CRLB Cramér-Rao Lower Bound. 57, 61
CRN Common Random Number. 122, 124, 128, 129,

132, 134, 139, 140, 142, 143, 145, 148, 150, 156

DF Direction Finding. 3, 4, 41, 62, 63, 72, 77, 78,
81–83

DOA Direction of Arrival. 3, 62, 63

EKF Extended Kalman Filter. 50, 161
ENTPP Entropy-based Path Planner. 109, 110, 112, 114–

116, 147, 152, 154, 155, 162
ENTPP-8 Entropy-based Path Planner with eight samples.

109, 110, 112, 114–116
ENU East North Up. 175

FIM Fisher Information Matrix. 57, 61
FOV Field of View. 77, 78

GPS Global Positioning System. 42, 167, 169, 175,
181

HMM Hidden Markov Model. 43

ID Identifier. 161
IEKF Iterated Extended Kalman Filter. 50, 54, 55
INS Inertial Navigation System. 42, 169, 172, 182
IP Internet Protocol. 172

List of Abbreviations xviii

JSAT Java Statistical Analysis Tool. 15, 138

L-BFGS-B Limited-memory BFGS with Bounds. 157
LTE Long Term Evolution. 167, 169, 172, 173

MAB Multi-armed Bandit. 18, 19
MC Monte Carlo. 117, 147, 153, 154
MCTS Monte Carlo Tree Search. 126, 127
MDP Markov Decision Process. 21–27, 29–32, 34, 35,

37–39, 44
MPC Model Predictive Control. 29, 30
MSE Mean Squared Error. 59, 60, 62

NBO Nominal Belief-state Optimization. 74

OCBA Optimal Computing Budget Allocation. 126

PID Proportional Integral Derivative. 162
PMC Plain Monte Carlo. 122, 128, 139, 142, 145, 148,

156
POMDP Partially Observable Markov Decision Process.

21, 35, 37–39, 75, 76, 93

RAM Random Access Memory. 172
RF Radio Frequency. iii, vii, viii, 3, 40, 68, 77, 85,

118, 160, 161, 164, 167, 168, 185
RMSE Root Mean Squared Error. 59, 60, 72, 93, 97–

100, 178, 184
ROS Robot Operating System. 173, 174
RSSI Received Signal Strength Indicator. 4, 160–163

SARSA State-Action-Reward-State-Action. 35
SEAD Suppression of Enemy Air Defences. vii
SGD Stochastic Gradient Descent. 16, 17, 144, 148,

149
SOPT Sequential Optimal Localization of Pseudo Tar-

gets. 109, 110, 112, 114–116, 118, 163

UAV Unmanned Aerial Vehicle. iii, vii, viii, 2, 4, 5, 7,
75, 85, 86, 91, 159–163, 165–167, 169, 172–176,
178, 180, 182, 184, 185, 189, 190, 192

List of Abbreviations xix

UCB Upper Confidence Bound. 126
UCL University College London. 8, 9
UCT Upper Confidence Bounds applied to Trees. 126
USB Universal Serial Bus. 172
USRP Universal Software Radio Peripheral. 169

VPN Virtual Private Network. 172

List of Symbols

x Lower case italics is either a scalar value, or a func-
tion.

X Upper case italics indicates an integer or a point
x Lower case bold indicates a column vector.
X Upper case bold indicates a matrix.
X Upper case nonitalics indicates a random variable.
X Double lines indicates a finite set, except the well

known symbols N and R for the natural and real num-
bers.

X Calligraphic symbols indicate either a nonfinite set or
a probability related symbol, for example the normal
distribution N .

XT Nonitalic superscript T indicates matrix or vector
transpose.

xs Other superscripts indicate an owner or a specializa-
tion of the variable. Most important are s for the sen-
sor, t for the target, b for the belief and B for the base
policy.

x̃ Point estimate
xk Subscripts indicate an index. Different values of the

index refer to different values.
xka Multiple indices are not comma separated.
x[k+1]a Index shifts with multiple indices use square brackets.

Here the indices are k+1 and a.
x1:R A colon notates a range of indices, forming a vector

with x1:R = (x1,x2, ...,xR)
xk[1:R] Ranges with multiple indices use square brackets.

Here xk[1:R] = (xk1,xk2, ...,xkR)

x Upper limit on x.
x Lower limit on x.

A Action space. 70, 92
B Belief space. 37, 59

List of Symbols xxi

C95 Confidence region. 165
Ct Possible target locations. 95
E Confidence ellipsoid. 51, 57, 61
HD Differential entropy. 37, 60
HS Discrete entropy or Shannon entropy. 60, 109
L Likelihood. 45
N Multivariate normal distribution. 48
P Probability of an event. 60
T B Set of termination beliefs. 38, 93
T X Set of termination states. 24
X State space. 22, 91
Xm Measurement locations close to the belief. 103
X s Sensor state space. 91, 135
X t Target state space. 40, 91
Z Measurement space. 35, 40

A Discretized action space. 27, 105, 165
B Set of beliefs. 138
I Set of grid cell indices. 54
N Natural numbers including zero. 22
S Set of target position samples. 132
Wp Set of possible process noises. 27
X Finite state space. 27, 60
Z Set of all integers. 128

β Angle between measurement locations. 66
Γ Gamma function. 61
γ Discount. 23, 25
∆t Time difference. 22
∆xb Cell width of the belief grid. 52
∆yb Cell height of the belief grid. 52
δ Dirac delta function. 37
δxb Width of the belief grid. 104
δyb Height of the belief grid. 104
ε Small positive value. 12
ζ Cosine similarity. 166
ζ Cosine similarity threshold. 167, 176
η Step size of a gradient-based algorithm. 13, 135
θ Target bearing. 63
λ Penalty parameter in the direction finder. 173
λ e Eigenvalue. 62
ξ Normalization in the grid-based Bayes filter. 53
π Policy. 24, 37
πB Base policy. 31, 98
π∗ Optimal policy. 94

List of Symbols xxii

µ Expected RMSE. 60, 93
µ Localization accuracy threshold. 93, 108, 176
σ Measurement standard deviation. 64, 92, 108,

176
φ Parameter vector. 35
ψ Shifted antenna pattern. 166
ω Sample path. 101, 121, 127
ωm Measurement noise seed. 101, 127
ωx X-position of the target in a sample path. 101,

127
ωy Y-position of the target in a sample path. 101,

127

K Finite horizon. 23, 87
L Number of iterations. 19, 133, 137, 144
M Number of Monte Carlo runs. 140
N Computational budget. 18, 130, 141, 176
P Arbitrary dimension of a space. 12, 22
R Rollouts per action. 101, 131, 133, 138
S Dimension of the sensor state space. 40
T Dimension of the target state space. 40
Xa X-dimension size of the action grid. 105, 153
Xb X-dimension size of the belief grid. 52
Y a Y-dimension size of the action grid. 105, 153
Y b Y-dimension size of the belief grid. 52
Z Dimension of the measurement space. 35, 40

A Measurement matrix for the direction finder. 173
B Approximation of the Hessian. 14
F Transition matrix of the process model. 48
H Measurement matrix. 48
I Identity matrix. 15
J Fisher information matrix. 57, 65
K Kalman gain. 49
M Weighting matrix for the BFGS derivation. 14
P̃ t Point estimate covariance. 48, 54, 61, 97, 139
Q Process noise covariance. 48
R Measurement noise covariance. 43
S Innovation covariance. 49

B Belief. 94
E Point estimator of the target state. 57
F Random sample of the function f . 16
G Random sample of the gradient. 16, 135
K Decision step when the MDP terminates. 24, 34

List of Symbols xxiii

R Rollouts per action. 139
S Score. 56
Wm Measurement noise. 94
Wp Process noise. 22
Xs Sensor state. 94
Xt Target state. 44, 94

aFD Finite difference size in one direction. 137
b Belief about the joint state. 70
b t Belief about the target state. 44
c Cost function. 92
cS Surrogate cost function. 29
dM Mahalanobis distance. 50
do Mean distance to the optimum. 140
e Euler’s number. 61
f A function. 11
f a MDP transition function. 22, 92
f d Deterministic transition function. 29
f π State transition according to a policy. 25
f s Sensor transition function. 70, 92
h Measurement function. 35, 43
hDF Measurement function for a DF sensor. 64, 91
k Decision step. 22
l Iteration. 13, 31, 132, 135, 137
m Monte Carlo run. 140
qB Action value of the base policy. 31
q̂B Rollout result for a specific sample path. 101
q∗ Optimal action value function. 26
qπ Action value function. 25
r A distance. 64
r Minimal distance to the confidence region. 176
rc Pearson correlation coefficient. 149
t Time. 22
td Time cost due to travel distance. 92
tm Measurement duration. 92, 108, 176, 184
u Quadratic function approximation. 14
vB Value function of the base policy πB. 33
v∗ Optimal value function. 26
vπ Value function of policy π . 25
vR Value function of the rollout policy πR. 33
vs Speed of the UAV. 79, 92, 108, 176
vs Maximal speed of the UAV. 184
wm Scalar measurement noise. 64, 91
xb Lower x coordinate of the belief grid. 52, 96
xb Upper x coordinate of the belief grid. 52, 96

List of Symbols xxiv

xs X position of the sensor. 91
xt X position of the target. 91
yb Lower y coordinate of the belief grid. 52, 96
yb Upper y coordinate of the belief grid. 52, 96
ys Y position of the sensor. 91
yt Y position of the target. 91
z Scalar bearing measurement. 45, 46, 64, 91

0 Zero vector. 43
a Action. 22, 70, 92, 105
a∗ Optimal action. 121, 129, 139
i Information vector. 36
m Measured power vector. 166, 173
p Line search direction. 15
r∗ Optimal signal reconstruction in the DF. 173
wm Measurement noise. 35, 43
wp Process noise. 27, 44, 48
x Joint state. 91
xs Sensor state. 64, 79, 91
xt Target state. 91
x̃t Point estimate of the target state. 48, 53, 97, 139
x̃t,ev Expected value of the target state. 53, 97
x̃t,map Maximum a-posteriori estimate of the target

state. 53, 97
y Innovation. 49
z Measurement. 35, 40, 43

update Belief update. 45, 94, 109

Chapter 1

Introduction

Emitter localization plays an important role in many military and civilian contexts,

such as finding the position of hostile radars [Wiley, 2006, Ch. 6], studying an-

imals by radio-tagging [Fuller and Fuller, 2012], or search and rescue [McClung

and Schaerer, 2006, Ch. 9]. In those applications, an object emits a signal and its

position needs to be found. The object is commonly called a target and could be a

radar, an animal tagged with a radio beacon, an emergency locator beacon, or any

other emitter of interest.

A sensor cannot measure the position of the target directly, but only the signal

strength, direction, and frequency of the received signal. By combining multiple of

those measurements, the target position can be determined. The position of a target

and other quantities of interest, like the velocity of a moving target, are called the

target state. Methods to combine measurements and form an estimate of the target

state are studied in the field of sensor data fusion [Bar-Shalom et al., 2001; Koch,

2014]. Typically, those methods are based on Bayesian statistics and use statistical

models of the measurement process and the behaviour of the target. These models

are used to form a probability distribution over the true target state, which is called

a belief [Thrun et al., 2005, Ch. 1].

Under a sensor system we understand the combination of one or multiple sen-

sors, their sensor data fusion algorithms, as well as one or more platforms on which

these sensors are mounted. At a given time, a sensor system produces a single belief

about the target state, based on the previously received measurements. We refer to

1.1. Emitter localization 2

the objective of a sensor system as its sensing task. Exemplary sensing tasks are to

find all targets in a specific region, track one or multiple targets, or localize a target.

A sensing task is specified together with metrics, which should be optimized, such

as the accuracy of a localization or the time until all targets in a region are found.

There are several complementary and interrelated ways to improve the ability

of a sensor system to perform a sensing task. The first would be to upgrade the hard-

ware. This can be done by technological progress, for instance by the construction

of a better receiver. Another option to upgrade the hardware of a sensor system is

to scale the existing sensor system, adding additional sensors to form a sensor net-

work. The second method to improve a sensor system is by better processing of the

measurements. This can be done either on the signal processing level to produce

more accurate measurements from the raw sensor readings, or on the sensor data

fusion level to form more accurate target tracks.

The third method for performance improvement of a sensor system is to con-

trol the sensor in an intelligent and adaptive way. This method is studied in the

field of sensor management [Hero III and Cochran, 2011] and is also the method

considered in this thesis. Sensor systems typically have several degrees of freedom,

which influence the measurement process and can be controlled. Modern electron-

ically scanned array radars, for example, have the ability to almost instantaneously

change the beam direction and waveform. Sensors mounted on mobile platforms,

like unmanned aerial vehicles (UAVs), can adaptively change their position. The

field of sensor management studies algorithms that control these degrees of free-

dom, to better execute the sensing task. Those algorithms use the belief produced

by the sensor data fusion algorithms, knowledge about the measurement process, as

well as potential context information. This thesis focuses on sensor path planning,

a subfield of sensor management that optimizes the position of the sensor.

1.1 Emitter localization

An emitter is a target that transmits a signal, for example a radio wave or acoustic

signal. Emitter localization is the problem of finding the position of such targets.

1.1. Emitter localization 3

In this thesis, we are interested in localizing an RF emitter. This problem appears

in many different situations. Defective or wrongly configured electrical devices

can emit electromagnetic interference, which are unwanted RF signals that disrupt

communication via mobile phones and radio. It is therefore necessary to locate the

emitter to remove this interference. In military applications, the positions of hostile

radars or jammers need to be determined. In biology, the behaviour of animals

is often studied by attaching small RF emitters to them and tracing their position

over time. An emergency locator beacon is an RF emitter that is activated in an

emergency situation, like falling overboard from a ship or becoming buried by an

avalanche. In those situations, a quick localization of the emitter by a search and

rescue team increases the survival chance.

Sensors used for RF emitter localization measure the received electromagnetic

waves and can therefore only extract limited information. This could be the direc-

tion of arrival (DOA), the frequency, or the signal strength. Most important, the

distance towards the emitter is not available if its power is unknown. Therefore,

commonly DOA measurements or bearing measurements are used for the local-

ization. Sensors that produce bearing measurements are called direction finding

sensors (DF sensors).

With bearing measurements, it is required to combine multiple measurements

to localize the emitter. A straightforward way to create multiple measurements is

the use of multiple sensors. This is a useful approach for extremely short signals,

as the measurements of multiple well-positioned DF sensors can be intersected to

instantaneously localize the emitter. If the emitter is instead active over a longer

time period, an alternative is to move a single sensor to a new position and take

another measurement there. A mobile sensor is a common situation: when localiz-

ing the source of an electromagnetic interference, a mobile detector van is used. In

animal studies, researchers often take measurements manually from different posi-

tions using directional antennas [Tokekar et al., 2013; Hui et al., 2021]. In military

surveillance, DF sensors can be mounted on aircrafts to take multiple measurements

during a reconnaissance flight.

1.2. Statement of the objective 4

Over the last decade, small UAVs have become more and more prevalent [Ku-

mar and Michael, 2012; Floreano and Wood, 2015]. Due to their mobility and ease

of use, they are well suited as a sensor platform. Typical ways to perform emitter

localization with a UAV are the measurement of signal strength [Körner et al., 2010;

Nguyen et al., 2019], also called received signal strength indicator (RSSI), and the

usage of DF sensors [Vrba et al., 2019]. Due to cost, complexity, and weight re-

quirements, often a simple way of direction finding is used: a directional antenna

that is mounted on the UAV [Cliff et al., 2015; Isaacs et al., 2014; Vonehr et al.,

2016]. When rotating the UAV, the received signal power peaks in the direction of

the signal. Such a sensor system needs to stop movement when taking a measure-

ment. This assumption is not considered by the majority of existing sensor path

planning algorithms in the literature [Hammel et al., 1989; Oshman and Davidson,

1999; Hoffmann and Tomlin, 2010; Doğançay, 2012]. Instead they assume that

there is no interruption an the measurements are taken at regular intervals. There-

fore, novel path planning algorithms that take these constraints into account are

required.

1.2 Statement of the objective

When localizing an emitter with bearing measurements, the relative position of sen-

sor and target has a strong influence on the accuracy of the localization. This fact

motivates a large body of research in sensor path planning. Most sensor path plan-

ning algorithms assume a generation of measurements in regular time intervals.

Direction finding based on array antennas is almost instantaneous [Wiley, 2006,

Ch. 5]. In this case, modelling the measurement generation in regular time steps

is a valid assumption. However, due to cost, complexity, and weight requirements,

small UAV-based sensor systems often use simpler sensors like a rotating direc-

tional antenna [Cliff et al., 2015; Vrba et al., 2019; Isaacs et al., 2014; Vonehr et al.,

2016]. Such a sensor leads to a trade-off between taking a measurement and moving

the platform, which influences the optimal sensor path. To use these sensor systems

optimally, sensor path planning needs to be adapted to this trade-off.

1.2. Statement of the objective 5

There are two interlinked sources of uncertainty in the problem of emitter lo-

calization. When making the decision for the next measurement location, only an

uncertain belief about the target position is available. In addition, the values of

future measurements are uncertain. To perform an optimal decision, these uncer-

tainties need to be taken into account.

A successful emitter localization is the result of a sequence of multiple mea-

surements. These measurements need to be taken with different relative positions of

target and sensor, called sensor-to-target geometries. As changing the measurement

location means to physically move the UAV, this does not only change the sensor-to-

target geometry of the next measurement, but also influences the sensor position for

future measurements. While the sensor-to-target geometry can be changed for those

future measurements again, this leads to additional time spent travelling. Therefore,

it is important to take future measurements into account when deciding on the next

measurement location.

An algorithm that takes multiple future measurement locations into account is

called a nonmyopic path planner. These algorithms can also be distinguished in how

far they look into the future, which is called the planning horizon of the algorithm.

In contrast, a myopic path planner only considers the immediate next measurement

location.

Literature on the problem of sensor path planning for emitter localization with

a small UAV exists, however, the presented path planners are typically either myopic

[Vander Hook et al., 2014; Cliff et al., 2015; Dressel and Kochenderfer, 2018] or

with a limited planning horizon [Tokekar et al., 2011]. Additionally, the uncertainty

in the problem is often not fully taken into account [Cliff et al., 2015; Dressel and

Kochenderfer, 2018; Vander Hook et al., 2015]. Therefore, a novel path planner for

this problem is developed in this thesis. In total, this thesis makes the following

contributions:

Create a novel path planner for localizing an emitter with a UAV. A novel path

planner is developed for the emitter localization problem with a trade-off be-

tween taking a measurement and moving the platform. The path planner takes

1.3. Structure of the thesis 6

into account the uncertainty present in the problem and has a nonmyopic plan-

ning horizon.

Optimize the action selection in a policy rollout algorithm. The path planner

is based on the policy rollout principle from approximate dynamic program-

ming. Action selection in policy rollout is often done in an inefficient way.

More effective ways to perform the action selection are examined in this the-

sis.

Analyse the relationship between action selection and total received cost. It is

not guaranteed that improving the action selection in a policy rollout, which

means finding an action with a better action value, results in a better perfor-

mance of the resulting algorithm. The correlation between minimizing the

action value and the resulting time until the localization of the target is anal-

ysed.

Perform a demonstration of the novel path planner in an experimental sensor

system. The resulting path planner is tested in an experimental sensor sys-

tem. Differences between this sensor system and the assumptions of the path

planner are analysed.

1.3 Structure of the thesis
This thesis covers the area of sensor management, which brings together optimiza-

tion and sensor data fusion. Chapter 2 gives a brief overview over optimization

techniques. The focus is put on two problems: Function minimization and Markov

decision processes. In function minimization, an important topic is minimizing

functions of which only stochastic samples are available. Markov decision pro-

cesses are sequential decision problems. They are useful to model problems where

actions have influences over multiple decision steps. Several solution methods are

presented, especially the policy rollout algorithm which is used in this thesis.

Chapter 3 discusses three important sensor related basics of this thesis. First,

the Bayesian formalism of sensor data fusion is introduced, as well as ways to

1.4. Notation 7

model the uncertainty of the belief. In the second section, direction finding sensors

are introduced. The Fisher information, introduced in the first section, is computed

for direction finding sensors and optimal sensor-to-target geometries are described.

It will be seen that the influence of the sensor-to-target geometry on the localization

accuracy is significant. The last section covers sensor management, with a special

focus on sensor path planning.

The first contribution of this thesis is described in Chapter 4. Here, a path

planner to localize a target with a UAV is developed. In contrast to path planners

from the literature, the algorithm of this thesis performs a nonmyopic planning of

the sensor path and takes into account different future measurement realizations,

based on the uncertainty of the current state estimate. Simulations show that the

path planner localizes targets faster than comparable algorithms from the literature.

The path planner is further improved in Chapter 5. This chapter is based on

the idea that action selection in the policy rollout algorithm can be interpreted as the

minimization of a stochastic function. Several algorithms to solve this task are com-

pared and the resulting trade-off between computational budget and performance is

analysed. The chapter also shows that the optimum of the rollout action value cor-

relates with the actual performance, motivating the importance of optimizing the

action selection.

In Chapter 6 the path planner of this thesis is evaluated in an experimental sen-

sor system. The sensor system and setup is described and several required adaptions

to the algorithm are introduced. The sensor system is shown to be able to localize

an emitter.

Finally, Chapter 7 presents the general conclusions and contributions of this

thesis as well as possible future extensions of this work.

1.4 Notation

This thesis uses the following notation: A lower case italic letter such as ‘x’ or ‘ f ’

is either a scalar value or a function. An upper case italic letter such as ‘X’ indicates

an integer or point. Bold letters ‘x’ indicate a vector if lower case. If bold letters are

1.5. List of own publications 8

upper case, such as ‘X’, they indicate a matrix. Upper case nonitalic letters such as

‘X’ are random variables. Continuous sets are denoted in calligraphic such as ‘X ’,

while finite sets use double lines, such as ‘X’. Calligraphic notation is also used for

terms of probability theory, such as the likelihood L. An overview over the notation

can be found in the list of symbols at the beginning of this thesis.

Whether a variable is denoted as a random variable is seen from the perspective

of the path planner. When the path planner is executed at decision step k, all prior

measurements z0, ...,zk are known. In this case no distinction between the random

variable and its instantiation is made. The distinction between a random variable

and its instantiation is made for all values not known to the path planner at decision

step k, which are for example future measurements Zk+1,Zk+2 or the true target

position X.

1.5 List of own publications
Publications that were written before enrolment at UCL:

1. Folker Hoffmann and Alexander Charlish. A resource allocation model for

the radar search function. In International Radar Conference, pages 1–6,

Lille, France, 2014. IEEE

2. Alexander Charlish and Folker Hoffmann. Anticipation in cognitive radar

using stochastic control. In 2015 IEEE Radar Conference (RadarCon), pages

1692–1697, Arlington, Virginia, USA., 2015. IEEE

3. Folker Hoffmann, Alexander Charlish, and Wolfgang Koch. Trajectory opti-

mization for multi-platform bearing-only tracking with ghosts. In Proceed-

ings of the 19th International Conference on Information Fusion (FUSION),

pages 39 – 44, Heidelberg, Germany, 2016a

4. Folker Hoffmann, Matthew Ritchie, Francesco Fioranelli, Alexander Charl-

ish, and Hugh Griffiths. Micro-doppler based detection and tracking of UAVs

with multistatic radar. In IEEE Radar Conference (RadarConf), pages 893–

898, Philadelphia, PA, USA, 2016b. IEEE

1.5. List of own publications 9

5. Colin Horne, Matthew Ritchie, Hugh Griffiths, Folker Hoffmann, and

Alexander Charlish. Experimental validation of cognitive radar anticipa-

tion using stochastic control. In Asilomar Conference on Signals, Systems,

and Computers, Pacific Grove, CA, USA, 2016

6. Alexander Charlish and Folker Hoffmann. Cognitive radar management. In

Novel Radar Techniques and Applications Volume 2: Waveform Diversity and

Cognitive Radar, and Target Tracking and Data Fusion, chapter 5, pages 157–

193. Institution of Engineering and Technology, 1 edition, 2017

Publications that were written during enrolment at UCL:

7. Markus Krestel, Folker Hoffmann, Hans Schily, Alexander Charlish, and

Sven Rau. Passive emitter direction finding using a single antenna and com-

pressed sensing. In 2019 Sensor Data Fusion: Trends, Solutions, Applications

(SDF), pages 1–5, Bonn, Germany, 2019. IEEE

8. Folker Hoffmann, Hans Schily, Alexander Charlish, Matthew Ritchie, and

Hugh Griffiths. A rollout based path planner for emitter localization. In Pro-

ceedings of the 22nd International Conference on Information Fusion (FU-

SION), Ottawa, ON, Canada, 2019

9. Alexander Charlish, Folker Hoffmann, Christoph Degen, and Isabel

Schlangen. The development from adaptive to cognitive radar resource man-

agement. IEEE Aerospace and Electronic Systems Magazine, 35(6):8–19,

June 2020

10. Folker Hoffmann, Alexander Charlish, Matthew Ritchie, and Hugh Griffiths.

Sensor path planning using reinforcement learning. In Proceedings of the

23nd International Conference on Information Fusion (FUSION), Rusten-

burg, South Africa (Virtual), 2020

11. Folker Hoffmann, Alexander Charlish, Matthew Ritchie, and Hugh Griffiths.

Policy rollout action selection in continuous domains for sensor path plan-

1.5. List of own publications 10

ning. IEEE Transactions on Aerospace and Electronic Systems, pages 2247–

2264, 2021

12. Hans Schily, Folker Hoffmann, and Alexander Charlish. A comparison of

distributed and centralized control for bearing only emitter localization with

sensor swarms. In SCI-341: Situation Awareness of Swarms and Autonomous

Systems, Tallinn, Estonia (Virtual), 2021

13. André Brandenburger, Folker Hoffmann, and Alexander Charlish. Co-

training an observer and an evading target. In 24th International Conference

on Information Fusion (FUSION), Rustenburg, South Africa, 2021

14. Thore Gerlach, Folker Hoffmann, and Alexander Charlish. Policy rollout ac-

tion selection with knowledge gradient for sensor path planning. In 24th In-

ternational Conference on Information Fusion (FUSION), Rustenburg, South

Africa, 2021

Chapter 2

Optimization and Approximate

Dynamic Programming

This thesis considers sensor management, which is optimizing the control of a sen-

sor system to achieve a sensing task. Algorithms for sensor management are often

based on mathematical optimization. In this chapter, we review the basics of opti-

mization, focused on two topics: function minimization and Markov decision pro-

cesses. In function minimization, we discuss gradient-based optimization, stochas-

tic gradient descent and multi-armed bandits. Markov decision processes are a way

to model problems that consist of sequential decisions where each decision influ-

ences the state in a random way.

2.1 Function minimization

In this section, the minimization of a function f is discussed. The function f is

called the objective function and is used to specify the problem that should be

solved. We consider three cases of objective functions that differ in their domain

and in whether the output is directly observable.

The first case assumes a differentiable function

f : RP→ R (2.1)

2.1. Function minimization 12

with gradient ∇ f (a) at point a ∈ RP. The goal is to find a minimum a∗ ∈ RP. If

f (a∗) ≤ f (a) for all a ∈ RP, a∗ is called a global minimum. Many methods only

find a local minimum, which means that

f (a∗)≤ f (a) for all a with ∥a∗−a∥2 < ε (2.2)

for an ε > 0. In high-dimensional problems also saddle points become increasingly

a problem for gradient-based methods [Goodfellow et al., 2016, Ch. 8]. In those

points the gradient of f is zero, but the point is neither a local nor a global mini-

mum. We present gradient descent, Newton’s method, and the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) algorithm as algorithms that search for a local minimum

of f .

The second case assumes the same basic setting, but the value of f is not

observable. Instead, random variables F,G are available, with

E [F(a)] = f (a) (2.3)

E [G(a)] = ∇ f (a) . (2.4)

Those can be interpreted as a noisy sample of the function and its gradient. In this

case, the method of stochastic gradient descent can be applied.

The third case assumes a function f : A→ R, where A is a finite set. Similar

to the second case, only noisy samples F of the function are available with

E [F(a)] = f (a) . (2.5)

As the set A is unordered, the concept of a local minimum is not useful and the goal

is to find the global minimum a∗, with f (a∗)≤ f (a) for all a ∈ A. We will present

the algorithm of sequential halving for this problem.

2.1.1 Differentiable functions

There exist a large number of minimization algorithms for differentiable functions

[Nocedal and Wright, 2006]. Numerical minimization algorithms typically start

2.1. Function minimization 13

with an initial point a1 and iteratively update the current point al to arrive at a new

point al+1. A simple algorithm is gradient descent

al+1 = al−ηl ·∇ f (al) (2.6)

which selects the new point in the opposite direction of the gradient ∇ f (al), com-

puted at the last point. This direction is the direction of steepest descent. Here l is

the index of the iteration and ηl the step size of the algorithm. The step size might

vary in each iteration or could be kept constant.

A main difficulty with gradient descent algorithms is that the convergence can

be slow [Nocedal and Wright, 2006, Ch. 3]. A faster algorithm is Newton’s method.

It uses the additional information of the Hessian ∇2 f , to define the update

al+1 = al−ηl ·∇2 f (al)
−1∇ f (al) . (2.7)

In contrast to gradient descent, in Newton’s method an ideal step size of ηl = 1 ex-

ists. Geometrically, Newton’s method can be interpreted as approximating f locally

at al with a quadratic function. The point al−∇2 f (al)
−1∇ f (al) is the minimum of

this quadratic function, which motivates the ideal step size of one. However, this

step size is only useful when the quadratic function approximation is valid for a suf-

ficiently large radius around the current point. Otherwise, smaller step sizes need to

be used. The algorithm assumes that the Hessian is positive definite and care must

be taken when this is not the case [Nocedal and Wright, 2006, Ch. 3].

Another disadvantage of Newton’s method is that the Hessian must be com-

puted explicitly. So called quasi-Newton methods do not require the Hessian, but in-

stead try to approximate it using only information from the gradient. The Broyden-

Fletcher-Goldfarb-Shanno (BFGS) algorithm is such a quasi-Newton algorithm. We

now sketch the ideas of the BFGS algorithm and refer for more details to [Nocedal

2.1. Function minimization 14

and Wright, 2006, Ch. 6] and [Dennis, Jr. and Moré, 1977]. Similar as in Newton’s

method, the BFGS update consists of

al+1 = al−ηl ·B−1
l ∇ f (al) (2.8)

where Bl is an approximation of the Hessian ∇2 f (al). After the new point al+1 is

selected, this approximation is updated. There are two major ideas in the update of

Bl . First, the gradient of the quadratic approximation

u(s) = f (al+1)+∇ f (al+1)
Ts+

1
2

sTBl+1s (2.9)

at al+1 should match the gradient of the function f , at the current and last point.

This means

∇u(0) = ∇ f (al+1) (2.10)

∇u(−sl) = ∇ f (al) (2.11)

where sl = al+1−al is the difference between the last and the current point. Equa-

tion (2.10) is satisfied due to the definition of the quadratic approximation, while

(2.11) is a constraint on Bl+1. This constraint alone does not make Bl+1 unique.

The idea of the BFGS algorithm is that the approximation of the Hessian should

not change much between successive iterations. Therefore, Bl+1 is defined as the

symmetric, positive definite matrix which fulfils the constraint (2.11) and minimizes

min
B

= ∥M(B−1−B−1
l)M∥F . (2.12)

This means the inverse of B should change the least between iterations if measured

with the Frobenius norm weighted by a matrix M. This weighting matrix M can be

any symmetric nonsingular matrix which satisfies the constraint

M2sl = gl (2.13)

2.1. Function minimization 15

where gl = ∇ f (al+1)−∇ f (al) is the difference between the gradients in the last

iteration [Dennis, Jr. and Moré, 1977]. The matrix that minimizes (2.12) can be

computed analytically [Dennis, Jr. and Moré, 1977; Nocedal and Wright, 2006, Ch.

5]. It is possible to directly compute the inverse

B−1
l+1 =

(
I− slgT

l

gT
l sl

)
B−1

l

(
I− glsT

l

gT
l sl

)
+

slsT
l

gT
l sl

(2.14)

where I refers to the identity matrix. Computing the inverse directly is advantageous

as only the inverse of Bl is required in (2.8).

Typically, these three algorithms select the step size ηl in an iteration by a line

search. A line search searches for the optimal ηl in either (2.6), (2.7), or (2.8), and

the evaluated points al+1 all lie on a single line

al+1 = al +ηl ·pl (2.15)

starting at al . The direction of the line depends on the algorithm and would be

pl =−∇ f (al) for gradient descent, pl =−∇2 f (al)
−1∇ f (al) for Newton’s method,

or pl = −B−1
l ∇ f (al) for BFGS. Several line search algorithms are possible. In

the JSAT library1 [Raff, 2017], the default line search algorithm for BFGS is back-

tracking line search. This algorithm starts with a high estimate for ηl , which is

successively reduced, until the Armijo rule

f (al +ηl ·pl)≤ f (al)+ c1 ·ηl ·pT
l ∇ f (al) (2.16)

is fulfilled. Here c1 ∈ (0,1) is a small constant. The right side of the equation is

linear in the step size ηl with a negative slope, because the directional derivative

pT
l ∇ f (al) is negative.

A step size ηl is only accepted if the resulting function value, that means the

left side of (2.16), is less than this linear bound. This condition signifies that there

1https://github.com/EdwardRaff/JSAT

https://github.com/EdwardRaff/JSAT

2.1. Function minimization 16

should be a sufficient decrease in the function value to accept a value for ηl during

the line search.

2.1.2 Stochastic differentiable functions

The previous section assumed that the function value f (a) can be computed, as well

as the gradient ∇ f (a). We now consider the case that neither of these is available

exactly, but instead random variables F(a), G(a) exist with

E [F(a)] = f (a) (2.17)

E [G(a)] = ∇ f (a) . (2.18)

Effectively, this means that F is a random sample of the function value and G is a

random sample of the gradient. Such a situation can appear if f is not computable

directly, but approximated using Monte Carlo sampling. This setting is also very

common in machine learning, where an objective function - here called loss function

- and its gradient is typically only computed on a subset, or mini-batch, of the

training data set [Goodfellow et al., 2016, Ch. 8].

The idea of stochastic gradient descent (SGD) is to perform gradient descent

on f , but instead of using the exact gradient ∇ f (a), a random sample G(a) is used.

Similar to (2.6), in each iteration a new point is derived by

Al+1 = Al−ηl ·G(Al) . (2.19)

Note that the points Al are a random sequence. It is also interesting to note that the

function value F is not directly needed and the gradient sample G is sufficient. In

gradient descent, the function value f (a) is used in the line search, but performing

line search with the random variable F(a) would not necessarily be helpful. In

addition, a concrete realization of G(a) might not even point in the right direction

of the true gradient.

2.1. Function minimization 17

The step size ηl is very important in SGD due to the noisy gradient sample. In

gradient descent, the gradient of a function becomes zero in a local minimum and

therefore the iteration (2.6) becomes

a∗ = a∗−ηl ·0 (2.20)

for any step size ηl . The gradient of f becomes smaller when closing in to a local

minimum, and therefore even a constant step size might work. However, the same

is not the case for SGD. As only a random sample of the gradient is available, it is

likely that the realization of G(a∗) is not zero, and therefore even if al is at a local

minimum, (2.19) would move away from it.

The solution for this approach is to create a step size schedule. By decreasing

ηl for increasing l, the influence of each gradient sample becomes successively less

and the algorithm converges. The major issue is to find a correct step size schedule.

Theoretical convergence results exist [Goodfellow et al., 2016, Ch. 8] for a schedule

that conforms to the conditions
∞

∑
l=1

ηl = ∞ (2.21)

and
∞

∑
l=1

η2
l < ∞ . (2.22)

The second condition ensures that the schedule eventually converges to zero, while

the first condition ensures that this does not happen too fast. A solution for those

conditions would be ηl = 1/l. However, these criteria do not guarantee a conver-

gence for a fixed number of iterations and are rarely used in practice. For example in

[Goodfellow et al., 2016, Ch. 8], it is recommended to reduce the step size linearly

until a threshold and to keep it constant afterwards, clearly violating (2.22). An

interesting overview of step size schedules can be found in [Powell, 2011, Ch.11],

but focused on a nonstationary function whose true values shift over time.

2.1. Function minimization 18

2.1.3 Multi-armed bandits

The multi-armed bandit (MAB) problem describes the problem of a gambler fac-

ing a row of unequal slot machines (“one-armed-bandits”). When a slot machine

is played, it produces a payoff or reward, specific to a probability distribution of

this machine. The goal of the gambler is to maximize the money won, therefore

he or she always wants to play the machine with the highest expected payoff. As

this machine is unknown, the gambler is faced with the choice of using the machine

with the empirically highest payoff (exploitation), or testing other machines (explo-

ration), potentially finding a machine with a higher payoff. This is known as the

exploration-exploitation dilemma. A common algorithm for this problem is based

on upper confidence bounds [Auer et al., 2002].

A variation of this problem is the best arm selection problem [Bubeck et al.,

2009; Audibert and Bubeck, 2010; Gabillon et al., 2012; Garivier and Kaufmann,

2016; Karnin et al., 2013]. In the standard formulation of an MAB described above,

the objective is to maximize the payoff parallel to the information gathering process.

In the best arm selection problem the objective is only to identify the machine with

the highest payoff.

While the intuition of the problem corresponds to a maximization problem,

the corresponding minimization problem is analogous. We now assume that each

alternative a of the finite set A has a true cost f (a), with

f : A→ R (2.23)

and the minimum a∗ ∈ A should be found. The true cost is only observable by

samples from a random variable F(a), with

E [F(a)] = f (a) . (2.24)

There are two common problem settings. In the fixed budget setting, the ran-

dom variable F(a) can be sampled only a limited number of times, called the com-

putational budget N. This means the algorithm can sample the function N times

2.1. Function minimization 19

in total, and afterwards needs to predict the minimum a∗. Algorithms for the fixed

budget setting aim to maximize the probability of selecting the correct minimum.

In the fixed confidence setting, a threshold on the probability of selecting the cor-

rect minimum is given, instead of a budget. There, the objective is to minimize the

number of times F is sampled, to achieve a specified error probability.

The fixed budget setting is of interest if the decision should be made in a fixed

amount of time. One algorithm for this setting is the sequential halving algorithm,

which searches for a minimum with a fixed computational budget N [Karnin et al.,

2013]. The idea of the sequential halving algorithm is to focus the computational

budget in successive iterations on the most promising arms. In the initial iteration

each arm is sampled with the same number of samples. This means multiple sam-

ples F(a) are observed for each a∈A. Then the worse half of the arms are removed.

In the second iteration only the remaining arms are sampled. This continues until

only one arm is remaining. As the set of arms is halved in each iteration, the algo-

rithm requires L = ⌈log2|A|⌉ iterations until a decision is made. The computational

budget is spread evenly over the iterations, therefore in each iteration ⌊N/L⌋ sam-

ples are taken. This means that in later iterations, when less arms are remaining,

the remaining arms receive more samples per arm. Because in the first iteration

every action needs to be sampled at least once, the algorithm requires a minimum

computational budget of ⌈|A| · log2 |A|⌉.

Figure 2.1 shows an exemplary execution of the sequential halving algorithm.

The MAB has eight arms and the arm with the lowest value is sought. The samples

of each arm are normally distributed, with an expected value of 0.1,0.2, ...,0.8 and

a constant standard deviation of σ = 0.3. However, these values are unknown to

the algorithm. The algorithm has a computational budget of N = 300, and requires

log2 8 = 3 iterations. Therefore, 100 samples are available for each iteration.

In the first iteration (Figure 2.1a), each arm is sampled ⌊100/8⌋ = 12 times.

We can see that the true best arm has not the minimal sample mean, due to random

fluctuations of F. Half of the arms (arms 3,5,6,7) with the highest values are as-

sumed to be not the minimum and are rejected. These are not sampled any more in

2.1. Function minimization 20

(a) Iteration 0

(b) Iteration 1

(c) Iteration 2

Figure 2.1: An example of the sequential halving algorithm applied to a multi-armed ban-
dit with eight arms. In three iterations, the algorithm successively focuses on
the more promising arms. Each dot shows a sample of the value of an arm.
The number above the dots shows the number of samples for the arm, and the
horizontal line the average sample value.

2.2. Markov decision processes 21

the next iteration (Figure 2.1b). In this iteration, the remaining arms are sampled

100/4 = 25 times, which means that the average is computed over 37 samples each.

In the final iteration, the algorithm samples the arms 0 and 1 an additional 50 times

and in the end commits to arm 0 as being the best, which is correct. It can be seen

that the algorithm focuses the computational budget on the arms which are most

promising. Due to rounding not the whole computational budget is used, but only

296 samples.

Being a stochastic algorithm, sequential halving is not guaranteed to find the

correct solution. For the given problem it works well, finding the correct optimum

in 9836 of 10000 Monte Carlo runs. The second best arm was selected 164 times

and the other arms were never selected.

2.2 Markov decision processes

Markov decision processes (MDPs) are a formal way to model sequential decision

problems. Such problems consist of a sequence of decision steps. At each decision

step, the current condition of the problem is given in form of a state variable. A

decision consists of an action that changes the state in a probabilistic manner.

The defining property of an MDP is that the probability of transitioning from

one state to a specific next state only depends on the current state and the current

action. This property is called the Markov property. There are multiple reasons to

assume the Markov property. One argument is that is makes modelling and algo-

rithms easier. It is also a reasonable approximation for many practical problems. In

[Powell, 2011, Ch. 5] the state is defined as the set of variables that contain all in-

formation to compute the state transition. With this definition a sequential decision

process has by definition the Markov property. If the state transition also depends on

earlier states, the state variable is not complete. In a similar way, so-called partially

observable Markov decision processes (POMDPs) can be interpreted as MDPs as

well, when defining the MDP using a sufficient statistic of the state. This will be

discussed in Section 2.2.4.

2.2. Markov decision processes 22

2.2.1 Definition

In a Markov decision process, the current condition of the problem is represented

as the state xk ∈ X . The set of possible states is called state space. In this thesis we

are interested in state spaces X ⊆ RP, which means the P-dimensional real space.

The decision process advances in discrete steps and in each step an action can

be selected to influence the transition from one state to another. We refer to these

steps as decision steps k ∈ N. If a decision is made in regular time intervals, we

refer to the decision steps also as time steps and the time tk when the k-th decision

is made is given by

tk = k ·∆t . (2.25)

Here ∆t is a fixed time interval. However, while such semantics are common, they

are not necessary and the decision steps need not to correspond to any real time at

all. Especially, in the algorithm discussed in Chapter 4 the decisions are not made in

regular time intervals and the time at decision step k depends on the previous state

transitions.

At each decision step the MDP can be influenced by an action ak ∈ A. The

influence of the action on the state is modelled with a transition function

Xk+1 = f a(xk,ak,W
p
k) . (2.26)

The superscript of f a should indicate that it models the influence of the action.

The transition from xk to Xk+1 is called state transition. Note that the outcome of

the state transition is a random variable. The randomness in the state transition is

modelled by the process noise Wp
k . We assume the process noise to be uncorrelated

between different decision steps and its probability distribution to be known. After

the action ak and the random influence Wp
k , the state transition is only dependent on

the current state xk and not on previous states xi with i < k. This corresponds to the

Markov property.

The above way to model the state transition is in the style used in optimal con-

trol theory, and is widely used in the literature [Bertsekas, 2017; Powell, 2011]. An

2.2. Markov decision processes 23

alternative and similarly common way to model the state transition is by specifying

a transition density

p(Xk+1 | xk,ak) (2.27)

which denotes the probability density of arriving in a state conditioned on the cur-

rent state and the action. In the case of a finite state space, it is possible to represent

(2.27) in form of a transition matrix that allows for effective mathematical manipu-

lations. This formulation is commonly used in the mathematical theory of Markov

decision processes [Hernández-Lerma and Lasserre, 1996; Puterman, 2005] as well

as in the reinforcement learning literature [Sutton and Barto, 2018]. In this thesis

the control theoretic notation is used.

The state transition incurs a cost, modelled by a cost function c(xk,ak) or

c(xk,ak,W
p
k). This cost models how desirable an action or state transition is. In-

stead of a cost, sometimes a reward is specified. This is the same concept, with the

difference that a reward should be maximized, while a cost should be minimized.

The MDP starts in the initial state x0. Several assumptions on the length of an

MDP can be made, resulting in different problem settings. For a finite number of

decision steps, we arrive at a finite horizon MDP, defined as the tuple

(
X ,A, f a,c,x0, pWp

,K
)
. (2.28)

Here K ∈ N corresponds to the number of decision steps after which the process

terminates. pWp
refers to the probability density of the process noise Wp

k ∼ pWp
.

An MDP with infinite decision steps is called an infinite horizon MDP. In this

case, the process is defined as the tuple

(
X ,A, f a,c,x0, pWp

,γ
)
. (2.29)

The discount factor γ is used to weight the influence of future costs. A discount

factor 0 < γ < 1 is used to reduce the influence of costs that occur at later decision

steps and therefore ensure that the total sum of costs remains finite. A discount

factor of γ = 1 implies no discounting. This will also be discussed in Section 2.2.2.

2.2. Markov decision processes 24

In some applications, it is necessary to model an MDP that independent of the

horizon terminates in some situations. In the context of this thesis, such a situation

would be a successful localization. This behaviour can be modelled by including

a special termination state T , such that f a(T ,a) = T and c(T ,a) = 0 for each

action a ∈ A [Bertsekas, 2017, Ch. 5]. Once the MDP reaches this state, it has

effectively terminated as no further state changes are possible. In this thesis we

define a set of termination states T X ⊂ X . Once the process reaches one of these

states, it terminates. Formally, this means that the MDP uses an augmented state

space X ∪{T }, and for each x ∈ T X and each action a ∈ A and process noise Wp,

the next transition is f a(x,a,Wp) = T with cost c(x,a) = 0.

If the cost function is nonnegative, the cost can be interpreted as a distance

between the states. For an infinite horizon MDP with termination state, the mini-

mization of the total cost has then the intuition of finding a shortest path from the

initial state to a termination state. Therefore, this case is called a stochastic shortest

path problem [Bertsekas, 2017, Ch.5]. A discount factor of γ = 1 is often used and

the problem is formally stated as the tuple

(
X ,A, f a,c,x0, pWp

,T X
)
. (2.30)

We define the random variable K as the index of the first decision step k when

xk ∈ T X , such that the last meaningful action was performed at decision step K−1.

This can be seen as the random analogue to K in a finite horizon MDP.

2.2.2 Optimal policies and Bellman’s equation

The MDP itself does not specify a method to select the actions. When this is done

in an automated way, the decision algorithm is called a policy. Generally, a policy

πk : X →A (2.31)

is a mapping from the state space to the action space. Exemplary implementations

are

2.2. Markov decision processes 25

• a lookup table, which is especially common for discrete state spaces

• an algorithm that solves an optimization problem, for example in model pre-

dictive control

• a parameterized function, commonly used in reinforcement learning

• or simply a random selection of an action.

In finite horizon MDPs, the policy πk often changes with the decision step. If a

policy

π : X →A (2.32)

is the same for each decision step, it is called a stationary policy [Bertsekas, 2017,

Ch. 5]. This is often the case in infinite horizon MDPs. In the remainder of this

section we will focus on stationary policies and infinite horizon MDPs.

With a given policy, the Markov decision process becomes a Markov process,

which means a sequence of random state transitions with transition function

Xk+1 = f π(xk,W
p
k) = f a(xk,π(xk),W

p
k) . (2.33)

Based on this sequence, the value function vπ :X →R can be defined. This function

vπ(x) = E

[
∞

∑
i=0

γ ic(Xi,π(Xi))
∣∣∣ X0 = x

]
(2.34)

is defined as the expected future costs when starting in a state x and following a

policy π . Another name used in the literature for this function is the cost-to-go

function [Bertsekas, 2017, Ch. 1]. The role of a discount factor γ ∈ R,0 < γ < 1 is

to ensure that vπ remains finite. With a discount factor of γ = 1, vπ is finite if the

policy eventually reaches a termination state, as defined in the stochastic shortest

path problem. We also refer to vπ(x) as the value of x.

In a similar way, the action value

qπ(x,a) = E [c(x,a)+ γ · vπ(f a(x,a,Wp)] (2.35)

2.2. Markov decision processes 26

also called Q-value, can be defined. This corresponds to the future cost encountered

when taking an action a in a state x and following the policy π afterwards.

It is reasonable to judge a policy based on the total cost encountered during

the execution of the MDP. This corresponds to the value of x0. The optimization

problem of an MDP is therefore

π∗ = argmin
π

vπ(x0) (2.36)

which means to find a policy that minimizes the expected costs of the initial state

[Bertsekas, 2017, Ch. 1]. If such a policy exists, π∗ is called the optimal policy.

The corresponding value function vπ∗ of π∗ is called the optimal value function and

denoted by v∗. Similarly, we denote qπ∗ as q∗. The optimal value function can be

characterized by the recursive equation

v∗(x) = min
a∈A

E [c(x,a)+ γ · v∗(f a(x,a,Wp))] (2.37)

= min
a∈A

q∗(x,a) . (2.38)

Equation (2.37) is known as Bellman’s equation or Bellman’s optimality equation

[Bertsekas, 2017, Ch. 5], [Powell, 2019]. This equation captures the intuition that

an optimal policy consists of a sequence of optimal decisions, where the sum of

the immediate cost c(xk,a) and the discounted future cost γ · v∗(xk+1) should be

minimized. The form of equation (2.38) captures the idea that in a state xk, the

policy should select the action with the smallest action value.

In many problems, computing the optimal policy is not feasible and approxi-

mate solution methods need to be used. The next section gives an overview about

such solution methods. The value vπ(x0) provides a way to compare the perfor-

mance of different policies on a given MDP and therefore to judge whether one

policy or another is better. To compute the performance of a policy, equation (2.34)

can be evaluated with multiple Monte Carlo runs, to estimate the value vπ(x0).

2.2. Markov decision processes 27

2.2.3 Solution methods

Approximate dynamic programming algorithms can be divided into online and of-

fline algorithms. An online algorithm solves an optimization problem during the

execution of the MDP. This allows the algorithm to focus on the current state xk of

the MDP without the requirement to compute an optimal action for each possible

state. In comparison, an offline algorithm computes a policy once which can then

be used each time the MDP is executed.

Backward dynamic programming

In a finite horizon MDP with finite state space X, finite action space A, and Wp

taking values from a finite set of possible process noises Wp, the optimal value

function can be solved by going backwards from the last decision step K − 1 to

the first. By initializing v∗K(x) = 0 for each x ∈ X, the discrete undiscounted finite

horizon form of Bellman’s equation (2.37)

v∗k(x) = min
a∈A

E
[
c(x,a)+ v∗k+1(f a(x,a,Wp

k))
]

(2.39)

= min
a∈A

c(x,a)+ ∑
wp∈Wp

P(Wp = wp) · v∗k+1(f a(x,a,wp)) (2.40)

= min
a∈A

c(x,a)+ ∑
x̂∈X
P(Xk+1 = x̂ | x,a) · v∗k+1(x̂) (2.41)

gives the value for every v∗K−1(x). This can be repeated until every v∗0(x) is

known. The action a∗kx that achieves the minimum in (2.39) can be stored as the

action that minimizes the total expected costs in state x. This is the action a policy

should execute and we set

πk(x) = a∗kx . (2.42)

This algorithm is known as backward dynamic programming [Powell, 2011,

Ch. 3] and requires O(K · |X| · |Wp| · |A|) operations in formulation (2.40) and

O(K · |X2| · |A|) in formulation (2.41). The policy itself is given by a lookup table

with K · |X| entries. Note that the policy is nonstationary.

This algorithm illustrates an important concept, known as curse of dimension-

ality. We first note that a computation linear in the size of the state space, action

2.2. Markov decision processes 28

space, and the set of possible process noises, does sound feasible. However, a prob-

lem appears if the state space is multidimensional as in

X= X1×X2× ...XP . (2.43)

As example, we can consider the discretized state space of an airplane consisting

of its position and its velocity. We assume that each dimension is discretized into

only 10 values, which is extremely small. Then the combined state space with a

3-dimensional position and 3-dimensional velocity has a size of 106 = 1,000,000.

The same problem appears with the set of process noises and the action space. This

is a major motivation of online algorithms that can focus the computation on the

current state and do not need to consider the whole state space.

Myopic policies

A myopic policy is an online algorithm that minimizes the immediate cost [Powell,

2011, Ch. 6]. To perform this minimization it only considers the current action and

no future actions. Another commonly used name for such a policy is greedy policy.

For a deterministic cost function the policy is given by

π(xk) = argmin
a∈A

c(xk,a) (2.44)

and for a stochastic cost function the expected cost is minimized by

π(xk) = argmin
a∈A

E
[
c(xk,a,W

p
k)
]
. (2.45)

In some cases, the cost function depends only on the state and not on the action,

that means the cost function c(x,a) can also be written as c(x). Then a single state

transition needs to be made, leading to the policy

π(xk) = argmin
a∈A

E
[
c(f a(xk,a,W

p
k))

]
. (2.46)

2.2. Markov decision processes 29

A common variation is to use a cost function that is different to the original

MDP. In this case, the substitute cS(x,a) is called a surrogate cost function. Myopic

policies have the advantage of small computational requirements as only the direct

state transitions from the current state are required. They can be used for finite

and infinite horizon MDPs. They have the disadvantage that future costs are not

considered and the selected action might lead to higher costs in future decision

steps.

Deterministic lookahead

Deterministic lookahead or model predictive control (MPC) is an online algorithm

that solves at each decision step a deterministic control problem over a fixed horizon

[Powell, 2019]. It uses a deterministic approximation f d of the transition function

f a, to model the state transition as

xk+1 = f d(xk,a) . (2.47)

It is possible to use the original transition function with either a nominal noise or

zero noise and set f d(x,a) = f a(x,a,0). At each decision step k, the deterministic

lookahead algorithm solves the optimization problem

a∗k[1:H] = argmin
a1:H∈AH

H

∑
i=1

γ i−1c(x f
i ,ai) , (2.48)

where the sequence of future states x f
i starts with the current state, that means

x f
1 = xk, and all future states are the result of the deterministic state transition (2.47).

The number H of considered state transitions is called the planning horizon of the

algorithm. After computing a∗k[1:H], this algorithm implements only the first action

of this sequence. This means the policy is given by

π(xk) = a∗k1 . (2.49)

2.2. Markov decision processes 30

After this action is executed, the MDP performs a state transition and the above

process is repeated. In this way, the planning horizon considers always the next H

decision steps and is therefore also called a receding horizon.

Together with differentiable transition and cost functions, a local minimum of

(2.48) can be computed using the algorithms discussed in Section 2.1.1. Other so-

lution techniques are tree search for a discrete action space, or specialized methods

as for example differentiable dynamic programming [Tassa et al., 2012, 2014].

As mentioned above, the algorithm of deterministic lookahead is also called

model predictive control. A more stricter interpretation of MPC would refer to a

set of deterministic lookahead algorithms whose cost function is based on the dif-

ference between the true state and a desired state. This is a common problem in

an industrial setting, for example if the temperature in a boiler of a chemical plant

must follow a nominal temperature sequence as close as possible. A restriction

to such a cost function allows for specialized algorithms [Camacho and Bordons,

2007]. A more general interpretation of MPC would be any algorithm with a reced-

ing horizon. This can be defined as an algorithm that creates a finite horizon MDP

and computes for it a policy π̂k [Powell, 2019]. This policy might be a sequence

of actions as above, but also any more complex policy, for example resulting from

backwards dynamic programming. Again, this policy is only executed for the cur-

rent state

π(xk) = π̂k(xk) (2.50)

and after the state transition the whole algorithm is executed again for the next state.

To avoid confusion about the term model predictive control, the term deterministic

lookahead is used in this thesis.

Policy iteration

The technique of policy iteration creates a sequence π1,π2,π3, ... of continually

improving stationary policies. It is an offline algorithm that computes the policy

sequence once, resulting in a policy that can then be used without further computa-

tion.

2.2. Markov decision processes 31

The algorithm starts with an initial policy π1. In each iteration l the value

function of the policy πl , vπ
l (x) is computed for each state x∈X . This step is called

policy evaluation. In the policy improvement step a new policy

πl+1(x) = argmin
a∈A

E [c(x,a)+ γ · vπ
l (f a(x,a,Wp))] (2.51)

is computed for each state. Policy iteration can be used for infinite horizon problems

with a finite state space. In this case the policy evaluation can be done efficiently

based on a steady state analysis of the Markov chain indicated by πl [Powell, 2011,

Ch. 3]. Also for a finite state space, πl can be efficiently stored as a lookup table.

The sequence of policies continually improves in the sense that the value function

improves with vπ
l+1(x)≤ vπ

l (x) for each state x [Bertsekas, 2017, Ch. 5]. As policy

iteration considers the whole state space in each iteration, it also suffers under the

curse of dimensionality.

Policy rollout

The policy rollout algorithm is an online algorithm that uses an existing policy,

the so-called base policy to approximate future actions [Bertsekas and Castañón,

1999]. It can be interpreted as an online version of policy iteration, focused on the

current state. We introduce policy rollout for an infinite horizon MDP, but it can be

similarly used for finite horizon MDPs.

The base policy

πB : X →A (2.52)

is an existing policy for the problem. For instance, this could be a myopic policy,

a problem specific heuristic, or any other policy. Using (2.34) and (2.35), we can

define the action value of πB

qB(x,a) = E

[
c(x,a)+

∞

∑
i=1

γ ic(Xi,πB(Xi))
∣∣∣ X0 = x

]
. (2.53)

The notation qB is a short form for qπB
. The future states Xi+1 = f a(Xi,πB(Xi),W

p
i),

i≥ 1, are based on the random process noise Wp
i and the decisions of the base pol-

2.2. Markov decision processes 32

icy πB. The immediate next state X1 = f a(x,a,Wp
0) is based on the action a instead

of the base policy. Using qB, the rollout policy is defined as

πR(x) = argmin
a∈A

qB(x,a) . (2.54)

The action value of the base policy (2.53) can be interpreted in the following

way: qB is the expected future discounted cost when performing action a in state x

and afterwards using the base policy to determine each future action. This step can

be interpreted as the policy evaluation of πB. The rollout policy then selects the ac-

tion that has the smallest expected discounted future costs, when following the base

policy for future actions. This is similar to the policy improvement step. Together,

policy rollout can be considered as a single step of policy iteration, focused on the

current state and performed online.

An important concept for the policy rollout algorithm is the idea of a sequen-

tially consistent policy [Bertsekas et al., 1997; Secomandi, 2003]. Sequential con-

sistency means intuitively that a policy does not produce different actions as the

MDP progresses. Let wp
k ,w

p
k+1,w

p
k+2, ... be a sequence of process noise realizations

and xk the current state. Then the base policy would create a sequence

xk,ak,xk+1,ak+1,xk+2, ... (2.55)

where the future states are deterministic due to the fixed process noise sequence.

The base policy is called sequentially consistent, if after an execution of action ak

and arrival in state xk+1, it would generate a future sequence

xk+1,ak+1,xk+2, (2.56)

This means that the same actions are made for the same states in the same decision

steps. An important category of sequentially consistent policies are deterministic

stationary policies. An example of a base policy that would not be sequentially con-

sistent would be a policy that returns always the same sequence of actions a1,a2, ...,

2.2. Markov decision processes 33

x

a1

a2

a3

X111

X1R1

...

X112

X1R2

X113

X1R3

f
a (x,a

1 ,W
p
111

)

f a(x,a1,W p
1R1)

fa(X111, π
B(X111),W

p
112) fa(X112, π

B(X112),W
p
113)

fa(X1R1, π
B(X1R1),W

p
1R2) fa(X1R2, π

B(X1R2),W
p
1R3)

...

...

Figure 2.2: Policy rollout using Monte Carlo sampling.

during the rollout. If action a1 were to be implemented, it would return the same

sequence a1,a2, ... in the next decision step instead of starting with a2. This would

lead to a different assessment of the action values. Note that in this thesis, the defi-

nition of the base policy (2.52), assumes a stationary policy which is therefore also

sequentially consistent.

If the base policy is sequentially consistent, the resulting rollout policy is per-

forming equal or better than the base policy, which means that

vR(x)≤ vB(x) for each x ∈ X . (2.57)

Similar to qB, vB is a short form for vπB
and vR for vπR

. This property is the case

because every decision of the rollout policy cannot be worse than a decision taken

the base policy. Equation (2.57) is known as cost improvement property [Bertsekas,

2005], rollout improvement property [Secomandi, 2003; Goodson et al., 2013] or

policy improvement property [Chong et al., 2009]. In this thesis the term rollout

improvement property is used.

A common way to compute qB is via Monte Carlo sampling [Tesauro and

Galperin, 1996]. To compute (2.53), the infinite sum can be replaced by a par-

tial sum ∑H
i=1 for a planning horizon of H. This is referred to as a truncated rollout.

Note, that with a finite number of Monte Carlo samples or a truncated rollout, the

rollout algorithm does not compute the true action value qB and the rollout improve-

ment property is not guaranteed to hold.

2.2. Markov decision processes 34

It is common that a finite action space A is used in (2.54). Then, the roll-

out policy can be computed by performing R Monte Carlo samples for each action

a ∈ A and select that action with the smallest sampled cost. Figure 2.2 visual-

izes the policy rollout algorithm using Monte Carlo sampling. The action space

A = {a1,a2,a3} consists of three actions. All variables use an index a ji where a

corresponds to the action, j to the rollout number and i for the future decision step.

For each action R rollouts are performed. After execution of the initial action, differ-

ent realizations of the process noises Wp
111, ...,W

p
1R1 lead to R potentially different

states. Each future action is decided by the base policy and future state transition

depends on the sampled process noise. A major feature of the policy rollout is that

its computation effort is linear with respect to the planning horizon. This is the

case because, contrary to for example a tree search, future actions are not explicitly

optimized but are instead determined by the base policy.

In the case of a stochastic shortest path problem, we state the action value of

the base policy as

qB(x,a) = E

[
c(x,a)+

K−1

∑
i=1

c(Xi,πB(Xi))
∣∣∣ X0 = x

]
. (2.58)

The major difference to (2.53) is that the costs are undiscounted and only summed

up until the first termination state is reached. Instead until infinity, the sum runs

until K− 1, where the random variable K denotes the first future decision step i

when Xi ∈ T X , that means Xi is a termination state. Effectively, this means that

each individual rollout is performed until the MDP terminates.

Other solutions

There is a multitude of algorithms to solve Markov decision processes and only

a brief overview relevant to this thesis was given in the above paragraphs. This

section mentions some other algorithms to solve MDPs.

Value iteration is a technique that computes a sequence of value functions vl(x)

on basis of Bellman’s equation. It is similar to backwards dynamic programming,

but does not require the MDP to have a finite horizon. Under suitable assump-

2.2. Markov decision processes 35

tions, including a finite state and action space, it can be proven that this sequence

converges to the optimal value function v∗ [Bertsekas, 2017, Ch. 5].

Policy gradient methods use a policy πφ , parameterized by a vector φ that

computes the probabilities of different actions and is differentiable with regard to

φ . Such a policy could, for example, be a neural network. The differentiability of

the policy is used to update the parameter vector, making actions with empirically

lower future costs more likely [Sutton and Barto, 2018, Ch. 13].

Q-learning and SARSA both aim to learn an action value function qφ (x,a) for

each pair of state and action. This function is similarly parameterized by a vector

φ , which is updated based on empirical costs that are received when executing the

policy [Sutton and Barto, 2018, Ch. 6].

Overviews over these and other algorithms can be found in [Sutton and Barto,

2018; Bertsekas, 2012, 2017; Powell, 2011, 2019; Thrun et al., 2005].

2.2.4 Partial observability

The previous discussion assumed that at each decision step k, the state xk is observ-

able. In many problems of interest however, the full state is not directly available

to the policy. Instead, a measurement zk is generated at each decision step k, which

is corrupted by measurement noise. In this case, the problem is called a partially

observable Markov decision process (POMDP). The measurement is modelled with

a measurement function h and

zk = h(xk)+wm
k . (2.59)

Here wm
k represents additive measurement noise. The set Z ⊆ RZ of possible mea-

surements is called the measurement space. We also make the common modelling

assumption that wm
k is the realization of a multivariate normal distributed random

variable with known covariance matrix Rk and an expected value of zero.

This measurement model with a measurement noise wm
k is in the style com-

monly used in sensor data fusion, discussed in Chapter 3. Similar to the transition

function of MDPs, an alternative and also common formulation would be a proba-

2.2. Markov decision processes 36

bility distribution p(zk | xk) of the measurement. In the literature, this probability

distribution also often depends on the action [Kaelbling et al., 1998; Shani et al.,

2012]. Here we assume that the measurement is only dependent on the current

state. We will later recover the dependency on the action by augmenting the state

with a sensor state that influences the measurement. This is a natural way to model

the problem if an action changes the measurements permanently, for example by

moving a platform.

At decision step k, the information vector

ik = (z0,a0,z1, ...,ak−1,zk) (2.60)

contains all information available to the policy [Bertsekas, 2017, Ch. 4]. However,

such a vector is of increasing size with each decision step, and therefore often im-

practical. Due to the Markov property, only state xk and action ak influence the

next state xk+1. It is therefore sufficient to summarize the information vector into a

belief about the current state xk. This belief

bk :=p(Xk | ik) (2.61)

=p(Xk | z0:k,a0:k−1) (2.62)

is a probability distribution about the current state, conditioned on the previous

measurements and actions. The current state is modelled as a random variable Xk

because its true value xk is not known to the policy. Section 3.1 describes in more

detail how such a belief can be created. If the belief summarizes all available infor-

mation about the current state, it is called a sufficient statistic [Bertsekas, 2017, Ch.

4]. A special case appears if parts of the state space are directly observable. For

example if the state

xk =

xu
k

xo
k

 (2.63)

consists of two parts, where xu
k is unobservable and only available by noisy mea-

surements and xo
k is directly observable. We keep the notation of the belief being a

2.2. Markov decision processes 37

probability distribution over the state space and represent the probability distribu-

tion of xo
k by the Dirac delta function δ as

p(Xk = (xu,xo) | ik) = p(Xu
k = xu | ik) ·δ (xo−xo

k) . (2.64)

This should be understood only as a notation to keep the idea that the belief is a

probability distribution over the state space. In a practical implementation, xo
k is

simply stored as vector.

The policy in a POMDP is defined as a function

π : B →A (2.65)

from the current belief to an action. Here, B refers to the set of all possible beliefs,

also called belief space. Similar to MDPs, a cost function c(bk,a) is defined. It is

possible to define this as the expected value of a cost function defined on the state

c(bk,a) = E [c(Xk,a)] (2.66)

where Xk is distributed according to bk. However, in Section 3.3 we will encounter

the field of sensor management, where the goal is to improve on the belief about

the state. Here, the cost function is often defined directly on the belief, typically

representing its information content, for example

c(bk,a) =HD(bk) (2.67)

where HD is the differential entropy, see Section 3.1.4. Using the notation above,

we can now specify an infinite horizon POMDP as a tuple

(X ,Z,B, f a,h,c,b0, pWp
, pWm

,γ) (2.68)

of the state space X , transition function f a, process noise distribution pWp
, and

discount factor γ of an underlying MDP, as well as the measurement spaceZ , belief

2.2. Markov decision processes 38

space B, measurement function h, cost function c, distribution of the measurement

noise pWm
, and initial belief b0 specific to the POMDP. Similar to MDPs, we also

define a POMDP version of the stochastic shortest path problem as tuple

(X ,Z,B, f a,h,c,b0, pWp
, pWm

,T B) . (2.69)

In a similar way to the MDP version, we assume a discount factor of γ = 1 and a

set of termination beliefs T B. The algorithm presented in Chapter 4 is based on this

problem formulation.

From the view of the policy, a POMDP now looks as described in the follow-

ing: At decision step k, the policy has knowledge about the belief bk and selects

an action ak. This results in a cost c(bk,ak), an observation zk+1 and with this

observation in a new belief state bk+1. It can be clearly seen that this mirrors the se-

quential decision procedure of an MDP, only with a belief instead of a state. Thus,

a POMDP is an MDP on the belief space. This allows us to apply the previous

solution techniques also in the partially observable case.

A challenge with POMDPs is that the belief space is way larger than the origi-

nal state space. As an example, let us consider a finite state space X2 = {1,2} with

only two possible states. A belief would specify the probability

bk = p(Xk = 1) = 1− p(Xk = 2) . (2.70)

The corresponding belief space B2 = [0,1] ⊂ R would be an interval of the real

values containing an uncountable number of possible beliefs. If the finite state

space X10 = {1,2, ...10} would consist of 10 states, the belief space would be the

set B10 = {b∈ [0,1]9 : ∥b∥1 = 1} of all 9-dimensional vectors with a sum of 1. If the

state space is continuous, the belief space is similarly larger, even if restricted to a

specific type of belief representations like multivariate Gaussians. As example, for

a 2-dimensional state space X2 = R2, the belief space B ⊂ R5 of Gaussians would

be 5-dimensional. It would consist of all possible means of the Gaussians, as well

as all possible upper triangular parts of a 2x2 covariance matrix.

2.2. Markov decision processes 39

Using an offline algorithm like policy iteration or value iteration in a POMDP

is therefore much more difficult than in an MDP. Offline algorithms can use the

fact that under some conditions the optimal value function v∗k(b) is piecewise linear

convex. One of the requirements is that the state space and the horizon is finite. The

value function can then be represented using a finite number of linear functions,

allowing the solution by exact backwards dynamic programming [Smallwood and

Sondik, 1973]. While this exact computation is only feasible for small state spaces,

advancements have been made with the arrival of point-based value iteration. These

algorithms compute the linear functions representing the value function only for

a limited subset of beliefs [Shani et al., 2012]. However, while these algorithms

generally support larger state spaces, they still need to be finite and have sizes that

can easily be surpassed when discretizing continuous state spaces.

Due to the difficulty with offline algorithms, this thesis uses an online algo-

rithm for planning. In particular, it uses the policy rollout algorithm described in

Section 2.2.3. This algorithm takes the uncertainty of the problem into account

and works in a non-discrete state space with non-discrete measurements. Major

challenges in using it are the definition of a good base policy and the required com-

putational effort due to Monte Carlo sampling.

Chapter 3

Sensor Data Fusion and Sensor

Management

In this thesis we are interested in localizing an emitter of RF signals. We obtain

information about its position using a sensor, which is a device that converts the

target state xt ∈X t ⊆RT of an object into a measurement z∈Z ⊆RZ . An example

for a target state would be the position of the target. An example for a measurement

would be the direction from the sensor towards the target. Figure 3 visualizes this

process.

xt −→ sensor −→ z .

Figure 3.1: A sensor transforms the true target state into a measurement.

The sensor might have several parameters, which affect this measurement pro-

cess. These could be the sensor position and orientation, or its configuration. We

summarize these values in the sensor state xs ∈ X s ⊆ RS. As is common in the

literature we will call the measured object the target. We denote X t as the target

state space and Z as the measurement space. The discussion in this chapter focuses

on the case of a single target.

Sensors commonly produce multiple measurements over time, which individ-

ually contain only limited information about the target state. The field of sensor

data fusion is concerned with combining those measurements into a single belief

about the current situation. This belief is a probability distribution over the target

3.1. Sensor data fusion 41

state, which is updated based on Bayes’ theorem. In Section 3.1 we will discuss the

Bayes filter algorithm, different options to represent the belief, as well as metrics

which allow us to quantify their accurateness.

Direction finding (DF) sensors measure the direction or bearing of an incoming

signal and are discussed in Section 3.2. The Fisher information is used to quantify

the information a bearing measurement gives about the target position. We will

see that this information is highly dependent on the sensor-to-target geometry, and

derive optimal geometries given the true target position.

However, a mobile sensor system cannot directly use these optimal sensor-to-

target geometries. First, the true target position is normally unknown and only an

uncertain belief about it is available. Therefore, the decision on where to move

the sensor system is made under uncertainty. Second, the optimal sensor-to-target

geometry might not necessarily be the optimal next measurement location. The mo-

bile sensor system requires time to travel from one measurement location to another.

Therefore, it might be better to choose a close measurement location with worse

sensor-to-target geometry than one that is farther away but leads to more informa-

tive measurements. Such questions are discussed in the field of sensor management,

which studies the optimization of reconfigurable sensor systems. Section 3.3 gives

a brief overview over this field with a focus on sensor path planning.

3.1 Sensor data fusion
Even the measurements of modern, state-of-the-art sensors still have limitations:

• Measurements only provide incomplete information over the target state: for

example, a radar does not measure the full velocity vector, and a DF sensor

does not return the full position of a target.

• Measurements are noisy: the measurements are typically not exact, but influ-

enced by electronic noise. For example, a DF sensor does not return the exact

direction, but only an approximate measurement. An additional source of

noise is the pose of the sensor platform. Especially in moving and flying plat-

forms, the sensor position and orientation estimate by an inertial navigation

3.1. Sensor data fusion 42

system (INS) might be noisy as well. This can happen due to accumulation

errors when estimating the pose based on dead reckoning of acceleration sen-

sors. Even GPS measurements are not perfectly accurate.

• Measurements might be false alarms: due to electrical noise in the receiver,

a signal detection might be declared by pure chance. Active sensors, which

emit their own signals, might wrongly declare unwanted reflections as targets.

Such reflections could be the ground, buildings, chaff, or any other unwanted

objects, summed up as clutter. Other sensors might be influenced by interfer-

ing signals in the environment, leading to false alarms.

• Measurements are not connected over time: if multiple targets are present in

the environment, two measurements taken at different times do not necessar-

ily indicate whether they originate from the same target. If measurements

from multiple sensors are fused, this might even be unclear for measurements

taken at the same time. This imposes the problem of data association [Koch,

2014, Ch. 3].

In the field of sensor data fusion, methods are studied to solve all of these

limitations. In the context of this thesis, we are especially interested in the first

two limitations: A sensor, in our case a direction finding sensor, only provides an

incomplete measurement of the emitter position and this measurement is noisy.

Sensor data fusion addresses these problems by formulating the measurement

process as a mathematical measurement model. Here, measurement process refers

to the concrete physical operation and low level signal processing of the sensor.

Based on the measurements and the measurement model, a belief about the current

target state can be derived.

A series of beliefs about the state of the same target is known as track and the

algorithm which produces the tracks is known as tracker or localizer. The term

tracker emphasizes a change of the underlying ground truth over time, while the

term localizer emphasizes a focus on the position part. In this thesis the term local-

izer is used because the target is stationary.

3.1. Sensor data fusion 43

3.1.1 The Bayes filter

Most sensor data fusion algorithms use Bayesian statistics [Koch, 2014, Ch. 3;

Bar-Shalom et al., 2001, Ch. 2] and model the information over the target state as a

probability distribution over the target state spaceX t . This state space typically rep-

resents kinematic quantities of the target like its position and velocity, however can

also contain properties like its radar cross section, emission frequency and power,

or target type. Temporal progress is represented by predicting the probability dis-

tribution into the future, using a model of the target’s behaviour. Following the

temporal prediction, new measurements are integrated using Bayes’ theorem and

the measurement model.

A common assumption is that the Markov property holds for the targets, which

means that the next target state only depends on the current target state. Then the

state estimation can be modelled as a hidden Markov model (HMM), where the

objective is to estimate the current target state based on the measurements. The

measurement at measurement step k

zk = hk(xt
k)+wm

k (3.1)

is modelled by the measurement function hk of the true target state xk with additive

random noise wm
k . Equation (3.1) is called the measurement model. We commonly

assume that the noise

wm
k ∼N (0,Rk) (3.2)

is distributed according to a zero-mean multivariate normal distribution with covari-

ance Rk, resulting in an additive white Gaussian noise model.

The subscript k indicates that the measurement function and measurement co-

variance varies for different measurement steps. This is due to the potentially dif-

ferent sensor state xs
k at different measurement steps. More explicit notations would

be h(xt
k,x

s
k) or hxs

k
(xt

k), but these lead to cluttered formulas. As the sensor state is

exactly known to the tracker, the measurement function hk at measurement step k is

known as well.

3.1. Sensor data fusion 44

The tracker does not know the exact value of the target state xt
k. Instead, the

belief about the target state is modelled as a random variable Xt . The distribution

of this random variable p(Xt | z0:k) represents the knowledge about xt
k after mea-

surement step k, given the previously received measurements. Note that in addition

to the measurements z0:k, the previous sensor states xs
0:k leading to those measure-

ments are known.

The behaviour of the target is modelled by a process model

xt
k = f t(xt

k−1)+wp
k−1 (3.3)

with process noise wp
k . Similar to the transition function of an MDP, this function

models a noisy state transition. However, the transition function of an MDP models

the influence of an action on the state, while the actions of an observer in the typical

sensor data fusion setting do not influence the behaviour of the target at all. In both

cases, the process noise models uncontrollable changes in the state. In the process

model of sensor data fusion, this also includes the unpredictable behaviour of the

target and other mismatches between the simplified mathematical model and the

true target dynamics.

The Bayes filter starts with the initial belief bt
0|0, which is derived either from

prior information or from a first measurement. When new measurements arrive, this

belief is improved. The change of the belief due to new measurements is typically

performed in two steps: prediction and update. The prediction step

p(Xt
k | z0:k−1) =

∫
X t

p(Xt
k | Xt

k−1 = x) · p(Xt
k−1 = x | z0:k−1) dx (3.4)

uses the process model to compute a probability distribution at the next measure-

ment step, using only the previous belief p(Xt
k−1 | z0:k−1). The density p(Xt

k |Xt
k−1)

depends on the process model. The probability density (3.4) is also referred to as

the predicted belief b t
k|k−1. The subscript k|k−1 is common in the sensor data fu-

sion literature and means that the belief is about the target state at measurement step

k, but uses only measurements up to measurement step k−1. Equation (3.4) is also

3.1. Sensor data fusion 45

known as the Chapman-Kolmogorov equation [Bar-Shalom et al., 2001, Ch. 10].

Given the predicted belief and a new measurement zk, Bayes’ theorem can be used

to compute the probability density

p(Xt
k | z0:k) =

p(zk | Xt
k) · p(Xt

k | z0:k−1)

p(zk | z0:k−1)
. (3.5)

This probability density is referred to as updated belief bt
k|k, where the subscript k|k

indicates that all measurements up to measurement step k are used. As a short hand

notation we also write

bk|k = update(bk|k−1,zk,xs
k) (3.6)

to represent the update step.

The probability density p(zk | Xt
k) is called the measurement likelihood and is

also written as

Lk(z,x) = p(z | Xt
k = x) . (3.7)

Note, that the measurement likelihood Lk of a measurement depends on the sensor

state xs
k at measurement step k.

As an example we combine two noisy bearing measurements z1 and z2, taken

from different positions to localize a target. Both measurements indicate a measured

angle from a known measurement location and are shown in Figure 3.2a. As they are

a single angle, they are written as scalars z1,z2 and not as vectors z1,z2. Chapters 4,

5, and 6 also write bearing measurements as scalars. Instead of simply intersecting

the measurements, the Bayes filter produces a probability density about possible

target positions. We assume that the standard deviation of the measurement noise is

known, for example due to a prior calibration of the sensor.

As in this example the target state xt = (xt ,yt)T is assumed to be station-

ary, a prediction step is not required. We assume that prior to any received

measurements the target could be anywhere in the bounded target state space

X t = [−100m,100m]× [−100m,100m] with uniform probability.

3.1. Sensor data fusion 46

(a) (b)

(c) (d)

Figure 3.2: Combination of two bearing measurements z1 and z2. (a) The two measure-
ments, (b) the updated belief p(Xt | z1) using only the first measurement, (c)
The updated belief p(Xt | z2) using only the second measurement, (d) the fusion
of both measurements p(Xt | z1,z2). The red circles denote the measurement
locations, which are equal to the sensor states xs

1 and xs
2. The green cross in

(c) shows the maximum a posteriori estimate of the target position. The blue
rectangle indicates the target state space X t .

3.1. Sensor data fusion 47

The belief is updated with the first measurement using Bayes’ theorem, which

results in

p(Xt | z1) =
p(z1 | Xt) · p(Xt)

p(z1)
. (3.8)

Figures 3.2b and 3.2c show the probability densities p(Xt | z1) and p(Xt | z2), eval-

uated on a grid. In Section 3.1.2 this grid will be explained in more detail. We note

that because of the uniform prior, both densities are proportional to the measure-

ment likelihood.

The integration of z1 and z2 is performed by making a Bayesian update of the

belief after z1 is known, with the new information z2. The resulting distribution

p(Xt | z1:2) =
p(z2 | Xt) · p(Xt | z1)

p(z2 | z1)
(3.9)

is shown in Figure 3.2d. Note that in this figure the range of the colourbar is dif-

ferent than in (b) and (c), due to a higher concentration of this probability density.

Note also that the computation of the density p(Xt | z2) is not required and only

shown for illustrative purposes in Figure 3.2b.

The described algorithm is known as the Bayes filter [Thrun et al., 2005, Ch.

2] and describes a generic algorithm for recursive state estimation. By specifying

the way the probability densities are modelled, concrete algorithms can be derived.

A well-known state estimation algorithm is the Kalman filter, which models all

probability densities as multivariate normal and the measurement and process model

as linear. Based on these assumptions the prediction and update step can be derived

analytically.

3.1.2 Probability distributions

In this section, we discuss several choices for modelling the probability density

p(Xt
k). We focus on two options, a multivariate Gaussian, and a discretization of

the probability density on a grid. These are chosen because multivariate Gaussians

are the most common solution and a discretization on a grid is especially viable for

a stationary target. This is not an exhaustive list of options. Exemplary alternatives

are modelling the probability density as a set of target state samples as done by

3.1. Sensor data fusion 48

the particle filter [Gordon et al., 1993], or as Gaussian mixtures [Mušicki, 2009;

Kronhamn, 1998]. As this thesis considers stationary targets for which no prediction

step is required, this section focuses on the update step.

The multivariate Gaussian distribution

With this distribution, we assume that the probability of the target state

Xt
k ∼N (x̃t

k, P̃
t
k) (3.10)

is distributed according to a multivariate normal distribution, centred on the point

estimate x̃t
k of the target state. A major advantage of this distribution is that it allows

often for analytical solutions. For example, when the measurement model (3.1)

and the process model (3.3) are both linear functions with additive Gaussian noise,

prediction and update can be described analytically and result in the predicted and

the updated belief being Gaussian as well. The resulting state estimation algorithm

is known as the Kalman filter [Kalman, 1960; Koch, 2014, Ch. 3; Bar-Shalom et al.,

2001, Ch. 5].

The prediction step of the Kalman filter

x̃t
k|k−1 = Fx̃t

k−1|k−1 (3.11)

P̃ t
k|k−1 = FP̃ t

k−1|k−1 FT +Q (3.12)

uses a linear process model for the target, with f t(x) = Fx and Gaussian pro-

cess noise wp
k ∼ N (0,Q). The predicted belief b t

k|k−1 is the normal distribution

N (x̃t
k|k−1, P̃

t
k|k−1).

We now give an intuitive explanation of the update in the Kalman filter. The

value hk(x̃k|k−1) is called the expected measurement. The Kalman filter assumes

that the measurement function hk is linear with hk(x) = Hkx. Similar as hk, also

Hk depends on the measurement step k because the sensor state varies for different

3.1. Sensor data fusion 49

k. Using Hk, the filter computes the difference between the expected measurement

Hkx̃t and the received measurement zk. This difference

yk = zk−Hkx̃t
k|k−1 (3.13)

is called the innovation. A nonzero innovation means that the measurement is not

the expected measurement, which might be due to two reasons. The point estimate

could be wrong or the difference results from the measurement noise. To decide on

how much the point estimate should be updated, we need to quantify how much the

innovation is expected to vary. We expect a variance in the innovation due to the

covariance Pk|k−1 of the predicted belief, projected onto the measurement space, and

the noise Rk of the measurement itself. From this we can compute the innovation

covariance

Sk = HkPk|k−1HT
k +Rk . (3.14)

Intuitively, the point estimate should change more if Pk|k−1 is large, which indicates

a high uncertainty in the predicted belief. It should change less, if we expect the

innovation to vary a lot, which means Sk+1 is large. This trade-off is captured by

the Kalman gain

Kk = Pk|k−1HT
k S−1

k (3.15)

which is a linear function that specifies how much the innovation in each measure-

ment dimension should affect the point estimate. The Kalman gain is now used to

update the point estimate of the target state and its covariance:

x̃t
k|k = x̃t

k|k−1 +Kkyk (3.16)

P̃ t
k|k = P̃ t

k|k−1−KkSkKT
k . (3.17)

Above, the intuition of the Kalman filter equations were introduced. These equa-

tions can be formally derived from the Bayes filter equations [Koch, 2014, Ch. 3].

Therefore, the Kalman filter corresponds exactly to the Bayes filter if the assump-

tions of normal distributed probability densities and linearity hold.

3.1. Sensor data fusion 50

In many applications, for example with bearing measurements, range measure-

ments, or combined bearing and range measurements, the measurement function hk

of a Cartesian target state is not linear. In this case, we can compute the innovation

(3.13) with the nonlinear function hk

yk = zk−hk(x̃t
k|k−1) (3.18)

instead of the linear equation (3.13), and continue to use the remaining formulas

with Hk =
∂hk
∂x (x̃

t
k|k−1) being the Jacobian of hk evaluated at x̃t

k|k−1. In problems

that require a prediction step, a similar linearization can be done if the process

model is nonlinear. This algorithm is known as extended Kalman filter (EKF) [Bar-

Shalom et al., 2001, Ch. 10]. Ideally, the measurement and process model should

be linearized at the true target state xt
k. The EKF uses the point estimate x̃t

k|k−1 of

the predicted belief for linearization, as this is the most likely target state before

the measurement zk is received. After the update, the point estimate x̃k|k of the

updated belief would be a better estimate of the true target state. The idea of the

iterated extended Kalman filter (IEKF) is to iterate the update step multiple times

to approximate the maximum a posteriori estimate numerically [Bell and Cathey,

1993; Bar-Shalom et al., 2001, Ch. 10].

For a given multivariate Gaussian distribution Xt ∼ N (x̃t , P̃ t), the Maha-

lanobis distance

dM(x, x̃t , P̃ t) =

√
(x− x̃t)T (P̃ t

)−1
(x− x̃t) (3.19)

gives a normalized distance from the point x to the point estimate x̃t . The equation

dM(x, x̃t , P̃ t) = τ (3.20)

3.1. Sensor data fusion 51

specifies a hyperellipsoid, also called confidence ellipsoid, centred on x̃t [Bar-

Shalom et al., 2001, Ch. 3]. For the scalar case with T = 1, P = σ2 ∈ R1×1,

x = x ∈ R and x̃t = x̃t ∈ R, the confidence ellipsoid

τ = dM(x, x̃t ,σ2) (3.21)

=

√
(x− x̃t)T 1

σ2 (x− x̃t) (3.22)

=
|x− x̃t |

σ
(3.23)

⇔

x = x̃t± τσ (3.24)

corresponds to the τσ confidence interval. A confidence ellipsoid according to

(3.20) will therefore be called a τσ confidence ellipsoid.

For the random variable Xt , the distribution of dM(Xt , x̃t)2 is chi-square dis-

tributed with T degrees of freedom [Bar-Shalom et al., 2001, Ch. 1]. Therefore, the

probability that Xt is in the volume

Eτ(x̃t , P̃ t) = {x ∈ RT : dM(x, x̃t , P̃ t)2 ≤ τ2} (3.25)

can be computed by the cumulative distribution of the chi-square distribution. The

probabilities for T = 1 and T = 2 are given in Table 3.1.

Table 3.1: Probability that the target is in the confidence ellipsoid

τ = 1 τ = 2 τ = 3

T = 1 0.682 0.954 0.997

T = 2 0.393 0.865 0.989

Discrete distribution on a grid

Another option would be to discretize the target state space and represent the prob-

ability density as a discrete probability distribution over this discretized state space.

A common discretization is in form of a grid, which discretizes each dimension of

3.1. Sensor data fusion 52

x̌11

x̌1Y b

x̌Xb1

x̌XbY b

∆xb

∆yb

xb xb

yb

yb

y

x

Figure 3.3: Definitions for a 2D grid.

the target state space in regular intervals. If the number of intervals per dimension

is constant, the number of grid cells increases exponentially with the dimension of

the target state space. This makes such a grid-based Bayes filter mostly useful if the

number of dimensions is small, for example if only the two-dimensional position of

a stationary and earth-bound target is estimated. The literature contains several uses

of a grid-based Bayes filter, where either the position is assumed to be stationary

[Cliff et al., 2015; Dressel and Kochenderfer, 2018] or the movement model does

not require the estimation of velocity [Engin and Isler, 2020]. This algorithm is also

called histogram filter [Thrun et al., 2005, Ch. 4].

Figure 3.3 shows a grid for a two-dimensional target state. We refer to a grid

with Xb cells in the x-direction and Y b in the y-direction as Xb×Y b grid. The su-

perscript b indicates that the grid is used to represent a belief. This is to distinguish

it from a grid representing an action space, later used in Chapter 4. To discretize

the state, we need to restrict the target state space to certain limits within the target

might possibly be located. These limits of the belief are denoted as xb,xb,yb,yb. We

assume that the probability density inside each cell is constant and denote this value

with pki j, where k stands for the measurement step and i j for the cell index. The

probability that the target is inside this cell is then ∆xb
k ·∆yb

k · pki j, where ∆xb,∆yb

are the width and height of the cell.

3.1. Sensor data fusion 53

The update of the probability density with a measurement zk is based on Bayes’

theorem, where the measurement likelihood is evaluated at the cell centres x̌i j. The

new probability density is given by

pki j =
1
ξ
· p[k−1]i j ·Lk(zk, x̌i j) (3.26)

where

ξ = ∆xb
k ·∆yb

k ·
Xb

∑
i=1

Y b

∑
j=1

p[k−1]i j ·Lk(zk, x̌i j) (3.27)

is a normalizing factor, ensuring that

Xb

∑
i=1

Y b

∑
j=1

∆xb ·∆yb · pki j = 1 . (3.28)

Without ∆xb
k ·∆yb

k in (3.27) the normalization would lead to pki j being the probability

of the target being in cell i j. By dividing also by ∆xb
k · ∆yb

k , pki j represents the

probability density in a cell.

The grid-based Bayes filter can also compute a point estimate x̃t
k, either by the

expected value or the maximum a posteriori estimate. The expected value

x̃t,ev
k = E

[
Xt

k
]

(3.29)

=
Xb

∑
i=1

Y b

∑
j=1

pki j ·∆xb ·∆yb · x̌i j (3.30)

is the mean of all cell centres x̌i j, weighted by the probability mass in each cell. The

maximum a posteriori estimate

x̃t,map
k = x̌i∗ j∗ (3.31)

with

(i∗, j∗) = argmax
(i, j)∈I

pki j (3.32)

3.1. Sensor data fusion 54

is the centre of the cell with the highest probability density. Here I= {1, ...,Xb}×
{1, ...,Y b} is the set of all cell indices. Similar to the Kalman filter notation, we call

h(x̃t
k) the expected measurement.

The probability density of the grid-based Bayes filter can be approximated with

a Gaussian. For this, we use a point estimate x̃t
k of the density, and approximate the

covariance matrix of the Gaussian by

P̃ t
k = E

[
(Xt

k− x̃t
k)(X

t
k− x̃t

k)
T] (3.33)

=
Xb

∑
i=1

Y b

∑
j=1

pki j ·∆xb ·∆yb (x̌ki j− x̃t)(x̌ki j− x̃t
k
)T

. (3.34)

In the case that x̃t
k is based on x̃t,ev

k , P̃ t
k corresponds to the covariance of Xt

k, other-

wise it is an approximation, centred on x̃k.

Comparison

Figure 3.4 shows a comparison between the IEKF using a Gaussian distribution and

the grid-based Bayes filter. The localizer is given a target state space of equally

possible target positions and a single bearing, as shown in Figure 3.4a.

To create an initial Gaussian belief, the point estimate is set to the center of

the scenario area and the covariance is chosen such that the 3σ confidence ellipsoid

covers almost the whole area (see Figure 3.4b). An IEKF with 10 iterations is

used to compute the updated belief, shown in Figure 3.4c. In this figure we can

see some of the limitations of the Gaussian approach. Primarily, the form of the

confidence ellipsoid does not correspond to what we would expect from a bearing

measurement: a cone, which becomes wider with increasing distance due to the

angular measurement noise. The ellipsoid form also leads to further inconsistencies.

According to the probability density there is a nonzero probability that the target is

outside of the scenario area. There is also a nonzero probability that the target is

in the opposite direction of the bearing measurement, in other words behind the

sensor, which would be very unlikely. Other positions, for example the upper left

corner, are considered unlikely even though they are in line of the bearing.

3.1. Sensor data fusion 55

(a) (b)

(c) (d)

(e) (f)

Figure 3.4: Comparison of the IEKF and the grid-based Bayes filter. The initial belief is a
uniform distribution inside the target state space (blue). The setup and bearing
measurement (red) is shown in (a). The Gaussian initial and updated belief (3σ
confidence ellipsoid) are shown in (b) and (c), respectively. The initial belief
of the grid-based Bayes filter is shown in (d), the updated belief on a 100×100
grid in (e) and on a 16×16 grid in (f).

3.1. Sensor data fusion 56

The grid-based Bayes filter minimizes these issues. While a Gaussian distribu-

tion cannot properly represent a uniform distribution, this is possible for a discrete

distribution as shown in Figure 3.4d. Figure 3.4e shows the updated belief, which

does not have the issues previously identified for the Gaussian. Naturally, the result

of the grid-based Bayes filter becomes more inaccurate if the resolution of the grid

is reduced (Figure 3.4f).

The advantage of the grid-based Bayes filter is that it is better suited to model

the probability density resulting from a nonlinear measurement function and a con-

strained target state space. A disadvantage is the increased computation time. In this

thesis we want to optimize the next sensing action on the basis of the current be-

lief. Therefore, it is of importance that the updated belief corresponds as accurately

as possible to the exact Bayesian update. We will therefore represent the belief in

form of a grid-based Bayes filter. On the other hand, the later described path plan-

ning algorithm will compute many belief updates by sampled future measurements.

This requires a computationally efficient implementation. Therefore, in Chapter 4

an adaptive grid-based Bayes filter is introduced, which successively increases its

resolution when the target becomes better localized.

3.1.3 Fisher information and Cramér-Rao lower bound

Due to the measurement noise, a measurement does not provide perfect information

about the target state. It is possible to quantify the available information contained

in a measurement using the Fisher information. The information is based on the

score

Sk(xt
k) =

∂ logLk

∂x
(Z,xt) (3.35)

which is defined as the gradient of the measurement log-likelihood that is evaluated

at the true target state xt [Cover and Thomas, 2006, Ch. 11]. The score is dependent

on the random measurement Z, which makes it a random variable itself. It can be

3.1. Sensor data fusion 57

shown that the expected value of the score is zero, therefore the covariance matrix

of the score is given as

Jk(xt) = E

[(
∂ logLk

∂x
(Z,xt)

)(
∂ logLk

∂x
(Z,xt)

)T
]
. (3.36)

The covariance matrix of the score is called Fisher information. To stress the matrix

form, in the case of T > 1, it is also called Fisher information matrix (FIM). Like

every covariance matrix, the FIM is positive semi-definite.

An important application of the Fisher information is the Cramér-Rao lower

bound (CRLB). It can be shown that the covariance of an unbiased point estimator

E of xt , given the measurement Z is limited by

Cov(E)≥ J(xt)−1 (3.37)

which means that Cov(E)− J(xt)−1 is a positive semidefinite matrix [Cover and

Thomas, 2006, Ch. 11]. Similar to the confidence ellipsoid (3.25), we can define a

CRLB ellipsoid Eτ(xt ,J−1), which allows to visualize the lower bound.

Intuitively, the CRLB means that with a high amount of Fisher information

we can estimate xt more accurately than with a low amount of Fisher information.

When the true target state is constant, the Fisher information of multiple indepen-

dent measurements can be added to compute the Cramér-Rao lower bound of an

estimator using all those measurements.

Like for any square matrix, the inverse of J only exists if its determinant |J| is
nonzero [Lang, 2004, Ch. 6]. In the case of |J|= 0, the available information is not

sufficient to perform a point estimate of the target state. We then call the target state

unobservable.

We now discuss a special case which often appears in sensor data fusion. Sup-

pose that the measurement is distributed according to the standard measurement

model (3.1) with measurement function

hk : RT → RZ (3.38)

3.1. Sensor data fusion 58

and additive Gaussian measurement noise (3.2). This is equivalent to a multivariate

Gaussian distribution

Z∼N (hk(xt),Rk) (3.39)

centred on hk(xt) with known covariance matrix Rk and leads to the measurement

log-likelihood

logLk(z,x) = log
1√

2π|Rk|
− 1

2
(z−hk(x))TR−1

k (z−hk(x)) . (3.40)

This leads to the score Sk(xt) ∈ R1×T of

Sk(xt) =
∂ logLk

∂x
(Z,xt) (3.41)

=−1
2

∂
∂x

(Z−hk(xt))TR−1
k (Z−hk(xt)) (3.42)

=−1
2
·2 · (−1) ·

(
Z−hk(xt)

)T R−1
k

∂h
∂x

(xt) (3.43)

= (Z−hk(xt))TR−1
k

∂h
∂x

(xt) (3.44)

= (Z−hk(xt))TR−1
k Hk . (3.45)

Here ∂hk
∂x (x

t) = Hk ∈ RZ×T is the Jacobian of hk, evaluated at the true target

state xt . Equation (3.43) follows from the multivariate chain rule, using that
∂
∂xxTAx = 2xTA for any symmetric matrix A. Then the Fisher information is

Jk(xt) = E
[
Sk(xt)TSk(xt)

]
(3.46)

= E
[(
(Z−hk(xt))TR−1

k Hk
)T

(Z−hk(xt))TR−1
k Hk

]
(3.47)

= E
[
HT

k
(
R−1

k

)T
(Z−hk(xt))(Z−hk(xt))TR−1

k Hk)
]

(3.48)

= HT
k
(
R−1

k

)TE
[
(Z−hk(xt))(Z−hk(xt))T]R−1

k Hk (3.49)

= HT
k (R

−1
k)TRkR−1

k Hk (3.50)

= HT
k R−1

k RkR−1
k Hk (3.51)

= HT
k R−1

k Hk . (3.52)

3.1. Sensor data fusion 59

Equation (3.49) follows from the linearity of the expected value and (3.50) from the

fact that this expected value is the covariance of the measurement, which due to the

measurement model (3.39) is Rk. Step (3.51) follows because Rk is symmetric and

invertible, and therefore R−1
k is also symmetric.

We could interpret a Gaussian belief N (x̃, P̃) also as a single measurement of

the true state with hk being the identity function and Hk the identity matrix. The

Fisher information of such a measurement would be P̃−1. Therefore, the inverse

P̃−1 of a covariance matrix P̃ is also called the information matrix.

3.1.4 Uncertainty metrics

Intuitively, it is better if the belief distribution is more concentrated and we therefore

have a clearer idea on what are the more likely values of the state. In this section, we

define metrics that quantify whether one belief is more or less accurate than another

belief. Such a metric is a function

B → R (3.53)

that maps a belief to a real number.

We begin by the expected root mean squared error (expected RMSE). For

this we first define the mean squared error (MSE). Given a point estimate

x̃t = (x̃1, . . . , x̃T) of the true target state xt = (x1, . . . ,xT), the MSE is given by

MSE(x̃t ,xt) =
T

∑
i=1

(x̃i− xi)
2 . (3.54)

The root of the MSE

√
MSE(x̃t ,xt) =

√
T

∑
i=1

(x̃i− xi)2 (3.55)

= ∥x̃t−xt∥2 (3.56)

is called root mean squared error (RMSE). This value corresponds to the Euclidean

distance between the point estimate and the true target state. If the target state

3.1. Sensor data fusion 60

consists of different parts with different dimensions, it is common to state the RMSE

of those parts separately. For example, if the target state xt = (x,y, ẋ, ẏ) consists of a

position and velocity part, one could compute a separate RMSE for each part. The

expected RMSE

µ(x̃t ,b t) = E
[
∥x̃t−Xt∥2

]
(3.57)

is defined for a belief as the expected value of the RMSE, where p(Xt) is given

by the belief b t . Commonly, x̃t is chosen based on the belief as well, for example

the maximum a posteriori estimate or the expected value. For the grid-based Bayes

filter, the expected RMSE is computed by

µ(x̃t ,b) =
Xb

∑
i=1

Y b

∑
j=1

pi j ·∆xb ·∆yb ∥x̃t− x̌i j∥2 . (3.58)

Similarly, an expected MSE E
[
∥x̃t−Xt∥2

2
]

can be defined.

The Shannon entropy is a metric that gives the information content of a proba-

bility distribution. For a discrete random variable Xt , it is defined as

HS(b) =−∑
x∈X
P(Xt = x) · logP(Xt = x) (3.59)

where X would be the set of all possible outcomes with positive probability

[Cover and Thomas, 2006, Ch. 2] and P(Xt = x) denotes the probability that

Xt takes the value x. In our case, X would correspond to a discrete target state

space. We can use the Shannon entropy with the discrete distribution of the grid-

based Bayes filter, identifying each cell with its centre, X = {x̌i j : pi j > 0}, and

P(Xt = x̌i j) = ∆xb ·∆xb · pi j. The Shannon entropy is always positive.

For continuous probability density functions with support set S = {x ∈ X t |
p(Xt = x)> 0}, the differential entropy [Cover and Thomas, 2006, Ch. 8] is defined

as

HD(b) =−
∫
S

p(Xt = x) log p(Xt = x)dx . (3.60)

3.1. Sensor data fusion 61

Contrary to the Shannon entropy, the differential entropy can also be negative. This

can be seen for example with the differential entropy of a T -dimensional multivari-

ate Gaussian [Cover and Thomas, 2006, Ch. 8]

HD(N (x̃, P̃)) =
1
2

log
(
(2πe)T |P̃|

)
(3.61)

which is negative if the determinant of the covariance P̃ becomes sufficiently small.

Contrary to the other equations in this thesis, in (3.61) π ≈ 3.14159 refers to the

mathematical constant instead of a policy and e≈ 2.71828 is Euler’s number.

The following metrics are specific for beliefs consisting of multivariate Gaus-

sians. They are typically a function of the covariance matrix P̃ t . As the covariance

matrix is bounded by the inverse Fisher information matrix J−1, they are also com-

monly used to quantify the size of the FIM.

A common uncertainty metric for Gaussians is the determinant, with

(
x̃, P̃ t) 7→ ∣∣P̃ t∣∣ . (3.62)

This metric is based on the fact that the volume of the 1σ confidence ellipsoid is

given by

vol(E1(x̃t , P̃ t)) =

√
|P̃ t | ·vol(BT) , (3.63)

and therefore proportional to the square root of the determinant [Pronzato and

Pázman, 2013, Ch. 5]. Here

vol(BT) =
πT/2

Γ(T/2+1)
(3.64)

is the volume of the T -dimensional unit ball. In (3.64) Γ refers to the gamma func-

tion and again π is the mathematical constant. When applying this metric to the

Fisher information, the volume of the 1σ CRLB ellipsoid is given by

vol(E1(xt ,J)) =
1√
|J|
·vol(BT) . (3.65)

3.2. Direction finding sensors 62

A higher value of the determinant of J, and a lower value of the determinant of P̃ t

lead to a smaller volume of the confidence ellipsoid. Another common uncertainty

metric for Gaussians is the trace, with

(
x̃, P̃ t) 7→ tr

(
P̃ t) . (3.66)

This metric is an analytic form of the expected MSE

tr(P̃) = E
[
∥x̃t−Xt∥2

2
]

(3.67)

for multivariate Gaussians [Bar-Shalom et al., 2001, Ch. 1].

Finally, the largest eigenvalue λ e
1 of P̃ t is proportional to the major semiaxis of

the uncertainty ellipsoid squared. Therefore, the metric

(
x̃, P̃ t) 7→ λ1 (3.68)

considers a belief more accurate than another if its major axis is smaller. The ana-

logue for the Fisher information matrix is to take the smallest eigenvalue, with a

longer one being better.

3.2 Direction finding sensors

Direction finding (DF) sensors measure the direction of arrival (DOA) of a signal.

There exist direction finding sensors for almost all types of signals, for example

acoustic direction finding, underwater acoustic or passive sonar, or optical sensors.

In this thesis we focus on radio signals.

Several technologies exist to implement DF sensors. An example would be

the use of array antennas [Oispuu, 2013]. An array antenna consists of a spatial

arrangement of several individual antennas. The DOA of the incoming signal leads

to phase differences at the individual antennas, which can be measured. The ad-

vantage of an array antenna consists in an almost instantaneous measurement of the

3.2. Direction finding sensors 63

x

yr

θ

y

x
xs xt

ys

yt

xs

xt

Figure 3.5: Definitions for a bearing measurement. The target bearing θ of a target with
state xt = (xt ,yt)T is measured by a DF sensor at position xs = (xs,ys)T. The
relative position of the target with respect to the sensor is (x,y)T.

signal direction. However, array antennas also come with disadvantages like high

cost, complex signal processing, and calibration needs.

Another solution is the use of a directional antenna. A directional antenna has

a direction dependent antenna gain, often with a clearly distinguished main lobe.

Therefore, by rotating the antenna, one can determine the origin of the signal. The

disadvantage of this approach is that due to the required rotation of the antenna,

a single measurement takes more time. It is also not feasible to find the DOA of

a signal that is significantly shorter than the time required to rotate the antenna.

Advantages of this approach are that it can be implemented cheaper and requires

less complex signal processing and calibration. Due to the prospect of having a

cheap and less complex localization technique, in this thesis we will implement a

sensor system based on this second approach.

In this thesis we assume that the elevation component of the direction is not

available and we can only measure the horizontal angle towards the target. The

target bearing θ is defined as the counter-clockwise angle between the positive x-

axis and the line between sensor and target. This angle can be seen in Figure 3.5.

3.2. Direction finding sensors 64

In the experiments, the x-axis will point towards east and the y-axis towards north.

The measurement function is given by

hDF
k (x̂) = atan2(ŷ− ys

k, x̂− xs
k) (3.69)

for the target position x̂=(x̂, ŷ)T and the sensor position xs
k =(xs

k,y
s
k)

T. The function

atan2 is the four-quadrant arctangent function. This geometry is visualized in Figure

3.5. The measurement

zk = hDF
k (xt)+wm

k (3.70)

consists of the true bearing with additive Gaussian noise wm
k ∼N (0,σ2) with stan-

dard deviation σ .

3.2.1 Fisher information

We now want to quantify the amount of information available in a single bearing

measurement. For this, we take an axis-aligned coordinate system centred on the

sensor position xs. As the position of the sensor xs is known exactly, the information

gained over the relative target position (x,y)T = xt−xs corresponds to the informa-

tion gained about its absolute position (xt ,yt)T. This gives us the measurement

equation

h(x,y) = atan2(y,x) (3.71)

whose Jacobian is

H =

(
∂h
∂x

,
∂h
∂y

)
(3.72)

=

(
y

x2 + y2 ,
−x

x2 + y2

)
(3.73)

=
1
r2 · (y,−x) . (3.74)

The last equation uses the distance r =
√

x2 + y2 between target and sensor. The

covariance of the measurement noise R = σ2 ∈ R1×1 is a scalar.

Using equation (3.52), the Fisher information of a bearing measurement is

given by

3.2. Direction finding sensors 65

J(x,y) = HTR−1H (3.75)

=
1

σ2 ·H
TH (3.76)

=
1

r4σ2

 y2 −yx

−xy x2

 . (3.77)

In absolute coordinates xt = (xt ,yt) for the target and xs = (xs,ys) for the sensor, the

Fisher information is given by

J(xt ,xs) = J(xt− xs,yt− ys) . (3.78)

Using the substitution x = r cosθ and y = r sinθ , the Fisher information is given by

J(θ ,r) =
1

r2σ2

 sin2 θ −sinθ cosθ

−sinθ cosθ cos2 θ

 (3.79)

=
1

r2σ2

 sin2 θ −1
2 sin2θ

−1
2 sin2θ cos2 θ

 . (3.80)

We can draw several conclusions from the Fisher information. The determinant

of the Fisher information

|J(x,y)|= 1
r4σ2 · (y

2x2− (−xy)2) = 0 (3.81)

is zero, which shows that the matrix is not invertible and therefore, the target state is

unobservable by a single measurement. Equation (3.80) shows that the information

content of a measurement decreases quadratically with the distance r between target

and sensor. We can use some edge cases to further our understanding of the Fisher

information matrix: If θ = 0◦ or alternatively y = 0, zero information is available

about the x-coordinate of the target, as the x-axis is parallel to the target bearing.

The same is true if θ = 90◦ or x = 0, where no information about the y-coordinate

is gathered.

3.2. Direction finding sensors 66

0 45 90 135 180 225 270 315 360
Angle [deg]

0.0000

0.0001

0.0002

0.0003

0.0004

de
t(

FI
M

)

β

β

β

Figure 3.6: Information for different geometries of two measurement locations (red) with
the same distance to the target (blue triangle).

3.2.2 Sensor-to-target geometry

We call the position of the sensor when taking the measurement z the measurement

location of z and the relative positioning of sensor and target when taking the mea-

surement the sensor-to-target geometry. The previous section already showed that

the position of the target is unobservable from a single measurement. This section

discusses how the sensor-to-target geometry for multiple measurements influences

the received information about the target position. This gives an intuition on how

measurement locations should be selected to achieve a good localization. Similar

analyses have been presented in the literature [Hoffmann and Tomlin, 2010; Bishop

et al., 2007, 2010].

We begin by characterizing the information content of two measurements with

the same standard deviation σ , taken at equal distance r to the target. Using the

determinant metric, the total information content of both measurements is given by

|J(θ0,r)+J(θ1,r)| . (3.82)

Figure 3.6 shows a numerical evaluation of (3.82) for different measurement loca-

tions, parameterized by an angle β . These measurement locations lead to the target

3.2. Direction finding sensors 67

0 60 120 180 240 300 360
Angle 1 [deg]

0

60

120

180

240

300

360

A
ng

le
2

[d
eg

]

β

β

β

0.00

0.16

0.32

0.48

0.64

0.80

0.96

de
t(

FI
M

)

×10−3

Figure 3.7: Information for different geometries of three measurement positions (red) with
the same range to the target (blue).

bearings θ0 =−90◦, θ1 = θ0+β . Maximal information is achieved at β = 90◦ and

β = 270◦, which corresponds to the intuition that the optimal sensor-to-target geom-

etry for two measurements consists of a perpendicular cross-bearing. Analytically,

we can find based on (3.79) that

|J(0,r)+J(β ,r)|= 1
r2σ2 sin2 β (3.83)

which corresponds to the graph in Figure 3.6. Figure 3.7 shows a similar graph for

the case of three measurements, with target bearings θ0 = −90◦, θ1 = θ0 +β1 and

θ2 = θ0 +β2. Here the optimal separation would be either 60◦ or 120◦ between the

measurement locations.

Equation (3.80) shows that the Fisher information matrix is proportional to the

scalar 1/σ2 and therefore, this factor can be moved out of the determinant in (3.82).

For this reason the maxima of (3.82) stay the same with different σ and optimal

geometries are not dependent on the standard deviation of the measurement noise.

This section gave an intuition about how optimal sensor-to-target geometries

look like. For this, we assumed an ideal situation where the ground truth position of

the target is available, measurements can be taken at arbitrary positions, and no fur-

3.3. Sensor management 68

ther constraints limit the problem. The next section discusses sensor management,

which is the problem of how to use a sensor optimally. This includes not only the

ideal sensor-to-target geometries as described above but also the problem of how to

achieve them in a realistic setting, without these idealized assumptions.

3.3 Sensor management
In the measurement function hk, the index k indicates that the function might be

different in different measurement steps due to a change in the sensor state xs
k. A

different sensor state leads to a different measurement process or a different sensor-

to-target geometry, and therefore different measurements.

Examples for a sensor state are:

• The waveform that is used by an active sensor. For example, an active elec-

tronically steered array radar can change many parameters of its waveform:

Its pulse repetition frequency, carrier frequency, number of pulses, beam di-

rection, and more. The parameters of the currently used waveform would be

part of the sensor state xs
k. The corresponding sensor management problem

is discussed in the context of cognitive radar in the literature [Haykin, 2006;

Greco et al., 2018; Gurbuz et al., 2019].

• A passive RF receiver might listen for signals on multiple frequency bands

[Clarkson, 2011; Apfeld et al., 2016]. If it can only listen at a single frequency

band for a given time, the sensor state xs
k would correspond to the frequency

to which the receiver is tuned.

• The measurement could be created by multiple sensors, where at each time

only a single one or a subset can be used [Li et al., 2009]. The state xs
k would

specify which sensors are used in measurement step k. In this case xs
k would

more properly be referred to as the state of the sensor system, but would

otherwise have the same semantics.

• The position and orientation of the sensor [Ragi and Chong, 2013; Hammel

et al., 1989]. In many situations, measurements are relative to the sensor

3.3. Sensor management 69

position, as for example bearing or range measurements, or if the sensor has

a restricted field of view. In this case xs
k would contain the position of the

sensor.

Also combinations of these examples are possible, for example in a radar the wave-

form and its position are both important. The sensor state influences the measure-

ment process or sensor-to-target geometry and therefore leads to a better or worse

performance of the whole sensor system.

A sensor is called reconfigurable if we can change its state before taking mea-

surements. In the field of sensor management, methods are researched to do this

in an automatic way. Based on the previous measurements and the resulting belief

(see Section 3.1), a sensor controller changes the sensor state to improve the per-

formance of the whole sensor system. We call the output of the sensor controller

a sensing action. On the one hand, this is done to draw a connection to sequential

decision processes, presented in Chapter 2. On the other hand, this stresses that the

sensor controller cannot directly modify the sensor state xs
k+1 arbitrarily for the next

measurement, but only indirectly by a sensing action ak. For example, the sensor

controller might change the sensor position only indirectly by changing the mo-

tion vector of the platform. This would restrict the sensor state xs
k+1 to those states

reachable from xs
k. The sensor controller leads to a closed loop between sensor,

tracker, and sensor controller. This loop is shown in Figure 3.8.

xt
k sensor xs

k zk tracker bk

sensor controllerak

Figure 3.8: Sensor management loop.

3.3.1 Sensor management as a POMDP

In the language of approximate dynamic programming, we can identify the con-

catenation of target state and sensor configuration

xk =

xt
k

xs
k

 (3.84)

3.3. Sensor management 70

with the state known from Markov decision processes in Section 2.2. We refer to it

as the joint state to distinguish it from the target state and sensor state. The sensing

action ak ∈A changes only the sensor state and does not affect the target state. The

transition function of the joint state

Xk+1 = f a(xk,ak,W
p
k) =

 f t(xt
k)

f s(xs
k,ak)

+

Wp
k

0

 (3.85)

is given by the process model of the target state (3.3) and a suitable sensor transition

function f s.

We assume in (3.85) that the transition of the sensor state is deterministic.

A nondeterministic transition could be added by adding noise to the sensor state.

Noise could be used to model parts of the sensor state that are controlled by different

processes. For example, in the control of an airborne radar, it could be that the radar

is controllable, but the kinematic state of the aircraft is not. Also, purely random

effects as for example wind might influence the sensor state.

The belief bk is a probability distribution over the joint state space

X = X t×X s, with

bk(x) = p(X = x) . (3.86)

Commonly, the sensor state is observable, which we can represent using the Dirac

delta distribution. The belief is then given by

bk(x̂) = p(Xt = x̂t) ·δ (xs− x̂s) (3.87)

with x̂ = (x̂t , x̂s). As discussed in Section 2.2.4, this is merely a notational tool

to stay consistent with the idea that the belief is a probability distribution over the

state space. In a real implementation, the belief bt
k over the target state is typically

represented as a probability distribution, and the sensor state xs
k would be directly

available.

3.3. Sensor management 71

The sensor controller is a policy

π : B −→A (3.88)

that maps the current belief bk ∈B to the sensing action ak ∈A. Due to the assump-

tion of an observable state, the policy can also be given as

π : Bt×X s −→A (3.89)

a mapping from the belief about the target state and the current sensor state to the

next sensing action.

As the sensor controller creates a new sensing action after each received mea-

surement, we can consider the decision step k from Section 2.2 and the measure-

ment step k from Section 3.1 the same. In the remainder of this thesis, we will

therefore consider those two as the same index. In particular, the measurement step

k refers to the execution of the measurement model, which creates the measurement

zk and an updated belief bk. The decision step k refers to the execution of the sensor

controller, based on this updated belief bk.

Having the same number of decision steps and measurement steps is valid if

the frequency of new measurements is sufficiently slow or the sensor controller

sufficiently fast. For high frequency sensors or slow sensor controllers, it would

be required to execute the sensor controller at a slower rate than the measurement

processing. In this case, k would refer to the decision step of the sensor controller,

bk would be the current belief at this decision step, and ak would change the sensor

state for multiple measurement steps. However, the closed loop structure would

stay the same.

As in Section 2.2, a cost function

ck : B×A−→ R (3.90)

3.3. Sensor management 72

will be defined. This cost function is a mathematical formulation of the sensing task.

There is significant research about cost functions in sensor management, which is

briefly discussed in the next section.

3.3.2 Approaches to sensor management

Sensor management algorithms can be divided into two main classes: rule-based

and optimization-based. Rule-based algorithms are fixed decision procedures. An

example would be to schedule a radar dwell every four seconds or to move a plat-

form with a DF sensor perpendicular to the last measured bearing. Optimization-

based approaches consider the decision as an optimization problem and find the

optimal next sensing action by solving this problem.

Most of the current research is focused on optimization-based approaches. It

follows the general idea that a sensor system designer should not specify the sens-

ing actions directly but instead the sensing task which the sensor system should

perform. Typically, the sensing task is specified using the cost function (3.90). In

this thesis, we classify optimization-based sensor management according to three

different aspects: The cost function, the mathematical model of the problem, and

the planning horizon.

Cost function

A common classification of cost functions is into task-driven and information-

driven functions [Aoki et al., 2011a; Kreucher et al., 2005].

A task-driven cost function is a cost function that refers to a task-specific met-

ric of the sensor system. Such a metric could for example be the RMSE between

the point estimate of the target position and the ground truth [Aoki et al., 2011a],

number of lost tracks, or target detection probability [Kreucher et al., 2005]. The

cost function then consists of the expected value of this metric, given the current

belief. An example would be the expected RMSE as discussed in Section 3.1.4.

In comparison, an information-driven cost function is based on a metric from

information theory [Cover and Thomas, 2006]. Information theory formalizes the

abstract idea that some distributions have a higher information content than others.

3.3. Sensor management 73

This is done by using concepts like the entropy, for example in [Ryan et al., 2007].

The entropy was previously discussed in Section 3.1.4 and leads to the cost function

c(bt
k,x

s
k,a

s
k) =HD(bt

k) . (3.91)

One can see that the sensing action and sensor state have no direct influence on the

cost function. Their influence on the cost is only indirect, as the chosen sensing

action will change the sensor state in the next measurement step k+1 and therefore

the measurement zk+1, belief bk+1, and the resulting cost.

Similarly, the determinant, trace, or largest eigenvalue have been used in many

sensor management applications, either applied to the covariance of the belief or

to the Fisher information matrix [Leung et al., 2006; Oshman and Davidson, 1999;

Doğançay, 2012; Vander Hook et al., 2015]. As the Fisher information requires the

true target state, this is typically approximately computed for the point estimate of

the target state. Other often-used information-driven cost functions are the Kullback

Leibler divergence and the Renyi divergence [Cover and Thomas, 2006, Chapter 8

and 17], for example in [Katsilieris et al., 2012; Ristic et al., 2010]. Those di-

vergences quantify the difference between probability distributions. In the context

of sensor management, they are applied to the known predicted belief distribution

bk|k−1 and the new belief distribution after measurement step bk|k. A larger differ-

ence between those two distributions means that the belief about the target state has

improved.

The main difference between a task-driven and an information-driven cost

function is the intention. A task-driven cost function quantifies a value that the user

of a sensor system cares about. It is a task-specific criterion and refers directly to

the sensing task. For example, a user of a sensor system might care about having a

small error to the ground truth or a small number of false alarms. A major difficulty

of task-driven approaches lies in the fact that often multiple, potentially conflict-

ing, criteria are important for a sensing task, and either trade-offs or a surrogate

cost function needs to be defined. Information-theoretic cost functions are intended

to be a generic way to specify such surrogate cost functions. The idea is that by

3.3. Sensor management 74

minimizing for example the entropy, and therefore increase the general information

content of the belief, the sensor controller will also optimize the task-specific met-

rics a user is concerned about. Whether information-theoretic cost functions can

truly serve as such an universal proxy is a topic of ongoing research [Aoki et al.,

2011b].

Mathematical model of the problem

The mathematical model can be deterministic or stochastic. As discussed in Section

3.1, the measurement process itself is always a stochastic process due to measure-

ment noise and partial observability. Similarly, the behaviour of the target is un-

known and provides another source of uncertainty, modelled with a process model.

However, this uncertainty is not always considered in the sensor management algo-

rithm.

A deterministic model approximates this uncertainty by setting random vari-

ables to fixed values. For example, a common approximation is to replace noise

terms by zero and assume the target to be at the centre of the estimated probabil-

ity density. This is for example done in [Cliff et al., 2015]. Similarly, the nominal

belief-state optimization (NBO) method [Miller et al., 2009; Ragi and Chong, 2013]

creates a stochastic model of the problem, but performs the planning on a determin-

istic model. This model is created by replacing the future beliefs by nominal ones,

which result from the process and measurement model under the assumption of zero

process and measurement noise.

In comparison, a sensor controller that uses stochastic models explicitly con-

siders the different outcomes of at least some of those random variables. For ex-

ample, a stochastic model could provide different measurements based on multiple

realizations of the measurement noise or different possible target states based on

the current belief. If the model is correctly chosen, this can lead to a more accu-

rate problem description than a deterministic approximation. In some cases, this

requires a careful selection of the probability densities. While the measurement

noise can often be derived accurately from calibration measurements of the sensor,

the process noise in the process model (3.3) is often more a rough approximation of

3.3. Sensor management 75

the manoeuvrability of the target and the mismatch between model and reality, than

a true description of the behaviour of the target.

An example for a stochastic sensor controller for the problem of sensor path

planning is given in [Hernandez, 2004]. Here the sensor controller computes the

value of the cost function in the next state based on Monte Carlo sampling. Then,

an adaptive quadrant search is made to search for the action which minimizes the ex-

pected value. This algorithm can be generalized to a policy with an H-step planning

horizon, with the cost of an exponential increase in computing time. In [Hernandez,

2004] results for a 2-step planning horizon were shown.

In [Trémois and Le Cadre, 1999], the Smallwood-Sondik algorithm [Small-

wood and Sondik, 1973] for POMDPs was used to solve a discretized multi-step

sensor path planning problem for a direction finding sensor. However, due to the

computational constraints associated with the solution of the POMDP, it was re-

quired to restrict the state space to 25 positions and four possible observations. This

is consistent with the general difficulty of solving POMDPs with offline algorithms.

The policy rollout method, described in the previous chapter, reduces the com-

putational requirements by using a base policy to determine the future actions. It

has been applied to sensor management applications [Chong et al., 2008], for ex-

ample to the activation of sensors in a sensor network [He and Chong, 2004, 2006],

sonar ping optimization [Saksena and Wang, 2008] and UAV control [Sarunic and

Evans, 2014].

Planning horizon

The planning horizon describes the number of decision steps considered after the

current action. A major distinction is between myopic and nonmyopic approaches.

A myopic approach considers only the effect of the next action and corresponds

to a planning horizon of one. A nonmyopic approach also considers the effect of

actions further in the future. Examples for myopic approaches are [Doğançay, 2012]

and [Hoffmann and Tomlin, 2010] which both optimize the next movement step of

multiple UAVs for sensor path planning and [Kershaw and Evans, 1994] which

optimizes the next waveform used in a radar. Examples for nonmyopic approaches

3.3. Sensor management 76

are [Hammel et al., 1989] that provides sensor path planning for a single platform,

[Leung et al., 2006] for multiple platforms, and [Li et al., 2009] which considers

the activation of nodes in a sensor network.

Especially with a stochastic model of the problem, there is a qualitative differ-

ence between myopic and nonmyopic approaches. If the process model and mea-

surement model is deterministic, a planning horizon greater than one corresponds to

finding an optimal fixed sequence of sensing actions. However, if those models are

nondeterministic, such an optimal fixed sequence might not necessarily exist. In-

stead, the optimal sequence of actions might be dependent on the future realizations

of the measurement noise and process noise.

The size of a useful planning horizon is also dependent on the specifics of the

sensor system and sensing task. An example would be a slow moving robot with

a limited field of view that needs to detect stationary targets in an area. For such a

sensor system, it makes sense to plan a complete trajectory ahead, as it is very costly

to go back to a measurement location later. On the other hand, a radar is a very

agile sensor, which often needs to track very agile targets. It is therefore difficult

to consider each possible future target behaviour, making a long planning horizon

less useful. But while it would be costly for a robot to move back to a previous

measurement location, the nearly instantaneous steering of the radar dwell allows

for a measurement without large additional cost, once this becomes necessary.

This observation can similarly be stated for the abstract POMDP mentioned

above. The higher the process noise Wp of the process model for the target is,

the less use has a long planning horizon. Similarly, a long planning horizon is of

less use, the easier it is for the sensor manager to change the sensor state xs to an

arbitrary value. If multiple sensing actions are required to set the sensor state to

a specific value, or a different order of sensing actions leads to different costs, a

higher planning horizon is useful. This is often the case in the sensor path planning

problem.

3.3. Sensor management 77

3.3.3 Sensor path planning

A subproblem of sensor management is path planning for mobile sensor systems.

Previously, Section 3.2.2 described that the gathered information about the target

state is dependent on the measurement locations. A mobile sensor system can adapt

its position to optimize the sensor-to-target geometry. This is not only relevant for

DF sensors, but for range and range-bearing sensors as well. The capacity of an RF

sensor to detect a target also diminishes typically with range, as the energy of the

signal is spread out on a sphere with a surface proportional to the distance squared.

In addition, obstacles in the environment might block the signal or the sensor might

only be able to receive a signal at certain angles. In this case, the field of view

(FOV) of the sensor is limited. In all of these situations, an active control of the

sensor position can help to achieve the sensing task.

We name the problem of optimizing the paths of a platform to improve a sens-

ing task sensor path planning. The restriction of improving a sensing task means

that this definition excludes problems where a sensor is used in a mobile sensor

system but decisions about the path are not made to improve the sensing task. For

example, navigation tasks where the sensor is used to avoid obstacles do not fall

under this definition. We also distinguish the term from shortest path search and

motion planning. In shortest path search the goal is to find the shortest path between

two nodes in a graph. Such problems often appear in navigation tasks and can be

solved using graph algorithms, as for example the Dijkstra algorithm [Cormen et al.,

2001, Ch. 24]. Motion planning is the problem of finding the best path for a mo-

bile platform in a continuous space to a goal state, where the platform is potentially

limited by motion constraints [Karaman and Frazzoli, 2011; LaValle, 2006].

Problems which fall under the umbrella term of sensor path planning have been

considered in the literature in different contexts. For example in the problem of au-

tonomous map building [Kollar and Roy, 2008; Charrow et al., 2015], a robot with

a laser range finder is given the task to optimize its path to improve the complete-

ness and accuracy of the map. The works by [Cai and Ferrari, 2009; Zhang et al.,

2009] consider a mine clearing application, where a mobile robot with a range lim-

3.3. Sensor management 78

ited sensor needs to classify already localized targets. Coverage path planning is

the problem of quickly traversing an area such that every position is visited at least

once. This problem appears if a sensor needs to search for targets in an area larger

than its FOV. An application is for example underwater mine clearing [Paull et al.,

2013].

In this thesis the focus is on sensor path planning for a DF sensor to localize

an emitter. We will call a sensor controller for the sensor path planning problem

a path planner, implying from the context that it is about sensors. As previously

seen in Section 3.2.2, the localization accuracy of an emitter with multiple DF mea-

surements is highly dependent on the sensor-to-target geometry. The localization

accuracy is also dependent on the behaviour of the target. A trajectory that localizes

a stationary target well, might have a poor performance when the target moves. The

target state might even be unobservable in this case. Common classes of targets that

are studied in the literature are stationary targets and linearly or piecewise-linearly

moving targets.

A stationary target could for example be a ground-based radar which should be

localized, a stationary interference source, or a signal beacon. A piecewise-linearly

moving target could correspond to a radar equipped aircraft flying a straight course

and is also common for localizing ships, for example by their radar or communi-

cation signals, or their acoustic emissions using a passive sonar. Based on these

assumptions, sensor path planning is concerned with finding the optimal trajectory

to localize the target.

Typical sensor trajectories

The following paragraphs discuss typical trajectories appearing in the literature.

In all of these scenarios the ground truth position of the target is assumed to be

available and the Fisher information is used to optimize the trajectory, similar as in

Section 3.2.2. To compute a sensor path online, the point estimate of the target state

can be used. The cost function is the negative determinant of the Fisher information

matrix, therefore a minimization of the cost corresponds to a maximization of the

determinant. The optimization is made using the BFGS algorithm, and the gradi-

3.3. Sensor management 79

ents are computed using the CasADi library [Andersson et al., 2019]. The sensor

state xs
k = (xs

k,y
s
k)

T consists of the sensor position and the action a ∈ R is the next

direction of travel. The sensor transition function is given by

xs
k+1 = xs

k + cos(a) · vs ·∆t (3.92)

ys
k+1 = ys

k + sin(a) · vs ·∆t . (3.93)

Note that the action space consists of R, even though sin and cos are both periodic

functions. This is because BFGS is an unconstrained optimization algorithm. Ma-

noeuvring does not lead to a cost in the sensor transition function (3.93), the cost

only depends on the information gained during the trajectory, as measured by the

determinant of the Fisher information. The initial Fisher information is a zero ma-

trix and the BFGS iteration is started by a zero-vector. The standard deviation of a

measurement is σ = 3◦ for all trajectories.

We first consider the following problem: given a finite horizon scenario of

K = 10 time steps and a stationary target, what is the trajectory such that the uncer-

tainty about the target position after the last time step is minimized? Note, that the

uncertainty in all steps k < K is not important in this formulation. This problem can

be solved by deterministic lookahead with a planning horizon of H = K = 10. The

only cost is a final cost after the last time step. Figure 3.9a shows several trajectories

for different velocities of the platform vs = 25m/s,50m/s, ...,200m/s. The trajec-

tories are similar to the ones presented in [Hammel et al., 1989] and [Oshman and

Davidson, 1999], and show the optimal trajectory for a given ratio between travel

distance and target distance. The travel distance during the planning horizon H is

given by vs ·H ·∆t, with platform speed vs, planning horizon length H and the time

step ∆t = 1s which is the interval between successive decision steps. This distance

corresponds to the length of the trajectories in Figure 3.9. The numbers 0.125 to

1.0 at the end of trajectories indicate the ratio r̂ = vs ·H ·∆t/rt , where rt = 2000m

is the initial distance between platform and target. This ratio indicates how far the

platform can travel relative to the distance to the target. If r̂ is small, the optimal

sensor path is to move almost perpendicular to the target such that the target can

3.3. Sensor management 80

−400 0 400 800 1200
x pos [m]

0

400

800

1200

1600

2000

y
po

s
[m

]

0.125
0.25
0.375

0.5

0.625

0.75

0.875

1.0

(a)

0 400 800 1200
x pos [m]

0

400

800

1200

1600

2000

y
po

s
[m

]
(b)

0 200 400 600
x pos [m]

0

200

400

600

800

y
po

s
[m

]

(c)

-800 0 800
x pos [m]

0

400

800

1200

1600

2000

y
po

s
[m

]

(d)

Figure 3.9: Typical paths for localization with bearing measurements. Red indicates the
starting position of the sensor platform, the blue triangle the starting position
of the target and orange the trajectory of the platform. (a) Different paths to
localize a static target by a nonmyopic path planner. The numbers give the
ratio between the distance the platform can travel during the planning horizon
and the initial distance between platform and target. (b) Trajectory resulting
from a myopic path planner to localize a static target. (c) Trajectory to localize
a linearly moving target. The path planner is nonmyopic and the optimization
algorithm was initialized with the grey trajectory. (d) Myopic path planner for
two platforms and a stationary target.

3.3. Sensor management 81

be measured with different bearings. As r̂ becomes larger, it becomes better to

first reduce range and then move perpendicular. These two components, reducing

the range and observing the target with different bearings, follow directly from the

properties of the Fisher information shown in Section 3.2.2. If r̂ approaches 1, the

optimal decision becomes to travel directly to the target. As the Fisher information

is proportional to 1/r2 with distance r, in the limit as r→ 0, it tends to infinity.

In comparison, Figure 3.9b shows the trajectory resulting from a myopic plan-

ning algorithm with a velocity of vs = 200m/s and K = 10 time steps and a planning

horizon of H = 1. It can be seen that it moves almost perpendicular towards the tar-

get, as it focuses on the immediate information gain. It also reduces the range, but

slower than the nonmyopic path planner in Figure 3.9a.

Figure 3.9c shows a typical trajectory to localize a linearly moving target, for

example a ship or a nonmaneuvering aircraft. When the target is nonstationary, ob-

servability becomes more complex [Nardone and Aidala, 1981; Fogel and Gavish,

1988]. For a linearly moving target, the sensor must move on a trajectory that per-

forms manoeuvrers, which means that the platform must accelerate. The trajectory

in Figure 3.9b consists of multiple segments, with the last one being almost per-

pendicular towards the target bearing. Such sensor paths are typical for localizing

linearly moving targets [Passerieux and Van Cappel, 1998; Le Cadre and Laurent-

Michel, 1999]. This trajectory was also computed using deterministic lookahead

with H = K = 10 and only a final cost. Different to the other trajectories it required

a nonzero initial Fisher information J0 = I4×4 ·10−10 and the BFGS algorithm was

initialized with a trajectory guaranteeing observability. This initial trajectory is

shown in grey in the Figure. The velocity of the platform was vs = 40m/s.

Sensor path planning has also been performed for multiple DF sensors,

mounted on multiple platforms [Spletzer and Taylor, 2003; Hoffmann and Tom-

lin, 2010; Grocholsky et al., 2003]. In this case, the position of the target can be

estimated directly by intersection, which makes observability a lesser concern. The

resulting trajectories typically spread out such that the angle between the target and

the platforms remains constant and they similarly reduce the range towards the tar-

3.3. Sensor management 82

get. As can be seen from the discussion in Section 3.2.2, maximal information is

achieved by keeping a separation of 90◦ in the case of two platforms and either 60◦

or 120◦ in the case of three platforms. Figure 3.9d shows the trajectories resulting

from a myopic path planner for two platforms with vs = 200m/s. Here, the action

space is the joint steering a ∈ R2 and the sensor state space X s = R4 the joint state

of both platform positions. The trajectories spread out first, and afterwards converge

on a 90◦ angle.

Sensing actions with different durations

The trajectories discussed above make a standard assumption in sensor path plan-

ning, which is that the duration of an individual sensing action is constant and the

platform moves for a limited distance between those sensing actions. When this is

the case, the decision steps k are based on a regular discretization of time with a

time step ∆t. Then, the distance the platform travels between the decision steps is

limited by vs ·∆t.

The fact that ∆t is constant and independent of the sensing action is an im-

portant idea because it allows myopic and receding horizon path planners to only

consider the improvement of the posterior beliefs. For example, if an action a leads

to a less costly posterior belief than another action a′, it makes sense for a myopic

path planner to chose this action. However, this is only true if the actions take the

same time. If instead a′ would have been much shorter in time, maybe an action se-

quence a′,a′′ would have been better than a alone. This assumption of constant time

steps is implicitly made by almost all myopic and receding horizon path planners,

but only rarely stated explicitly, for example in [Doğançay, 2012].

The assumption of constant time steps corresponds to a sensor system whose

measurements occur independently from the movement of the sensor platform as

they are not affected by it. This is a well justified assumption for many applica-

tions. For example, the measurements generated by an array-based DF sensor on an

aircraft occur at regular intervals, independent of the movement.

However, with the progress of robotics and ever cheaper, smaller, and more

available mobile platforms, several demonstrations of small mobile sensor sys-

3.3. Sensor management 83

tems with DF sensors have been performed [Dressel and Kochenderfer, 2018;

Venkateswaran et al., 2013; Cliff et al., 2015; Vonehr et al., 2016; Vander Hook

et al., 2015]. These systems do not use array antennas because of the higher cost,

sophisticated processing requirements and harder calibration of this sensor type.

Therefore, they often have different sensing characteristics as classically assumed.

In particular it can be the case that the platform needs to stay stationary during a

measurement to determine the direction of arrival with a directional antenna [Cliff

et al., 2015; Vonehr et al., 2016; Vander Hook et al., 2015] or that it has differ-

ent sensing characteristics during motion [Graefenstein et al., 2009]. Then a single

sensing action consists of a movement phase of variable duration and a measure-

ment phase. This leads to the duration of a sensing action not being constant any

more.

Sensor path planning for such sensor systems has been demonstrated, however

typically with a limited planning horizon and without taking into account the un-

certainty of the measurement process. The work in [Cliff et al., 2015] describes a

myopic path planner, which bases the next measurement decision on the results of

the nominal measurement without taking travel costs into account. The path planner

in [Vander Hook et al., 2015] selects as the next two measurement locations those

which would be optimal if the emitter were exactly placed at the closest position on

the 3σ confidence ellipsoid.

This thesis develops a path planner for a sensor system which needs to be sta-

tionary during the measurement process. The algorithm takes into account travel

times as well as the measurement duration and minimizes the time until the target

is localized. This task-driven cost function was chosen because it encodes a direct

benefit for a user and is directly observable in an experiment. In general, nonmy-

opic planning is advantageous in the sensor path planning problem because physical

movement of the sensor is not instantaneously revertible. This is especially true in

the considered sensor system because measurements are not at constant time steps.

Instead, the platform requires a significant amount of travel time before the next

measurement is performed. Therefore, the path planner is nonmyopic and plans

3.3. Sensor management 84

until the end of the localization process. The path planner considers the uncertain

current target state and outcome of future measurements. The next chapter intro-

duces the path planner and compares it with path planners from the literature [Cliff

et al., 2015; Vander Hook et al., 2015]. In Chapter 5, the path planner will be im-

proved and made more efficient. Finally, in Chapter 6 an experimental evaluation is

described.

Chapter 4

Policy Rollout for Sensor Path

Planning

In this chapter, a path planner for localizing a stationary RF emitting target with a

mobile UAV is described. The UAV is equipped with a directional antenna and can

take a bearing measurement towards the target by rotating around its own vertical

axis. The contents of this chapter have previously been published in [Hoffmann

et al., 2019] and [Hoffmann et al., 2021]. Figure 4.1 visualizes the problem setting.

The red lines are measurements of the target bearing, taken at different locations.

The UAV moves on the straight path (blue) between two measurement locations.

As described in Section 3.2, when localizing a target with bearing measure-

ments, the sensor-to-target geometry has a large influence on the accuracy of the

result. A sensor system as described here has the additional challenge that the plan-

ner faces a trade-off: The measurement process and movement are both time inten-

sive. Therefore, the path planner needs to decide whether the time is better spent by

optimizing the sensor-to-target geometry or by taking an additional measurement.

Compared to more complex sensor systems, for example those with array-

based sensors which can move and measure at the same time, such a sensor system

has the advantage of being simpler and potentially lighter.

The first section of this chapter performs a comparison with existing work. The

second section creates a mathematical formulation of the problem. The problem is

described in form of decision steps, where each decision fixes the next sensing ac-

86

Figure 4.1: Visualization of the measurement process. By rotation around its own vertical
axis, the UAV produces a bearing measurement (red). Afterwards, it moves to
the next measurement location. The trajectory of this movement is shown in
blue. At the next measurement location it then takes a new bearing measure-
ment.

tion. The available sensing actions are the possible measurement locations, to which

the UAV will fly to take a measurement. Therefore, different sensing actions lead

to different travel times and have different durations. Section 4.3 describes a path

planner, based on the policy rollout principle. This rollout path planner solves the

problem by simulating the future development of the joint state and belief for mul-

tiple sensing actions, under the assumption that future actions are determined by

a simple base policy. A simulative evaluation of the path planner is performed in

Section 4.4, based on two scenarios. The first scenario evaluates the influence of a

specific target position at different fixed positions. In the other scenario, the target

position is sampled from a probability distribution to determine the average perfor-

mance of the path planner. It can be seen that the rollout path planner performs

4.1. Comparison with existing work 87

well, and on average leads to a faster localization than other path planners. The last

section performs a conclusion of this chapter.

4.1 Comparison with existing work
Sensor systems that alternate between movement and taking a bearing measurement

have been considered multiple times in the literature. Chapter 6 contains a literature

survey about sensor systems of this type that have been demonstrated experimen-

tally. This section describes path planning algorithms for such systems.

4.1.1 Mobile sensor systems with stationary measurements

In [Tokekar et al., 2011], three path planners are proposed. All of these attempt to

improve the localization after a fixed number of K sensing actions. The first one is

an exhaustive search of all combinations of measurement locations on a quadratic

Xa×Y a, Xa = Y a action grid. Each of the
(Xa·Y a

K

)
combinations is considered and

the plan with the largest determinant of the Fisher information is selected.

The second path planner is myopic and considers all neighbouring positions

on the action grid for the next sensing action. For each of those sensing actions,

a uniform sampling of possible measurements is made and the updated belief is

computed for each measurement sample. The action value of a sensing action is

defined as the maximum value of the determinants of the updated beliefs. This

means, the action value is the worst case of the possible determinants of the updated

belief covariances. Then the sensing action is selected that minimizes the action

value. This amounts to a worst-case planning.

The third path planner in [Tokekar et al., 2011] extends the myopic algorithm

to a min-max tree. For each neighbouring position on the action grid, a top-level

action node is created. An action node has multiple bearing nodes as child nodes,

one for each sample in a uniform sampling of possible measurements. For each

of those bearing nodes, the updated belief is computed. The bearing nodes again

have action nodes as children until the corresponding tree reaches a depth of K.

The value of a leaf node is defined as the determinant of the belief covariance. For

each bearing node, the value is the worst value of its child nodes, similar as the

4.1. Comparison with existing work 88

worst-case planning in the myopic planner. For each action node, the value is the

best value of its child nodes. Then the top-level action node with the highest value

is executed.

Both, the first and the third path planner are executed as open loop policies

and do not consider replanning. The first path planner is executed once and then K

sensing actions are executed. For the min-max tree this is more complicated. After

each bearing measurement, the belief is updated and the bearing node whose belief

is most similar to the updated belief is selected as the new root. The similarity is

computed using the Bhattacharyya distance, a similarity measure for two probabil-

ity distributions. Then, from the new root, the action node with the highest value is

executed, until K measurements are taken.

In [Vander Hook et al., 2015] an algorithm for one and multiple sensor plat-

forms is presented. In both cases, the path planner assumes that the target is at the

closest position on the 3σ confidence ellipsoid. This idea is visualized in Figure 4.2.

In the case of a single platform, it is shown that under the assumption of the known

target position, it is optimal to select two measurement locations. One of these is on

the direct line between target position and current platform position. The other can

be derived analytically, if the number of measurements taken at each measurement

location is known. The optimization is then performed by an exhaustive search over

the number of measurements at each location, as well as a numeric optimization

over the distance of the first measurement. This optimization uses the Fisher infor-

mation and takes travel time and measurement duration into account. The outcome

that the target might not be on the closest position on the 3σ confidence ellipsoid is

not considered during the planning. Instead, the algorithm replans on the updated

belief, if the target is not localized after the measurements.

The path planner in [Cliff et al., 2015] is myopic and selects the sensing action

that minimizes the Shannon entropy of the belief updated with the expected mea-

surement. The required time to move to the next measurement location is ignored

in this approach.

4.1. Comparison with existing work 89

−200 −100 0 100 200 300 400
x pos [m]

−200

−100

0

100

y
po

s
[m

]

3σ

Platform position
Assumed target position
Measurement location

Figure 4.2: Visualization of the path planner from [Vander Hook et al., 2015]. The belief is
represented by the 3σ confidence ellipsoid. The target is assumed to be at the
position on the 3σ confidence ellipsoid that is closest to the platform.

Similarly, the path planner in [Vander Hook et al., 2014] is myopic and ignores

the travel cost. It chooses the next measurement location perpendicular to the major

axis of the confidence ellipsoid. The distance is determined analytically, such that

there is a fixed probability that the target is on one side of the sensor. This is

motivated by the characteristics of the used sensor. The sensor consists of a loop

antenna, whose antenna pattern has two equal maxima. Therefore, the direction of

a bearing measurement is ambiguous by 180◦. To mitigate this ambiguity, the path

planner chooses the measurement with a sufficient distance, such that the direction

of the bearing measurement can be considered unambiguous with high probability.

[Vander Hook et al., 2014] also contains an initialization procedure for the

initial belief, in which the platform moves in four directions along two orthogonal

lines until the target cannot be detected any more. Then the 3σ confidence ellipsoid

of the initial belief is a circle fitted on the positions where the target is not detectable

any more.

4.1.2 Contributions of this chapter

The second and third path planner in [Tokekar et al., 2011] are the only ones that

consider the stochastic outcome of future measurements, but they do not consider

4.1. Comparison with existing work 90

the trade-off between taking a measurement and moving to a different position. As

the movement between two measurements corresponds to one edge on a regular

grid, these algorithms can be considered as a reduction to the case of measurements

in regular time intervals with constant travel distance. This is similar to the trajec-

tories discussed in Section 3.3.3 and does not use the capability of moving to any

next measurement location. Contrary, the first path planner in [Tokekar et al., 2011]

considers the fact that the platform can move to any measurement location between

two measurements, but does not include the stochastic outcome of future measure-

ments. The path planners of [Cliff et al., 2015] and [Vander Hook et al., 2014] are

both myopic and also do not consider the travel time. However, both use the fact

that platforms can move arbitrarily between measurements. Only the path planner

in [Vander Hook et al., 2015] considers the measurement duration and travel time

in its optimization, but does not consider the full uncertainty of the belief. Instead,

it optimizes under the assumption of a single target position on the 3σ confidence

ellipsoid. It does not consider the possibility that the target might not be at this

position.

In contrast to the presented literature, this chapter describes a path planner that

does not have these limitations. The path planner is based on the policy rollout

principle and considers multiple possible target positions, dependent on the current

belief. The outcome of future measurements during the planning depends on these

different target positions. The planning is nonmyopic and considers all future de-

cision steps until the target is localized. The cost function is based on the time

required by the sensing actions, considering the measurement duration and travel

time. The total cost is the time until the localization of the target is sufficiently

accurate.

We will compare this rollout path planner with the algorithms from [Cliff et al.,

2015] and [Vander Hook et al., 2015]. The first one is used for comparison because

myopic algorithms are widely used in sensor management. The second one is used

because it is the only one that explicitly considers the measurement duration in its

4.2. Problem description 91

optimization. The chosen base policy of the policy rollout is similar to the path

planner from [Vander Hook et al., 2014].

4.2 Problem description

In this section, a mathematical formulation of the joint state space of target and

sensor system, the transition function, the belief and cost function of the emitter

localization problem with a UAV is given.

4.2.1 State space and transition

The problem is modelled two-dimensional and the joint state

xk =

xt

xs
k

= (xt ,yt ,xs
k,y

s
k)

T ∈ X ⊂ R4 (4.1)

consists of the stationary target position xt = (xt ,yt)T, and the current position of

the sensor platform xs
k = (xs

k,y
s
k)

T. The joint state spaceX =X t×X s consists of the

target state space X t ⊂R2 and sensor state space X s ⊆R2. We assume both sets to

be nonempty, X t to be bounded, X s to be convex andX t ⊆X s. The assumption that

X t is bounded allows to represent the probability density of the target position on a

finite grid. The assumption that X s is convex means that the shortest path between

two measurement locations is a straight line. This assumption can be relaxed, but

then the computation of the travel distance between two locations becomes more

complex. The requirement that X t ⊆ X s is to assure that the platform can move

arbitrarily close towards the target. We use this assumption in the definition of the

action space. If X t and X s are equal, we refer to X t = X s as the scenario area.

We assume that the emitter is continuously active and therefore at each mea-

surement step k a measurement zk ∈ [−π,π] is generated. This measurement

zk = atan2(yt− ys
k,x

t− xs
k)+wm

k (4.2)

= hDF
k (xt)+wm

k (4.3)

4.2. Problem description 92

is based on the true bearing and additive Gaussian distributed measurement noise

with wm
k ∼ N (0,σ2) and known standard deviation σ . The measurement process

takes an amount of time, denoted tm. We denote this amount of time measurement

duration.

After each measurement, a path planner chooses an action ak ∈ A = X s to

move the platform to a position where the next measurement is taken. The sensor

transition function is defined as

f s(xs
k,ak) = ak . (4.4)

The movement leads to a distance cost in time of

td(xs
k,ak) =

∥xs
k−ak∥2

vs (4.5)

where vs is the speed of the platform. We assume that the effect of acceleration is

negligible and that the platform takes the direct path, however, it is possible to relax

this assumption with a different function td .

Given the preceding definitions, the transition function of the state is

xk+1 = f a(xk,ak) =

xt

ak

 (4.6)

with an associated cost in time of

c(xs
k,ak) = td(xs

k,ak)+ tm . (4.7)

This cost is received each time the platform moves and takes a measurement,

thereby incentivizing it to localize the target as fast as possible.

4.2. Problem description 93

4.2.2 Belief state

The target state is not directly available to the path planner, but only indirectly

observed via the received measurements. The measurements can be integrated into

a belief about the target position

bt
k(x) = p(Xt = x | bt

0,a0,z1,a1, ...,ak−1,zk) . (4.8)

The initial belief bt
0 denotes any prior knowledge about the target position or as-

sumptions like a uniform prior distribution. The knowledge about the joint state is

the belief at time k, which includes the fully observable platform position:

bk(x) = p(X = x) (4.9)

= b t
k(x

t) ·δ (xs−xs
k) . (4.10)

Here δ corresponds to the Dirac delta function (see Sections 2.2.4 and 3.3.1). Ef-

fectively, this means that xs
k is known to the path planner.

4.2.3 Optimization objective

The sensing task considered in this thesis is to localize the target as fast as possible.

The corresponding metric is the time until localization. This is defined as the time

until the accuracy of the localization is sufficient. The accuracy of the localization

is given by the expected RMSE µ : B → R of the belief, given by (3.57). The target

is considered to be localized, when the expected RMSE of the belief is below a

localization accuracy threshold µ . Formally, this means the POMDP terminates at

decision step K, when belief bK is in the set of termination beliefs

T B = {b ∈ B : µ(b)< µ} . (4.11)

4.2. Problem description 94

The objective is to find a path planner that minimizes the expected time until

localization, which means a policy

π∗ = argmin
π

E

[
K−1

∑
k=0

c(Xs
k,π(Bk))

]
. (4.12)

As defined in Section 2.2.1, the random variable K indicates the first decision step

when the belief Bk is in the set T B. K depends on the target position and the en-

countered measurements. The sum in (4.12) should be read as: the sum of all costs

until the target is localized.

When evaluating (4.12), the unknown target state Xt ∼ b0 is distributed accord-

ing to the initial belief. B0 = b0 is given by the initial belief and future beliefs

Bk+1 = update(Bk,Zk,Xs
k) (4.13)

are the result of the measurements

Zk = hDF
k (Xt)+Wm

k (4.14)

where hDF
k is described in (4.3) and Wm

k ∼ N (0,σ2). The platform position is a

random variable Xs whose value in the first decision step is equal to the initial

platform position xs
0 and the result

Xs
k = π(Bk) (4.15)

of the decisions by the path planner afterwards.

Conditioned on the target position Xt and the measurement noises Wm
k , the

values of all random variables are known for a given policy π . The expected value

in (4.12) can therefore be approximated by Monte Carlo sampling of Xt and Wm
k .

4.3. Path planning algorithm 95

4.3 Path planning algorithm

The path planner is based on the policy rollout principle described in Section 2.2

and called rollout path planner. This section describes in detail the used base policy,

the localizer, as well as the way the estimates of the action values are computed.

4.3.1 Localizer

We use a grid-based Bayes filter as described in Section 3.1 to compute the belief bt
k

about the target position. This is computationally more demanding than for example

an extended Kalman filter, but allows to capture the non-linearity in the estimation

process better.

An important question is the resolution of the grid. A fixed grid at a low reso-

lution does not allow for an accurate representation of the uncertainty. On the other

hand, a fixed grid with a high resolution leads to a high amount of computational

load. The rollout path planner will update the belief many times by simulated fu-

ture measurements. Therefore, an inefficient implementation would lead to higher

computation and planning times.

A major waste with a high resolution grid is the evaluation of the likelihood of

unlikely target positions. We solve this problem by making the grid resolution and

extension adaptive, and limit the grid on the area of possible target positions, with

increasing resolution as the localization becomes more accurate. The possible target

positions are computed under the assumption that the measurement noise is limited

by 4σ . The possible target positions are then given by the convex hull Ct
k, which is

the convex hull of the intersection of all 4σ cones and the target state space. If the

target state space is convex, the convex hull is identical to the intersection. Under

the assumption of bounded measurement noise, the target must be in this set. This

convex hull is visualized in Figure 4.3.

4.3. Path planning algorithm 96

The extension xb
k ,x

b
k ,y

b
k ,y

b
k of the grid-based Bayes filter is then set to the small-

est rectangle containing the possible target positions. The initial extension is set to

the minimum and maximum coordinates of the target state space with

xb
0 = min

x
{(x,y) ∈ X t} (4.16)

xb
0 = max

x
{(x,y) ∈ X t} (4.17)

and yb
0,y

b
0 analogously. The probability density pki j in cells without intersection

with X t is set to zero and to a uniform value in the remaining cells. The grid

is initially created with 100 cells on the longer axis, and a proportionally smaller

integer number on the other axis, which is chosen to make the grid cells closest to

a square. If due to the resizing step the number of grid cells in the larger dimension

becomes less than 40, the resolution in both dimensions is doubled.

An alternative to using this convex hull would be to test whether a grid cell

is numerically zero and reduce the grid by those columns and rows that are zero

everywhere. There are two motivations of using the approach with the convex hull

instead. First, it clearly states which errors are assumed to happen. Mathematically,

no grid cell would be zero because the normal distribution has positive probability

density for each value. Therefore, the extension of the grid would depend on the

numerical resolution of the computing platform. Second, the convex hull provides

a way to detect whether outliers happened. If the 4σ cones do not intersect, this

indicates that at least one of the measurements has an error higher than 4σ . In this

chapter, outliers do not occur as the simulations focus on the sensor path planning

problem and outliers > 3σ are resampled. However, in the experiments in Chapter 6

the path planning would then be terminated and the last estimate returned.

If an initial belief about the target position is available, the grid is initialized

using this probability density. The point estimate of the target position is based on

the maximum a posteriori estimate. However, when the initial belief is uniform,

4.3. Path planning algorithm 97

Figure 4.3: Extension of the grid-based Bayes filter. The dashed black lines indicate the
±4σ cones of two measurements (gray). Under the assumption that the mea-
surement noise is bounded by 4σ and given the target state space X t (scenario
area, blue), we compute the possible target positions Ct

2 (magenta). The ex-
tension of the grid-based Bayes filter is then reduced the smallest rectangle
covering Ct

2.

the probability density has no clearly identified peak until two measurements are

available. In this case the point estimate is set to

x̃t
k =

x̃t,ev
k if k = 1

x̃t,map
k if k > 1

(4.18)

where the expected value x̃t,ev and maximum a-posteriori estimate x̃t,map are given

by (3.30) and (3.31), respectively. Based on this point estimate, the expected RMSE

µ(x̃t
k,b

t
k) is computed according to (3.58). In addition, the covariance P̃ t

k of this

point estimate is computed by (3.34).

4.3. Path planning algorithm 98

0 10 20 30 40 50
x pos [m]

0

10

20

30

40

50

y
po

s
[m

] σ1σ2

M1

M2

Platform

r

(a)

0 2 4 6 8 10
σ1/σ2

0.0

2.5

5.0

7.5

10.0

r/
σ 2

(b)

Figure 4.4: Base policy for the policy rollout. (a) M1 and M2 are the potential next mea-
surement locations, perpendicular to the major axis of the confidence ellipsoid.
From those two alternatives the one that is closer to the platform is chosen, here
M2. (b) The distance r normalized by the smaller axis σ2 dependent on the ratio
of the standard deviations σ1/σ2 . Note that σ1/σ2 ≥ 1 by definition.

4.3.2 Base policy

The base policy πB represents a heuristic solution for the problem. In our case we

simplify the problem by ignoring movement costs and selecting the sensing action

that leads to approximately the lowest expected RMSE after the next measurement.

For this, we follow the intuition that, if the belief about the target position were

Gaussian, the next measurement location should be perpendicular to the major axis

of the confidence ellipsoid. This idea is similar to the path planner in [Vander Hook

et al., 2014]. The main difference is that in the base policy, the distance is selected

such that the expected RMSE of the updated belief is minimal, while in [Vander

Hook et al., 2014] the distance was selected such that the bearing measurement is

unambiguous with high probability.

Figure 4.4a visualizes this idea. The confidence ellipsoid belongs to the Gaus-

sian approximation (x̃t
k, P̃

t
k) of the belief. The covariance P̃ t

k is computed according

to (3.34). Then the next measurement location is determined by the distance r to

the point estimate x̃t
k of the target position. There are two possible measurement

locations with distance r, which are denoted by M1 and M2 in the figure.

4.3. Path planning algorithm 99

The optimal distance r between the measurement location and the point esti-

mate of the target position is dependent on the ratio between semi-major and semi-

minor axis of the confidence ellipsoid. The distance r should increase if the semi-

major axis σ1 becomes larger in relation to the semi-minor axis σ2, to increase

the probability that the measurement is close to perpendicular to σ1. On the other

hand, a bearing measurement contains less information about the target position if

taken from further away, as the likelihood of the measurement spreads over a larger

region. This can be seen directly by the formula of the Fisher information (3.80).

While the Fisher information increases when r decreases, the optimal distance

is not necessarily zero. This is because the target might not be at exactly the position

of the estimate point anywhere in the uncertainty region. For example, a measure-

ment close to the estimated target position might reduce the uncertainty by a smaller

amount than a measurement further away if the true target position is not at the point

estimate. Figure 4.5 visualizes this possibility. The r chosen by the base policy is

the one which on average over the possible target positions and measurements leads

to the largest reduction in uncertainty.

The optimal distance r was computed offline by setting the semi-minor axis of

a Gaussian shaped belief to σ2 = 1 and varying the semi-major axis. For a given

length of the semi-major axis, the expected RMSE of the updated belief was com-

puted for each distance r, and the distance with the lowest expected RMSE was

selected. The expected RMSE of the updated belief was determined by computing

the updated belief for all possible measurements based on the possible target posi-

tions and the measurement noise. For efficiency reasons the possible measurements

were binned into 1◦ bins. Figure 4.4b shows the resulting optimal distance r nor-

malized by σ2, dependent on the ratio of the axes. Values higher than precomputed

are linearly interpolated from the last values.

4.3. Path planning algorithm 100

(a) (b)

Figure 4.5: Visualization that the best measurement location is not necessarily the one clos-
est to the current estimate. The measurement is shown in red, the heat map rep-
resents the updated belief. (a) An update at 3 m distance leads to an expected
RMSE of 3.69 m. (b) An update at 15 m distance leads to an expected RMSE
of 2.09 m.

At runtime, the base policy computes the length of the axes from the Gaus-

sian approximation (3.34) of the grid-based density. Then, based on their ratio, a

piecewise linear interpolation

r = σ2 ·PLI
[

σ1

σ2

]
(4.19)

of the precomputed values is performed. As can be seen in Figure 4.4a, there are

two possible candidate measurement locations M1 and M2 with range r. The base

policy selects as sensing action the one that is nearer to the platform, which is M2

in the figure.

4.3.3 Policy rollout

The path planner is based on the policy rollout principle, described in Section 2.2.

This class of algorithms approximates future actions with a base policy. The action

value of a is given by the sum of the immediate cost c(xs
k,a) and the expected

value of the future costs vB(bk+1) when following the base policy. We approximate

the expected value by drawing samples of the target state and the measurements

during the rollout. The rollout is executed until the expected RMSE is below the

4.3. Path planning algorithm 101

localization accuracy threshold. This corresponds to the termination criterion of the

stated problem. Therefore, the rollout path planner has a planning horizon of the

full problem length. The sampled action value is

QB(bk,a) = c(xs
k,a)+

1
R

R

∑
j=1
·

Kka j−1

∑
i=k+1

c(Xs
ka ji,π

B(Bka ji)) (4.20)

where R is the number of rollouts per action. It should be noted that for different

rollouts j, the maximal index Kka j can be different.

The random variables in the policy rollout follow the same transitions as the

problem described in Section 4.2.3. The main difference is that instead of a single

random sequence indexed by the decision step k, here multiple random sequences

are simulated to evaluate different futures. The random variables are indexed by

ka ji, corresponding to the i-th future decision step in the j-th rollout for action a

during the planning at decision step k. The index k corresponds to the current de-

cision step, while the index i refers to future decision steps that are simulated in

the rollout. The platform position at decision step k+1 is determined by the eval-

uated action a with Xs
ka j[k+1] = a. Future platform positions are determined by

Xs
ka j[i+1] = πB(Bka ji), similar to (4.15). At decision step k, the begin of the rollout,

the current belief is used to sample the target position for the rollout, with Xt
ka j ∼ bk.

The rollout belief Bka jk = bk is identical to the current belief at the start of the rollout

and updated with simulated measurements afterwards.

With

q̂B(bk,a,Ωk j) =
Kka j−1

∑
i=k+1

c(Xs
ka ji,π

B(Bka ji)) (4.21)

we denote the sampled action value for action a, belief bk, and samples Ωk j. The

computation of function (4.21) is called a rollout and computed by Algorithm 1.

This algorithm receives as input the current sensor position xs
k, the current belief

about the target position bt
k and the action a that should be evaluated. The realization

ωk j = (ωx
k j,ω

y
k j,ω

m
k j) of Ωk j is represented with the x- and y-position of the sampled

target position (ωx
k j,ω

y
k j), and a parameter ωm

k j that describes how the measurements

4.3. Path planning algorithm 102

should be computed. This can be either a random seed for the measurement noise

sequence or a symbol ‘None’, meaning that the measurement noise should be zero.

Algorithm 1 Rollout

1: procedure ROLLOUT(b t ,xs,a,ωx,ωy,ωm)
2: s ← 0 ▷ Sum of cost
3: while µ(b t)≥ µ do
4: s ← s+ c(xs,a)
5: xs ← a
6: if ωm = ‘None’ then
7: wm← 0
8: else
9: wm∼ ωm ▷ Random sequence with seed ωm

10: xs,ys ← xs ▷ Extract vector components
11: z ← ATAN2(ωx− xs,ωy− ys)+wm

12: b t ← UPDATE(b t ,z,xs)
13: a ← πB(b t ,xs)

14: return s

As a shorthand notation we define

q̂B(bk,a,Ωk[1:R]) :=
1
R

R

∑
j=1

q̂B(bk,a,Ωk j) (4.22)

which is an convenient way to express the execution of R rollouts.

The path planner presented in this chapter uses deterministic samples for the

target position and a fixed measurement noise of zero. The motivation to use a

deterministic instead of a Monte Carlo approach is that deterministic samples can

represent the belief in a structured way and therefore allow for more efficient com-

putation of the expected value. A comparison between deterministic samples and

Monte Carlo samples is made in Chapter 5.

The sampling mechanism to determine the target position samples Xt
ka j is

based on the algorithm [Klumpp and Hanebeck, 2008]. This algorithm works by

subdividing the probability density of the target position into areas of equal proba-

bility mass. Therefore, the samples represent the probability density well even with

a small amount of samples. Figure 4.6 shows an example of those deterministic

samples. In each iteration, the algorithm has a given set of samples where each rep-

4.3. Path planning algorithm 103

resents a section of the outcome space. Then each sample is split into two samples

which represent the probability density on this section better. As an effect of this

regular splitting of the probability density, the samples are best distributed if their

number is a power of two.

The future measurements are approximated without noise, which means

Wm
ka ji = 0 . (4.23)

Drawing deterministic samples from the measurement noise would impose a great

computational demand, as the measurement noise is assumed to be independent

and identically distributed. When computing a fixed number of deterministic sam-

ples for each measurement, the combinations would exponentially increase with the

number of future measurements. We therefore assume that the main source of un-

certainty lies in the belief about the target position. The samples Ωk j have therefore

the measurement parameter ωm set to ‘None’, when passed to Algorithm 1. The

option of sampling the measurement noise randomly is used in Chapter 5.

4.3.4 Search for the optimal action

The previous sections described how the sampled action value QB(bk,a) of a spe-

cific action a can be computed. To complete the rollout path planner, we further

need to define the action space and a procedure to find the optimal action.

In principle, one could evaluate all possible next platform positions in the ac-

tion spaceA=X s. However, the sensor state space could be very large, potentially

even unbounded, making an uninformed search for the optimal action difficult. In-

stead, we use additional knowledge about the problem to limit the action space. We

know from (3.80) that the information content of a bearing measurement decreases

as the distance between sensor and target increases. Therefore, we can state the rule

that measurement locations should not be too far from the possible target positions.

We define those measurement locations as

Xm
k =

[
xb

k−δxb
k ,x

b
k +δxb

k

]
×
[
yb

k−δyb
k ,y

b
k +δyb

k

]
⊂ R2 , (4.24)

4.3. Path planning algorithm 104

(a) (b)

(c) (d)

Figure 4.6: Deterministic samples of a normal distribution (Covariance = diag(202, 402)),
discretized to a 100x100 grid. (a) 1 sample, (b) 2 samples, (c) 4 samples, (d),
32 samples.

with

δxb
k = xb

k− xb
k (4.25)

δyb
k = yb

k− yb
k (4.26)

(4.27)

being the width and the height of the belief grid. Effectively this means that Xm is

the extension of the grid-based Bayes filter, tripled in width and height. Figure 4.7

4.3. Path planning algorithm 105

−100 0 100 200 300 400
x pos [m]

−100

0

100

200

300

400

y
po

s
[m

]

xb
k xb

k

yb
k

yb
k

Figure 4.7: Visualization of the action space. The size of the belief area is extended by three
in each dimension leading to Xm, the red coloured rectangle. The intersection
between this rectangle and the state space of the platform (scenario area, blue
rectangle) leads to the action space Ak. The action space is further discretized
into a 20×20 action grid Ak (green).

visualizes this construction. The action space Ak ⊆A at decision step k is then the

intersection

Ak = Xm∩X s (4.28)

between the measurement locations close to the belief and the sensor state space.

Effectively this means that the action space is focused on measurement locations

close to the belief grid that the platform can move to.

The search for the optimal action is performed by discretizing the action space.

The discretization of Ak on an Xa×Y a grid Ak is called the action grid. Then we

replace the search in the continuous action space

ak = argmin
a∈Ak

q̂B(bk,a,ωk[1:R]) (4.29)

4.4. Evaluation 106

by an exhaustive evaluation

ak = argmin
a∈Ak

q̂B(bk,a,ωk[1:R]) . (4.30)

of the action grid, where ωk[1:R] consists of the deterministic samples ωx
k j,ω

y
k j, and

ωm
k j = ‘None’ for 1≤ j ≤ R.

It should be noted that the rollout path planner is constrained to the action

space, but the base policy selects its actions unconstrained in R2, potentially even

outside of the scenario area. This is a valid option for the scenarios used in this

and the following chapter because the scenario area is used here primarily for two

reasons: to limit the area searched for the optimal action and to make the target state

space bounded, allowing for a grid-based Bayes filter as localizer. Even though the

base policy leaves the scenario area, the resulting rollout path planner still performs

well. The rollout path planner will also only select actions inside the scenario area.

4.4 Evaluation
In this section the previously described rollout path planner is evaluated. Based on

two scenarios, the algorithm is compared with two path planners from the literature,

an extension of a path planner from the literature, and the base policy.

4.4.1 Scenarios

Two different scenarios are used for the evaluation. In the first scenario, the target

is positioned at different distances from the initial platform position. We assume

that the scenario area is known to the localizer, otherwise no additional information

is provided. The localizer therefore assumes a uniform initial belief of the target

position. The setup of this scenario is displayed in Figure 4.8a. It consists of a

300m× 300m area. Before the execution of each path planner, a measurement is

taken to initialize the localizer. This means the first execution of the path planner is

performed on the belief b1, with the sensing action a0 = (150,0)T being fixed. The

different possible target positions are on a line at xt = 150m, between yt
0 = 25m and

yt
10 = 275m, spaced in 25 m intervals. The index of the y-coordinates represents an

4.4. Evaluation 107

index of the target position, increasing in distance. The target positions are chosen

to facilitate a qualitative analysis of different distances, but are not an unbiased

sample of the target state space. For example there are more positions in the target

state space with a distance of 150 m to the initial platform position, than with 25 m.

Therefore, the first scenario is not suitable to determine an average perfor-

mance of a path planner, as the considered target positions are not representative

of a uniform distribution over the target state space. Instead, they are intended to

understand the behaviour of the algorithms better. In contrast, the second scenario

is intended to determine the average performance of the path planners when the

belief corresponds to the true uncertainty about the target position. A distribution

about possible target positions is fixed, and multiple Monte Carlo simulations are

performed. In each simulation, the true target position for this simulation run will

be drawn once from this distribution. The distribution is known to the localizer as

initial belief b0.

The setup for Scenario 2 is shown in Figure 4.8b. The distribution of the target

position and initial belief b0 is a bivariate Gaussian distribution with standard devia-

tion in x of 10 m and in y of 40 m, centred around the point x= 150m and y= 150m.

Target positions, which are not in the 3σ confidence ellipsoid of the initial belief,

are discarded and resampled. This was done to adhere to the assumption of [Vander

Hook et al., 2015] that the closest possible target position is on the 3σ confidence

ellipsoid. The first execution of the path planner is performed on the initial belief

b0, without any update from a measurement.

For each scenario, we consider three different measurement durations. We do

not vary the platform speed, as only its relative value to the measurement duration

is important. For example, a parameter set with halved measurement duration and

doubled platform speed would simply lead to a halving of the time until localization.

If one trajectory is better than another in the original parameter set, it would be in

the second parameter set as well.

We choose the value for the longest measurement duration similar to the value

presented in [Cliff et al., 2015] and smaller values for faster rotating platforms.

4.4. Evaluation 108

0 100 200 300
x pos [m]

0

100

200

300

y
po

s
[m

]

0
1
2
3
4
5
6
7
8
9
10

Platform Targets

(a)

0 100 200 300
x pos [m]

0

100

200

300

y
po

s
[m

]

1σ

3σ

(b)

Figure 4.8: Visualization of the scenarios. (a) Scenario 1: The true target positions are
indexed with increasing distance. (b) Scenario 2: The true target position of
each Monte Carlo run is randomly drawn from a bivariate normal distribution.

Table 4.1: Parameters of the scenarios

Configuration Parameter Value Description

Fast tm 2 s Measurement duration
Medium tm 10 s Measurement duration
Slow tm 40 s Measurement duration

All vs 5 m/s Platform speed
σ 4◦ Measurement standard deviation
µ 5 m Localization accuracy threshold

We assume a measurement noise with standard deviation σ = 4◦ and require a lo-

calization accuracy threshold of µ = 5m. The complete parameter set is given in

Table 4.1. In both scenarios the simulations for different path planners or planner

configurations are based on the same initial seeds of the random number generator.

Therefore, the evaluated target positions in Scenario 2 are identical.

4.4.2 Simulation results

We compare the rollout path planner to the base policy, an implementation of the

path planner in [Vander Hook et al., 2015], an entropy-based path planner based on

the expected measurement as in [Cliff et al., 2015], and a stochastic extension of this

entropy path planner, using the same deterministic sampling mechanism as in the

4.4. Evaluation 109

rollout implementation. Our implementation of [Cliff et al., 2015] does not resize

the grid of the updated belief during the planning step. This is because the Shannon

entropy changes with the number of grid cells and the updated beliefs would not be

comparable. A small difference in our implementation to [Cliff et al., 2015] is that

in the original work the expected measurement was based on the expected value of

the target position, while in our implementation the expected measurement is based

on the point estimate of the target position. This point estimate can be either the

maximum a posteriori estimate or the expected value, as described in (4.18).

We denote the path planner in [Vander Hook et al., 2015] by sequential optimal

localization of pseudo targets (SOPT), based on the idea of the path planner in

[Vander Hook et al., 2015]: it assumes a target at the borders of the uncertainty and

performs an optimal localization step for this target. We refer to the path planner in

[Cliff et al., 2015] as entropy-based path planner (ENTPP).

The stochastic extension of ENTPP is called ENTPP-8, where 8 is the number

of samples taken to compute the expected entropy. It selects the next sensing action

as

Ak = argmin
a∈A

E
[
HS(update(bk,Zk+1,a))

]
(4.31)

where Zk+1 is determined by the measurement equation (4.14) with Xs
k+1 = a. The

expected value is evaluated in a deterministic way as above, with Wm
k+1 = 0 and R

different deterministic samples of Xt . The ENTPP method instead uses only one

sample Xt = x̃t
k, based on the point estimate of the localizer.

All path planners use the same implementation of the grid-based Bayes filter

as localizer. The sensing actions for ENTPP are evaluated on an action grid, similar

to the rollout path planner. This action grid uses the same action space Ak (4.28),

but has a higher resolution since the evaluation of an action is less costly. We use a

60× 60 action grid for ENTPP and a 40× 40 grid for ENTPP-8. The rollout path

planner also uses 8 samples, on a 20×20 action grid.

The mean time until localization in Scenario 1, medium configuration, is il-

lustrated in Figure 4.9. Exemplary trajectories are shown in Figure 4.10a. It can

be observed that the required time of SOPT linearly increases if the target is fur-

4.4. Evaluation 110

0 2 4 6 8 10
Target position index

50

100

150

200

Ti
m

e
un

til
lo

ca
liz

at
io

n
[s

] Base policy
ENTPP
ENTPP-8

Rollout
SOPT

Figure 4.9: Comparison of the time until localization in Scenario 1, medium configuration,
averaged over all Monte Carlo runs and shown for each target position index.

ther away. This is a result of its measurement location selection method, which

iteratively optimizes on a close pseudo target, and therefore needs longer to reach

a far-away target. Figure 4.10b shows the first sensing action a0 for each method,

relative to the initial uncertainty. Note that SOPT determines always two measure-

ment locations, which means a1 is already determined as well. The figure shows

that the entropy-based path planners are centring on the uncertainty, which leads

to good results when the target is actually there (target index 6 for ENTPP-8 and

7 for ENTPP). The rollout path planner instead selects a closer measurement loca-

tion, farther away from the uncertainty region, which for most target ranges leads

to a shorter time until localization. Figure 4.11 illustrates the adaption of the roll-

out path planner to the measurement duration, as it requires a smaller number of

measurements in case the measurement duration is higher and vice versa.

If the measurement duration tm is short, SOPT shows strong results, as can be

seen from Figure 4.12 for the fast configuration. Here, the difference for distant

targets between SOPT and the other path planners is less pronounced. For close

targets, it is the most effective method. However, as discussed before, given a uni-

form distribution over the target state space, close targets are less likely than targets

further away. This is the reason, ENTPP, ENTPP-8, the rollout path planner, as

4.4. Evaluation 111

0 50 100 150 200 250 300 350
x pos [m]

0

50

100

150

200

250

300

y
po

s
[m

]

Target
Base policy
ENTPP
ENTPP-8
Rollout
SOPT

(a)

0 50 100 150 200 250 300 350
x pos [m]

0

50

100

150

200

250

300

y
po

s
[m

]

Target
Measurement
3σ
1σ
Base policy
ENTPP
ENTPP-8
Rollout
SOPT

(b)

Figure 4.10: Behaviour of different path planners. (a) Exemplary trajectories to localize
target 5 in Scenario 1, medium configuration. (b) First sensing action for each
planner in Scenario 1, medium configuration to localize target 8. Note that
SOPT always selects two measurement locations as a single sensing action.

4.4. Evaluation 112

0 2 4 6 8 10
Target position index

3.0

3.5

4.0

4.5

5.0

5.5

6.0
N

um
be

ro
fm

ea
su

re
m

en
ts

Base policy
ENTPP
ENTPP-8

Rollout-fast
Rollout-middle
Rollout-slow

SOPT-fast
SOPT-middle
SOPT-slow

Figure 4.11: Comparison of the average required number of measurements, in Scenario
1, medium configuration, averaged over all Monte Carlo runs and shown for
each target position index. The base policy, ENTPP, and ENTPP-8 do not vary
for the different configurations, therefore only a single line is shown. SOPT
would increase approximately linearly until ≈ 16 at target position index 10,
however also without visible difference on the configurations.

well as due to the Gaussian matching also the base policy, focus on the farther away

targets. The order of the other path planners is similar to the medium configuration,

with the rollout path planner still being good for most target ranges.

The results for the slow configuration can be found in Figure 4.13. Here SOPT

shows significantly worse results than the other methods. The relative ordering of

the other path planners stays similar as before, with the rollout path planner being a

well performing algorithm.

Average results for Scenario 2 can be found in Table 4.2. In addition to the

mean time until localization, the 95% confidence interval on the mean is given,

4.4. Evaluation 113

0 2 4 6 8 10
Target position index

20

40

60

80
Ti

m
e

un
til

lo
ca

liz
at

io
n

[s
]

Base policy
ENTPP
ENTPP-8

Rollout
SOPT

Figure 4.12: Comparison of the time until localization in Scenario 1, fast configuration,
averaged over all Monte Carlo runs and shown for each target position index.

0 2 4 6 8 10
Target position index

100

200

300

400

500

600

700

Ti
m

e
un

til
lo

ca
liz

at
io

n
[s

] Base policy
ENTPP
ENTPP-8

Rollout
SOPT

Figure 4.13: Comparison of the time until localization in Scenario 1, slow configuration,
averaged over all Monte Carlo runs and shown for each target position index.

4.4. Evaluation 114

Table 4.2: Mean time until localization in seconds in Scenario 2 with 95% confidence in-
terval.

Fast Medium Slow

Base policy 55.03±0.30 74.31±0.54 146.61±1.45
ENTPP 45.18±0.37 67.25±0.71 149.99±2.04
ENTPP-8 47.11±0.35 67.35±0.63 143.22±1.74
Rollout 38.96±0.36 58.22±0.58 125.50±1.34
SOPT 48.88±0.82 121.14±1.98 392.01±6.36

Base policy ENTPP ENTPP-8 Rollout SOPT
0

50

100

150

200

Ti
m

e
un

til
lo

ca
liz

at
io

n
[s

]

Figure 4.14: Comparison of the time until localization in Scenario 2 for the medium con-
figuration. The width of the plot elements shows the frequency of a fixed time
required until localization. The discontinuities correspond to different num-
bers of measurements.

which is computed assuming a normal distribution of the results. This is only an

approximation, as can be seen in Figure 4.14, which shows that the distribution is

clearly multi-modal. This multi-modality appears due to different discrete numbers

of measurements. Figure 4.14 shows also an outlier in the evaluation of ENTPP-8.

However, removing this value only changes the results in Table 4.2 marginally, by

less than 0.5s for each configuration.

In each configuration, the rollout path planner achieves on average the small-

est time until localization. It can be seen that the stochastic extension of ENTPP is

not necessarily better than the original path planner in every configuration. How-

4.4. Evaluation 115

Table 4.3: Mean number of required measurements for Scenario 2

Fast Medium Slow

Base policy 2.410 2.410 2.410
ENTPP 2.758 2.758 2.758
ENTPP-8 2.529 2.529 2.529
Rollout 2.530 2.308 2.229
SOPT 9.028 9.030 9.029

ever, since ENTPP does not completely capture the underlying problem, there is no

reason why a better approximation of the expected entropy of the updated belief

would lead to an improved performance. While in Scenario 1 ENTPP-8 performed

better than ENTPP for most target distances, this does not seem to generalize for a

scenario with a different target distribution. As SOPT requires on average a higher

number of measurements in comparison to the other path planners (see Table 4.3),

its relative performance strongly depends on the measurement duration. For the fast

configuration it is comparable to the other methods, however, for the slow configu-

ration it needs much more time than the other algorithms.

Figure 4.15 shows the selection of the first sensing action for the fast and slow

configurations. As expected, there is no difference for the base policy, ENTPP, and

ENTPP-8, since they do not consider the measurement time. Interestingly how-

ever, the other path planners also do not vary. SOPT uses the measurement duration

mostly to decide on the number of measurements, then selects the measurement lo-

cations based on the required accuracy. If the measurements already are sufficiently

accurate it only selects a single measurement for both measurement locations, but

does not necessarily change the measurement location. Interestingly, there is also

no difference in the first measurement location for the rollout path planner. How-

ever, in the course of the remaining measurements an adaptation takes place, as can

be seen in Table 4.3. When the measurement duration is longer, the rollout path

planner selects the measurement locations in way that overall less measurements

are required. Also the measurement count for SOPT varies, however by a smaller

amount.

4.4. Evaluation 116

Table 4.4: Mean planner computation time per step in seconds for Scenario 2

Fast Medium Slow

Base policy 0.000 0.000 0.000
SOPT 0.001 0.000 0.000
ENTPP 0.545 0.553 0.548
ENTPP-8 2.097 2.128 2.148
Rollout 2.032 2.117 2.117

Table 4.4 shows for each path planner the average computation time in a single

decision step. It can be seen that the base policy and SOPT require a negligible

amount. The ENTPP algorithm requires less computation time than the rollout al-

gorithm even though it uses a larger 60×60 action grid than the 20×20 action grid

of the rollout. ENTPP-8 requires approximately the same amount of planning time

as the rollout algorithm, while still using a larger 40×40 action grid. Normalized by

the size of the action grid, ENTPP requires 0.15ms per action, ENTPP-8 1.328ms

0 100 200 300
x pos [m]

0

50

100

150

200

250

300

y
po

s
[m

]

Base policy
ENTPP
ENTPP-8
Rollout
SOPT

Figure 4.15: First sensing action per path planner for Scenario 2 with the fast configuration
(circles) and the slow configuration (crosses). Note that in SOPT a single
planner execution returns two measurement locations.

4.4. Evaluation 117

10 20 30 40 50
Action grid resolution

58.0

58.5

59.0

59.5

60.0

60.5

Ti
m

e
un

til
lo

ca
liz

at
io

n
[s

]

0.0

2.5

5.0

7.5

10.0

12.5

C
om

pu
tin

g
tim

e
pe

rs
te

p
[s

]Localization time
Computing time

Figure 4.16: Effect of varying the action grid cell number Xa = Y a in Scenario 2, medium
configuration. For each size of the action grid, 1000 MC runs are per-
formed and the resulting time until localization is averaged. For a size of
Xa = Y a = 20 this matches the value in Table 4.2 with some small differences
due to the MC sampling.

and the rollout algorithm 5.22ms. The next paragraph analyses for the rollout algo-

rithm the trade-off between performance and computation time for different sizes

of the action grid. Different methods to speed up the evaluation of the rollout are

analysed in Chapter 5 and in Chapter 6 a multi-threaded implementation is used to

further reduce the computation time.

Figure 4.16 illustrates the results of varying the action grid resolution of the

rollout path planner. While the extension of the Xa×Y a action grid is kept con-

stant, its resolution is increased by an increase of the cell number Xa = Y a in both

dimensions. It can be observed that with increasing resolution of the action grid

Ak, the required time until localization decreases, until a 35×35 action grid. How-

ever, it increases again with further increase of the resolution. This effect can be

explained by the hypothesis that the approximation of the action value with only

eight deterministic samples captures the true action values sufficiently well, such

that its minimum is a good sensing action and approaching the minimum of the

action value approximation improves the result. However, it is still distinct from

the true action value, which is why finding the real minimum of the approximation

4.5. Conclusion 118

does not lead to a truly optimal decision. In Chapter 5, we will further analyse how

well different methods of computing the expected value relate to the approximative

true minimum of qB. Especially, we will see that by using either more deterministic

samples as in these experiments, or other methods as sequential halving, it becomes

more likely that the chosen action from the same 20×20 action grid is close to the

true best action.

As expected, we see that the computation time increases with a higher action

grid resolution. The computation time is measured as the CPU time on an Intel Core

i7-4770 with 3.40 GHz, using a Java-based implementation. It should be noted that

the computing times are averages. Typically the first sensing actions take longer

to compute than the later actions because the rollout is computed until localization.

The rollout for the first action takes therefore longer to compute than if the target is

localized in the next measurement step.

4.5 Conclusion

This chapter formulates the problem of localizing an RF emitting target using only

bearing measurements with a mobile sensor system that needs to remain stationary

for a period of time to take a measurement. To solve the problem, a path planner

based on the policy rollout principle is created. This rollout path planner is tested in

two different scenarios and shows promising results when compared with existing

path planners from the literature.

Scenario 1 shows that no path planner is clearly better in every situation. It

is possible to find for most path planners a target position where it shows the best

results. For example, SOPT always takes the first measurement close to the initial

platform position and, if the target is near this position, performs well. The entropy-

based path planners always take their first measurement close to the centre of the

uncertainty and, if the target is actually there, they perform well. While the rollout

path planner is not the best for all positions, it is the best on several and performs

well on all target distances.

4.5. Conclusion 119

The results of Scenario 1 indicate that it is useful to analyse the average per-

formance of a path planner. This is done in Scenario 2. Here the belief corresponds

to the true uncertainty in the scenario, therefore a path planner which uses the avail-

able information well, should lead to better results. In this comparison, the rollout

path planner shows a better performance than each of the previously existing path

planners for each configuration.

The results also show a consistent improvement of the rollout path planner to

the base policy. While the base policy by itself does not consider the travel cost,

these are included by the policy improvement step. This creates from the - in many

cases worst performing - base policy the best path planner. This shows that by

planning ahead, the path planner can achieve better results.

In total this chapter makes the following contributions:

1. A novel path planner for the stated problem, based on the policy rollout prin-

ciple and deterministic samples

2. A comparison of this rollout path planner with existing path planners from

the literature

3. An adaptive localizer, which uses a convex hull to focus the computation of a

grid-based Bayes filter

Figure 4.16 shows that the parameters used in this chapter lead to significant

computation times. A simple way to speed up the path planner would be paral-

lelization. In the experiments in Chapter 6, a multi-threaded implementation of the

rollout path planner will be used. But we want to analyse first whether the compu-

tation can be sped up by algorithmic improvements. We can identify a major source

of inefficiency in the search for the optimal action: evaluating each action with the

same amount of samples, even if the first samples might already indicate that it is

inferior, seems like a waste. This begs the question: is there a better way to search

for the optimal action value? We similarly might ask: are the deterministic samples

really the best way to evaluate the expected value?

In the next chapter, we aim to answer these questions. We also analyse how

the amount of computation time spent, measured in the number of rollouts, relates

4.5. Conclusion 120

to the performance for different ways to finding the minimum. This allows us to

find a useful search method and parameters for an experimental evaluation. All this

assumes that finding an action a with smaller cost in QB(b,a) also improves the

actual performance of the resulting rollout path planner. Whether this is the case is

also analysed in the next chapter.

Chapter 5

Efficient Online Policy Rollout

The previous chapter described a path planner based on the policy rollout algorithm.

This path planner shows promising results, and improves on state of the art path

planners from the literature. In this chapter, we further analyse two components of

this planner: the search for the best action and the evaluation of the expected value.

The contents of this chapter have previously been published in [Hoffmann et al.,

2021].

Remember that the rollout path planner from the previous chapter selects the

sensing action ak ∈ Ak ⊆ R2 according to

ak = argmin
a∈Ak

q̂B(bk,a,ωk1:R) , (5.1)

which is the action with the minimum sampled action value. Each action value is

sampled by R rollouts with the deterministic sample paths ωk j, j ∈ {1, ...,R}. This

is an approximative solution to the more complex decision problem

a∗k = argmin
a∈Ak

qB(bk,a) (5.2)

of selecting the optimal action, which minimizes the true action value function qB

over the continuous action space Ak. This chapter explores alternatives to evaluate

each action a ∈ Ak with the same number of rollouts R and sample paths derived

from deterministic samples. Especially, we consider the following questions:

5.1. Comparison with existing work 122

The sampling of the action value. What is the best way to sample the action value

for a given action? This means for a given rollout q̂B(bk,a,ω), how should

the sample path ω be chosen?

The search for the optimal action. How to choose the actions for which rollouts

are performed? How many rollouts should be made for each action? How can

we perform action search in a continuous action space?

Section 5.1 reviews existing solutions to these questions. Section 5.2 discusses

different options to compute the sample paths. These are the already introduced

deterministic samples, plain Monte Carlo (PMC), and common random numbers

(CRNs), a technique for variance reduction. In Section 5.3 we introduce the idea

of an action selection algorithm. This is an algorithm which proposes new actions

a and sample paths ω for which a rollout should be performed. After performing

a fixed number of rollouts, the action selection algorithm commits to the action ak.

These algorithms are evaluated in Section 5.4. We are interested in two perfor-

mance measures. The optimization performance measures how good an algorithm

is in finding the minimum of the true action value function (5.2). The localization

performance measures the effect of the action selection algorithm on the perfor-

mance of the resulting rollout algorithm. This is done by the time until localization

metric, defined in Chapter 4.

5.1 Comparison with existing work
In the literature on policy rollout, the search for the optimal action, i.e. the argmin

in (5.1), is commonly performed by evaluation of each action from a finite set of

actions. The expected value is computed for each action, for example with a fixed

number of Monte Carlo samples. This not only requires a discretization if the action

space is continuous, but also wastes computation time on performing rollouts for

suboptimal actions.

Since it is a generic method, the policy rollout algorithm has been applied to

a variety of problems. Early works consider the problem of playing Backgammon

[Tesauro and Galperin, 1996], combinatorial optimization [Bertsekas et al., 1997]

5.1. Comparison with existing work 123

and stochastic scheduling [Bertsekas and Castañón, 1999]. It has been used in sev-

eral works in sensor management [Chong et al., 2008, 2009; Krakow et al., 2006;

Zahedi et al., 2013; Ragi et al., 2015; Beyme and Leung, 2015; Jun and Jones, 2013;

Charlish and Hoffmann, 2015], in particular for the activation of nodes in a sensor

network [Saksena and Wang, 2008; He and Chong, 2004, 2006; Li et al., 2009]

and sensor to target association [Zhang and Shan, 2015; Schneider and Chong,

2006]. Other problem settings encompass vehicle routing [Ulmer et al., 2019; Seco-

mandi, 2003, 2001; Novoa and Storer, 2009; Goodson et al., 2013], inventory rout-

ing [Bertazzi et al., 2013], revenue management [Bertsimas and Popescu, 2003] and

scheduling [McGovern and Moss, 1999].

The following two sections discuss those works in the literature, which differ

from the simple approach that evaluates each action individually by a fixed amount

of Monte Carlo samples.

5.1.1 Sampling of the action value

A main component of the rollout algorithm is the computation of the expected value

of using action a and afterwards following the base policy, conditioned on the cur-

rent belief.

In some problem domains an analytical solution can be computed [Secomandi,

2003, 2001; Bertazzi et al., 2013; Novoa and Storer, 2009; Goodson et al., 2013],

typically via dynamic programming on the discrete state space. However, in sensor

management, an exact evaluation is only possible in very specific cases [Jun and

Jones, 2013], as the state space is usually continuous.

Often, the expected action value is computed via Monte Carlo sampling, which

is almost exclusively the case in sensor management applications [Saksena and

Wang, 2008; Ragi et al., 2015; Krakow et al., 2006; He and Chong, 2004, 2006;

Li et al., 2009]. Monte Carlo evaluation is compared with exact analytical solutions

in [Novoa and Storer, 2009] and [Goodson et al., 2013], which discusses the trade-

off between solution quality and computation time. In [Novoa and Storer, 2009] no

degradation of the solution is observed at all when using Monte Carlo evaluation

instead of an exact solution.

5.1. Comparison with existing work 124

When selecting between multiple actions, the objective is to select the action

with the lower true action value. Monte Carlo methods to estimate an expected value

always have a variance in their estimate and a higher variance leads to a higher

probability of selecting the worse action. Common random numbers (CRNs) or

common random variables are a technique for variance reduction [Rubinstein and

Kroese, 2016, Ch. 5]. This technique is based on the fact that the exact value of

E
[
QB(bk,a)

]
is not important, but only the question whether

E
[
QB(bk,a1)

]
< E

[
QB(bk,a2)

]
(5.3)

for two actions a1 and a2. By using the same realizations of random variables to es-

timate both expected values, the sampling variances are correlated and the decision

which is the truly smaller action value is more likely correct. In the rollout literature,

this is also known as sampling of the Q-factor differences [Bertsekas, 1997]. Com-

mon random numbers have been used in several works on vehicle routing [Novoa

and Storer, 2009; Goodson et al., 2013], however, have not been explicitly reported

in the sensor management literature in the context of policy rollout. The works in

[He and Chong, 2004, 2006; Krakow et al., 2006; Li et al., 2009] can be considered

as using a form of CRNs, as they initialize the target state in the Monte Carlo roll-

outs using particles from a particle filter. Because each action is evaluated using the

same particle set, the initial target state samples are the same for each action.

A different method is the computation of the expected action value with a set

of representative fixed values for the random variables, also called scenarios [Bert-

sekas and Castañón, 1999]. One example for this approach is the work reported in

[Zhang and Shan, 2015]. Here samples of the belief and the future measurements

are deterministically created using a method similar to the unscented transform. The

expected value is then computed using those samples. However, this only works for

Gaussian probability densities. As a special case of deterministic samples, the ex-

pected values of the random variables can be used, for example in [Charlish and

Hoffmann, 2015].

5.1. Comparison with existing work 125

In Chapter 4, a generic method that suboptimally discretizes arbitrary probabil-

ity densities [Klumpp and Hanebeck, 2008] was used to create a set of representa-

tive samples. In this chapter, we compare the effectiveness of independent samples,

common random numbers and deterministic samples. While independent samples

are often used, common random numbers are non-standard in sensor management,

and the evaluation with deterministic samples is only used in a small number of

works.

5.1.2 Search for the optimal action

Next to the computation of the expected value, another main component in evalu-

ating (5.1) is the procedure to compute the argmin, which means to search for the

action with minimum cost. In the vast majority of the literature, this is performed by

evaluating every action in a finite action space. If the action values are determined

via Monte Carlo sampling, an equal number of samples is commonly used for each

action. For example [Saksena and Wang, 2008; McGovern and Moss, 1999; Ragi

et al., 2015; Krakow et al., 2006; He and Chong, 2004, 2006; Li et al., 2009; Novoa

and Storer, 2009; Goodson et al., 2013] all use Monte Carlo sampling with the same

number of samples per action.

If the action space contains a large number of actions, evaluating each action

might not be feasible. An option to speed up the search is to prune this space prior

to the evaluation, which is done in [Zahedi et al., 2013; Schneider and Chong, 2006]

and is also used in the previous chapter by limiting Ak to sensing actions close to

the belief grid.

If it is possible to evaluate each action and sampling is used to estimate the

action values, the search can be improved by non-uniformly allocating the total

number of samples between the different possible actions. The idea is that it is

more important to estimate the value of actions that are candidates of being the

optimal action, instead of improving the estimate of clearly inferior actions. As this

uses the results of previous action evaluations to improve the allocation of future

samples, it can be described as adaptive action evaluation. Tesauro proposed to stop

evaluation of an action once it becomes unlikely that it is the optimal one [Tesauro

5.1. Comparison with existing work 126

and Galperin, 1996]. Optimization of the sample allocation has been performed by

[Sun et al., 2008], using the optimal computing budget allocation (OCBA) [Chen

and Lee, 2011] algorithm. The OCBA algorithm has a similar setting as the best

arm selection problem in multi-armed bandits. It computes the sample mean and

standard deviation for different actions using a fixed number of samples in a first

phase and then uses those statistics to determine how often each action should be

sampled in a second phase.

A method related to the online policy rollout method is classification-based

policy iteration, which uses policy rollouts offline during training of a policy [Gabil-

lon and Lazaric, 2010]. The algorithm performs rollouts for each state in a set of

states, thereby deciding on an action for each state. This results in a dataset with

tuples consisting of a state and an action from a finite action set. The policy im-

provement step of policy iteration is then performed by training a classificator on

this dataset, thereby learning a mapping from state to action. This mapping is the

policy in the next iteration. In [Gabillon and Lazaric, 2010], a multiple multi-armed

bandit method is used to determine how often a rollout is performed for each state

and each action.

Another method, related to the policy rollout method is Monte Carlo tree

search (MCTS) [Browne et al., 2012]. MCTS iteratively builds a search tree, focus-

ing on those nodes which are expected to have the highest values. The estimation of

the value of a node is performed by rollouts of either an existing or a random pol-

icy. The decision which node should be expanded next is modelled as a multi-armed

bandit problem, using an adaption of the upper confidence bounds (UCB) algorithm

for trees (UCT) [Kocsis and Szepesvari, 2006]. MCTS is mostly applied to discrete

state spaces and actions, however, bandit algorithms for continuous action spaces

[Bubeck et al., 2011] have been used to perform continuous action selection with

a discrete state space [Mansley et al., 2011]. In MCTS the multi-armed bandit for-

mulation is based on the classical formulation, which describes a trade-off between

exploration and exploitation. This is because during creation of the search tree, it

is both important to expand the subtree of good child nodes as well as to explore

5.2. Sampling methods 127

the subtrees of not yet well explored but worse child nodes. In comparison, for a

use with the policy rollout algorithm, the best arm selection problem discussed in

Section 2.1 is more useful.

5.1.3 Contributions of this chapter

While some publications using policy rollout describe optimized action selection

algorithms, they are in the minority. A comparison of different action selection

algorithms and sampling methods also was not yet performed in the literature and

none of the policy rollout works considered a continuous action space. This has

only been found in related algorithms like MCTS.

This chapter follows the idea of considering the policy rollout action selection

step as a function minimization problem, discussed in Section 2.1. This allows us

to use established methods to solve such a problem in the policy rollout context, for

the continuous and discrete case. While the algorithms are not novel by themselves,

with the exception of uniform allocation, their use as action selection algorithm in

the policy rollout is novel. Different methods are compared and their performance

on the problem is analysed.

5.2 Sampling methods
The result of a rollout j for action a at decision step k is determined by the random

variables

Ωka j = (Xt
ka j,W

m
ka j[k+1],W

m
ka j[k+2], ...,W

m
ka jK) (5.4)

whose realization

ωka j =
(

xt
ka j,w

m
ka j[k+1],w

m
ka j[k+2], ...,w

m
ka jK

)
. (5.5)

is called a sample path. For the creation of these sample paths, we compare three

different approaches, plain Monte Carlo, common random numbers, and the deter-

ministic sampling approach.

In the actual implementation, the sample path ωka j is represented as a

tuple (ωx
ka j,ω

y
ka j,ω

m
ka j), where (ωx

ka j,ω
y
ka j) is the sampled target position and

5.2. Sampling methods 128

ωm
ka j ∈ Z∪{None} a seed for the measurement noise pseudorandom number gen-

erator or an indication that the measurement noise should be zero.

5.2.1 Plain Monte Carlo

In the plain Monte Carlo (PMC) sampling method each sample path is independent.

This means that Ωka j and Ωka′ j′ are independent when either a ̸= a′ or j ̸= j′ for

actions a,a′ and rollouts j, j′. In the implementation this means that the sampled

target position ωx
ka j,ω

y
ka j and seed ωm

ka j is different for each rollout.

5.2.2 Common random numbers

Common random numbers (CRNs) [Rubinstein and Kroese, 2016, Ch. 5] can be

used to compare alternatives. With this method, the rollouts for different actions

are performed using the same sample paths. This induces a correlation between

the rollouts, which reduces the variance of the relative error in the action value

estimates. Note that the absolute error is not reduced, however, only the relative

error is important to make the right decision.

In this thesis CRNs are implemented, such that if R rollouts are executed for

two different actions a and a′, we have

Ωka j = Ωka′ j (5.6)

for the same j-th rollout, j ∈ {1, ...,R}. This means that the target position

Xt
ka j = Xt

ka′ j (5.7)

and measurement noise

Wm
ka ji = Wm

ka′ ji (5.8)

are the same for the j-th rollout, different actions a and a′ and future measurement

step i. In the implementation this means that the sampled target position ωx,ωy and

seed ωm are the same for those rollouts. Note that Xt
ka j and Wm

ka ji are still randomly

sampled, but only once for each rollout number j and measurement step i. We refer

to both CRNs and PMC as Monte Carlo approaches.

5.3. Action selection algorithms 129

5.2.3 Deterministic samples

We use the same deterministic sampling algorithm from [Klumpp and Hanebeck,

2008], previously described in Section 4.3 to sample from the target state. The

algorithm choses the samples, such that they provide a good representation of the

belief for the given number of R samples. This implies that the number of samples

R must be known when the samples are computed and that the realizations ωk[1:R]

of the random variables Ωk[1:R] are computed in a single execution of the algorithm.

Especially, this means that they are not computed iteratively and computing R− 1

sample paths ωk[1:R−1] and one additional sample path ωkR is a worse representation

of the uncertainty than computing directly R sample paths. Section 4.3 describes

that the weights of the deterministic samples are only uniform if R is a power of

two. Therefore, the evaluation below only uses powers of two.

As in Chapter 4, the measurements are approximated without zero measure-

ment noise

Wm
ka ji = 0 . (5.9)

Because the sample path realizations are deterministic, they are the same when

the same number of rollouts R for different actions are performed in the same be-

lief. Similar to CRN this introduces a correlation between the rollouts for different

actions.

In the implementation of the policy rollout with deterministic samples, the

target position ωx,ωy is determined by the algorithm [Klumpp and Hanebeck, 2008]

and ωm = ‘None’ indicates that no measurement noise should be sampled.

5.3 Action selection algorithms
To determine the optimal action a∗, the action that minimizes the true action value

function qB for a given belief b needs to be found. However, it is not feasible to

directly evaluate qB but only indirectly by sampling individual rollouts q̂B. This

chapter formulates adaptive action evaluation in a policy rollout algorithm as the

interaction between an action selection algorithm and the actual policy rollout com-

ponent.

5.3. Action selection algorithms 130

Based on the current belief, the action selection algorithm determines the ac-

tion a that should be evaluated and the sample path ω that should be used. The

policy rollout component computes the corresponding action value q̂B(bk,a,ω), us-

ing Algorithm 1. The rollout result q̂B(bk,a,ω) is a deterministic function of the

parameters and its value is returned to the action selection algorithm. Each call of

this function is equivalent to a single rollout. The action selection algorithm then

uses this rollout result and all previous rollout results to compute a new action a′

and sample path ω ′ which should be evaluated next. This is repeated until the action

selection algorithm decides on an action ak which should be executed by the rollout

path planner. The procedure is visualized in Figure 5.1. The concept of an action

selection algorithm serves as a common interface to apply the stochastic function

minimization algorithms discussed in Section 2.1 to a policy rollout algorithm.

action
selection
algorithm

rollout
bk,a,ω

q̂B(bk,a,ω)

ak

bk

Figure 5.1: Visualization of an action selection algorithm.

The sample path can be created by the different sampling methods described

in the previous sections: plain Monte Carlo samples, common random numbers, or

deterministic samples. If an action selection algorithm supports multiple sampling

methods, we refer to them as variants of this algorithm.

To compare the action selection algorithms, it is useful to consider their per-

formance based on the total amount of rollouts they require. We define the com-

putational budget N as an upper limit on the calls of the function q̂B. The number

of times this function is called for a given action selection algorithm is called total

number of rollouts. Therefore, for a given computational budget we want to select

the best performing action selection algorithm whose total number of rollouts are

5.3. Action selection algorithms 131

less than the computational budget. In this thesis we assume a constant computa-

tional budget for each decision step k.

The combination of sampling method, computational budget, and additional

algorithm-specific parameters is called the configuration of an action selection al-

gorithm.

5.3.1 Uniform allocation

The simplest action selection algorithm is to perform a fixed number of rollouts for

each action in a finite action space. We use the same discretized action space Ak as

in Section 4.3 and set the number of rollouts per action to

Rk =

⌊
N
|Ak|

⌋
(5.10)

for each action a. Then the action

Ak = argmin
a∈Ak

q̂B(bk,a,Ωka[1:Rk]) (5.11)

is selected by performing Rk rollouts for each action. Because of the sampling, the

result is a random variable Ak and not a deterministic action ak. The realizations

of Ωka j are determined either by plain Monte Carlo, common random numbers or

deterministic samples. Note, that this is also the algorithm used in the previous

chapter.

5.3.2 Multi-armed bandits

Section 2.1 discussed the best arm selection problem in multi-armed bandits. This

problem consists of selecting the action with the lowest true cost from a finite set of

alternatives, where only samples of the true cost of each alternative are known.

There is a clear connection between the best arm selection problem and the

problem of action selection in a sampling-based policy rollout algorithm. In both

cases, there are multiple candidate actions, and the value of each action is only

available by repeatedly performing a rollout or repeatedly pulling an arm. Each

additional rollout improves the estimate of the true action value. Different to the

5.3. Action selection algorithms 132

classical bandit formulation, in the best arm selection problem and in the policy

rollout case it is not important how much cost or reward is gained during the evalu-

ation of the actions. Only the cost of the selected action is important.

Contrary to uniform allocation, such an algorithm evaluates different actions

with a different number of rollouts. Similar to uniform allocation, the algorithm

requires a finite action space, for which we use the same discretization Ak.

The best arm selection algorithm used in this thesis is called sequential halving

and was already described in Section 2.1. We use an implementation with plain

Monte Carlo sampling, as well as one with common random numbers in the rollouts.

In each iteration l of the sequential halving algorithm, each remaining action is

evaluated with the same number of rollouts Rkl . For the variant with CRN, therefore,

Rkl random variables Ωka jl , j ∈ {1, . . . ,Rkl} need to be sampled, with

Ωka jl = Ωka′ jl (5.12)

for actions a,a′.

Using the deterministic sampling method with sequential halving is not rea-

sonable, because it is not possible to increase the number of samples adaptively.

Assume that

SR = {(ωx
1 ,ω

y
1), ...,(ω

x
R,ω

y
R)} (5.13)

is a set containing R samples representing possible target positions of a belief. In-

creasing the sample size to R̂ with R̂ > R leads to a different set of target position

samples

SR̂ = {(ω̂x
1 , ω̂

y
1), ...,(ω̂

x
R̂, ω̂

y
R̂
)} . (5.14)

However, it is always the case that SR ⊈SR̂, because the algorithm works by splitting

the existing samples (ωx
j ,ω

y
j). Figure 4.6 in the previous chapter shows the same

density approximated with 1,2,4, and 32 samples. It can be seen that the samples

of one approximation are not contained in the approximation with a higher number

of samples. In addition, while SR is a good approximation of the density with R

5.3. Action selection algorithms 133

samples and SR̂ a good approximation with R̂ samples, SR∪SR̂ is not necessarily a

good approximation for R+ R̂ samples.

The sequential halving algorithm has the requirement that it is possible to de-

cide on the number of samples adaptively. Let R be the number of rollouts per action

in the first iteration and R̂−R in the second iteration. Due to the argument above, it

is not possible to simply create R̂−R additional samples, as the distribution would

be different and suboptimal to directly having created R̂ samples. The advantage of

the deterministic sampling approach, to cover the density as efficiently as possible

with the given number of samples, would be lost if not all samples are created in the

same step. In comparison, each additional Monte Carlo sample is independent from

the previous ones and it is simple to increase the number of samples adaptively.

5.3.3 Quadrant search

Quadrant search is the method of restricting the search iteratively to the most

promising quadrant and has been used for sensor path planning before [Hernandez,

2004]. In this section the algorithm is applied to the policy rollout case.

At the start of the algorithm, the action values on a 3×3 grid are sampled by

performing R rollouts each, effectively dividing the action space into four quadrants.

Then for each quadrant, the mean of the sampled action values at its four corners is

computed. Based on these values, the search focuses on the quadrant with the lowest

mean action value. In this quadrant, the action values of additional five actions are

sampled, in the centre and the middle of each border. Therefore, this quadrant now

contains a smaller 3×3 grid. Then a quadrant from this smaller 3×3 grid is chosen.

This subdivision is repeated for a fixed number of L iterations, leading to a used

computational budget of

N = R · (9+L ·5) (5.15)

rollouts.

5.3. Action selection algorithms 134

Figure 5.2 visualizes this process. In the first iteration, rollouts are made for

the actions A− I. Then the quadrant averages are compared and it is determined

that the average action value

1
4 ∑

a∈{B,C,E,F}
q̂B(bk,a,Ωka[1:R]) (5.16)

of the upper right quadrant is less than the corresponding averages for the other

quadrants. Therefore, in the second iteration the action values at J,K,L,M,N are

sampled. The next iteration would select a quadrant of (B,C,E,F), for example

(L,M,N,F), and repeat the subdivision.

We implemented this method in a variant with common random numbers, as

well as a variant based on deterministic samples. In both cases Ωka[1:R] is not only

the same for each action a, but also in each iteration of quadrant search. With

the example of Figure 5.2 this means that all actions a ∈ {A, ...,N} are evaluated

with the same sample paths. This is required to use CRN or deterministic samples,

because the action values of different iterations are compared with each other. For

example, the sub-quadrant BJKL is compared with KLEN, where B and E are from

the first iteration, and the remaining points from the second iteration. In comparison,

an implementation with plain Monte Carlo samples would use a different sample

path for each action.

In the scenarios evaluated in this chapter, the scenario area is rectangular.

Therefore, the action space Ak constructed by (4.28) is rectangular as well. The

initial area on which the 3×3 grid is placed is based on the extension of Ak and

therefore has the same limits as the action grid of the uniform allocation and se-

quential halving approaches.

5.3.4 Gradient-based algorithms

Gradient-based algorithms are commonly used in function minimization problems,

as discussed in Section 2.1. We apply two gradient-based methods to the problem:

stochastic gradient descent and the BFGS algorithm. Similar to the base policy in

5.3. Action selection algorithms 135

0 100 200 300
x pos [m]

0

50

100

150

200

250

300

y
po

s
[m

]

A B C

D E F

G H I

J

K L M

N

Figure 5.2: Visualization of the quadrant search method.

Section 4.4, we use an unconstrained sensor state space with X s =R2 for those two

algorithms, because they solve an unconstrained optimization problem.

Gradient-based algorithms work well if the function does not have too many

local minima and saddle points. Figure 5.3 shows a close approximation of the

true action value function qB for two different beliefs, computed using a sufficient

number of samples (see Section 5.4.1). The function appears sufficiently smooth

under a visual inspection, and typically has two local minima.

Stochastic gradient descent improves an initial action selection ak1 using sam-

ples Gkl of the gradient in the following iteration

Ak[l+1] = Akl−ηlGkl(bk,Akl) (5.17)

where ηl is the step size and l the iteration. The initial action Ak1 = ak1 is deter-

mined by the base policy πB. As the base policy is a heuristic for the problem, this

is a reasonable initialization for the iteration.

5.3. Action selection algorithms 136

(a) Belief 0

(b) Belief 16

Figure 5.3: Estimation of the true action value qπ using a sufficiently high number of roll-
outs. The heat map shows the belief, while the contours represent the action
values. The 2σ confidence ellipsoid for the Gaussian approximation (x̃t , P̃t) of
the belief is shown in green.

5.3. Action selection algorithms 137

There is no straightforward way to compute the gradient of the policy rollout

analytically, therefore it is approximated by finite differences. The gradient Gkl at

position Akl is computed by

Gkl =
1

2aFD ·

q̂B(bk,Akl +aFDe0,Ωkl[1:R])− q̂B(bk,Akl−aFDe0,Ωkl[1:R])

q̂B(bk,Akl +aFDe1,Ωkl[1:R])− q̂B(bk,Akl−aFDe1,Ωkl[1:R])

 ,

(5.18)

where e0 = (1,0)T and e1 = (0,1)T are the unit vectors for the x and y dimension,

and aFD is the size for the finite differences in each direction. The action values for

an iteration l are sampled with common random numbers, but different iterations

of the algorithm use different sample paths. The finite difference step aFD = 20 is

rather large because, although qB appears to be rather smooth, this does not nec-

essarily need to be the case for q̂B, averaged over only a small number of rollouts.

To make sure discontinuities in q̂B do not lead to an estimate of the gradient too

different than the true value, it is averaged over a larger area.

The step size schedule consists of an exponential decay, with

ηl = 20 · exp
(
−4

l−1
L−1

)
. (5.19)

With L iterations l ∈ {1, . . .L}, the above step size schedule interpolates between

η1 = 20 and ηL = 20 · exp(−4)≈ 0.366.

When deterministic samples ωk[1:R] are used, the function

a 7→ q̂B(bk,a,ωk[1:R]) (5.20)

is a deterministic function, motivating the use of standard optimization methods.

We use BFGS, which is an effective quasi-Newton method and was previously de-

scribed in Section 2.1. For BFGS the same initialization, finite difference method

and finite difference size was used, and the gradient was computed as in (5.18). The

only difference is that the sample paths ωk[1:R] are based on deterministic samples

and are the same for each BFGS iteration. The algorithm is terminated once a pre-

defined limit ⌊N/R⌋ of calls to the function (5.20) is reached, including those to

5.4. Evaluation 138

estimate the gradient. The total number of rollouts then consists of this limit mul-

tiplied by the rollouts per action R. We use the implementation from JSAT [Raff,

2017], version 0.0.9, for the BFGS algorithm.

5.4 Evaluation
In this section two metrics are used for evaluating the different action selection al-

gorithms. The optimization performance considers how much worse the true action

value of the selected action is compared to the true action value of the optimal ac-

tion. For this, an approximation of the true action value function is computed, using

a high number of samples. The localization performance instead quantifies the ef-

fectiveness of the resulting rollout path planner for emitter localization, using the

time until localization metric.

5.4.1 The true action value function

We evaluate the different action selection algorithms based on how well they can

find the minimum of the true action value function qB. As this function is not

known, a close approximation of it was computed for a fixed set of beliefs B. Then

the minimization methods were tested on this set of beliefs.

To create the belief set B, Scenario 2 (see Figure 4.8b) was simulated 20 times

with the rollout path planner from Chapter 4 and the parameters from Table 4.1.

Each Monte Carlo run m,1≤m≤ 20, led to a sequence of beliefs bm0,bm1, ...,bmKm ,

where bm0 is the initial belief and the target is localized in belief bmKm . The initial

belief bm0 is the same for every m and therefore only included once. The final beliefs

bmKm are also omitted, because no further action is necessary here. This leads to the

belief set

B= {b10}∪{bmk | 1≤ k < Km,1≤ m≤ 20} . (5.21)

In total the belief set B contains 25 distinct beliefs.

For an approximation of the true action value function qB, the action space

was discretized on the whole scenario area with a 150×150 action grid, i.e. with

2 m distance between the actions. For each action a and belief b ∈ B the action

5.4. Evaluation 139

Table 5.1: Action selection algorithms with different sampling methods

PMC CRNs Det.

Uniform allocation
⊕ ⊕ ⊕

Sequential halving
⊕ ⊕

Quadrant search +
⊕ ⊕

Stochastic gradient descent +
⊕

BFGS +
⊕

Possible variant +
Evaluated variant

⊕

value was sampled using sufficiently many plain Monte Carlo samples such that the

standard error of the mean

SEM(b,a) =
Std({ q̂B(b,a,Ωba j) }1≤ j≤Rba)√

Rba
(5.22)

was below 0.1. Here Std computes the standard deviation of all sampled action

values q̂B(b,a,Ωba j) for action a. The total number of rollouts is denoted by Rba

and was around 2000− 20000 samples, depending on the action and belief. The

resulting action values can be seen in Figure 5.3 for two exemplary beliefs. While

it is technically only an approximation, it is sufficiently accurate that we refer to the

results as the true action value function qB.

With a∗b we denote the action on the 150×150 action grid that minimizes qB

for belief b. Again this is only an approximation, but under a visual inspection of

the function qB(b,a) on the 150×150 action grid, it is not expected that the true

optimum is significantly different.

It can be seen that the function qB has typically two minima, which are approx-

imately symmetric to the major axis of the Gaussian approximation (x̃t , P̃ t) of the

belief. This is similar to the points M1 and M2 in the base policy (see Figure 4.4a).

However, the optimal action a∗k is sometimes closer to the point estimate x̃t of the

target than the action chosen by the base policy. In addition, the optimal action is

not always placed on a direct extension of the minor axis.

5.4. Evaluation 140

The rollout path planner was executed on each belief with the action selection

algorithm variants shown in Table 5.1. Variants with deterministic samples were

executed once, those with plain Monte Carlo or CRN 100 times. The index of the

Monte Carlo run is m and the chosen action in this run on belief b is abm. The action

values qB of each belief b were evaluated on a 150×150 grid, but the chosen action

abm is not necessarily on one of the grid points. Instead, the action is typically inside

a grid cell. The approximately true action value qB(b,abm) is computed by bilinear

interpolation of the action values at the corners of the cell.

For each action selection algorithm of the rollout path planner, the mean dis-

tance to optimum is defined as

do =
1
|B|M ∑

b∈B

M

∑
m=1

qB(b,abm)−qB(b,a∗b) (5.23)

which is the difference between the value of the chosen action and the one of the

optimal action, averaged over multiple Monte Carlo runs and different beliefs. Here

M is the number of Monte Carlo runs for the method, which was either 1 or 100.

Note that a∗b does not necessarily need to be unique, but the minimal action value

qB(b,a∗b) is unique. The mean distance to optimum is a metric for the optimization

performance of an action selection algorithm, which quantifies how well it can find

the minimum of qB.

5.4.2 Optimization performance

For improved clarity, the presentation of the results is separated into three sec-

tions, where the first discusses uniform allocation and sequential halving, the second

quadrant search, and the third the gradient-based methods. The action selection al-

gorithms are split up in this way as the first two consider each action independently

and therefore, are also feasible for arbitrary action spaces. The second and third set

of algorithms assume that the action value function is continuous, which means that

performing a rollout for an action also gives information about nearby actions.

The results are presented as the mean distance to optimum do, defined in (5.23),

achieved for a total number of rollouts. Each data point for an action selection

5.4. Evaluation 141

102 103 104

Number of rollouts

0

1

2

3

4

5

6

7

M
ea

n
d

is
ta

n
ce

to
op

ti
m

u
m

[s
]

Method

Uniform (PMC)

Uniform (CRN)

Uniform (Det.)

Seq. Halving (PMC)

Seq. Halving (CRN)

Gridsize 20x20 10x10

Figure 5.4: Optimization performance of uniform allocation and sequential halving.

algorithm corresponds to a single configuration, consisting of the sampling method,

computational budget, and other algorithm-specific parameters. A configuration is

considered Pareto optimal, if no other configuration achieves a better optimization

performance with a less or equal number of rollouts.

Uniform allocation and sequential halving

Figure 5.4 shows the results of uniform allocation and sequential halving. Note that

in this and all similar plots the x-axis is logarithmic. Uniform allocation uses a

10×10 and 20×20 action grid, and the number of rollouts per action is varied over

powers of two. This means the first data point of each line corresponds to a single

rollout per action and a total number of either 100 (= 10 ·10 ·1) or 400 (= 20 ·20 ·1)
rollouts. The following data points correspond to 2,4,8, . . . rollouts per action.

Sequential halving is evaluated on the same action grids with computational

budgets N chosen as multiples of 100 · ⌈log2 (100)⌉ = 700 for the 10×10 grid and

as multiples of 400 · ⌈log2 (400)⌉= 3600 for the 20×20 grid. The exact numbers are

5.4. Evaluation 142

given in Table 5.2. As indicated in the table and described in Section 2.1, sequential

halving uses a slightly lower number of rollouts than the computational budget.

Table 5.2: Computational budget for sequential halving.

Grid Computational budget Used number of rollouts

10×10 700 689
1400 1391
2100 2093

20×20 3600 3589
7200 7191

10800 10793

For uniform allocation, it can be seen that using common random numbers is

strictly better than plain Monte Carlo samples. It can also be seen that the vari-

ant with deterministic samples achieves better results than using common random

numbers. However, while the Monte Carlo sampling methods improve monoton-

ically for increasing number of rollouts, the same is not true for the deterministic

samples. Although with a higher number of rollouts the performance tends to im-

prove, sometimes deterministic samples lead to a worse result for a higher number

of rollouts. This is likely because the deterministic samples are a suboptimal ap-

proximation method for the belief about the target position. It should be noted that

because the samples are deterministic, the chosen action is also deterministic and

therefore this variant does not have the averaging of multiple Monte Carlo runs that

is present with PMC and CRNs.

It can also be seen that for a small computational budget N, it is better to have

a smaller action space with more rollouts per action than a larger action space with

potentially better actions but where the number of rollouts per action is smaller.

However, for a higher computational budget the larger action space shows better

results.

For the considered parameters, sequential halving shows consistently better

results than uniform allocation because it can focus on the most promising actions.

Each evaluated configuration with CRNs is Pareto optimal. Uniform allocation

5.4. Evaluation 143

with 64 deterministic samples on the 20×20 grid shows approximately the same

optimization performance as sequential halving with CRNs and a budget of 10800.

However, it requires more than twice the number of rollouts (25600 vs 10793). A

disadvantage of sequential halving is that it requires a higher minimal computational

budget (see Section 2.1.3) than uniform allocation.

These action selection algorithms are fundamentally limited, in that they will

not be able to select an action not in their discretized action space. The optimal

action a∗b is computed over an action grid with a very high resolution (see Section

5.4.1) and does not necessarily have to be on the 10×10 or 20×20 action grid.

Therefore, these algorithms likely would not reach a zero distance to optimum in

Figure 5.4, even with a high amount of rollouts.

Finally, the base policy itself would score 2.98s on this plot, which is better

than some configurations. This shows that the rollout improvement property cannot

be achieved if the action selection algorithm does not perform well.

Quadrant search

Figure 5.5 shows the results of quadrant search. For a given number of iterations,

we vary the number of rollouts per action, again being powers of two. For example,

the first data point with a single rollout per action and three iterations corresponds

to a total of 9+3 ·5 = 24 rollouts.

For an arbitrary action value function, this action selection algorithm is at the

risk of focusing on the wrong quadrant because in general the optimal action is

not guaranteed to be in the quadrant whose corners have on average the best action

values. Since the algorithm makes a hard decision on the quadrant, it would not be

able to recover from such a choice. Therefore, even with knowledge about the true

action values at the corners, the algorithm would not necessarily select the optimal

action. However, this does not seem to happen in this application and the action

selection algorithm achieves a good performance for a small computational budget.

Similar to the case of uniform allocation, the variant with deterministic samples

is better than the one with common random numbers.

5.4. Evaluation 144

102 103

Number of rollouts

0

1

2

3

4

5

6

M
ea

n
di

st
an

ce
to

op
tim

um
[s

]

Sampling
Deterministic
CRN

Iterations
3
6

Figure 5.5: Optimization performance of quadrant search.

Gradient-based algorithms

Figure 5.6 shows the results of stochastic gradient descent (SGD) and BFGS. For

SGD the number of iterations L ∈ {5,10,25,50,100,150,200} is varied, with a

fixed number of R rollouts per action to estimate the gradient. As an example, SGD

with one rollout per action and 25 iterations would require a total number of 100

rollouts, as it uses two two-sided finite differences. For BFGS the number of calls to

(5.20) is varied in {50,100,200,400,800} and each function call corresponds to R

rollouts. SGD only uses R ∈ {1,4,8} which already shows good results, for BFGS

in addition also R = 16 was tested.

Stochastic gradient descent shows very good results, being Pareto optimal to

BFGS, in all but two configurations. It also shows a monotonic improvement of the

optimization performance with an increasing number of iterations. For a high com-

putational budget, it achieves a lower distance to optimum as the previous methods.

Interestingly, BFGS shows almost no improvement with a higher computa-

tional budget. A likely explanation is that the estimates of the action values with

deterministic samples (5.20) are not as smooth as the true action value function qB.

An example of the sampled action values of the initial belief with two deterministic

samples can be seen in Figure 5.7. One should note that the same holds true for

5.4. Evaluation 145

102 103 104

Number of rollouts

0

1

2

3

4

M
ea

n
di

st
an

ce
to

op
tim

um
[s

]

Method
SGD
BFGS

Rollouts per action
1
4
8
16

Figure 5.6: Optimization performance of the gradient based methods.

sampling the action value with a small number of PMC or CRN samples. However,

stochastic gradient descent uses in each iteration a different sample path, therefore

approximating gradient descent on the true action value function.

Comparison

The number of rollouts the path planner can perform in practice will be limited by

the computational power of the platform. Therefore, when we use the rollout path

planner in a real sensor system, we will likely have a computational budget limiting

the total number rollouts and we want to select the action selection algorithm and

its configuration, such that the performance is the best possible. Figure 5.8 shows

a subset of the results in a single figure for direct comparison. This figure gives

the optimization performance achieved with a given number of rollouts and lets us

compare the configurations with a common scale. With the exception of one quad-

rant search configuration, stochastic gradient descent is almost everywhere Pareto

optimal to the other action selection algorithms. In addition, all algorithms that

do not use the deterministic samples show a monotonous improvement and lead to

better results when the number of rollouts is increased.

5.4. Evaluation 146

(a)

(b)

Figure 5.7: Action value approximation with deterministic samples. This figure shows (a)
the approximately true action values qB(b0,a) of the initial belief and (b) the
approximation q̂B(b0,a,ωk[1:2]) computed with two deterministic samples.

5.4. Evaluation 147

101 102 103 104 105

Number of rollouts

0

1

2

3

4

5

6

M
ea

n
d

is
ta

n
ce

to
op

ti
m

u
m

[s
] Method

Uniform (CRN)

Uniform (Det.)

Seq. Halving (CRN)

Quadrant Search (3, Det.)

SGD (1)

SGD (8)

Gridsize 20x20 10x10 Continuous

Figure 5.8: A selected subset of the plots in Figure 5.4, 5.5, and 5.6.

5.4.3 Localization performance

In the previous section, the different action selection algorithms were evaluated on a

sampled set of beliefs, where for each belief a close approximation to the true action

value function qB and the optimal action a∗b had been computed. This quantified

the optimization performance of an algorithm, which means how close it comes to

selecting the minimum of qB. However, in the end we are interested in how well the

resulting rollout path planner works, which means how fast it actually localizes the

target. We call this the localization performance and it is measured with the time

until localization metric.

To evaluate the localization performance, we evaluated the same scenario with

the same action selection algorithm configurations for 20000 MC runs. To deter-

mine the statistical significance of the results, the 95% confidence interval was com-

puted for the mean time until localization of each configuration. Figure 5.9 shows

the localization performance for the same methods as shown in Figure 5.8. ENTPP,

the best performing path planner from the literature for Scenario 2 with medium

5.4. Evaluation 148

configuration, has an average time until localization of 67.25±0.71 seconds (Table

4.2). Most configurations in Figure 5.9 lead to better results.

It can be seen that the configuration of Chapter 4, denoted by a star, is not

Pareto optimal. With a high number of rollouts per action, the uniform allocation

variant with deterministic samples achieves good results on the localization perfor-

mance, even though it has a lower optimizing performance in Figure 5.8. However,

these are also not Pareto optimal as sequential halving leads to comparable results

but with a fewer number of samples.

In Figure 5.8, almost all configurations that are Pareto optimal in regard to the

optimization performance belong to SGD. In comparison, Figure 5.9 shows that for

a low computational budget SGD is dominated in the localization performance by

the quadrant search method. In the localization performance SGD performs worse

than would be expected from Figure 5.8. The worse performance of SGD is due

to the initial belief. In this belief, the base policy selects an action far from the

optimal action. The action of the base policy is used for the initialization of SGD

and therefore the optimal solution cannot be reached if the number of iterations

is small. This happens in every execution of the rollout with SGD because the

initial belief occurs at the start of every execution. Uniform allocation, sequential

halving, and quadrant search do not have this problem, as they do not require an

initialization. However, for a high computational budget SGD receives results that

are comparable with sequential halving, as one would expect from Figure 5.8.

Figure 5.10 shows two exemplary paths found by the rollout path planner with

sequential halving and uniform allocation, and a high difference in the computa-

tional budget of 7200 to 400. This figure should give an intuition about how the

resulting paths look like. The exact shape is dependent on the target position, the

measurements, the configuration of the action selection algorithm, and random in-

fluences with the CRN and PMC sampling methods.

Correlation with rollout performance

The previous section showed the optimization and localization performance of sev-

eral action selection algorithms. While differences exist, for example in stochastic

5.4. Evaluation 149

101 102 103 104 105

Number of rollouts

56

58

60

62

64

66

68

70

Ti
m

e
un

til
lo

ca
liz

at
io

n
[s

]

Method
Uniform (CRN)
Uniform (Det.)
Sequential Halving (CRN)
Quadrant Search (3, Det.)
SGD (1)
SGD (8)

Gridsize 20x20 10x10 Continuous

Figure 5.9: Localization performance for different number of rollouts, for a selected subset
of methods. The star denotes the method used in Chapter 4. The error bars
denote the 95% confidence interval.

gradient descent, the overall trend is similar. This is reassuring, as this indicates

that by improving the optimization performance of the action selection algorithm,

we can improve the performance of the resulting rollout algorithm. While one could

expect that these values correlate, the base policy is only an approximation of fu-

ture behaviour. Therefore, non-minimum actions might be actually optimal. The

rollout improvement property only guarantees that if the action that minimizes qB

is chosen, the resulting rollout path planner is at least as good as the base policy.

Figure 5.11 shows a correlation plot where the optimization performance is

shown on the x-axis and the localization performance on the y-axis. It can be clearly

seen that a correlation exists, with a Pearson correlation coefficient of rc = 0.775.

SGD and BFGS show several outliers from this correlation, where the time until lo-

calization is worse than expected. As previously mentioned, the worse performance

of SGD is due to the initial belief, where the base policy does not provide a good

initialization. Similarly, BFGS is initialized with the base policy and has the same

5.4. Evaluation 150

0 50 100 150 200 250 300
x pos [m]

0

50

100

150

200

250

300

y
po

s
[m

]

Sequential
Halving
Uniform
Target

Figure 5.10: Exemplary paths for sequential halving (using CRNs with a 20× 20 action
grid and a computational budget of 7200) and uniform allocation, on the same
grid using one rollout per action and plain Monte Carlo samples. In addition,
the 3σ confidence ellipsoid of the initial belief is shown.

issue in the initial belief. The different frequency of occurrence for the initial belief

explains the outliers in the correlation plot. The belief data set B consists of 25

different beliefs, which are created by 20 executions of the path planner. To avoid

duplicate beliefs, the initial belief is only included once. However, this skews the

data set, as the initial belief occurs relatively less often in B than in an actual execu-

tion of the rollout path planner. In comparison, each Monte Carlo run for computing

the localization performance always starts with the initial belief. After correcting

for this fact by weighting the initial belief by the factor 20 the correlation increases

to rc = 0.965.

Scenario 3

Finally, we evaluate the localization performance of the action selection algorithms

on a scenario different from that in the main part of the chapter. Figure 5.12 shows

the geometry of this scenario, which we call Scenario 3. The target position in

5.4. Evaluation 151

0 1 2 3 4 5 6 7
Mean distance to optimum

57.5

60.0

62.5

65.0

67.5

70.0

72.5

75.0
Ti

m
e

un
til

lo
ca

liz
at

io
n

[s
]

Uniform (PMC)
Uniform (CRN)
Uniform (Det.)

Seq. Halving (CRN)
Seq. Halving (PMC)
Quadrant (CRN)

Quadrant (Det.)
SGD
BFGS

Figure 5.11: Correlation between the optimization performance and localization perfor-
mance.

each Monte Carlo run is sampled uniformly in Cartesian space on a ring around

the platform, with a distance of 30−300m. In this scenario, the platform takes an

initial measurement directly at the beginning from its starting position, after which

the initial belief is computed. Contrary to the previous localizer, the point estimate

is made using the expected value of the belief, instead of the maximum a posteriori

estimate. The remaining parameters are kept at the same values.

The intent of this scenario is to evaluate whether the relative localization per-

formance of the different variants stays the same, when the distribution of target

positions and the localizer change. Scenario 3 can be considered as a combination

of Scenario 1 and 2, with targets at different distances but whose positions are ran-

domly sampled according to the prior instead of being fixed. Its main difference

5.4. Evaluation 152

−300 −150 0 150 300
x pos [m]

−300

−150

0

150

300

y
po

s
[m

]

Platform
Uniform prior

Figure 5.12: Scenario 3.

to both previous scenarios is a circular prior, different to the uniform prior in Sce-

nario 1 and the Gaussian prior in Scenario 2. This simulates the case of a known

maximum detection range.

Figure 5.13 shows the results of 20000 Monte Carlo runs on this scenario. It

shows the same methods as in Figure 5.8. As a reference also the entropy-based path

planner (ENTPP), described in Chapter 4, was run on this scenario, resulting in an

average time until localization of 98.22±0.2 seconds. While there are differences

in the absolute numbers, both figures show the same trends. Most configurations of

the rollout path planner are better than ENTPP. Quadrant search is the best action

selection algorithm for a low computational budget. The variants with deterministic

samples show a non-monotonic improvement. Sequential halving is the best action

selection algorithm for selecting from a finite action space. We also see a fast im-

provement with additional rollouts for stochastic gradient descent, which shows the

best results for a high computational budget.

5.4. Evaluation 153

101 102 103 104

Number of rollouts

85

90

95

100

105

110
Ti

m
e

un
til

lo
ca

liz
at

io
n

[s
]

Method
Uniform (CRN)
Uniform (Det.)
Sequential Halving (CRN)
Quadrant Search (3, Det.)
SGD (1)
SGD (8)

Gridsize 20x20 10x10 Continuous

Figure 5.13: Localization performance dependent on the total number of rollouts for Sce-
nario 3. The error bars denote the 95% confidence interval.

5.4.4 Sensitivity analysis

This section contains a sensitivity analysis of the results. We vary parameters of

Scenario 2 and the rollout path planner and determine how robust our findings are

to those changes.

In a first analysis, we evaluate the localization performance for several choices

of the action grid resolution. Figure 5.14 shows the time until localization for dif-

ferent Xa×Y a action grids, with Xa = Y a and 20000 MC runs. The computational

budget is set to a fixed number of R = 16 rollouts per action for uniform allocation.

Sequential halving receives an equivalent computational budget of N = 16 ·Xa ·Y a.

The performance strongly improves until a 10×10 action grid, after which it shows

diminishing returns for higher grid resolutions. For small grid resolutions, the per-

formance shows alternating behaviour for even and odd numbers, as the correspond-

ing grids contain different actions. For all action grid resolutions, common random

numbers are preferable to plain Monte Carlo sampling. Sequential halving shows

5.4. Evaluation 154

5 10 15 20 25 30 35 40
Action grid resolution

56

58

60

62

64

Ti
m

e
un

til
lo

ca
liz

at
io

n
[s

] Uniform [PMC]
Uniform [CRN]
Uniform [Det]
Seq. Halving [PMC]
Seq. Halving [CRN]

Figure 5.14: Variation of the action grid resolution. A fixed budget of 16 samples per action
is chosen. The error bars denote the 95% confidence interval.

better results than uniform allocation for the same budget with both Monte Carlo

sampling methods. Finally, deterministic sampling shows good results, comparable

with sequential halving, but with a non-monotonic improvement for increasing the

resolution of the action grid. This is similar to the results observed previously in

Figure 5.9, where also a good performance for deterministic samples with a high

computational budget, but with non-monotonic improvement was observed. It also

mirrors the non-monotonic improvement in Figure 4.16, where the action grid res-

olution was increased for deterministic samples and R = 8 rollouts per action.

Figure 5.15 shows the time until localization for different measurement du-

rations with 20000 MC runs. Different measurement durations lead to different

trade-offs between taking a measurement and moving to another measurement lo-

cation. We compare stochastic gradient descent with ten iterations and one rollout

per action (40 rollouts in total), quadrant search with deterministic sampling, three

iterations, and one rollout per action (24 rollouts in total) and sequential halving

with a sampling budget of 3600. For comparison, also ENTPP is added. Fig-

ure 5.15 shows that the advantage of quadrant search to stochastic gradient descent

for a small computational budget is robust over different measurement durations.

For a small computational budget, ENTPP performs approximately as well as the

5.5. Conclusion 155

0 10 20 30 40
Measurement duration [s]

40

60

80

100

120

140

160

Ti
m

e
un

til
lo

ca
liz

at
io

n
[s

]

Rollout: SGD
Rollout: Quadrant Search
Rollout: Sequential Halving
ENTPP

Figure 5.15: Variation of the measurement duration tm. Stochastic gradient descent and
quadrant search use a small computational budget with 40 and 24 rollouts.
Sequential halving has a computational budget of 3600 and a 20×20 grid.
The error bars denote the 95% confidence interval.

rollout path planner with stochastic gradient descent as action selection algorithm.

However, quadrant search and sequential halving with a higher budget outperform

ENTPP for all variations of the measurement duration.

5.5 Conclusion

As a first conclusion, we note that using common random numbers should be pre-

ferred to plain Monte Carlo when comparing action values. Deterministic sampling

of the belief improves the performance of some action selection algorithms, how-

ever, not necessarily. A likely explanation is that it improves the results in algo-

rithms where the search evaluates actions that are not close to each other. This is

the case in uniform allocation, due to the grid, and in quadrant search because the

initial nine actions cover the whole extent of the action space. On the other hand,

it likely leads to worse results in algorithms where the search is local as in BFGS,

5.5. Conclusion 156

because it might produce local minima. Different to PMC and CRN, deterministic

samples do not produce a monotonic improvement in optimization and localization

performance.

For the given problem, there were two sources of uncertainty: uncertainty in

the current belief and uncertainty in the future measurements. The deterministic

samples are only used for the first source of uncertainty. Using the expected value

for future measurements implicitly assumes that it is more important to capture the

uncertainty in the current state estimation than the uncertainty in the future mea-

surements. This seems to work for the given problem, however, does not necessarily

need to generalize to other problems where the uncertainty in the future measure-

ments might have a higher influence.

Sequential halving is an effective action selection algorithm with discrete or

discretized action spaces. As it uses Monte Carlo samples, it does not need to

make any assumptions about the uncertainty. An additional advantage is that

given the action space, the only hyperparameter to be determined is the compu-

tational budget. A disadvantage is that it requires at least a computational budget of

N = |Ak| · ⌈log2|Ak| ⌉.

Quadrant search works well and is worth considering if the computational bud-

get is low. As it focuses on a single quadrant after evaluating only nine actions, it

has the possibility to focus the search on the wrong quadrant, but in the considered

problem this seems to be not an issue.

Stochastic gradient descent shows the strongest results when considering its

optimization performance on the belief set B. For a small computational budget,

the localization performance of the resulting rollout path planner is worse than ex-

pected, due to worse initialization in the initial belief. However, with a high com-

putational budget, the localization performance is also good, and its strong opti-

mization performance makes it worth considering. In this work, we only evaluated

a single step size schedule. This parameter has likely a significant and potentially

problem dependent influence on the performance. Therefore, a higher performance

might be possible, however, at the cost of more intensive hyperparameter tuning.

5.5. Conclusion 157

An important consideration is the inclusion of constraints on the sensor state

space and thereby action space. It is easy to incorporate constraints into uniform

allocation and sequential halving, as actions could simply be excluded from the dis-

crete action space. The implementations of stochastic gradient descent and BFGS

assumed an unconstrained sensor state space of X s = R2. A possible way to add

a constraint to these methods, would be a projection into the action space if those

algorithms evaluate an infeasible action or a method as L-BFGS-B [Byrd et al.,

1995] which allows for constraints. An extension of the quadrant search to a non-

rectangular action space would not be straightforward.

The main contributions of this chapter are the following:

1. It formulates a model for adaptive action evaluation in the policy rollout in

form of an action selection algorithm. This models the action decision as

a stochastic function minimization problem and allows to use existing mini-

mization methods on this problem, of which several were never used in the

policy rollout context before. Especially, some of those methods explicitly

support a continuous action space, while the literature previously only con-

sidered discrete action spaces.

2. It analyses the performance of the resulting rollout path planner and how it

correlates with the optimization performance. It is shown that there is a clear

correlation, further motivating the optimization of the action selection step.

3. It contains a sensitivity analysis of the results and shows that they hold also

for different parameters than originally used in the scenarios.

As a result of this chapter, the trade-offs of different action selection algorithms

are quantified. This allows us to select an algorithm for the actual implementation of

the rollout path planner in the experiments. The implementation in the experiments

is based on sequential halving with common random numbers. This method had

shown a robust performance and also works well with constraints on the action

space that are present in the experimental area. The next chapter describes further

5.5. Conclusion 158

adaptions to the rollout path planner due to limitations in a real sensor system and

shows experimental results.

Chapter 6

Experimental Sensor System

The previous two chapters introduced a path planner for the emitter localization

problem. This path planner shows good performance in simulations. However, the

more valuable test for an algorithm is to show that it works in a real system. This

chapter describes an experimental sensor system that is controlled by the rollout

path planner and shows experimental results.

Section 6.1 reviews similar experimental systems described in the literature.

The systems are categorized into those that use the strength of the received signal

and those that use bearing measurements. A focus in the review is put on whether

sensor path planning is used in the experimental system.

During the development of the sensor system, several challenges had to be

overcome. These required changes to the path planner, discussed in Section 6.2.

First, the used direction finding sensor does not produce reliable measurements if

it is too close to the target position, because of the high elevation of the received

signal. As solution, sensing actions too close to the confidence region of the belief

are removed from the action space. Second, the base policy of Chapter 4 is not

feasible any more, due to the constrained action space. As solution, a new base

policy is used. Finally, occasionally outliers occur. Therefore, the received power

as a function of the UAV heading is compared with the antenna pattern and the

measurement is rejected if those are too different.

The sensor system is described in Section 6.3. It consists of a single UAV with

a directional antenna, controlled by a ground station. In total six flights on three

6.1. Comparison with existing work 160

days were made to evaluate the sensor system. In eleven localization attempts, the

UAV was controlled by the rollout path planner. The results are given in Section 6.4.

Of those eleven localization attempts, in seven the target was inside the indicated

confidence region, in two cases close to the point estimate but not in the confidence

region, and in two localization attempts outliers occurred.

In addition, Section 6.4 analyses the measurements and compares the time

prediction model from the path planner with the results from the experiments.

6.1 Comparison with existing work
In this section we review mobile sensor systems for RF emitter localization that are

described in the literature. These sensor systems can in general be categorized into

those measuring the signal strength, also called received signal strength indicator

(RSSI) and those that compute a bearing towards the emitter. An RSSI-based sys-

tem typically uses a known reference signal strength of the emitter to compute an

estimated range.

Except otherwise noted, the platforms are multicopter UAVs. Sensor systems

are included in the review whether they perform sensor path planning or not. The

main intent is giving an overview over the solution space of the problem of emitter

localization with a mobile sensor system. From those systems that perform sensor

path planning, it turns out that the majority fields myopic path planners.

6.1.1 RSSI-based sensor systems

RSSI-based sensor systems [Nguyen et al., 2019, 2020; Körner et al., 2010; Vrba

et al., 2019] use the fading of signal power over distance to compute a range esti-

mate for the emitter. As the platform does not have to remain stationary during the

measurement process, the sensor typically produces measurements at regular time

intervals.

The sensor system described by [Nguyen et al., 2019] localizes multiple radio

tags using signal characteristics to associate the measurements. The localization

is done by a particle filter that uses a reference signal strength to compute a range

estimate. Sensor path planning is performed by predicting the influence of a single

6.1. Comparison with existing work 161

action and computing the expected Rényi divergence using Monte Carlo sampling.

In the field experiments, a planning horizon of one time step (5 s) is used.

The work in [Nguyen et al., 2020], also uses a particle filter to localize multiple

targets. The intent is to create a computationally lightweight path planner that can

run embedded on the sensor payload. The path planner works by first selecting the

target with the smallest uncertainty above a threshold and then testing three direct

paths towards a circle around this target, two tangents and the direct line towards the

target position. If, based on the particle filter belief, the probability of one of those

lines coming close to another target is sufficiently small, this line is selected and the

UAV moves along that line to a new position. Otherwise the heading change that

lets the UAV come closest towards the selected target, while having a sufficiently

small probability of not coming too close to other targets, is selected. The constraint

of the minimal distance is motivated by not disturbing the animals that are wearing

the RF emitter that are localized.

The sensor system described in [Körner et al., 2010] is also RSSI-based and

uses a particle filter to track multiple targets, that emit signals at the same frequency.

The sensor only returns the strength of the strongest signal, but it was shown in

simulations that tracks can be correctly updated due to the spatial separation of the

targets. The field tests contained only a single target. While the sensor system

was intended for a fixed wing UAV, the field test was performed with the system

mounted on a car. No sensor path planning was performed in this work.

In [Vrba et al., 2019] a sensor system consisting of three UAVs was described,

which localizes Bluetooth beacons via RSSI. Contrary to the previous systems, this

one uses an extended Kalman filter (EKF) to localize the targets. A separate EKF

belief was instantiated for each unique beacon ID. Two beacons were localized in

a field test, with the UAVs flying on a predefined trajectory. A path planner was

developed based on the idea to move the centre of the UAV formation on top of the

estimated target position, but only tested in simulations.

6.1. Comparison with existing work 162

6.1.2 Bearing-based sensor systems

Bearing-based sensor systems are the major alternative to RSSI-based systems.

These systems measure the target bearing, often by rotation of a directional antenna.

Bearing measurements have the advantage that a target can be localized even at fur-

ther distances and with fewer measurements. However, a disadvantage compared

to RSSI-based sensor systems is that bearing measurements require more complex

signal processing, while measurements of the signal strength can be directly read

from the receiver. Bearing measurements also require the orientation of the UAV to

be known, while with signal strength measurements the position is sufficient.

In [Cliff et al., 2015] a sensor system is described that consists of a directional

antenna, mounted on a UAV. By rotating the UAV the target bearing is measured

and the target localized with a grid-based Bayes filter. Path planning is done my-

opically by considering the next measurement locations and computing for each the

entropy of the belief updated with the expected measurement. This path planner

was previously discussed in Chapter 4, where it is referred to as ENTPP.

[Isaacs et al., 2014] uses a similar sensor system consisting of a UAV mounted

directional antenna to localize a moving target with a particle filter. The focus of this

work is on the low level control of the UAV position and orientation, by ensuring a

steady rotation at constant altitude with a PID controller.

The work in [Vonehr et al., 2016] discusses also a rotating UAV with a direc-

tional antenna. It focuses on the signal processing aspect of the sensor system. Only

the measurement error is analysed and the target is not localized. Therefore, also no

path planning is considered in this paper.

The sensor systems described above require an explicit rotation of the UAV.

In comparison, the work presented in [Venkateswaran et al., 2013] is based on a

single-wing monocopter which similar to a maple seed rotates continuously during

its normal flight. On the UAV a directional antenna is attached to determine bearing

measurements. The target is not localized, instead the goal of the system is to fly

directly above the target. This is done by flying in the direction of the bearing

measurement.

6.1. Comparison with existing work 163

A sensor system that does not require a rotation at all is presented in [Dressel

and Kochenderfer, 2018]. In addition to a directional antenna, the UAV also carries

an omnidirectional antenna. By comparing the received power from the directional

antenna with the omnidirectional one, the gain of the directional antenna towards

the target bearing can be determined. However, the resulting bearing measurement

is ambiguous, as the antenna might have the same gain in multiple directions. Target

localization is performed with a grid-based Bayes filter using a likelihood function

that incorporates these ambiguities. A myopic path planner is used that plans the

next sensing action based on the expected entropy of the updated belief.

A robotic system to monitor carp in a lake is described in [Tokekar et al.,

2011, 2013; Vander Hook et al., 2014, 2015]. The sensor system uses a directional

loop antenna, which is rotated by a motor. As platforms, either robotic boats or

wheeled robots are used, dependent on whether the lake is frozen or not. The targets

are localized using an extended Kalman filter. Several path planners have been

developed for this system. In [Tokekar et al., 2011] three path planners are proposed

of which two are tested experimentally. The work of [Vander Hook et al., 2015]

extends the path planning to multiple robotic boats and optimizes the time until

localization. In chapter 4 this path planner was referred to as SOPT and used as a

comparison algorithm. [Vander Hook et al., 2014] presented a myopic path planner,

similar to the base policy used in this thesis. Section 4.1 contains more information

about these path planners.

A ground-based robot with a directional antenna, rotated by a motor is also

used in [Graefenstein et al., 2009] to localize targets with a particle filter. The

system is tested for bearing measurements with a stationary robot and with a moving

robot. As expected, the bearing measurements are worse during movement of the

robot, but still useful. The robot follows an arbitrary, not explicitly optimized path.

The work in [Vrba et al., 2019] was already discussed in the context of RSSI

and also presents results from a UAV equipped with a directional antenna. Different

from the other bearing-based sensor systems on UAVs, the UAV payload contains

a motor to rotate the antenna without the UAV rotating. The bearing measurements

6.2. Changes to the path planner 164

are taken from predefined measurement locations and the localization is done using

a weighted least squares estimator.

6.1.3 Contributions of this chapter

As the above literature review shows, the localization of RF emitters with mobile,

unmanned sensor systems has attracted considerable interest in the literature. The

main novelty of the sensor system described in this chapter is in the path planner.

While path planning has been considered in the literature, the majority of

works only field a myopic path planner. Only few works [Tokekar et al., 2011;

Vander Hook et al., 2015] consider a nonmyopic planner. However, [Vander Hook

et al., 2015] is limited to two future measurement locations and [Tokekar et al.,

2011] does not consider the time required for a measurement. Most of the works

use an information-driven cost function, with only [Vander Hook et al., 2015] opti-

mizing the time until localization. Only [Tokekar et al., 2011] describes a path plan-

ner for a bearing-based sensor system that takes into account different outcomes of

the measurements. However, as described in Section 4.1, it does not use the full

mobility of the system.

In contrast, the sensor system described in this chapter uses the path planner

described in Chapter 4 and 5, which performs a nonmyopic planning over the full

localization process, taking into account the uncertainty of the estimate and the

future measurements.

6.2 Changes to the path planner

This section discusses the required changes of the rollout path planner to make it

work in a real sensor system. The first section discusses constraints on the action

space to ensure measurement locations are not too close to the target position. In

the second section a new base policy for handling the constrained action space is

introduced. Finally, the third section discusses a detection method for measurement

outliers.

6.2. Changes to the path planner 165

6.2.1 Constraints on the action space

A restriction of the sensor is that the antenna pattern is also elevation dependent.

Therefore, a measurement taken close to the target is extremely unreliable.

We consider this restriction in the path planner by limiting Ak to actions suf-

ficiently distant from probable target positions. These positions are given by the

confidence region of the belief. This region is similar to the confidence ellipsoid,

but for a grid-based Bayes filter it is not necessarily an ellipsoid. We define the

confidence region as the convex hull of the grid cells containing 95% of the prob-

ability mass. For this, the grid cells of the localizer are sorted with descending

probability mass, and the cells corresponding to the top 95% percentile constitute

the confidence region. From the positions of those cells the convex hull C95(bt
k) is

computed. As a second step, the action space is reduced to those actions that keep

at least a minimal distance from the confidence region. The action space at decision

step k is then

Ak =
{

a ∈ A : d(a,C95(bk))> r
}

(6.1)

where r is the minimal distance and d(a,C95(bk)) computes the minimal distance

between action a and convex hull C95(bk). A is the original action space, which is

a discretization of the scenario area. An example of the confidence region and a

reduced action space can be seen in Figure 6.12. If Ak is empty or contains only

one action, the minimal distance r is reduced until there are at least two actions.

However, this situation never occurred during the experiments.

6.2.2 Base policy

The base policy defines a baseline behaviour for approximating the future move-

ment of the UAV. In Chapter 4 and 5, the path planner uses a base policy that does

not consider any constraints on the action space. However, the small size of the ex-

perimental area and the requirement of a minimal distance to the target constrain the

action space significantly. In this constrained setting, the base policy from Chapter 4

leads to too optimistic judgements of some actions, as the rollout would simulate

impossible future action sequences.

6.2. Changes to the path planner 166

Therefore, we utilize a base policy that uses the same constrained action space

(6.1) and greedily selects sensing actions based on the determinant of the Fisher

information. The base policy uses the point estimate x̃t
k and covariance P̃t

k of the

belief, and selects actions according to

πB(bk) = argmax
a∈Ak

det
((

P̃t
k
)−1

+J(x̃t
k,a)

)
(6.2)

where J is given by (3.78). It should be noted that this base policy is only feasi-

ble because sensing actions too close to the confidence region are removed from

the action space. Otherwise the most informative action would always be the one

that lies directly over the point estimate, because the Fisher information (3.80) is

proportional to 1/r2 with r being the distance between measurement location and

target.

6.2.3 Detection of measurement outliers

Even for measurements taken at a sufficient distance, outliers occur. In most of

those cases the received power as a function of the UAV heading was different than

the antenna pattern. Therefore, we use a cosine similarity criterion to detect mea-

surements that differ from the pattern. This criterion is applied after the direction

finder has computed a measurement zk.

At measurement step k, the measured power vector mk ∈ R180 is defined as

the vector that contains in 2◦ bins the average power that was received from each

direction. With a perfect measurement, mk would correspond to a shifted version

of the antenna pattern ψ ∈ R180, shown in Figure 6.5. The shifted antenna pattern

ψ(zk) ∈ R180 is the antenna pattern, shifted according to the measured bearing zk.

With a perfect measurement, these ψ(zk) and mk would be identical. Then, for the

measurement zk returned by the direction finder, the cosine similarity

ζ (zk) =
mk

∥mk∥2
· ψ(zk)

∥ψ(zk)∥2
(6.3)

6.3. Experimental setup 167

is a value between -1 and 1 that indicates the similarity between the measured power

vector and the antenna pattern. A measurement is accepted if this value is above the

cosine similarity threshold ζ , and otherwise a new measurement is taken at the same

position. We call this decision criterion cosine similarity criterion because the in-

ner product can be interpreted as the cosine of the angle between those two vectors.

While the underlying direction finder [Krestel et al., 2019] potentially returns mul-

tiple measurements, the cosine similarity criterion makes the assumption that only

a single target is present.

Similar criteria for the measurement quality have been used in [Graefenstein

et al., 2009; Cliff et al., 2015]. In [Graefenstein et al., 2009] measurements below

a threshold are rejected, as done in this thesis. In [Cliff et al., 2015] the standard

deviation of a measurement is estimated based on the quality criterion.

6.3 Experimental setup
The sensor system consists of three parts, the UAV, payload, and ground station.

As UAV the AirRobot1 AR200 UAV is used. A picture of the UAV with equipped

payload can be seen in Figure 6.1. This UAV can carry a payload up to 3 kg and

allows for automatic control with an API. The payload contains the actual sensor

and a computer to perform the direction finding. The ground station consists of

the control station of the UAV, as well as a laptop that runs the path planner. The

control station is connected to the UAV by direct radio and the ground computer to

the payload computer via LTE over the cellular network.

The target is an RF emitter, which sends an unmodulated sine wave at

1984 MHz. This frequency was chosen due to an existing license to send on this

frequency. The emitter consists of a Raspberry Pi Zero and a LimeSDR Mini soft-

ware defined radio, and can be seen in Figure 6.2.

After placing the target in the experimental area, its position is measured using

the GPS of the UAV by placing it above the target. The GPS of the UAV is used

to avoid any systematic errors between two different GPS receivers. The resulting

1https://www.airrobot.de/

https://www.airrobot.de/

6.3. Experimental setup 168

Figure 6.1: Platform with mounted payload. (Picture: Markus Krestel)

Figure 6.2: The RF emitter used in the experiments.

position is referred to as true target position. In the literature this value is also

known as ground truth.

6.3. Experimental setup 169

Figure 6.3: Payload.

6.3.1 Hardware description

The payload attached to the UAV consists of a Yagi antenna, a USRP B210 receiver,

an Ellipse-D inertial navigation system (INS), and a Huawei e3372h LTE modem

for communication. As payload computer we use a Gigabyte Brix 8550. Figure 6.3

shows an image of the payload and Figure 6.4 a block diagram. The total weight of

the payload amounts to 2.061 kg. The INS is connected to two GPS antennas which

are fixed on the arms of the UAV with 1.20 m separation. This allows the INS to

compute the heading of the UAV.

The pattern of the Yagi antenna is illustrated in Figure 6.5. The antenna pattern

needs to be measured with the payload mounted on the UAV, as it is potentially

influenced by the UAV. The measurement of the antenna pattern was performed

outside as can be seen in Figure 6.6. The UAV was placed on a hill and a signal

generator was directed upwards to minimize interference. This also measures the

azimuth pattern at a nonzero elevation as is the case in the experiments. The UAV

was mounted on a PT-3002 pan/tilt head and the signal power was measured in steps

of 2◦.

The ground station is shown in Figure 6.7. It consists of the UAV control sta-

tion and a laptop, which we call ground computer. The UAV is controlled from the

6.3. Experimental setup 170

Figure 6.4: Block diagram of the hardware. Red indicates a power line, blue a USB con-
nection and green an antenna cable. The dashed lines are radio connections.

6.3. Experimental setup 171

-180 -90 0 90 180
Angle [deg]

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

Po
w

er
G

ai
n

30.0 deg

Figure 6.5: Antenna pattern, mounted on the UAV.

Figure 6.6: Measurement of the antenna pattern.

6.3. Experimental setup 172

Figure 6.7: The ground station of the sensor system. It is placed on the same hill as visible
on Figure 6.6.

control station. The path planner runs on the ground computer and communicates

with the control station over a USB connection. In addition, the ground computer is

connected to the payload via an LTE connection. The ground computer is equipped

with a 2.1 GHz, 6 core AMD Ryzen 5 PRO 4650U CPU and 16 GB RAM.

The used consumer-grade LTE contract did not support fixed IP addresses and

the option to directly create a point-to-point connection via LTE. Therefore, the

payload and ground station connect to a virtual private network (VPN), which is

accessible from the internet. In the VPN both systems have fixed IP addresses and

can communicate with each other.

In addition to the automatic control by the path planner, the UAV is also con-

trollable by a remote control. For legal reasons, a human pilot needs to be able to

interrupt the planning process at each instant. In addition, the take-off and landing

phases were performed by the human pilot.

From the terms established before, the sensor consists of the Yagi antenna,

receiver, INS, and payload computer. These components are responsible to create

the bearing measurements. The UAV corresponds to the platform and the sensor

system is the joint system of UAV, payload, and ground station.

6.3. Experimental setup 173

6.3.2 Software description

The software of the sensor system is based on the robot operating system (ROS),

version 16.04 Kinetic Kame. ROS is a middleware that enables the communication

between different processes, called nodes, by messages ordered by topics [Quigley

et al., 2009]. A separate instance of ROS is run on the payload computer and lap-

top. The FKIE multimaster package2 synchronizes these instances. The FKIE mul-

timaster is configured by a list of topics and services and replicates them on the

other system. The communication for this takes place over the LTE connection. For

logging purposes the messages from all topics are written on disk, in a file called

rosbag.

On the payload runs a node controlling the receiver, as well as a node perform-

ing the direction finding. The ground station initiates the rotation of the UAV and

starts the measurement process by a service call to the direction finding node. This

node activates the receiver node which publishes samples of the received power at

regular intervals. After a full rotation the direction finding node computes a bearing

measurement and publishes this on the corresponding topic.

The direction finding algorithm was implemented in prior work [Krestel, 2018;

Krestel et al., 2019]. The algorithm performs direction finding with multiple targets

by computing an optimal reconstruction

r∗k = argmin
r∈R720

r≥0

∥Ar−mk∥2 +λ∥r∥1 (6.4)

of the signal. The elementwise nonnegative vector r ∈ R720 denotes the estimated

average power from each direction, discretized in 0.5◦ bins. Each row in the matrix

A ∈ R180×720 consists of the antenna pattern, shifted by 0.5◦ for each row. The

measured power vector mk ∈ R180 stores the measured power from each direction,

discretized in 2◦ bins. The expression Ar computes the expected power vector if

for each angle i ·0.5◦ a signal with strength ri is incoming. The parameter λ = 0.3

penalizes a too large vector r. Effectively, this algorithm reconstructs the measured

2https://github.com/fkie/multimaster_fkie

https://github.com/fkie/multimaster_fkie

6.3. Experimental setup 174

13:33:20 13:33:30 13:33:40
Time [hh:mm:ss]

0

100

200

300

400

H
ea

di
ng

[d
eg

]

Figure 6.8: Rotation during the measurement process. The last rotation from 400 to 350
degrees is part of the movement to the next measurement location.

power vector by a superposition of the antenna pattern shifted to different mea-

surement locations. The minimization problem (6.4) is also known as basis pursuit

denoising problem [Krestel et al., 2019]. As only a single target is present in the

experiments, only the strongest measurement

zk = i ·0.5◦ with i = argmin
1≤i≤720

(r∗k)i (6.5)

is returned.

The rollout path planner is executed on the ground computer as a Java applica-

tion. The implementation uses multi-threading to compute the rollouts of a single

sequential halving iteration in parallel. In the experiments, six threads were used. A

ROS node exists as a bridge that subscribes to the topic containing the bearing mea-

surements and forwards them to the path planner. The communication between the

path planner in Java and the bridge node in Python uses the ZeroMQ protocol. The

sensing action computed by the path planner is similarly published by the bridge

node as a topic.

A ROS node that interfaces with the UAV control station was used to convert

the sensing actions into UAV control commands. This node does not support a

6.3. Experimental setup 175

Figure 6.9: Experimental area. A = {A1,A2}, B = {B1,B2}, and C denote different target
positions, as measured by GPS. For different trial days the specific GPS posi-
tion varied by a small bit and the differences are indicated by the index of A and
B. The ground station is located at the coordinate origin. Green dots indicate
the possible sensing actions A. The UAV start position corresponds to action
a0. Map data © OpenStreetMap contributors.

dedicated full rotation of the UAV. We therefore divide the rotation into a sequence

of three waypoints with different headings. This leads to a rotation based on three

parts (see Figure 6.8). Before starting the rotation, the platform is kept stationary

for one second to ensure it is in a stable position.

6.3.3 Experimental area

The experimental area is approximately 313 meters long and 120 meters wide. We

discretized the area into possible measurement locations, which correspond to the

action space A. Figure 6.9 shows the experimental area and the action space. In total

there are 112 sensing actions from which the planner can choose, with a distance of

15 meters each. The ground station was placed at the origin of a local east-north-

up (ENU) coordinate system. At the same location the human pilot was present, to

perform take-off and landing, as well as to interrupt the UAV in case of emergencies.

Note that the sensing actions do not extend to the western border, as otherwise a

tree line in the experimental area would have obstructed the line of sight between

the human pilot and the UAV.

6.4. Experimental results 176

Table 6.1: Parameters of the rollout path planner

Parameter Value Description

σ 7◦ Measurement standard deviation
µ 10 m Localization accuracy threshold
r 50 m Minimal distance to the confidence region
vs 7 m/s Platform speed
tm 30 s Duration of a measurement
N 1000 Computational budget
ζ 0.7 Cosine similarity threshold

6.4 Experimental results

We performed six flights on three different days to analyse the system. Table 6.2

shows an overview over those flights. Additional flights were taken previously for

debugging and setup of the sensor system. Flights 1-3 were made to determine suit-

able parameters for the path planner. Those flights were made partially manually

controlled and partially controlled by the rollout path planner. Afterwards, the pa-

rameters of the path planner were fixed to those shown in Table 6.1. All flights were

made at an altitude of approximately 20 m. Flights 1-3 also included additional de-

bugging of the path planner. However, the direction finding algorithm was the same

during flights 1-6. Therefore, the first three flights are included in the statistics about

the direction finding performance.

For flights 4-6, target positions B and C were selected to increase the number

of available sensing actions for the planner. As measurements need to be taken at

least 50 m away from the confidence region, a centrally placed target prohibits more

sensing actions than one on the border of the area. This is due to the restricted size

of our experimental area.

6.4.1 Localization attempts

We refer to a segment of a flight which is controlled by the path planner and has the

intent to localize the target as an localization attempt. In total, eleven localization

attempts were made, which are shown in Table 6.3. All of those began with the

UAV taking a measurement at the same location, shown in Figure 6.9.

6.4. Experimental results 177

Table 6.2: Flights

Flight Target position Duration Avg. Wind Max Wind #Msr

1 A1 11:56 - - 12
2 A1 20:14 - - 13

3 A2 21:13 5.6 km/h 14.3 km/h 32
4 B1 19:05 6.5 km/h 15.0 km/h 19

5 C 18:17 2.6 km/h 5.6 km/h 16
6 B2 14:23 3.2 km/h - 14

The flight durations are given in [mm:ss]. The average and maximal wind speed was
measured by an anemometer at the ground station. No wind speed measurements
were taken for flight 1 and 2. The anemometer showed an error message for the
maximal wind speed on flight 6. Each group of two flights was conducted on a
separate day. The column # Msr contains the total number of measurements made in
this flight. Flight 5 also contains two measurements not belonging to a localization
attempt, which therefore do not appear in Table 6.3.

Table 6.3: Localization attempts

Loc. Target position Flight T.u.l. RMSE Exp. RMSE C95 #Msr

1 B1 4 03:18 24.34 m 9.88 m - 4 (+1)
2 B1 4 02:34 15.75 m 9.10 m ✓ 4
3 B1 4 03:39 1.61 m 9.80 m ✓ 4 (+1)
4 B1 4 03:52 15.94 m 8.31 m - 5

5 C 5 00:23 168.27 m 7.91 m - 1
6 C 5 00:21 174.27 m 8.97 m - 1
7 C 5 02:56 7.76 m 9.65 m ✓ 4
8 C 5 02:52 10.47 m 8.94 m ✓ 4
9 C 5 03:18 7.98 m 9.89 m ✓ 4

10 B2 6 04:44 9.46 m 9.16 m ✓ 6
11 B2 6 05:12 9.10 m 9.76 m ✓ 6 (+2)

Loc. is the number of the localization attempt. T.u.l. is the time until localization,
given in [mm:ss] from the start of the first measurement process to the announce-
ment of the successful localization. The RMSE ∥x̃t

K−xt∥2 is the distance between
the point estimate and the true target position and the expected RMSE µ(x̃t

K,bK) is
given by (3.58). The column C95 indicates whether the target was in the confidence
region C95(bK). Finally, #Msr indicates the number of valid measurements passed
to the path planner. In parentheses is the count of measurements that were classified
as outliers. Localization attempts separated by a horizontal line correspond to the
same flight.

6.4. Experimental results 178

In each localization attempt, the path planner terminated and a localization was

returned with the expected RMSE below the localization accuracy threshold µ . In

seven localization attempts the target was in the indicated confidence region. In two

localization attempts (1 & 4) this was not the case, however, the target was still close

to the point estimate. Two localization attempts (5 & 6) resulted in a completely

wrong point estimate, which was due to the corresponding initial measurements

being outliers. These outliers, together with the prior that the target is in the exper-

imental area, reduced the uncertainty sufficiently that the target was considered to

be localized after the first measurement. Section 4.3.1 describes an outlier detection

criterion for the localizer, which detects a problem if the 4σ cones of the bearing

measurements do not intersect. This criterion was not triggered here, because of

the localization with only one measurement. These measurements also passed the

outlier detection step described in this chapter. Outliers are further discussed in the

next section.

A localization attempt typically required 4-6 measurements and took an av-

erage time of 3:53 minutes each to localize the target at position B and 3:02 to

localize the target at position C (excluding localization attempts 5 & 6). The paths

taken by the UAV are shown in Figures 6.10 and 6.11 for target position B and C,

respectively. It can be seen that the path planner took measurements from multiple

directions, trying to be as close as possible to the target while keeping the 50 m

distance. Figure 6.10 also illustrates how the path planner adaptively reacted to the

received measurements. Measurements taken in flight 4 (localization attempts 1-4)

were all slightly more to the right, than measurements taken at flight 6 (localization

attempts 10 & 11). Therefore, in flight 4 the path planner always flew to a measure-

ment location at the north-eastern border of the experimental area, being convinced

that this was sufficiently far away from the target. In comparison, in flight 6 the

path planner always took a measurement location at the south-western border.

6.4. Experimental results 179

Figure 6.10: Flight paths to localize the target at position B. The true target positions are
indicated by the upright blue triangles. The left one corresponds to B1, the
right one to B2. Point estimates are indicated by the downward triangles.
The shaded areas correspond to the confidence region C95(bK). Map data
© OpenStreetMap contributors.

Figure 6.11: Flight paths to localize the target at position C. The true target position is
indicated by an upright blue triangle. Point estimates are indicated by the
downward triangles. The shaded areas correspond to the confidence region
C95(bK). Map data © OpenStreetMap contributors.

6.4. Experimental results 180

Figure 6.12: Action evaluation in localization attempt 7, after the second measurement.
The colour of the action indicates in which of the six iterations it was elim-
inated. The selected action has a red border. The green line corresponds to
the path of the UAV, gray are the measurements, the blue triangle is the true
target position and cyan is C95(b2). Map data © OpenStreetMap contributors.

Figure 6.12 illustrates a single execution of the path planner. Only actions

sufficiently far away from the confidence region were evaluated. The actions were

evaluated in multiple rounds, as the sequential halving algorithm focused on the

most promising actions. The colour of the actions indicates the iteration in which

they were eliminated. As the sequential halving algorithm eliminates half of the

remaining actions in each iteration, it took six iterations for 56 viable actions in this

decision step. The adaptive action evaluation quickly focused on actions close to

the confidence region. As the sequential halving algorithm uses the same number

of samples in each round, the more promising actions were evaluated with a much

greater number of rollouts than less promising actions. Actions eliminated in the

first iteration were evaluated only with two rollouts, while the two last remaining

actions were evaluated with in total 165 rollouts each.

6.4. Experimental results 181

6.4.2 Bearing measurements

Given a measurement z and true target bearing θ , the measurement error is defined

as the difference θ − z ∈ [−π,π]. A positive measurement error indicates that the

measurement is to the right of the target bearing. The absolute measurement error

is the absolute value of the measurement error.

In total, the data from all flights contains 106 measurements. Of those, 19 are

outliers, defined as having an absolute measurement error greater than 30◦. Of the

13 measurements taken at a distance to the target below 50 m, 10 measurements

are outliers indicating the high likelihood of a false measurement at short distances.

Figure 6.13 shows the measurement error with respect to the cosine similarity cri-

terion for each measurement. Again, it can be seen that measurements below a

distance of 50 m are mostly random, even if the cosine similarity does not predict a

bad measurement. For measurements taken from farther away, the cosine similarity

threshold of ζ = 0.7 rejects most of the outliers. Together, this justifies the ap-

proach of a cautious planner, which does both, try to keep a sufficient distance from

the target and reject measurements that do not match the antenna pattern. There are

two outliers from a farther distance that are not detected. These correspond to the

initial measurements during localization attempts 5 and 6. Both point directly into

the corner of the experimental area, which is surrounded by a metal fence. A likely

explanation is that reflections from the fence caused multipath effects that misled

the sensor.

Figure 6.14 shows the measurement errors of all measurements sufficiently far

away (> 50m), with a cosine similarity > 0.7 and without those two outliers. The

average measurement error, or bias, is 0.17◦ and the standard deviation is 7.47◦.

This approximately matches the assumptions of the planner. However, the distribu-

tion varies between different flights, with especially flight 4 having larger measure-

ment errors. This is reflected in the results of localization attempts 1 and 4, where

the target is not in the confidence region C95(bK). It is unclear why the measurement

quality differs from flight to flight. One possible explanation is a varying GPS qual-

ity, resulting in a worse GPS heading, and therefore less reliable direction output of

6.4. Experimental results 182

0.5 0.6 0.7 0.8 0.9
Cosine Similarity

−150

−100

−50

0

50

100

150

E
rr

or
[d

eg
]

Above 50 m
Below 50 m

Figure 6.13: Measurement error dependent on the cosine similarity criterion.

the INS. The bearing estimator also explicitly tries to model the received pattern as a

superposition of multiple signals and often returned multiple bearings. In this case,

the sensor system selects the bearing with the highest weight and discards the oth-

ers. A further tuning of the direction finder parameters [Krestel et al., 2019], might

force the direction finder to include fewer bearings of potentially higher quality.

The assumptions of the planner on the measurements were determined after

flights 1 and 2 and the cosine similarity threshold ζ was determined after flight 3.

6.4.3 Time prediction accuracy

The cost function predicts the duration of different sensing actions. This is used by

the path planner to select those sensing actions that lead to the minimal expected

time until localization. It is therefore important that the cost function corresponds

to the real duration of a sensing action. This section analyses how accurately the

prediction of the cost function corresponds to the empirical durations encountered

in the experiments.

Figure 6.15 shows the characteristics of a single movement of the UAV be-

tween two measurement locations. While the cost function assumes a linear move-

ment of the UAV, the figure shows that a single movement consists of different

phases. First, the UAV rotates in the direction of its travel. This behaviour is due

6.4. Experimental results 183

-20 -10 0 10 20
Error [deg]

6

5

4

3

2

1

Fl
ig

ht

Figure 6.14: Measurement error for measurements with > 50 m distance and a cosine
similarity > 0.7, excluding the two outliers. In total 81 measurements.
The average measurement errors amount to e1 = −5.90◦, e2 = 1.17◦, e3 =
−0.24◦, e4 = 8.30◦, e5 =−3.13◦, e6 =−4.52◦ and the standard deviations to
σ1 = 1.56◦, σ2 = 5.68◦, σ3 = 6.09◦, σ4 = 9.48◦, σ5 = 4.36◦, σ6 = 1.96◦.

Figure 6.15: Orientation and distance traveled during a movement phase.

to a limitation of its API and is not requested by the path planner. Then it acceler-

ates to its maximal speed, keeps this speed for some time, and decelerates before

reaching the target position.

6.4. Experimental results 184

This indicates that the travel time is only roughly approximated by a simple

linear model. As the cost function consists of a linear and a constant part, a question

is whether the measurement duration tm can also be used to mitigate the inaccuracies

of the travel time approximation. If the travel time can be modelled as

td(xs
k,ak) =

∥xs
k−ak∥2

vs + td,0 (6.6)

where td,0 is a constant offset, a linear model would be feasible. A least square

fit using the data from the experiments results in a constant term of td,0 = 11.2s.

Figure 6.16 compares the predictions of a linear model with 7 m/s speed and a

constant offset of td,0 with the measured travel times from the experiment. The

RMSE of this linear model is 4.79 s. Based on the experimental data an improved

model was created, which assumes that the UAV first rotates with 30◦/s into its

target orientation, then constantly accelerates with 1 m/s2 until either half of the

way or its maximal speed vs = 8.0m/s, decelerates before the target position and

has a constant offset of 3 s. The RMSE of this model is 3.02 s. While this model

is more accurate, the error of a linear model is not significantly higher. However,

the linear approximation has a systematic error and consistently overestimates the

travel costs of sensing actions with short travel times, due to the constant offset td,0.

The measurement duration is 21.4 s on average, with 2.9 s standard deviation.

The termination criteria of the measurement rotation during flight 1 and 2 were

different and in rare cases required manual intervention. This average is therefore

computed using only flights 3 to 6, in which the measurements were fully automatic.

An execution of the planner requires 0.56 s, with 0.35 s standard deviation.

After considering the movement time and measurement time in isolation, we

now analyse the complete time of a sensing action. Figure 6.17 shows the prediction

from the cost function (4.7) for sensing actions performed in the experiments. The

cost function is parameterized using the values from Table 6.1. The prediction con-

sists of movement and measurement time and is set in relation to the actual duration

of the sensing actions. The RMSE of the prediction amounts to 14.1 s. An improved

fit uses tm = 41.2s, which leads to an RMSE of 8.5 s. The duration of short sens-

6.5. Conclusion 185

Figure 6.16: Evaluation of the accuracy of the movement time prediction. The linear model
is a best-fit with vs = 7 m/s. The improved model considers also acceleration
and rotation.

ing actions is overestimated, which mirrors the behaviour seen in Figure 6.16 and

indicates that a better movement model would improve the prediction of the cost

function as well. There are some outliers (A-C) visible in the plot, which corre-

spond to measurement steps with miss-detections and an additional measurement,

making them approximately 21.4 s longer than expected. The fourth miss-detection

(see Table 6.3) happened at the begin of localization attempt 11, and therefore its

cost had never been predicted by the path planner.

Overall, a linear prediction model seems to be an acceptable approximation,

but it overestimates the costs of shorter sensing actions which are those with less

travel time. An improved model would potentially make those sensing actions more

attractive to the path planner.

6.5 Conclusion
This chapter presented a sensor system for autonomously localizing an RF emitting

target with a UAV. When adapting the algorithm from Chapter 4 and 5 to this sys-

tem, we encountered three major challenges. First, it is required that the measure-

ment location is farther than a minimal distance away from the true target position.

6.5. Conclusion 186

Figure 6.17: Comparison between the value of the cost function, and the actual duration of
a sensing action. In the experiments a measurement duration of tm = 30s was
used. The improved fit uses a longer measurement duration of tm = 41.2s.

Second, the base policy of Chapter 4 and 5 is not feasible for a constrained action

space. Third, occasionally outliers occur, which need to be detected and rejected.

The path planner was changed to solve the first problem by computing a con-

fidence region that contains 95% of the probability mass of the belief. Then the

action space A is limited to those actions Ak that are sufficiently distant from the

confidence region. The second problem was solved by introducing a new base pol-

icy, which selects sensing actions greedily on the limited action space Ak. When

outliers occur, the received power over angle looks different than the antenna pat-

tern. Therefore, the third problem was solved by rejecting measurements that do

not match the antenna pattern. This decision is made based on the cosine similarity

criterion.

We evaluated the rollout path planner and the sensor system in a total of six

flights, and eleven localization attempts. From those eleven localization attempts,

seven were fully successful, with the true target position in the indicated confidence

region. Two flights led to a point estimate close to the true target position, but with

the target being outside of the confidence region. Two flights led to a wrong point

6.5. Conclusion 187

estimate, due to significant outliers in the measurements. A probable explanation

for this is a multipath reflection.

A comparison of the predicted duration of the sensing actions with the empir-

ical duration from the experiments showed that the linear time prediction tends to

overestimate the cost of short sensing actions. However, a more complex movement

model can compensate for those differences.

In summary, this chapter made the following contributions:

1. It was demonstrated that the rollout path planner works in an experimental

sensor system.

2. The experiments demonstrated a nonmyopic stochastic path planner. To the

author’s knowledge, this was the first demonstration of a nonmyopic, stochas-

tic path planner that explicitly considered the specific trade-off between time

spent travelling and time spent measuring.

Chapter 7

General Conclusions

In this thesis, the problem of emitter localization with a small unmanned aerial

vehicle was considered. The goal was to implement effective sensor path planning

to localize an emitter as fast as possible. A novel sensor path planning algorithm was

created, and evaluated in simulations. In particular, the problem of action selection

was considered. Finally, an experimental sensor system was built on which the path

planner was tested.

Chapter 4 described a novel path planner, based on the policy rollout principle.

This rollout path planner is stochastic, which means that it takes into account the

uncertainty of the current belief. It evaluates different sensing actions by predicting

the future development of the belief, based on different target positions and mea-

surements. This prediction is performed until the target is localized, making it a

nonmyopic path planner with a planning horizon spanning over the whole problem.

The action selection is based on allocating a uniform number of evaluations to each

action. The action evaluation is performed based on deterministic samples of the

target position and an assumption that the measurement noise is zero in the future.

The localizer itself is also important. As the problem is highly nonlinear and in

the beginning none, or only a single bearing measurement is available, a grid-based

Bayes filter is used. The path planner needs to predict and update the belief for

multiple future time steps, measurement realizations, and possible target positions.

This leads to a high computational cost. An adaptive localizer, whose grid resolu-

189

tion is adaptively increased with improved location estimates, is created to reduce

the computational cost.

The resulting rollout path planner was compared in simulations with path plan-

ners from the literature, where it showed on average a smaller time until localization.

In Chapter 5 the problem of action selection was analysed in detail. The anal-

ysis was separated into two subproblems: the evaluation of the expected value from

one action and the search for the best action.

Three different methods were compared for the evaluation of the expected

value: deterministic samples, as previously used in Chapter 4, plain Monte Carlo,

and common random numbers. It was shown that deterministic samples work well,

but the performance gain with more samples is not always monotonic. Common

random numbers and plain Monte Carlo showed a monotonically increasing perfor-

mance with more samples leading to better results.

Five methods to search for the best action were evaluated: splitting the com-

putational budget uniformly over the actions, stochastic gradient descent, BFGS,

quadrant search, and sequential halving. For a small computational budget quadrant

search showed good results, and sequential halving for a higher computational bud-

get. The results of Monte-Carlo based action selection methods were well-behaved:

for a higher computational budget, the performance increased. However, determin-

istic samples did not show a monotonic improvement. In a sensitivity analysis the

results replicated for different parameters, and also replicated on a different scenario

with a different initial belief and a slightly different localizer. An analysis on the

correlation between choosing an action with a better action value and the time until

the target is localized showed a clear correlation.

The results of an experimental evaluation were presented in Chapter 6. An ex-

perimental setup, consisting of a UAV, its payload, a ground station, and an emitter,

was created to evaluate the rollout path planner. Based on the results of the pre-

vious chapter, sequential halving and common random numbers were used for the

experiments. The experimental sensor system showed additional limitations, which

needed to be modelled: no measurements are feasible at close range and occasion-

7.1. Contributions 190

ally outliers happen. The first problem was taken into account by restricting the

action space to those actions sufficiently far away from the uncertainty region. This

way it is unlikely that the target is close to the UAV when taking a measurement.

The second problem was taken into account by an additional outlier detection step,

based on the cosine similarity measure. Measurements that were not sufficiently

similar to the antenna pattern were rejected.

Six flights to evaluate the sensor system and eleven localization attempts were

made in total. From these, seven were fully successful, in the sense that the emitter

was in the indicated uncertainty region and two were successful in the sense that the

indicated localization was close to the true target position. Outliers that were not

detected by the cosine similarity criterion happened in two cases. Due to the geome-

try of the experimental area, a likely explanation is that those were due to multipath

reflections. The measurements were analysed and an average standard deviation of

7.47◦ was found for the measurement noise. However, the distribution varied be-

tween flights. In addition, the model that predicted the time cost of a single sensing

action was analysed. It was seen that a linear model as used in the experiments

showed acceptable performance, but systematically underestimated some actions.

An improved model was created, which takes the rotation and acceleration of the

UAV into account, and could predict the time of a sensing action slightly better.

7.1 Contributions
This thesis provides the following contributions to the literature.

Creation of a novel path planner for localizing an emitter with a UAV. A novel

path planner for localizing an emitter with a UAV was created. The algo-

rithm takes into account the special measurement characteristics of the sensor

system, which consists of the requirement of staying stationary during the

measurement process. Compared to similar path planners from the literature,

the rollout path planner takes the uncertainty of the state estimate and future

measurements explicitly into account. This results in a better performance

compared to those algorithms, as shown in simulations. The rollout path

7.1. Contributions 191

planner also uses a novel adaptive grid-based localizer, which uses a convex

hull to focus the grid on possible target locations.

Optimization of the action selection in a policy rollout algorithm. Previous uses

of the policy rollout algorithm do not consider in detail the step of action se-

lection. Only a minimal subset of the applications use any special optimizer

at all. In this thesis, a connection between the policy rollout action selection

and the problem of minimizing stochastic functions was drawn. Several ac-

tion selection methods were evaluated, some of which have never been used

in the policy rollout context before. In particular, to the author’s knowledge,

this work is the first to consider continuous action space for a policy roll-

out method. The trade-off between finding the best action and computational

budget was analysed for the developed path planner and as result an informed

decision can be made about the required computational budget.

Analysis of the relationship between action selection and total received cost. It

is theoretically shown that because of the rollout improvement property, the

rollout policy receives lesser cost than the base policy if the action with min-

imal action value is chosen. However, with Monte Carlo evaluation, it cannot

be guaranteed that the true best action is chosen. To the author’s knowl-

edge, this work is the first to analyse the performance when, due to a limited

computational budget, a non-optimal action is selected in the policy rollout

algorithm. In this thesis a correlation between finding the minimum of the

predicted action value and the total received cost was found. Therefore, se-

lecting an action with a better action value in the developed path planner leads

to a reduced time until the target is localized, even if the selected action is not

optimal. This leads to the conclusion that the use of effective search methods

for action selection influences the overall rollout performance and should thus

be further studied.

Demonstration of the novel path planner in an experimental sensor system.

An experimental sensor system with a UAV and a single directional antenna

7.2. Future work 192

was developed for testing the rollout path planner developed in this thesis.

The path planner was also modified for real-world use, based on additional

limitations such as minimal measurement distance and occasional outliers

identified during the test flights. The experimental results demonstrate that a

modified version of the rollout path planner can be used to localize emitters

autonomously. Based on the experimental results, improved time prediction

models were developed.

7.2 Future work
As listed in the previous section, this thesis provides original contributions to the

research field of sensor path planning. However, the work also opened up new

research questions which can be considered in the future.

One direction in which the work of this thesis can be extended is by look-

ing at different and more challenging scenarios. One possible extension would be

to consider the localization of multiple emitters. First steps in this direction have

been taken in a supervised masters thesis [Krestel, 2021], but an experimental val-

idation is still missing. Another extension would be the use of multiple UAVs, in

which case the cooperation between the UAVs need to be considered. Using multi-

ple UAVs would likely lead to faster localizations. While there exists a significant

amount of work for optimizing sensor systems of multiple UAVs with continuous

measurements, a sensor system as the one described in this thesis would lead to

measurements at different times. Likely one UAV would be flying, while the other

takes a measurement. The path planner needs to decide on the sensing action of

one UAV, before the results of the other UAV’s sensing action is received. Planning

under these circumstances would be a challenging problem.

As the experiments have shown, sometimes outliers cannot be detected due

to their signal properties alone. An interesting area of future research would be to

make the planner more resistant against such outliers. A way to achieve this could

be to require a minimal number of measurements from different positions for a tar-

get localization. If those measurements are inconsistent, the localizer could create

7.2. Future work 193

different hypotheses about which measurements are outliers and which are valid.

Then the path planner could select the next sensing actions in a way that allows to

separate the correct and the wrong hypotheses. There is always a mismatch between

model and reality and likely it is not possible to fully remove the possibility of un-

detected outliers. But it can be expected that such a system reduces the influence of

single outliers.

In this thesis the evaluation of action selection methods was focused on the

problem of sensor path planning. However, this problem is relevant for every use of

the policy rollout method when Monte Carlo evaluation is used to estimate the ac-

tion values. The results of this thesis and the determined relative performance of the

action selection algorithms are based on the path planning problem. A detailed in-

vestigation about the influence of different action selection methods in policy rollout

algorithms for different application areas would be interesting. One step in this di-

rection was made in another supervised master thesis [Gerlach, 2020], where aside

from evaluating a Bayesian action selection algorithm on this application, the op-

timization of action selection in the quiz problem [Bertsekas and Castañón, 1999]

was analysed with promising results.

Bibliography

Joel A. E. Andersson, Joris Gillis, Greg Horn, James B. Rawlings, and Moritz Diehl.

CasADi – A software framework for nonlinear optimization and optimal control.

Mathematical Programming Computation, 11(1):1–36, 2019.

Edson Hiroshi Aoki, Arunabha Bagchi, Pranab Mandal, and Yvo Boers. A theo-

retical look at information-driven sensor management criteria. In Fusion 2011 -

14th International Conference on Information Fusion, Chicago, IL, USA, 2011a.

IEEE.

Edson Hiroshi Aoki, Arunabha Bagchi, Pranab Mandal, and Yvo Boers. On

the “near-universal proxy” argument for theoretical justification of information-

driven sensor management. In 2011 IEEE Statistical Signal Processing Workshop

(SSP), pages 245–248. IEEE, June 2011b.

Sabine Apfeld, Alexander Charlish, and Wolfgang Koch. An adaptive receiver

search strategy for electronic support. In Sensor Signal Processing for Defence

(SSPD), Edinburgh, UK, 2016. IEEE.

Jean-Yves Audibert and Sébastien Bubeck. Best arm identification in multi-armed

bandits. In COLT - 23th Conference on Learning Theory, Haifa, Israel, 2010.

Peter Auer, Niolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the mul-

tiarmed bandit problem. Machine Learning, 47(2-3):235–256, 2002.

Yaakov Bar-Shalom, X.-Rong Li, and Thiagalingam Kirubarajan. Estimation with

Applications to Tracking and Navigation. John Wiley & Sons, Inc., 2001.

BIBLIOGRAPHY 195

Bradley M. Bell and Frederick W. Cathey. The iterated Kalman filter update as a

Gauss-Newton method. IEEE Transactions on Automatic Control, 38(2):294–

297, 1993.

Luca Bertazzi, Adamo Bosco, Francesca Guerriero, and Demetrio Laganà. A

stochastic inventory routing problem with stock-out. Transportation Research

Part C: Emerging Technologies, 27:89–107, 2013.

Dimitri P. Bertsekas. Differential training of rollout policies. In Proceedings of

35th Allerton Conference on Communication, Control and Computing, pages 1–

10, Allerton Park, Illinois, USA, 1997.

Dimitri P. Bertsekas. Dynamic programming and suboptimal control: A survey

from ADP to MPC*. European Journal of Control, 11(4-5):310–334, 2005.

Dimitri P. Bertsekas. Dynamic Programming and Optimal Control, Vol. II Approxi-

mate Dynamic Programming. Athena Scientific, Belmont, Massachusetts, USA,

4th edition, 2012.

Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scien-

tific, Belmont, Massachusetts, USA, 4th edition, 2017.

Dimitri P. Bertsekas and David A. Castañón. Rollout algorithms for stochastic

scheduling problems. Journal of Heuristics, 5(1):89–108, 1999.

Dimitri P. Bertsekas, John N. Tsitsiklis, and Cynara Wu. Rollout algorithms for

combinatorial optimization. Journal of Heuristics, 3(3):245–262, 1997.

Dimitris Bertsimas and Ioana Popescu. Revenue management in a dynamic network

environment. Transportation Science, 37(3):257–277, 2003.

Steffen Beyme and Cyril Leung. Rollout algorithms for wireless sensor network-

assisted target search. IEEE Sensors Journal, 15(7):3835–3845, 2015.

Adrian N. Bishop, Bariş Fidan, Brian D.O. Anderson, Kutluyil Doğançay, and Pub-

udu N. Pathirana. Optimality analysis of sensor-target geometries in passive lo-

BIBLIOGRAPHY 196

calization: Part 1 - bearing-only localization. Proceedings of the 2007 Inter-

national Conference on Intelligent Sensors, Sensor Networks and Information

Processing, ISSNIP, 1:7–12, 2007.

Adrian N. Bishop, Barış Fidan, Brian D.O. Anderson, Kutluyıl Doğançay, and Pub-

udu N. Pathirana. Optimality analysis of sensor-target localization geometries.

Automatica, 46(3):479–492, March 2010.

André Brandenburger, Folker Hoffmann, and Alexander Charlish. Co-training an

observer and an evading target. In 24th International Conference on Information

Fusion (FUSION), Rustenburg, South Africa, 2021.

Cameron B. Browne, Edward Powley, Daniel Whitehouse, Simon M. Lucas, Peter I.

Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samoth-

rakis, and Simon Colton. A survey of Monte Carlo tree search methods. IEEE

Transactions on Computational Intelligence and AI in Games, 4(1):1–49, 2012.

Sébastien Bubeck, Rémi Munos, and Gilles Stoltz. Pure exploration in multi-armed

bandits problems. Lecture Notes in Computer Science (including subseries Lec-

ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5809

LNAI:23–37, 2009.

Sébastien Bubeck, Rémi Munos, Gilles Stoltz, and Csaba Szepesvári. X-armed

bandits. Journal of Machine Learning Research, 12:1655–1695, 2011.

Richard H. Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited mem-

ory algorithm for bound constrained optimization. SIAM Journal on Scientific

Computing, 16(5):1190–1208, September 1995.

Chenghui Cai and Silvia Ferrari. Information-driven sensor path planning by ap-

proximate cell decomposition. IEEE Transactions on Systems, Man, and Cyber-

netics, Part B: Cybernetics, 39(3):672–689, 2009.

Eduardo F. Camacho and Carlos Bordons. Model Predictive Control. Springer,

second edition, 2007.

BIBLIOGRAPHY 197

Alexander Charlish and Folker Hoffmann. Anticipation in cognitive radar using

stochastic control. In 2015 IEEE Radar Conference (RadarCon), pages 1692–

1697, Arlington, Virginia, USA., 2015. IEEE.

Alexander Charlish and Folker Hoffmann. Cognitive radar management. In Novel

Radar Techniques and Applications Volume 2: Waveform Diversity and Cogni-

tive Radar, and Target Tracking and Data Fusion, chapter 5, pages 157–193.

Institution of Engineering and Technology, 1 edition, 2017.

Alexander Charlish, Folker Hoffmann, Christoph Degen, and Isabel Schlangen.

The development from adaptive to cognitive radar resource management. IEEE

Aerospace and Electronic Systems Magazine, 35(6):8–19, June 2020.

Benjamin Charrow, Gregory Kahn, Sachin Patil, Sikang Liu, Ken Goldberg, Pieter

Abbeel, Nathan Michael, and Vijay Kumar. Information-theoretic planning with

trajectory optimization for dense 3D mapping. Robotics: Science and Systems,

11, 2015.

Chun-Hung Chen and Loo Hay Lee. Stochastic Simulation Optimization - An Opti-

mal Computing Budget Allocation. World Scientific Publishing, Singapore, 2011.

Edwin K. P. Chong, Christopher M. Kreucher, and Alfred O. Hero III. Monte-carlo-

based partially observable markov decision process approximations for adaptive

sensing. In Proceedings of the 9th International Workshop on Discrete Event

Systems, pages 173–180, Göteborg, Sweden, 2008. IEEE.

Edwin K. P. Chong, Christopher M. Kreucher, and Alfred O. Hero. Partially ob-

servable Markov decision process approximations for adaptive sensing. Discrete

Event Dynamic Systems, 19(3):377–422, 2009.

I. Vaughan L. Clarkson. Optimisation of periodic search strategies for electronic

support. IEEE Transactions on Aerospace and Electronic Systems, 47(3):1770–

1784, 2011.

BIBLIOGRAPHY 198

Oliver Cliff, Robert Fitch, Salah Sukkarieh, Debbie Saunders, and Robert Hein-

sohn. Online localization of radio-tagged wildlife with an autonomous aerial

robot system. In Robotics: Science and Systems XI, Rome, Italy, 2015. Robotics:

Science and Systems Foundation.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms. MIT Press, 2nd edition, 2001.

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. John Wiley

& Sons, Inc., Hoboken, NJ, USA, second edition, 2006.

John E. Dennis, Jr. and Jorge J. Moré. Quasi-Newton methods, motivation and

theory. SIAM Review, 19(1):46–89, January 1977.

Kutluyil Doğançay. UAV path planning for passive emitter localization. IEEE

Transactions on Aerospace and Electronic Systems, 48(2):1150–1166, 2012.

Louis Dressel and Mykel J. Kochenderfer. Pseudo-bearing measurements for im-

proved localization of radio sources with multirotor UAVs. In IEEE International

Conference on Robotics and Automation (ICRA), pages 6560–6565, Brisbane,

Australia, 2018. IEEE.

Selim Engin and Volkan Isler. Active localization of multiple targets from noisy rel-

ative measurements. In International Workshop on the Algorithmic Foundations

of Robotics (WAFR), pages 398–413, Oulu, Finland, 2020.

Dario Floreano and Robert J. Wood. Science, technology and the future of small

autonomous drones. Nature, 521(7553):460–466, 2015.

Eli Fogel and Motti Gavish. Nth-order dynamics target observability from angle

measurements. IEEE Transactions on Aerospace and Electronic Systems, 24(3):

305–308, 1988.

Mark R. Fuller and Todd K. Fuller. Radio-telemetry equipment and applications for

carnivores. In Luigi Boitani and Roger A. Powell, editors, Carnivore Ecology and

BIBLIOGRAPHY 199

Conservation - A handbook of techniques, chapter 7. Oxford University Press,

2012.

Victor Gabillon and Alessandro Lazaric. Rollout allocation strategies for

classification-based policy iteration. In ICML 2010 Workshop on Reinforcement

Learning and Search in Very Large Spaces, pages 0–3, Haifa, Israel, 2010.

Victor Gabillon, Mohammad Ghavamzadeh, and Alessandro Lazaric. Best arm

identification: A unified approach to fixed budget and fixed confidence. In Ad-

vances in Neural Information Processing Systems 25, pages 3212–3220. Curran

Associates, Inc., Lake Tahoe, Nevada, USA, 2012.

Aurélien Garivier and Emilie Kaufmann. Optimal best arm identification with fixed

confidence. In COLT - 29th Conference on Learning Theory, pages 1–30, New

York, USA, 2016.

Thore Gerlach. Knowledge Gradient for Policy Rollout Algorithms. Master thesis,

Rheinische Friedrich-Wilhelms-Universität Bonn, 2020.

Thore Gerlach, Folker Hoffmann, and Alexander Charlish. Policy rollout action

selection with knowledge gradient for sensor path planning. In 24th International

Conference on Information Fusion (FUSION), Rustenburg, South Africa, 2021.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,

2016.

Justin C. Goodson, Jeffrey W. Ohlmann, and Barrett W. Thomas. Rollout policies

for dynamic solutions to the multivehicle routing problem with stochastic demand

and duration limits. Operations Research, 61(1):138–154, February 2013.

Neil J. Gordon, David J. Salmond, and Adrian F. M. Smith. Novel approach to

nonlinear/non-gaussian Bayesian state estimation. Radar and Signal Processing,

IEE Proceedings F, 140(2):107–113, 1993.

Juergen Graefenstein, Amos Albert, Peter Biber, and Andreas Schilling. Wireless

node localization based on RSSI using a rotating antenna on a mobile robot. In

BIBLIOGRAPHY 200

Proceedings of the 6th Workshop on Positioning, Navigation and Communication

(WPNC), pages 253–259, Hannover, Germany, 2009. IEEE.

Maria S. Greco, Fulvio Gini, Pietro Stinco, and Kristine Bell. Cognitive radars: On

the road to reality: Progress thus far and possibilities for the future. IEEE Signal

Processing Magazine, 35(4):112–125, 2018.

Ben Grocholsky, Alexei Makarenko, and Hugh Durrant-Whyte. Information-

theoretic coordinated control of multiple sensor platforms. In IEEE International

Conference on Robotics and Automation (ICRA), pages 1521–1526, Taipei, Tai-

wan, 2003. IEEE.

Sevgi Zubeyde Gurbuz, Hugh D. Griffiths, Alexander Charlish, Muralidhar Ran-

gaswamy, Maria Sabrina Greco, and Kristine Bell. An overview of cognitive

radar: Past, present, and future. IEEE Aerospace and Electronic Systems Maga-

zine, 34(12):6–18, December 2019.

Sherry E. Hammel, Pan-Tai Liu, Edward J. Hilliard, and Kai F. Gong. Optimal ob-

server motion for localization with bearing measurements. Computers & Mathe-

matics with Applications, 18(1-3):171–180, 1989.

Simon Haykin. Cognitive radar: A way of the future. IEEE Signal Processing

Magazine, 23(1):30–40, 2006.

Ying He and Edwin K. P. Chong. Sensor scheduling for target tracking in sensor

networks. In 43rd IEEE Conference on Decision and Control, pages 743–748,

Atlantis, Paradise Island, Bahamas, 2004. IEEE.

Ying He and Edwin K. P. Chong. Sensor scheduling for target tracking: A Monte

Carlo sampling approach. Digital Signal Processing, 16(5):533–545, 2006.

Marcel L. Hernandez. Optimal sensor trajectories in bearings-only tracking. In

The 7th International Conference on Information Fusion (FUSION), pages 1–8,

Stockholm, Sweden, 2004. IEEE.

BIBLIOGRAPHY 201

Onésimo Hernández-Lerma and Jean Bernard Lasserre. Discrete-Time Markov

Control Processes: Basic Optimality Criteria. Springer, 1996.

Alfred O. Hero III and Douglas Cochran. Sensor management: Past, present, and

future. IEEE Sensors Journal, 11(12):3064–3075, 2011.

Folker Hoffmann and Alexander Charlish. A resource allocation model for the radar

search function. In International Radar Conference, pages 1–6, Lille, France,

2014. IEEE.

Folker Hoffmann, Alexander Charlish, and Wolfgang Koch. Trajectory optimiza-

tion for multi-platform bearing-only tracking with ghosts. In Proceedings of the

19th International Conference on Information Fusion (FUSION), pages 39 – 44,

Heidelberg, Germany, 2016a.

Folker Hoffmann, Matthew Ritchie, Francesco Fioranelli, Alexander Charlish, and

Hugh Griffiths. Micro-doppler based detection and tracking of UAVs with multi-

static radar. In IEEE Radar Conference (RadarConf), pages 893–898, Philadel-

phia, PA, USA, 2016b. IEEE.

Folker Hoffmann, Hans Schily, Alexander Charlish, Matthew Ritchie, and Hugh

Griffiths. A rollout based path planner for emitter localization. In Proceedings

of the 22nd International Conference on Information Fusion (FUSION), Ottawa,

ON, Canada, 2019.

Folker Hoffmann, Alexander Charlish, Matthew Ritchie, and Hugh Griffiths. Sensor

path planning using reinforcement learning. In Proceedings of the 23nd Interna-

tional Conference on Information Fusion (FUSION), Rustenburg, South Africa

(Virtual), 2020.

Folker Hoffmann, Alexander Charlish, Matthew Ritchie, and Hugh Griffiths. Policy

rollout action selection in continuous domains for sensor path planning. IEEE

Transactions on Aerospace and Electronic Systems, pages 2247–2264, 2021.

BIBLIOGRAPHY 202

Gabriel M. Hoffmann and Claire J. Tomlin. Mobile sensor network control using

mutual information methods and particle filters. IEEE Transactions on Automatic

Control, 55(1):32–47, January 2010.

Colin Horne, Matthew Ritchie, Hugh Griffiths, Folker Hoffmann, and Alexander

Charlish. Experimental validation of cognitive radar anticipation using stochastic

control. In Asilomar Conference on Signals, Systems, and Computers, Pacific

Grove, CA, USA, 2016.

Nathan T. Hui, Eric K. Lo, Jen B. Moss, Glenn P. Gerber, Mark E. Welch, Ryan

Kastner, and Curt Schurgers. A more precise way to localize animals using

drones. Journal of Field Robotics, 38(July 2020):1–12, 2021.

Jason T. Isaacs, François Quitin, Luis R. Garcı́a Carrillo, Upamanyu Madhow, and

João P. Hespanha. Quadrotor control for RF source localization and tracking. In

International Conference on Unmanned Aircraft Systems (ICUAS), pages 244–

252, Orlando, FL, USA, 2014. IEEE.

David Jun and Douglas L Jones. The value of sleeping: A rollout algorithm for

sensor scheduling in HMMs. In 2013 IEEE Global Conference on Signal and

Information Processing, pages 181–184, Austin, Texas, USA, December 2013.

IEEE.

Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning

and acting in partially observable stochastic domains. Artificial Intelligence, 101

(1-2):99–134, 1998.

Rudolf E. Kalman. A new approach to linear filtering and prediction problems.

Journal of Basic Engineering, 82(1):35, 1960.

Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal mo-

tion planning. The International Journal of Robotics Research, 30(7):846–894,

June 2011.

BIBLIOGRAPHY 203

Zohar Karnin, Tomer Koren, and Oren Somekh. Almost optimal exploration in

multi-armed bandits. In Proceedings of the 30th International Conference on Ma-

chine Learning (ICML), volume 28, pages 1238–1246, Atlanta, Georgia, USA,

2013.

Fotios Katsilieris, Yvo Boers, and Hans Driessen. Sensor management for PRF

selection in the track-before-detect context. IEEE National Radar Conference -

Proceedings, pages 0360–0365, 2012.

David J. Kershaw and Robin J. Evans. Optimal waveform selection for tracking

systems. IEEE Transactions on Information Theory, 40(5):1536–1550, 1994.

Vesa Klumpp and Uwe D. Hanebeck. Dirac mixture trees for fast suboptimal multi-

dimensional density approximation. In IEEE International Conference on Mul-

tisensor Fusion and Integration for Intelligent Systems, pages 593–600, Seoul,

Korea, 2008. IEEE.

Wolfgang Koch. Tracking and Sensor Data Fusion. Mathematical Engineering.

Springer, Heidelberg, Germany, 2014.

Levente Kocsis and Csaba Szepesvari. Bandit based Monte-Carlo planning. In

ECML’06 Proceedings of the 17th European conference on Machine Learning,

pages 282–293, 2006.

Thomas Kollar and Nicholas Roy. Trajectory optimization using reinforcement

learning for map exploration. The International Journal of Robotics Research,

27(2):175–196, February 2008.

Fabian Körner, Raphael Speck, Ali Haydar Göktoğan, and Salah Sukkarieh. Au-

tonomous airborne wildlife tracking using radio signal strength. In 2010

IEEE/RSJ International Conference on Intelligent Robots and Systems, pages

107–112, Taipei, Taiwan, October 2010. IEEE.

Lucas W. Krakow, Edwin K. P. Chong, Kenneth N. Groom, John Harrington, Yun

Li, and Brian Rigdon. Control of perimeter surveillance wireless sensor networks

BIBLIOGRAPHY 204

via partially observable Marcov decision process. In Proceedings of the 40th

Annual International Carnahan Conference on Security Technology, pages 1–8,

Lexington, KY, USA, 2006.

Markus Krestel. Implementierung und Analyse eines Spinning Direction-Finders.

Bachelor thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, 2018. Trans-

lated title: implementation and analysis of a spinning direction finder.

Markus Krestel. Sensor Path Planning for Multi-Emitter Localization using Policy

Rollout. Master thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, 2021.

Markus Krestel, Folker Hoffmann, Hans Schily, Alexander Charlish, and Sven Rau.

Passive emitter direction finding using a single antenna and compressed sensing.

In 2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF), pages 1–5,

Bonn, Germany, 2019. IEEE.

Chris Kreucher, Alfred O. Hero, and Keith Kastella. A comparison of task driven

and information driven sensor management for target tracking. In Proceedings of

the 44th IEEE Conference on Decision and Control, pages 4004–4009, Seville,

Spain, 2005.

Thomas R. Kronhamn. Bearings-only target motion analysis based on a multihy-

pothesis Kalman filter and adaptive ownship motion control. IEE Proceedings -

Radar, Sonar and Navigation, 145(4):247, 1998.

Vija Y. Kumar and Nathan Michael. Opportunities and challenges with autonomous

micro aerial vehicles. International Journal of Robotics Research, 31(11):1279–

1291, 2012.

Serge Lang. Linear Algebra. Springer, third edition, 2004.

Steven M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

Jean-Pierre Le Cadre and S. Laurent-Michel. Optimizing the receiver maneuvers

for bearings-only tracking. Automatica, 35(4):591–606, April 1999.

BIBLIOGRAPHY 205

Cindy Leung, Shoudong Huang, Ngai Kwok, and Gamini Dissanayake. Plan-

ning under uncertainty using model predictive control for information gathering.

Robotics and Autonomous Systems, 54(11):898–910, November 2006.

Yun Li, Lucas W. Krakow, Edwin K. P. Chong, and Kenneth N. Groom. Approx-

imate stochastic dynamic programming for sensor scheduling to track multiple

targets. Digital Signal Processing, 19(6):978–989, December 2009.

Chris Mansley, Ari Weinstein, and Michael L. Littman. Sample-based planning for

continuous action Markov decision processes. In ICAPS 2011 - Proceedings of

the 21st International Conference on Automated Planning and Scheduling, pages

335–338, Freiburg, Germany, 2011.

David McClung and Peter Schaerer. The avalanche handbook. The Mountaineers

Books, third edition, 2006.

Amy McGovern and Eliot Moss. Scheduling straight-line code using reinforcement

learning and rollouts. In Advances in Neural Information Processing Systems,

pages 903–909, Denver, CO, USA, 1999.

Scott A. Miller, Zachary A. Harris, and Edwin K. P. Chong. A POMDP frame-

work for coordinated guidance of autonomous UAVs for multitarget tracking.

EURASIP Journal on Advances in Signal Processing, 2009:724597, 2009.

Darko Mušicki. Bearings only single-sensor target tracking using gaussian mix-

tures. Automatica, 45(9):2088–2092, September 2009.

Steven Nardone and Vincent Aidala. Observability criteria for bearings-only target

motion analysis. IEEE Transactions on Aerospace and Electronic Systems, AES-

17(2):162–166, 1981.

Hoa Van Nguyen, Michael Chesser, Lian Pin Koh, S. Hamid Rezatofighi, and

Damith C. Ranasinghe. TrackerBots: Autonomous unmanned aerial vehicle for

real-time localization and tracking of multiple radio-tagged animals. Journal of

Field Robotics, 36(3):617–635, 2019.

BIBLIOGRAPHY 206

Hoa Van Nguyen, Fei Chen, Joshua Chesser, Hamid Rezatofighi, and Damith

Ranasinghe. LAVAPilot : Lightweight UAV trajectory planner with situational

awareness for embedded autonomy to track and locate radio-tags. In 2020

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

pages 2488–2495, Las Vegas, NV, USA, 2020.

Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer New York,

2006.

Clara Novoa and Robert Storer. An approximate dynamic programming approach

for the vehicle routing problem with stochastic demands. European Journal of

Operational Research, 196(2):509–515, 2009.

Marc Oispuu. Passive Emitter Localization by Direct Position Determination with

Moving Array Sensors. Phd, Universität Siegen, 2013.

Yaakov Oshman and Pavel Davidson. Optimization of observer trajectories for

bearings-only target localization. IEEE Transactions on Aerospace and Elec-

tronic Systems, 35(3):892–902, 1999.

Jean-Michel Passerieux and Dominique Van Cappel. Optimal observer maneuver

for bearings-only tacking. IEEE Transactions on Aerospace and Electronic Sys-

tems, 34(3):777–788, 1998.

Liam Paull, Sajad Saeedi, Mae Seto, and Howard Li. Sensor-driven online cover-

age planning for autonomous underwater vehicles. IEEE/ASME Transactions on

Mechatronics, 18(6):1827–1838, 2013.

Warren B. Powell. Approximate Dynamic Programming. John Wiley & Sons, Inc.,

Hoboken, New Jersey, second edition, 2011.

Warren B. Powell. A unified framework for stochastic optimization. European

Journal of Operational Research, 275(3):795–821, 2019.

Luc Pronzato and Andrej Pázman. Design of Experiments in Nonlinear Models.

Springer, 2013.

BIBLIOGRAPHY 207

Martin L. Puterman. Markov Decision Processes. John Wiley & Sons, Inc., Hobo-

ken, New Jersey, 2005.

Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote, Jeremy Leibs,

Eric Berger, Rob Wheeler, and Andrew Ng. ROS: an open-source robot operating

system. In Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA) Workshop on Open Source Robotics, Kobe, Japan, May 2009.

Edward Raff. JSAT: Java statistical analysis tool, a library for machine learning.

Journal of Machine Learning Research, 18(23):1–5, 2017.

Shankarachary Ragi and Edwin K. P. Chong. UAV path planning in a dynamic en-

vironment via partially observable Markov decision process. IEEE Transactions

on Aerospace and Electronic Systems, 49(4):2397–2412, 2013.

Shankarachary Ragi, Hans D. Mittelmann, and Edwin K. P. Chong. Directional

sensor control: Heuristic approaches. IEEE Sensors Journal, 15(1):374–381,

January 2015.

Branko Ristic, Mark Morelande, and Ajith Gunatilaka. Information driven search

for point sources of gamma radiation. Signal Processing, 90(4):1225–1239, April

2010.

Reuven Y. Rubinstein and Dirk P. Kroese. Simulation and the Monte Carlo Method.

Wiley, third edition, 2016.

Allison D. Ryan, Hugh Durrant-Whyte, and J. Karl Hedrick. Information-theoretic

sensor motion control for distributed estimation. In Proceedings of ASME 2007

International Mechanical Engineering Congress and Exposition (IMECE), pages

725–734, Seattle, Washington, USA, 2007. ASME.

Anshu Saksena and I-Jeng Wang. Dynamic ping optimization for surveillance in

multistatic sonar buoy networks with energy constraints. In 47th IEEE Confer-

ence on Decision and Control, pages 1109–1114, Cancun, Mexico, 2008. IEEE.

BIBLIOGRAPHY 208

Peter Sarunic and Rob Evans. Hierarchical model predictive control of UAVs per-

forming multitarget-multisensor tracking. IEEE Transactions on Aerospace and

Electronic Systems, 50(3):2253–2268, 2014.

Hans Schily, Folker Hoffmann, and Alexander Charlish. A comparison of dis-

tributed and centralized control for bearing only emitter localization with sensor

swarms. In SCI-341: Situation Awareness of Swarms and Autonomous Systems,

Tallinn, Estonia (Virtual), 2021.

Michael K. Schneider and Chee Chong. A rollout algorithm to coordinate multiple

sensor resources to track and discriminate targets. In Ivan Kadar, editor, Proceed-

ings Volume 6235, Signal Processing, Sensor Fusion, and Target Recognition XV,

page 62350E, Orlando (Kissimmee), Florida, USA, 2006.

Nicola Secomandi. A rollout policy for the vehicle routing problem with stochastic

demands. Operations Research, 49(5):796–802, October 2001.

Nicola Secomandi. Analysis of a rollout approach to sequencing problems with

stochastic routing applications. Journal of Heuristics, 9(4):321–352, 2003.

Guy Shani, Joelle Pineau, and Robert Kaplow. A survey of point-based POMDP

solvers. Autonomous Agents and Multi-Agent Systems, 27(1):1–51, June 2012.

Richard D. Smallwood and Edward J. Sondik. The optimal control of partially

observable Markov processes over a finite horizon. Operations Research, 21(5):

1071–1088, 1973.

John R. Spletzer and Camillo J. Taylor. Dynamic sensor planning and control for

optimally tracking targets. The International Journal of Robotics Research, 22

(1):7–20, 2003.

Tao Sun, Qianchuan Zhao, Peter B. Luh, and Robert N. Tomastik. Optimization of

joint replacement policies for multipart systems by a rollout framework. IEEE

Transactions on Automation Science and Engineering, 5(4):609–619, October

2008.

BIBLIOGRAPHY 209

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning. MIT Press,

Cambridge, Massachusetts, USA, second edi edition, 2018.

Yuval Tassa, Tom Erez, and Emanuel Todorov. Synthesis and stabilization of com-

plex behaviors through online trajectory optimization. IEEE International Con-

ference on Intelligent Robots and Systems, pages 4906–4913, 2012.

Yuval Tassa, Nicolas Mansard, and Emo Todorov. Control-limited differential dy-

namic programming. In 2014 IEEE International Conference on Robotics and

Automation (ICRA), pages 1168–1175. IEEE, May 2014.

Gerald Tesauro and Gregory R. Galperin. On-line policy improvement using Monte

Carlo search. In Advances in Neural Information Processing Systems 9, pages

1068–1074, Denver, CO, USA, 1996.

Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics. The

MIT Press, 2005.

Pratap Tokekar, Joshua Vander Hook, and Volkan Isler. Active target localization

for bearing based robotic telemetry. In 2011 IEEE/RSJ International Conference

on Intelligent Robots and Systems, pages 488–493. IEEE, September 2011.

Pratap Tokekar, Elliot Branson, Joshua Vander Hook, and Volkan Isler. Tracking

aquatic invaders: Autonomous robots for monitoring invasive fish. IEEE Robotics

& Automation Magazine, 20(3):33–41, September 2013.

Olivier Trémois and Jean-Pierre Le Cadre. Optimal observer trajectory in bearings-

only tracking for manoeuvring sources. IEE Proceedings - Radar, Sonar and

Navigation, 146(1):31, 1999.

Marlin W. Ulmer, Justin C. Goodson, Dirk C. Mattfeld, and Marco Hennig. Of-

fline–online approximate dynamic programming for dynamic vehicle routing

with stochastic requests. Transportation Science, 53(1):185–202, February 2019.

BIBLIOGRAPHY 210

Joshua Vander Hook, Pratap Tokekar, and Volkan Isler. Cautious greedy strategy

for bearing-only active localization: Analysis and field experiments. Journal of

Field Robotics, 31(2):296–318, 2014.

Joshua Vander Hook, Pratap Tokekar, and Volkan Isler. Algorithms for cooperative

active localization of static targets with mobile bearing sensors under communi-

cation constraints. IEEE Transactions on Robotics, 31(4):864–876, 2015.

Sriram Venkateswaran, Jason T. Isaacs, Kingsley Fregene, Richard Ratmansky,

Brian M. Sadler, Joao P. Hespanha, and Upamanyu Madhow. RF source-seeking

by a micro aerial vehicle using rotation-based angle of arrival estimates. In Amer-

ican Control Conference (ACC), pages 2581–2587, Washington, DC, USA, 2013.

IEEE.

Kurt Vonehr, Seth Hilaski, Bruce E. Dunne, and Jeffrey Ward. Software defined

radio for direction-finding in UAV wildlife tracking. In IEEE International Con-

ference on Electro Information Technology, pages 464–469, Grand Forks, ND,

USA, 2016. IEEE.

Matouš Vrba, Jakub Pogran, Václav Pritzl, Vojtěch Spurný, and Martin Saska. Real-

time localization of transmission sources using a formation of micro aerial ve-

hicles. In 2019 IEEE International Conference on Real-time Computing and

Robotics (RCAR), pages 203–208, Irkutsk, Russia, August 2019. IEEE.

Richard G. Wiley. ELINT – The interception and analysis of radar signals. Artech

House Inc, 2006.

Ramin Zahedi, Lucas W. Krakow, Edwin K. P. Chong, and Ali Pezeshki. Adaptive

estimation of time-varying sparse signals. IEEE Access, 1:449–464, 2013.

Guoxian Zhang, Silvia Ferrari, and Ming Qian. An information roadmap method

for robotic sensor path planning. Journal of Intelligent and Robotic Systems:

Theory and Applications, 56(1-2):69–98, 2009.

BIBLIOGRAPHY 211

Zi-ning Zhang and Gan-lin Shan. Non-myopic sensor scheduling to track multiple

reactive targets. IET Signal Processing, 9(1):37–47, 2015.

	Introduction
	Emitter localization
	Statement of the objective
	Structure of the thesis
	Notation
	List of own publications

	Optimization and Approximate Dynamic Programming
	Function minimization
	Differentiable functions
	Stochastic differentiable functions
	Multi-armed bandits

	Markov decision processes
	Definition
	Optimal policies and Bellman's equation
	Solution methods
	Partial observability

	Sensor Data Fusion and Sensor Management
	Sensor data fusion
	The Bayes filter
	Probability distributions
	Fisher information and Cramér-Rao lower bound
	Uncertainty metrics

	Direction finding sensors
	Fisher information
	Sensor-to-target geometry

	Sensor management
	Sensor management as a POMDP
	Approaches to sensor management
	Sensor path planning

	Policy Rollout for Sensor Path Planning
	Comparison with existing work
	Mobile sensor systems with stationary measurements
	Contributions of this chapter

	Problem description
	State space and transition
	Belief state
	Optimization objective

	Path planning algorithm
	Localizer
	Base policy
	Policy rollout
	Search for the optimal action

	Evaluation
	Scenarios
	Simulation results

	Conclusion

	Efficient Online Policy Rollout
	Comparison with existing work
	Sampling of the action value
	Search for the optimal action
	Contributions of this chapter

	Sampling methods
	Plain Monte Carlo
	Common random numbers
	Deterministic samples

	Action selection algorithms
	Uniform allocation
	Multi-armed bandits
	Quadrant search
	Gradient-based algorithms

	Evaluation
	The true action value function
	Optimization performance
	Localization performance
	Sensitivity analysis

	Conclusion

	Experimental Sensor System
	Comparison with existing work
	RSSI-based sensor systems
	Bearing-based sensor systems
	Contributions of this chapter

	Changes to the path planner
	Constraints on the action space
	Base policy
	Detection of measurement outliers

	Experimental setup
	Hardware description
	Software description
	Experimental area

	Experimental results
	Localization attempts
	Bearing measurements
	Time prediction accuracy

	Conclusion

	General Conclusions
	Contributions
	Future work

	Bibliography

