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ATP Hydrolysis Is Critically Required for Function of CaV1.3
Channels in Cochlear Inner Hair Cells via Fueling Ca2�

Clearance
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Sound encoding is mediated by Ca 2� influx-evoked release of glutamate at the ribbon synapse of inner hair cells. Here we studied the role
of ATP in this process focusing on Ca 2� current through CaV1.3 channels and Ca 2� homeostasis in mouse inner hair cells. Patch-clamp
recordings and Ca2� imaging demonstrate that hydrolyzable ATP is essential to maintain synaptic Ca2� influx in inner hair cells via fueling
Ca2�-ATPases to avoid an increase in cytosolic [Ca2�] and subsequent Ca2�/calmodulin-dependent inactivation of CaV1.3 channels.
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Introduction
Neurotransmission at the inner hair cell (IHC) synapse is driven
by Ca 2� influx (ICa) through CaV1.3 channels (Platzer et al.,
2000; Brandt et al., 2003; Dou et al., 2004) that cluster at the active
zones (AZs) (Brandt et al., 2005). Within IHCs, this L-type chan-
nel activates at low voltage and displays only weak Ca 2� depen-
dent inactivation (CDI) (Yang et al., 2006; Cui et al., 2007). At
least two mechanisms of inhibiting CDI (Lee et al., 1999; Peterson
et al., 1999) of CaV1.3 in IHCs are currently considered: (1) au-
toregulation involving the distal and proximal C-terminal do-
mains (Singh et al., 2008) and (2) competition of Ca 2� binding
proteins (CaBPs) with calmodulin (Yang et al., 2006; Cui et al.,
2007; Schrauwen et al., 2012). However, a unifying picture of CDI
regulation during physiological signaling in IHCs has yet to be
established.

Here we studied the role of ATP in Ca 2� signaling and CaV1.3
channel regulation in IHCs. Decay (“rundown”) of ICa is com-

monly observed in whole-cell patch-clamp recordings, suggest-
ing a failure of the channel regulation and/or function upon
washout of cell constituents. Adding ATP to the pipette can par-
tially prevent ICa rundown (Chad and Eckert, 1986; Armstrong
and Eckert, 1987). Besides being used by kinases and phospha-
tases, ATP supports the function of ATP-driven pumps and is
therefore required for cellular Ca 2� homeostasis and low basal
[Ca 2�]i (for review, see Mammano et al., 2007). Elevations in
basal [Ca 2�]i could affect the Ca 2� channel behavior (e.g., via
CDI). The regulation of [Ca 2�] at ribbon synapses involves Ca 2�

buffering and diffusion (Roberts, 1993; Tucker and Fettiplace,
1995; Issa and Hudspeth, 1996; Frank et al., 2009) as well as Ca 2�

clearance via Ca 2� ATPase (PMCA) and Na�/Ca 2� exchange
(Zenisek and Matthews, 2000; Kennedy, 2002).

Here, we combined patch-clamp recordings and Ca 2� imag-
ing of IHCs during dialysis with different [ATP] or the poorly
hydrolyzable analog ATP-�-S to probe the requirement of ATP
hydrolysis for Ca 2� homeostasis and CaV1.3 channel regulation.
We demonstrate that interference with ATP hydrolysis dramati-
cally increases [Ca 2�]i because of failure of PMCA-mediated
Ca 2� clearance and consequently decreases the presynaptic ICa

via Ca 2�/calmodulin-mediated CDI.

Materials and Methods
Electrophysiology. IHCs from the apical coil of organs of Corti from C57
Bl/6 mice of either sex (postnatal day 14 [P14] to P16) were patch-
clamped (at 20°C–25°C) as described previously (Moser and Beutner,
2000). The pipette solution contained the following (in mM): 134 –140
Cs-gluconate, 10 tetraethylammonium-Cl (TEA-Cl), 10 4-AP, 10 CsOH-
HEPES, 1 MgCl2, 0.3 NaGTP, 0.5 or 10 EGTA or 10 BAPTA and 0 – 4
MgATP or 2 Li4-ATP-�-S, pH 7.2, osmolarity: 295 mOsm/L. CaMKII
290 –309, H-89 (both Merck), carboxyeosin, trifluorocarbonylcyanide
phenylhydrazone (FCCP) (both Sigma-Aldrich), and fura-2 and Fluo-
4FF (both Invitrogen) were dissolved in H2O. KN-93, CaMKII inhibitor
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XII, KT5720 (all Merck), CGS-9343B (Sigma-
Aldrich), and berbamine E6 (Santa Cruz Bio-
technology) were dissolved in DMSO. The
extracellular solution contained the following
(in mM): 110 NaCl, 35 TEA-Cl, 10 HEPES, 1
CsCl, 1 MgCl2, 2 CaCl2, 11.1 glucose, pH 7.2,
osmolarity: 300 mOsm/L. BayK 8644 (Biotrend)
was added to the extracellular solution. The
liquid junction potential was numerically esti-
mated as 14 mV and subtracted. Leak currents
were subtracted using the P/10 protocol. The
series resistance was typically �15 M�.

Camera-based Ca2� imaging. IHCs were
loaded with 100 �M fura-2 and imaged alter-
nately at 340 and 380 nm using a polychrome
IV light source and an Imago VGA CCD oper-
ated by Tillvision software (all, Tillphotonics-
FEI). Fura-2 measurements were calibrated in
vivo and in vitro (Neher, 2013), and [Ca 2�] was
calculated according to the following equation
(Grynkiewicz et al., 1985):

�Ca2�� i � Keff�R � Rmin�/�Rmax � R�.

In our experiments, calibration coefficients de-
termined in vivo were Rmin 	 0.24, Rmax 	
5.15, and Rmed 	 1 (yielding Keff of 2457 nM).
The KD for fura-2 was found to be 243.5 nM.

Confocal Ca2� imaging. Confocal Ca 2� im-
aging was performed using an Olympus FV300
confocal microscope essentially as described
previously (Frank et al., 2009) using 400 �M

Fluo-4FF in the pipette solution described above. In
brief, carboxytetramethyl-rhodamine-conjugated
RIBEYE-binding dimer peptide (10 �M) (Fran-
cis et al., 2011) was used to identify synaptic
ribbons, and changes in Fluo-4FF (400 �M)
fluorescence were repeatedly observed with
line scans through the center of the same rib-
bon during (20 ms) depolarizations to 
7 mV.

Data analysis and statistics. Data analysis and
statistics were done in IgorPro and MATLAB.
Wilcoxon rank test was used to compare data
(with non-normal distribution and/or unequal
variances). Correlation was tested using Pear-
son’s correlation. Regression lines were com-
pared among each other by one-way analysis of
covariance (ANCOVA) test. Data are pre-
sented as mean � SEM.

Results
IHC CaV1.3 channels require
hydrolyzable ATP for proper function
To determine the requirement of ATP for
Ca 2� influx, IHCs were dialyzed with 2 mM ATP, ATP-�-S, or
pipette solution lacking ATP. We first assessed the ICa properties
(current–voltage relationship, IV) 1–2 min after break-in (Fig.
1A) and thereafter ran a series of depolarization pulses (P1–P3, 20
ms; P4, 100 ms) to the peak ICa potential. Taking into account the
molecular weight (MW), series resistance RS, and the estimated
cell volume of 2.2 pl, the diffusion time constant for ATP (MW 	
507.18 g/mol, RS 	 12 M�) and ATP-�-S (MW 	 546.98 g/mol,
RS 	 10 M�) was calculated as 67 and 57 s, respectively (Pusch
and Neher, 1988). Based on these calculations, the diffusional
exchange should have been complete after 3– 4 min, when P1 was
applied. The cells infused with ATP-�-S or 0 ATP may not have
been completely devoid of ATP because of further ATP supply by
oxidative metabolism, glycolysis, or phosphocreatine.

The initial IVs revealed comparable ICa amplitudes, reflecting
the largely unaltered physiological state of the IHCs briefly after
break-in. IHCs dialyzed with ATP-�-S displayed a significantly
faster rundown of ICa compared with controls with 2 mM ATP in
the pipette (p � 0.001; Fig. 1B,C). For better comparison, ICa

values were normalized to the response upon P1 (Fig. 1C). With-
out exogenous ATP or ATP-�-S, the ICa rundown was even more
pronounced (p � 0.001 for comparison to ATP-�-S; Fig. 1B,C).
Interestingly, 4 mM ATP in the pipette prevented the mild run-
down observed with 2 mM ATP (Fig. 1D). On the contrary, low-
ering [ATP] below 2 mM caused the onset of a fast rundown after
a few minutes (Fig. 1D).

We then tested whether the effects of the lack of hydrolyzable
ATP on Ca 2� channels is reversible. IHCs were initially dialyzed
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Figure 1. ATP hydrolysis is required for maintaining IHC ICa. A, Unaltered amplitude of ICa revealed by the current–voltage
relationship (IV) of IHCs dialyzed with 2 mM ATP (n 	 26), 2 mM ATP-�-S (n 	 15), or without exogenous ATP (n 	 8) at 1–2 min
after break-in. B, Representative ICa in response to 20 ms depolarization to peak ICa potential after 3, 4.5, and 6 min dialysis with
ATP, ATP-�-S, or without ATP. C, Time course of the ICa reduction upon ATP manipulation. Top, The ICa of individual IHCs dialyzed
with ATP (n 	 21), ATP-�-S (n 	 13), or without ATP (n 	 8). Bottom, ICa normalized to the first 20 ms depolarization of each cell.
Mean normalized values with SEM displayed as overlay that were binned by time, with a bin size of 120 s. Statistical comparison
was performed between 1 min and 11 min after loading. D, The concentration-dependent effect of ATP on Ca 2� channels.
Normalized ICa values of IHCs dialyzed with 0.5 (n 	 4), 0.75 (n 	 5), or 4 mM ATP (n 	 5) over time. For comparison, the mean
normalized ICa values of IHCs dialyzed with 2 mM (black dashed line) and without ATP (gray dashed line) are displayed. E, The ICa

rundown is partially reversible. IHCs initially infused without ATP (n 	3) were repatched with a solution containing 2 mM ATP after
8 –13 min. ***p � 0.001.
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with a solution lacking ATP, the pipette was gently pulled off
enabling resealing of the IHC membrane, and the cell was then
repatched with an internal solution containing 2 mM ATP after
8 –13 min (Fig. 1E). As observed, ICa could partially be restored
and remained stable over another 10 min. Similar results were
obtained in IHCs initially dialyzed with ATP-�-S (data not
shown).

Finally, we examined the effects of DHP agonist BayK 8644 on
the ICa of ATP-�-S-treated IHCs because BayK 8644 has been
shown to partially overcome inhibition of ICa by lack of hydro-
lyzable ATP in pituitary GH3 and smooth muscle cells (Arm-
strong and Eckert, 1987; Ohya and Sperelakis, 1989). We
observed a twofold increase in the maximum steady-state ICa

amplitude of the initial IV (Fig. 2A) con-
sistent with the augmenting effects of
BayK 8644 on IHC CaV1.3 channels
(Brandt et al., 2005). However, regardless
of BayK 8644, ATP-�-S still caused a sig-
nificant rundown of ICa (p 	 0.43, com-
pared with 2 mM ATP-�-S without BayK
8644; Fig. 2B).

Probing for a role of phosphorylation
in the regulation of IHC
CaV1.3 channels
Because ATP requirement may reflect
phosphorylation events relevant to Ca 2�

channel function, we tested for effects of
the protein kinase A (PKA) inhibitors
H-89 (Chijiwa et al., 1990) and KT5720
(Okada et al., 1995), and the calmodulin-
dependent kinase II inhibitors CamKII
290 –309 (calmodulin binding domain
[CBD]) (Basavappa et al., 1999), CaMKII
Inhibitor XII (Asano et al., 2010), and
KN-93 (Sumi et al., 1991) applied via the
pipette that also contained 2 mM ATP. Mi-
cromolar concentrations of drugs (see fig-
ure legends; Ki or IC50 values in nM range)
were chosen after observing no effects at
submicromolar levels. None of the tested
PKA or CaMKII inhibitors had an effect
on the IV (Fig. 2C,E). Of all the kinase
inhibitors (Fig. 2D,F), only KT5720 had
an effect on the ICa measurements com-
pared with control (p � 0.001).

Correlation between the rise of basal
[Ca 2�]i and Ca 2� current rundown
Next, we considered the possibility that
the lack of hydrolyzable ATP disables
Ca 2� pumping and thereby Ca 2� clear-
ance. Using simultaneous fura-2 imaging
of [Ca 2�]i and whole-cell ICa recordings
in IHCs dialyzed with ATP-�-S (and 0.5
mM EGTA), we found that the ICa reduc-
tion coincided with a rise of basal [Ca 2�]i

(Fig. 3A,B). Furthermore, IHCs that dis-
played a fast and pronounced elevation of
basal [Ca 2�]i also displayed the most se-
vere ICa rundown (Fig. 3B, dashed lines),
also reflecting in the observed negative
correlation between the rise of basal

[Ca 2�]i and the ICa (Fig. 3D).
We then tested whether the PMCAs are the main mechanism

of ATP-dependent Ca 2� clearance and required for maintaining
Ca 2� influx in IHCs. Application of the PMCA inhibitor car-
boxyeosin (CE) caused a rise of the basal [Ca 2�]i and a parallel
decrease of ICa (Fig. 3A,C,D). Once again, the IHCs with the
fastest and largest elevation of basal [Ca 2�]i displayed the most
severe ICa rundown. We conclude that failure of PMCA-mediated
Ca 2� clearance explains most of the ICa reduction observed in the
presence of ATP-�-S. The slope of the regression line of cells
dialyzed without ATP was steeper than of the cells containing
ATP-�-S (p 	 0.0012), suggesting the contribution of an addi-
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Figure 2. Probing the requirement of IHC ICa for phosphorylation by PKA and CaMKII. A, The IV of IHCs dialyzed with ATP-�-S in
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tional ATP-dependent mechanism to
maintenance of ICa that can use ATP-�-S.

To test for a direct role of mitochon-
dria in Ca 2� homeostasis and regulation
of Ca 2� influx, the uncoupling agent
FCCP was used. The combined applica-
tion of FCCP and CE resulted in an eleva-
tion of [Ca 2�] and corresponding Ca 2�

current rundown similar to the one ob-
served with CE alone. However, the slope
of the regression line of ICa and basal
[Ca 2�]i was significantly steeper in the
IHCs treated with CE and FCCP com-
pared with either CE or ATP-�-S (p 	
0.0007 for ATP-�-S, p 	 0.002 for CE vs
ATP � CE � FCCP, ANCOVA), suggest-
ing that application of FCCP enhances
Ca 2� channel inactivation potentially via
disruption of mitochondrial ATP genera-
tion and/or Ca 2� uptake affecting the
clearance of synaptic Ca 2�.

Ca2�/calmodulin-mediated CDI of Ca2�

channels underlies the ICa rundown in the
absence of hydrolyzable ATP
The most parsimonious interpretation of
the ICa reduction caused by ATP-�-S or CE
is an increased CDI of Ca2� channels result-
ing from the elevated resting [Ca2�]i. To
test this hypothesis, we studied the effect of
adding a high concentration (10 mM) of the
Ca2� chelators EGTA or BAPTA to the
ATP-�-S-containing pipette solution. In
both cases, the pronounced global rise in
[Ca2�]i as well as the ICa reduction were
prevented (Fig. 4A,C).

We further tested the hypothesis of
an increased Ca 2�/calmodulin-mediated
CDI by applying the calmodulin inhibi-
tors E6 berbamine (Grant and Fuchs,
2008) and CGS-9343B (Norman et al., 1987). They significantly
slowed down ICa rundown despite a comparable increase of the
resting [Ca 2�] (Fig. 4B,C), further supporting our notion that
the lack of hydrolyzable ATP reduces the IHC ICa via a rise in
resting [Ca 2�] and consecutive CDI of the Ca 2� channels.

Finally, to test how the lack of ATP affects synaptic Ca2� signals,
we combined patch-clamp and confocal Ca2� imaging that allows
spatiotemporal characterization of submicrometer-sized Ca2� do-
mains at the fluorescently tagged ribbon-type AZs (Frank et al.,
2009). We observed that the synaptic Ca2� domains rapidly disap-
peared in the absence of ATP from the pipette solution, correlating
in time with the rundown of whole-cell ICa (Fig. 4D,E).

Discussion
This study shows that ATP is required for maintaining opera-
tional CaV1.3 Ca 2� influx in IHCs via efficient Ca 2� clearance to
secure sufficiently low basal [Ca 2�]i and avoid steady-state CDI.

ATP dependence of IHC CaV1.3
The role of ATP in the regulation of L-type Ca2� channels varies
among cells of different tissues. First, phosphorylation/dephosphor-
ylation have been shown to regulate channel gating (Xu et al., 2004).
Second, ATP may alter Ca2�-dependent proteases, which directly

interact with the Ca2� channel (Altier et al., 2011). Finally, lack of
ATP leads to failure of ATP-dependent Ca2� pumps and to cytosolic
Ca2� accumulation that may trigger CDI of Ca2� channels (Belles et
al., 1988; von Gersdorff and Matthews, 1996).

Based on the present work using potent kinase inhibitors, a
modulation of the IHC CaV1.3 channel by phosphorylation via
CaMKII is unlikely. The majority of protein kinases (including
CaMKII and PKA) can use ATP-�-S, although it is a poorer sub-
strate than ATP (Palvimo et al., 1985; Ishida et al., 1996), further
arguing against an implication of CaMKII- and PKA-mediated
phosphorylation in the ATP-�-S-induced ICa reduction. Interest-
ingly, it has been suggested that ATP-�-S supports the normal
function of CaV1.4 channels in synaptic terminals of bipolar cells
by serving kinases as a substrate for thiophosphorylation
(Heidelberger et al., 2002). In this context, the better maintained
ICa in recordings with ATP-�-S compared with those without
exogenous ATP together with the mild effect on ICa of the PKA
inhibitor KT5720 may indicate a modest positive effect of PKA-
mediated phosphorylation of CaV1.3 on IHC ICa.

Steady-state CDI of CaV1.3 channels by elevated resting
[Ca 2�] in IHCs
Parallel measurements of IHC [Ca 2�] and ICa revealed a coinci-
dent and correlated increase of resting [Ca 2�] and ICa inactiva-
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CE� FCCP. Pearson correlation coefficient (r) and regression lines are displayed. There are different slopes for no ATP and ATP-�-S.
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tion in the absence of hydrolyzable ATP or pharmacological
block of PMCAs in IHCs. PMCAs are the major source of Ca 2�

extrusion from IHCs (Kennedy, 2002) and other cells with rib-
bon synapses (Zenisek and Matthews, 2000). Lack of ATP or its
hydrolysis (ATP-�-S) (Eckstein, 1985) disables their pumping
activity; indeed, the ATP-�-S-mediated global Ca 2� increase ob-
served in IHCs could be mimicked by the PMCA inhibitor CE.
These findings emphasize the essential role of PMCA-mediated
Ca 2� clearance for synaptic transmission. In addition to PMCA
endogenous immobile and mobile Ca 2� buffers, the latter esti-
mated at 0.5–1 mM Ca 2� binding sites (Hackney et al., 2005;
Johnson and Marcotti, 2008) have been proposed to shape syn-
aptic Ca 2� signals in IHCs (Frank et al., 2009). Our results sug-
gest that, in conditions of metabolic stress that lowers the
cytosolic ATP levels (likely 1–2 mM in hair cells) (Puschner and
Schacht, 1997; Shin et al., 2007), IHCs may fail to maintain low
resting [Ca]i and normal ICa, which would then impede sensory
signaling during prolonged stimulation.

Steady-state CDI driven by enhanced
basal cytosolic Ca 2� has been docu-
mented for CaV channels of cardiomyo-
cytes and retinal bipolar cells (Belles et al.,
1988; von Gersdorff and Matthews, 1996).
In the latter, the dialysis with elevated
Ca 2� led to a block of ICa. In the present
study, we corroborated our hypothesis
that the absence of hydrolyzable ATP trig-
gers steady-state CDI in IHCs via in-
creased basal cytosolic Ca 2� by showing
that EGTA, BAPTA, and the calmodulin
inhibitors antagonize the ICa rundown.
Work on the molecular mechanism of
Ca 2�/calmodulin modulation of the C
terminus of the CaV channels indicates
that the N-terminal lobe of CaM might
respond preferentially to the global accu-
mulation of Ca 2� (Dick et al., 2008).
IHCs use several mechanisms to counter-
act CDI. An increase of steady-state inac-
tivation of CaV1.3 channels in IHCs, as
found here upon manipulation of the
ATP supply, is expected to reduce the rate
of transmitter release and, consequently,
of spiking in the postsynaptic spiral gan-
glion neurons. Interestingly, a human
mutation in the gene coding for Ca 2�

binding protein 2 that antagonizes CDI
impairs hearing (Schrauwen et al., 2012)
potentially because of increased steady-
state inactivation. It is conceivable that
IHC Ca 2� influx, synaptic sound coding,
and hearing can be compromised also by
other mechanisms that lead to enhanced
CDI, and the metabolic state of the IHC
may couple to sound encoding via the
mechanism described in this study.
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