An object-oriented environment for Newtonian

particle mechanics

P. Mitic, P.G. Thomas

Faculty of Mathematics and Computing, The Open University, Walton
Hall, Milton Keynes MK7 644, UK

Abstract

Newtonian particle mechanics is embedded within an object-oriented framework,
such that it is possible to model physical situations using a small toolkit of logical
objects. Modelling is done by constructing objects with appropriate methods and
attributes and linking them. This results in the creation of more objects, including,
eventually, an object representing an equation of motion. From this, an actual
equation of motion can be extracted. This system produces correct solutions in a
wide variety of situations, some of which are described.

1 Introduction

Existing undergraduate courses on mechanics provide many examples of how to
solve problems which involve particles, forces, strings, springs and other similar
elements. Such elements are mentioned implicitly, and methods are stressed in the
sense that examples of solved problems are provided. There are certain problems
with this approach. Students can have difficulty in determining a starting point for
finding a solution, in isolating the necessary steps which are needed to obtain a
solution, and in applying the correct techniques and processes at the appropriate
time.

Generic computer algebra systems have been used to solve problems in
particular contexts by providing a specific environment for problem solving.
Mathematica is particularly flexible and adaptable in this respect. An environment
for solving problems in Newtonian mechanics has been implemented by Dubisch[1].
This approach relies on a toolkit of templates, which works well if the a template
is available. If not, a template must be created. This can lead to a large number of
specific cases.

We consider that the implicit introduction of physical objects in texts on
mechanicsis quite natural, and is more important than has been thought. The axioms
of Newtonian mechanics provide a scientific model for mechanics, and has no
parallel elsewhere. The axioms themselves concern the way in which matter

276 Mathematics with Vision

behaves in space. We discuss the nature of this matter by approaching the problem
in an object-oriented (O-O) way. A similar approach has been used by Viklund and
Fritzson[2] in the context of finite element computations. They supplement
Mathematica by ObjectMath, with which objects can be defined and manipulated.

In this paper, physical elements used in simple particle mechanics are first
identified. They are then classified in terms of an object hierarchy. Each object is
assigned relevant attributes and methods. This structure, with associated auxiliary

functions, is termed the ‘ Applied Mathematics Kit’ (AMK). The present discussion
is limited to one and two dimensional Newtonian particle mechanics in which
Newton’s Second Lawis used to derive an equation of motion. Solvingtheresulting
equations of motion is to be the subject of a further paper.

A natural extension to this system will be to provide methods for manipulating
the EquationOfMotion object. We have also produced a front end for AMK using
Visual Basic. The front end constructsthe necessary Mathematica inputs and forces
the user to stick to the appropriate modelling cycle. This is described in Mitic and
Thomas[3]. We also intend to construct an interface which is directly geometric in
that the placement of objects on the screen will determine attributes of objects.

2 The modelling process

Examples teach us a number of things implicitly. First, which objects exist in the
first place. Second, how to use the Newtonian scientific model to produce a
mathematical model. Third, we learn the necessary steps to solve a problem. AMK
uses predefined objects which interact using their methods. We use the term
‘linking’ for this. AMK modelling is therefore done by constructing instances of
objects and specifying which objects interact. The way in which they interact is
handled automatically by AMK. The result is to construct a new object or objects.
Forexample, ifa particleinteracts with a spring, the result is thetension inthe spring,
whichis a force. Information about any given instance of an object can be obtained
at any time by invoking a method of that object. The user has to know a general
strategy for problem solving and has to be aware of the consequences of the
interaction of two objects.

We can therefore provide a modelling cycle, which is summarised in the
pseudocode below.

For each physical object in the system
Define an instance of that object
End For
For each particle in the system
Repeat
Link objects
Until the particle and a force (or forces) are linked

Obtain the equation of motion for the resulting equation of motion object
End For

Mathematics with Vision 277
3 The Object Environment

Objects are embedded in the Mathematica O-O framework developed by Maeder,
the principles of which are discussed in Maeder[4]. This framework is presented
in the form of a Mathematica package and provides all that we require, integrated
within an environment where symbolic manipulationis possible. A discussion ofthe
O-O programming paradigm may be found in Maeder[5] and the implementation
used here is from Maeder[6]. The procedure Class is used to define an object with
its methods and attributes. A constructor procedure, new, creates instance
variables, and message passing is implemented as a rule for applying functions to
objects.

There is provision for single inheritance only, which causes problems for our
purposes. In principle, it would be useful to define a superclass Coordinates with
two subclasses, PolarCoordinates and CartesianCoordinates. 1t would then be
possible for a subclass such as Particle to inherit methods from both the classes
PolarCoordinates and CartesianCoordinates. If multiple inheritance were available
in this way it would simplify the code considerably. In particular, coordinate
transformations would have been easy.

4 The Object System

A search through standard texts on mechanics, such as Milne[7] and Dyke and
Whitworth[8], reveals consistency in the objects that appear and in the situations
in which they appear. Most objects in this context share attributes and methods, so
it is reasonable to seek commonalty. The most fundamental shared attribute is that
ofa coordinate system. The object CoordinateSystem forms the superclass for the
majority of the other objects in our system. CoordinateSystem encapsulates a
complete implementation of polar and cartesian coordinates in two dimensions.
Transformations between polars and cartesians are implemented in terms of rewrite
rules. The principal attribute of CoordinateSystem is a coordinate which has five
parameters. The first is either cartesian or polar. The second and third are the
relevant space coordinates. The fourth determines the position of an initial line
relative to a fixed horizontal line which points from left to right. The fifth, Sense,
specifies the sense of rotation in the case of polar coordinates and either a left handed
set or a right handed set in the case of cartesian coordinates. Among the methods
of CoordinateSystem are Type, Magnitude, Direction, X, Y and Displacement,
which serve to export details of the coordinates. The class CoordinateSystem is
itselfa subclass of the class Coordinate Transformations, which provides primitives
for transformations between cartesian and polar coordinates.

Most other objects are subclasses of CoordinateSystem, and have no subclasses
themselves. For example, the object Particle has the extra attributes Mass and
Time, and has, among other methods, Velocity and Acceleration. The latter two
are obtained by differentiating the space coordinates with respect to time. If an

278 Mathematics with Vision

instance of a Particle has polar coordinates, the components of its velocity and
acceleration are automatically given in polar form. This mathematical activity
makes it a great advantage to maintain the object hierarchy within the Mathematica
environment. Particles are fundamental to this discussion because they are part of
the vital link which produces an equation of motion.

An example of a subclass of CoordinateSystem which has its own subclass is
HorizontalPlane. This has a subclass InclinedPlane, which is specified in terms of
the additional attribute, Slope. HorizontalPlane also has a second subclass,
CircularSurface, which is used to model problems in which a particle moves on the

line of greatest slope of a circular cylinder or a sphere. It is notable that
CircularSurface differs from HorizontalPlane in one respect only: it has the extra
attribute Radius. The physical objects are quite different!

The object EquationOfMotion is unlike the others in that it is not a subclass of
CoordinateSystem. There is no need for this object to inherit any methods of
CoordinateSystem, and its own methods are unique. The object hierarchy is shown
in Figure 1.

CoordinateTransformations Abstract class EquationOfMotion

l CoodinateSystem l Psoudo sbetract class
o insiances
CravitaticnalField lHonzontalPla;’ lnenensiblesuingﬁl SmoomF’ulle?]

I Incllnedplan:l LClrcularSurface—l RoughPuliey

Figure 1: Object hierarchy

The class CoordinateSystem has an attribute /nfo, which provides a generic way
ofinserting information into the system without the need to define a specific method.
Itisused mainly to provide information, which is not needed initially, for an existing
object at a later stage. For example, we might want to use the reserved symbol g
for the acceleration due to gravity, and provide a numerical value for glater. This
sort of information can be given when an instance of an object is constructed, as
below.

Clear|[P];
P = new[Particle, Cartesian[{{x[t],O},O,l}],
{InitialVelocity->u},t ,m]

In many cases there is no need to override methods defined in a superclass by
an amended method. It is more important to replace irrelevant methods by a Nul/
method.

Mathematics with Vision 279
S Object Links

Formulating and solving problems is done by linking objects and thereby generating
new objects. Eventually, a particle can be linked with a sum of forces, and this step
generates the equation of motion. The procedure MakeLink has a polymorphic
definition: one for each meaningful object combination. For example, linking a
particle with a spring produces a force - the tension in the spring. There are no links
for objects for which the resulting combination is not meaningful, such as a Spring
with an EquationOfMotion. The principal links are:

FParticle + GravitationalField - F, orce; Particle + Spring = Force:

Particle + InextensibleString = Force: Particle + HorizontalPlane = Force;
Particle + InclinedPlane = Force; Particle + CircularSurface = Force;
Particle + Force = EquationOfMotion,

Inordertotest for the type of objects which are being linked, boolean functions such
as ParticleQ) are implemented in terms of the environmental primitive isa. Here is
an example of such a boolean function and a MakeLink procedure. The use of the
attribute Sense makes it unnecessary to worry about signs of forces. This is
determined automatically from the coordinates specified.

ParticleQ[x_]:= isal[x, Particle]

MakeLink[p ?ParticleQ, f ?ForceQ] :=

Which[Sense[p]==Sense[f],
new[EquationOfMotion, By £,
Sense [p]==-Sense[f],
new[EquationOfMotion, B, =f]
]

In some cases, linking two objects triggers a response which is appropriate for
thesituation. For example, ifan inextensible string is linked with a particle, the result
is a force (the tension in the string). If'the coordinates of the particle were given
in terms of polar coordinates, the resulting force is also given in terms of polar
coordinates. Otherwise, both are givenin terms of cartesian coordinates. This trick
anticipates the wishes of the user. For example, we would want to stick to polar
coordinates for a simple pendulum system.

There is a calculus for combining forces, so there is no need for a MakeLink
procedure for two Force objects. There are polymorphic definitions which
determine the Sense of the resulting force from the inputs. For example:

(fl_?ForceQ + f2 ?ForceQ) :=
new[Force,Cartesian[{{X[fl]+X[f2]},
Angle([fl],Sense[f1]}]] /;:
(Length[Displacement[fl]]===
Lengtthisplacement[fZ]]===1) &&
(Angle[f1]===Angle[f2]) &&

280 Mathematics with Vision

(Sense [fl]===Sense[f2])

This obviates the need for a MakeLink procedure for linking two forces.

Combining forces in this way works well when the forces are simple algebraic
expressions. If they are not, the time taken to produce the result is too slow,
although the procedures called are identical. For example, consider a system
consisting of a particle, free to move in two dimensions, attached to two non-
identical springs whose other ends are fixed. The equation of motion is a
complicated algebraic expression, although it is not difficult to derive it in principle.
If the springs are identical, some simplifications can be made and the equation of
motion can be derived much faster.

All the procedures for combining forces assume that the forces concerned are
given with respect to the same coordinate axes. If this is not so they cannot be
combined unless one coordinate system is rotated such that it coincides with the
other. We illustrate this in the example below.

6 Examples: A Particle on a plane

These examples illustrate the important points of this modelling methodology. The
inputs consist of constructors for the objects concerned, followed by link statements
to produce new objects. Linking continues until an EquationOfMotion object
results. The importance of the geometric aspects of problems is paramount. This
is particularly so for problems in which objects have coordinates of different types
or orientations.

We consider, first, a particle of mass moving on a rough horizontal plane. It
is pulled by a force of magnitude g, inclined at an angle ¢ to the horizontal. The
contact between P and Q gives rise to a normal reaction, R, and a frictional
component, WR. All are referred to a cartesian coordinate system as in Figure 2.

‘F q T’(1)
KR /(' ——> x(t)
vmg

Figure 2: Particle on a horizontal plane

Four objects are constructed: the particle, P, the gravitational field, GF, the
plane, 7P, and the force which pullsthe particle, Q. P and GF are linked to produce
the weight, W (=mg). Pis linked with HP to produce the contact force, CF, which
is a vector (R, uR). The sum of forces is then W + CF + @, and this produces the
equation of motion, EoM, when linked with 7. The Equation method of EoM is
invoked to produce the standard equations of motion for this system. The required
inputs follow.

P=new[Particle,Cartesian E{im €] 8} ,0, 13§ | ST
GF=new[GravitationalField,Cartesian [{{0,9}:0,1}7,1}]

Mathematics with Vision 281

HP=new [HorizontalPlane,Cartesian[{{x[t],y([t]},0,1}],
{NormalReaction->Nr}, mu]

Q=new[Force, Polar([{{q,phi},0,1}]]

CF=LinkObjects [P, HP]

W=LinkObjects [P, GF]

EoM=LinkObjects [P, W+CF+Q]

Equation [EoM]

The output corresponding to the last input is the following list.

{m x”[t] == -(mu Nr) + gq Cos[phi],
== -(gm) + Nr + g Sin[phi]}

We now consider what changes must be made to solve the same type of system,
but with a plane inclined at an angle o to the horizontal. The natural coordinate
system for this situation has axes alligned along the line of and perpendicular to the
line of greatest slope of the plane. We assume that the particle moves up the slope.
This system is shown in Figure 3.

2 ¥
L
;:? ///' \\/" x(t)

b
95*¢¢T/
m mg

Figure 3. Particle on a slope

The same objects as before are defined, except that the plane, /ncP, is aninstance
of the class /nclinedPlane. The syntax of the term Cartesianf{{x(t],0},alpha,1}]
means that a right handed set of coordinate axes is rotated clockwise through an
angle .. It is natural to use the x and y axes as stated for all objects except the
gravitational field, which is expressed in terms of non-rotated axes. In ordcr to
combine the weight, ¥, which results from the gravitational field, with other forces,
it is necessary to express them all in terms of a common coordinate system. This
is the purpose of the cast 7oCartesian{W, alpha, 1], which creates components of
weight referred to the axes x and y in Figure 3.

P=new[Particle,Cartesian[{{x[t],0},alpha,1}],(},t,m]

GF=new|[GravitationalField,Cartesian({{0,-g},0,1}], {}]

IncP=new[InclinedPlane,Cartesian([{{x[t],y[t]},alpha,1}],
{NormalReaction->Nr}, lambda,alphal]

Q=new[Force, Polar[{{qg,theta},alpha,1}]]

CF=LinkObjects [P, IncP]

W=LinkObjects [P, GF]

Wl=ToCartesian[W, alpha,l]

EoM=LinkObjects [P, Q+CF+W1]

Equation[EoM]

282 Mathematics with Vision

The output corresponding to the last input is the following list.

im x*[t] ==
(lambda Nr) + g Cos[thetal- g m Sin[alphal,
0 == Nr - g m Cos[alphal] + g Sin[theta]}

7 Conclusion

The strength of this system is that relatively complicated mathematical models can
be constructed using a small number of generic objects, provided that they are linked
in a meaningful way. This method of doing particle mechanics forces the user to
think about the geometry of the situation and about the objects in the system. The
user links the objects in a way which parallels the way in which a diagram showing
forces and coordinates would be drawn. Mathematica deals with the mechanics of
producing new objects.

The system works within a wide variety of situations in particle mechanics,
without needing a dedicated template foreach conceivable situation. It can disguise
algebraic manipulations which, although tedious, should be something that the user
can do if necessary. Interpretation can be slow at times, particularly when
combining two forces which contain structurally complicated expressions. It helps
to free memory by exiting Mathematica and restarting.

The present implemention is restricted to given objects within the context of
Newton’s Second Law of Motion. The conceptual framework of the system can
be extended to include momentum, work and energy, which would provide scope
to solve a wider class of problems. In addition, a means for the user to define new
objects would be advantageous.

References

1. Dubisch, R.J. The toolkit: a notebook subclass, Mathematica Journal, 1990,
3,1, Miller Freeman.

2. Viklund, L. & Fritzson, P. Anobject oriented language for symbolic computation
- Applied to machine element analysis, in Pro. ISSAC 1992 (ed. P. Wang), pp
397-404, Berkeley, CA, USA, 1992.

3. Mitic, P & Thomas, P.G. AMK: Aninterface for Object-oriented Newtonian
particle mechanics, Open University internal report, 1995.

4. Maeder, RE. Polymorphism and Message Passing, Mathematica Journal,
1992, 2, 4, Miller Freeman.

5. Maeder, RE. Object Oriented Programming, Mathematica Journal, 1993, 3,
1, Miller Freeman.

6. Maeder, R E. The Mathematica Programmer, Academic Press, 1994.

Milne E.A. Vectorial Mechanics, Methuen, 1948.

8. Dyke,P & Whitworth R. Guide 1o Mechanics, MacMillan, 1992.

~

