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1. Physical activity 

1.1. Introduction 

Implicating physical activity in biomedical and health research relies upon accurate 
measurement. Efforts to develop better ways of measuring physical activity have come on 
the back of a widespread rise in sedentary lifestyles (Tremblay et al., 2011; Wilmot et al., 
2012). The importance of physical activity is well-established in physical health (Arem et al., 
2015) and is increasingly becoming recognised in mental health (Schuch et al., 2018).  

Physical activity refers to any bodily movement produced by the skeletal muscles that 
requires energy expenditure (Caspersen, 1985). It is a complex construct that can be 
variably categorised qualitatively (e.g. incidental activity, or exercise), quantitatively (e.g. 
frequency, duration, or intensity), or contextually (e.g. time, place, position, or posture) (Butte 
et al., 2012).  

Ultimately, a tool for assessing physical activity should be versatile, easy to interpret, and 
accurate in estimating intensity, volume, duration, and frequency of activity (Ainsworth et al., 
2015). We conducted a non-systematic rapid review of the literature in this area to identify 
existing and novel methods of measuring physical activity in large-scale studies. The 
following sections will outline some commonly used methods for measuring physical activity 
in population-based cohort studies (e.g. accelerometers), along with some more novel 
approaches (e.g. combined monitors).  

1.2. Findings 

1.2.1. Gold standard 
Gold standard measures of physical activity involve direct measures of energy expenditure 
through measures of metabolic processes. Calorimetry uses body heat in a sealed 
calorimetry chamber, whereas indirect calorimetry uses measures of oxygen and carbon 
dioxide in a respiration chamber. It is also possible to use doubly labelled water, where 
participants consume modified drinking water and collect daily urine samples that are 
analysed to derive carbon dioxide expiration. However, these are expensive and difficult to 
administer in the field at scale (Aparicio-Ugarriza et al., 2015). 

1.2.2. Self-report measures 
Self-report questionnaires have been most common method of collecting physical activity 
data in population-based research. The most widely used questionnaire is the International 
Physical Activity Questionnaire (IPAQ) (van Poppel et al., 2010). It contains 31 questions (9 
in the short-form version) on time spent sitting, in light activity (e.g. walking), moderate 
activity (e.g. leisure cycling), and vigorous activity (e.g. running) over the past week or in a 
typical week. As self-report methods are subject to attentional biases (Prince et al., 2008) 
validation studies have found poor correlations with objective measures of activity, such as 
accelerometers (e.g. r = 0.09 to 0.39) (Lee et al., 2011a).  

However, self-report questionnaires have a low participant burden and can provide detail on 
the environmental and psychosocial context, and perceived intensity of physical activity. It is 
also possible to group patterns of activity together that may involve rapid fluctuations in 
intensity, or bouts of inactivity, such as gardening. Most physical activity guidelines are also 
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based on data from self-report questionnaires, so they can be more comparable in studies 
using this type of data (Troiano et al., 2014).  

1.2.3. Accelerometers 
Accelerometers are electromechanical devices that measure bodily movements through 
changes in acceleration on one, or multiple planes, over time. They have become the 
preferred method of objectively estimating physical activity in field research (Hills et al., 
2014). The monitor is worn on a part of the body most likely to capture movement (close to 
the its centre of gravity), usually the wrist or hip. It records any bodily acceleration as a 
‘count’. These counts are usually recorded in pre-specified time periods (‘epochs’), usually of 
1 minute, with counts per epoch taken to indicate magnitude of movement.  

Validation studies have found that accelerometers have a moderate-to-strong correlation (r = 
0.45-0.93) with direct measures of oxygen consumption (e.g. doubly labelled water and 
indirect calorimetry) when estimating physical activity in children and adults (Trost et al., 
2005).This variety is due to methodological differences such as the use of different devices, 
pre-processing and analysis, length of use, epoch definition, bodily placement (e.g. hip, or 
wrist), or the type of activities being monitored. Accelerometers have been used in several 
national cohort studies, such as in Canada (Collet et al., 2011) and the UK (O’Donovan et 
al., 2013).  

Over 50% of published studies use ActiGraph accelerometers for measuring energy 
expenditure (Wijndaele et al., 2015). The latest models (GT3X, GT3X+, and wGT3X-BT) 
contain a triaxial sensor, meaning they can record acceleration over three planes. These are 
generally more accurate for estimating physical activity than earlier uniaxial models that only 
recorded acceleration on the vertical axis (Butte et al., 2012). Triaxial devices may also be 
more useful in children as it can capture jumping, and climbing behaviour (Hills et al., 2014). 
Compared with direct measures of oxygen consumption using gas analysis, the ActiGraph 
GT3X+ has a strong correlation (r = 0.73) when estimating physical activity in a sample of 52 
participants performing structures tasks (Bai et al., 2016). But the model performs poorly 
when estimating physical activity during higher intensity activities and field sports (Gastin et 
al., 2018). 

Other types of accelerometer focus on approximating posture, which is more useful in 
studies of sedentary behaviour (Granat, 2012). The Intelligence Device for Energy 
Expenditure and physical Activity (IDEEA) uses multiple sensors located around the body, 
whereas other devices only use a single sensor, such as activPAL (Granat, 2012). ActivPAL 
is validated against direct observation using an automated camera for measure for 
measuring sedentary behaviour in 11 free living participants with 4.11% error (Kim et al., 
2015).  

Accelerometers are well established in research due to their ability to non-invasively collect 
reliable and detailed information on the frequency, duration, pattern and intensity of activity 
(Ainsworth et al., 2015). They can also estimate gait speed using cadence (steps/minute). 
Accelerometers may be the most practical way of measuring physical activity outside of a 
laboratory but are expensive compared to pedometers or self-report questionnaires. 

In recent years, a range of commercial activity trackers containing accelerometers have 
become available that are inexpensive and have comparable accuracy to research-grade 
accelerometers (Evenson et al., 2015). Commercial monitors also have several other 
advantages, including real-time feedback, high ecological validity and excellent connectivity 
for syncing with mobile phones or computers. Their use in research is growing rapidly. In 
2016, around 127 trials were registered using Fitbit activity monitors for a range of purposes, 
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with the majority being physical activity monitoring for health purposes (Wright et al., 2017). 
There are a great range of different activity trackers, but vast majority of activity trackers are 
made by Fitbit or Jawbone who make up around 87% of the market share (Dolan, 2014).  

A systematic review found that models from both brands are reliable step monitors (Pearson 
or interclass correlation coefficient >= 0.80) when validated against step counting or 
accelerometer steps, but error increases markedly at slower walking paces (Evenson et al., 
2015). Two systematic reviews have found activity monitors tend to underestimate energy 
expenditure with Fitbit monitors being the most accurate (Bunn et al., 2018; Evenson et al., 
2015). For estimating physical activity several Fitbit and Jawbone brands are validated 
against indirect calorimetry with studies including 52 (Bai et al., 2016) and 60 (Lee et al., 
2014) participants finding 10-20% error in semi structured environments. Against doubly 
labelled water in 19 free living participants activity monitors underestimated physical activity 
by 590 to 69 kcal/day (Murakami et al., 2016). Compared with direct gas analysis the activity 
monitors underestimated physical activity by 13-29% in 30 participants in semi-structured 
environments (Imboden et al., 2018). This study also found they underestimated steps by 23 
to 32% compared with direct observation. In general, commercial and research grade 
accelerometers perform at roughly the same level for estimating steps and energy 
expenditure.  

However, broader problems with all accelerometers include the high variability in methods 
for processing and analysing the data (Troiano et al., 2014). This is further complicated by 
the use of different proprietary algorithms, such as for converting raw data to counts. For 
commercial grade accelerometers, the algorithms for determining steps and energy 
expenditure are typically not shared with researchers (Wright et al., 2017). There is no 
consensus on how commercial activity monitors calculate METs, which makes comparisons 
with other studies challenging.  

Accelerometers are reliable measures of steps and can accurately distinguish between 
related activities such as walking and running. But most accelerometers only focus on lower-
body movement (Aparicio-Ugarriza et al., 2015). They are poor at estimating non-ambulatory 
activities that may account for a substantial part of an individual’s daily activity, such as 
cycling and resistance training. They are also less sensitive to sedentary, or light intensity 
activity, but some models have sought to address this limitation, such as ActivPal.  

Compliance can also be problematic. A systematic review of two pedometer and eight 
accelerometer studies between 2012 and 2017 found a mean adherence of 59% (39.6% to 
85.7%), but samples were predominantly males aged between 42 and 82 (Marin et al., 
2019). But data from the US NHANES studies suggests that compliance rates are greater for 
wrist-worn accelerometers where 70-80% of participants provided sufficient data for 
analysis, compared to 40-70% with the hip-worn accelerometers (Troiano et al., 2014). 

1.2.4. Pedometers  
Traditional pedometers are small devices that detect vertical acceleration (movement up and 
down) from the hips. Each up and down movement is measured as a step count. They are 
particularly suited to measuring ‘ambulatory’ activities, such as walking or running (Tudor-
Locke et al., 2002). More modern pedometers use a microelectromechanical system, and 
specialised algorithms that have greatly improved their accuracy (Ainsworth et al., 2015).  

Compared against a manually counted steps on a treadmill, a study of 10 pedometers in 10 
people found that they can accurately record steps (~1% error) and distance (~10% error), 
but performed worse at slower paces (Crouter et al., 2003). Two of the most commonly used 
pedometers are the Omron HJ and YAMAX DigiWalker range. These are validated against 
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manual step counting on a treadmill with the Omron pedometer showing high consistency 
across all speeds (ICC = 0.90 – 0.99), and the YAMAX pedometer showing good 
consistency at higher speeds (ICC = 0.72 – 0.99) but less consistency at paces of less than 
4km/h (ICC = 0.28- 0.53) (Lee et al., 2015). The poorer performance at slower paces means 
that pedometers may not be suitable for older populations, or those with abnormal gait 
speeds (Hills et al., 2014). Many population-based studies across the world have used 
pedometers on a large scale, such as in Australia (Dwyer et al., 2007) and the US (Bassett 
et al., 2010).  

A great range of commercial pedometers are also now available, with some showing good 
validity. For example, the Fitbit Zip correlates well with a YAMAX pedometer and ActiGraph 
GR3X accelerometer for measuring steps at various speeds in free living conditions (r = 
0.91) (Tully et al., 2014).  

Pedometers have some advantages over accelerometers. The most pertinent of which is 
price. This can be as low as £10 per unit, whereas accelerometers often cost over £100 per 
unit. Pedometers have traditionally been a more reliable measure of steps (Butte et al., 
2012). One study comparing an accelerometer (ActiGraph GT3X) with a pedometer 
(DigiWalker SW-200) in overweight and obese adults found the pedometer to be more 
accurate when the total step volume was high or low, but the difference was small (Barreira 
et al., 2013).  

However, pedometers are more limited than accelerometers as most models only detect 
acceleration across the vertical plane, i.e. detecting up and down movement. They are 
unable to fully capture physical activity due to their exclusive focus on steps (Ainsworth et 
al., 2015). Pedometers are also unable to provide supplementary detail on ambulatory 
activities, such as walking speed or stride length (Butte et al., 2012). This makes it difficult to 
estimate total distance travelled without prior calibration, which can be time-consuming.  

The accuracy of modern accelerometers for measuring steps is becoming indistinguishable 
from pedometers (O’Neill et al., 2017), and they also provide other data that can be 
extrapolated to provide more meaningful information that steps. For example, they collect 
temporal information that allow for estimations of time spend in different activities. Modern 
triaxial accelerometers can also capture a much wider range of activity than steps as they 
record acceleration across three planes.  

But this simplicity does mean that the data from pedometers is more comparable, 
straightforward to analyse, and has an easily interpretable unit of output (steps), than 
accelerometers (Ainsworth et al., 2015).  

1.2.5. Heartrate monitors 
Heart rate monitors are small, non-invasive devices that record heart rate. Unlike 
accelerometers and pedometers, they do not measure activity through detecting motion.  

Minute-by-minute heart rate monitoring is another method for assessing physical activity. 
This assumes a linear relationship between heart rate and oxygen consumption (energy 
expenditure). Some studies have demonstrated this assumption to be valid across a range 
of activities (Livingston, 1997), with small variations due to factors such as age, fitness 
levels, and movement efficiency. Insufficient calibration can exaggerate these variations and 
caution is necessary when dealing with certain population groups, such as older populations 
(Schrack et al., 2014).   

Calibration studies typically involve the simultaneous recording of heart rate, and oxygen 
consumption while performing various tasks at different intensities. Researchers typically 
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use FLEX-HR to account for the overlap between active and sedentary heart rate. This 
assigns individually determined thresholds based on maximum resting heart rate, and 
minimum active heart rate. FLEX-HR has been validated against doubly labelled water with 
a similar predictive value for physical activity in eight young athletes (Ekelund et al., 2002). A 
range of commercial grade monitors also track heartrate with good accuracy. A recent 
systematic review indicates that commercial grade activity monitors are validated against 
ECG monitors (CC = 0.78 to 0.99) with the Polar H7 (CC = 0.99) and Apple Watch (CC = 
0.92 to 0.98) being the most accurate brands (Bunn et al., 2018). 

A key advantage of heart rate monitors is the ability to calibrate them to individuals, which 
can account for variation due to factors such as fitness (Hills et al., 2014). But this calibration 
procedure can be costly, and time-consuming. It is also possible to obtain good measures of 
exercise intensity, and both ambulatory and non-ambulatory activity types. But heart rate 
monitors are poor at estimating low intensity activity and can be disrupted by other factors 
than activity that affect heart rate, such as prescription drugs (Butte et al., 2012). 

1.2.6. Combined monitors 
Innovations for improving the collection of physical activity data is unlikely to occur from 
developing fundamentally new methods, but instead from modifying existing methods (Intille 
et al., 2012). Accelerometers, pedometers and heart rate monitors each have downsides 
that can be overcome through combining them with each other, or other devices. Multi-
sensor systems involve the combination of multiple physiological and mechanical sensors, 
such as accelerometers, global positioning systems (GPS), heart rate, body temperature, 
and skin response monitors.  

The most promising method is to combine heartrate monitors with accelerometers to 
improve accuracy. For example, using accelerometer data makes it possible to verify 
changes in heartrate are due to physical activity. Data from the heartrate monitor can help 
an accelerometer to capture non-ambulatory activities, such as cycling, or weightlifting. It 
can reduce measurement error across the whole spectrum of physical activity intensities as 
heartrate monitors are superior for measuring higher intensity activity, while accelerometers 
are superior for lower intensity activity (Ainsworth et al., 2015).  

ActiHeart is the most widely used example of such a device. Compare with direct 
calorimetry, the ActiHeart device predicting energy expenditure with a very low error of 0.9% 
(SD = 10.3) in 109 children and adolescents (Zakeri et al., 2008). The error was not 
correlated with age or body mass, indicating a lack of systematic error. It is also validated 
against indirect calorimetry in 39 children showing a strong correlation with physical activity 
(R2 = 0.86), but this was a small improvement on models of activity alone without heartrate 
(R2 = 0.82) (Corder et al., 2005). Combining accelerometer and heartrate monitors 
consistently improve accuracy of physical activity than either method alone (Brage et al., 
2005; Butte et al., 2012; Corder et al., 2005; Villars et al., 2012). The ActiHeart has been 
used in population-based cohorts before such as the National Survey of Health and 
Development in the UK with 1,727 participants (Cooper et al., 2015). 

The device is validated against indirect calorimetry in adults (Casiraghi et al., 2013; Santos-
Lozano et al., 2017), doubly labelled water in children (Calabro et al., 2013) and overweight 
and obese women (Slinde et al., 2013), sample sizes varied from 26 to 62. The 
measurement error varied from 10.9% to 20.7% depending on the model used and the 
device shows consistent individual variation when estimating energy expenditure. Similarly 
to accelerometers, the SenseWear Armband may not provide reliable estimates for physical 
activity during higher intensity activities and field sports (Gastin et al., 2018).  
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Multi-sensor systems improve accuracy, especially for non-ambulatory activities (Ainsworth 
et al., 2015) But they are more expensive and can increase participant burden if they involve 
the use of multiple devices, or more invasive devices. The development of commercial grade 
devices that combine accelerometers with heartrate monitors could be a useful option for 
reducing cost, but little work has been done to validate these devices so far. One study 
tested a range of commercial devices with heartrate monitors against a clinical pulse 
oximeter in four participants and found error ranged between 8.9 to 20.2% (El-Amrawy & 
Nounou, 2015). Another study with 24 participants compared the Fitbit and Basic Peak 
commercial devices to ECG and found strong correlations for both (r = 0.83 and 0.92, 
respectively) (Jo et al., 2016). 

1.2.7. Mobile phones 
There are also novel opportunities for data collection from the widespread use of mobile 
phones with a range of built-in sensors, good storage and battery capacities, built-in internet 
connectivity, location services, and fast processors (Intille et al., 2012). As many people 
already own a mobile phone, they are cost-effective and have a low participant burden. Their 
storage and connectivity capacities mean they are well suited to collecting and sending large 
amounts of data. The use of activity monitors can also cause participants to change their 
behaviour (Trost et al., 2005), but the use of mobile phones as a more passive measure may 
reduce this effect.  

Several attempts to validate the use of mobile phones in tracking activity have been made. 
One study found the raw counts of android phones and an accelerometer (ActiGraph 
GT3X+) correlate strongly (p = 0.77-0.82) in a laboratory and correlated moderately (p = 
0.59-0.67) in free-living (Hekler et al., 2015). Other studies have found mean step count of 
iOS applications (Fitbit, Health Mate, Runtastic and Moves) and one Android application 
(Moves) varied between -6.7% and 6.2% compared with direct observation (Case et al., 
2015), mean error when attached to the arm in one study was 0.7% (Presset et al., 2018). 
Other studies have found iPhone pedometers to be inaccurate compared to direct 
observation for measuring steps (Bergman et al., 2012; Balmain et al., 2019) and sensitivity 
ranging from 69.3% to 101.3% compared with pedometers (Boyce et al., 2012). There is 
also a large variety in the accuracy of different apps on the same device for measuring steps 
(Åkerberg et al., 2012; Leong & Wong, 2017). 

A study in 2014 developed an algorithm to test the capacity of an iPhone/iPod to record 
activity type (walking or running), speed (kmh-1), and energy expenditure (METs) against 
indirect calorimetry (Nolan et al., 2014). They found high classification accuracy for 
identifying activity type (99%), a bias of 0.02kmh-1 (SE = 0.57 kmh-1) for speed, and bias of 
0.35 METs (SE 0.75) for walking and -0.43 (SE 1.24) for running. The accuracy (between 
91.7-100%) of iPhone/iPod for identifying common activity types, such as walking, jogging, 
and sitting has also been demonstrated elsewhere (Wu et al., 2012). A review of 10 studies 
found smartphone measurement accuracy for identifying activities ranges from 52 to 100% 
(Bort-Roig et al., 2014).  

Many of these studies are on healthy young people. While these results may not be 
applicable to older populations or people with abnormal gait patterns (Brodie et al., 2018) 
mobile phones are highly customisable. There are opportunities for researchers to develop 
their own software using raw sensor data through platforms such as Apple’s Research Kit 
and Care Kit (Wright et al., 2017). These platforms are tailored to biomedical and health 
research and have already shown great potential. For example, mPower app is designed to 
study sleep, exercise, mood and movement data in people with Parkinson’s disease and 
already has over 10,000 users (Bot et al., 2016). 
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The scalability of physical activity monitoring is demonstrated by a recent study by Althoff et 
al. (2017) who collected mobile phone data using the Azumio app on the physical activity of 
727,527 people from 46 countries. But at the time, Azumio was not validated. Brodie et al.
(2018) found significant undercounting by Apple phones using the Azumio app, with median 
accuracy ranging from 15 to 66%. Median accuracy for Android phones was 38% to 100% 
compared with direct observation. There also seems to be great variety in the accuracy of 
different apps and different positions of the phone (Åkerberg et al., 2012; Leong & Wong, 
2017). 

1.3. Conclusions 
Measuring physical activity in population-based cohorts has advanced greatly from the shift 
to objective measures. Accelerometers may currently be the best option for estimating 
physical activity in field research. Newer triaxial models provide greater accuracy and 
versatility than pedometers, but this comes with an increase in price. Pedometers are still a 
reliable option for providing a cost-effective measure of steps, which can be used to estimate 
physical activity. Commercial grade accelerometers are another option that could reduce 
cost without compromising reliability. Accuracy may be further increased through the use of 
more expensive combined monitors, such as ActiHeart. But it is unclear whether the modest 
increases in accuracy justify the price difference.  

The use of mobile phones has an enormous potential for collecting physical activity data in 
large cohorts at minimal cost and low participant burden. However, the reliability of these 
methods is still a major concern.  

2. Cardiovascular health 

2.1. Introduction 
Cardiovascular health refers to the functioning of the circulatory system, which comprises of 
the heart and blood vessels. The circulatory system transports oxygen and nutrients through 
the bloodstream to tissues around the body and removes carbon dioxide and other waste 
products.  

Dysfunction in the cardiovascular system is severe and can be fatal. Cardiovascular disease 
(CVD) is the leading cause of mortality worldwide, which accounts for 17.9 million deaths 
each year, representing 31% of all deaths worldwide (WHO, 2018). CVD refers to a group of 
conditions that affect the heart and blood vessels.  

A range of genetic, environmental and behavioural factors affect the risk of CVD. These can 
be modifiable risk factors such as physical inactivity, or non-modifiable factors such as age 
(WHO, 2017). The culmination of these known factors is directly observable through a 
collection of biological indicators that can be measured to determine a person’s 
cardiovascular risk profile. There are a great range of different models for predicting CVD, 
with the most recent systematic review finding 363 validated prediction models (Damen et 
al., 2016). Most models include age, smoking status, blood pressure and cholesterol levels. 
But this review identified over 100 additional factors that are only included in one or two 
models. This demonstrates both the complexity of quantifying CVD risk and the empirical 
focus on developing novel methods for understanding and predicting CVD.  

Here, we conducted a non-systematic rapid review of the literature in this area to identify 
novel methods of measuring cardiovascular health in large-scale studies. 
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2.2. Findings  

2.2.1. Lipids and lipoproteins  
Fats such as cholesterol and triglycerides are essential to proper functioning and can be 
absorbed from foods or synthesized in the liver, or other parts of the body. They are 
transported through the bloodstream by lipoprotein particles, which can be Low Density 
Lipoprotein (LDL), Very Low Density Lipoprotein (VLDL), Intermediate-density lipoprotein 
(IDL), High Density Lipoprotein (HDL). The proportion of these particles in the blood is a 
well-established indicator of CVD and routinely measured in clinical settings. The proportion 
of HDL to total cholesterol in the blood is a strong, independent predictor of CVD and 
cardiovascular events (Barter et al., 2007; Pischon et al., 2005).  

More recently, other lipids important to cardiovascular functioning have emerged as 
independent risk factors for CVD, such as Lipoprotein a (LP(a)) (Tsimikas & Hall, 2012). All 
non-HDL lipoproteins, including LP(a), contain a single apolipoprotein B (ApoB) molecule. 
This means it is possible to count exactly how many non-HDL transporters there are in the 
bloodstream. Evidence is accumulating that ApoB or the ratio of ApoB to ApoA1 is an even 
stronger predictor of CVD than traditional measures of HDL and total cholesterol (Contois et 
al., 2009; McQueen et al., 2008).  

A better understanding of the factors that influence lipid profiles on a population-level will be 
crucial to the prevention of CVD.  

2.2.2. Gold standard 
The gold standard for collecting blood plasma or serum is through venepuncture. But this 
can be costly and has a high participant burden.  

2.2.3. Options in the field 
Dried blood spots (DBS) are a method of collecting drops of blood from a skin prick, usually 
administered to the finger or ankle with a sterile lancet. The blood spots are collected and 
dried on a piece of filter paper. The total cost of supplies is around $2 per participant, it is 
less invasive than venepuncture and the risk of blood-borne pathogens is reduced (McDade 
et al., 2013). The procedure is straightforward and can be collected by a trained interviewer, 
or in some cases by the participant themselves. DBS tests are a low-cost method of blood 
sampling in field settings that can be administered in large population-based studies 
(McDade et al., 2007). Depending on the biomarkers of interest, a research-grade freezer 
may be necessary to ensure minimal degradation of the sample. DBS have been used in 
large population-based surveys, such as the National Longitudinal Study of Adolescent 
Health and the Health and Retirement Study including data from 15,701 participants 
(Nguyen et al., 2014).  

The biomarkers detectable through DBS are more limited, but advanced analytical methods 
are improving the accuracy and range of detectable biomarkers (Henderson et al., 2017). 
Compared with venepuncture, it is possible to achieve good accuracy in detecting levels of 
haemoglobin A1c (HbA1c) (r = 0.85-0.92), C-reactive protein (CRP) (r = 0.84), ApoA1 (r = 
0.86), ApoB (r = 0.83) and glucose (r = 0.81) in studies containing between 35 to 317 
samples (Eick et al., 2017; Henderson et al., 2017; Lacher et al., 2013; Miller et al., 2015). 
CRP is a widely used inflammatory marker and HbA1c is a surrogate measure for glucose 
control over a three to four month period, used as a biomarker for diabetes diagnoses 
(Rahber, 2005). The accuracy is more varied for detecting total cholesterol (r = 0.34-0.89) 
and HDL cholesterol (r = 0.30-0.72).  
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There is considerable heterogeneity in the methods used for preparing and analysing DBS 
samples (Affan et al., 2014). Studies are starting to focus on validating DBS using 
accessible, cost-effective methods of analysis, such as enzyme-linked immunosorbent assay 
(ELISA) (Eick et al., 2017). But DBS analysis methods remain subject to significant individual 
or sample variability, despite good linear correlations with venepuncture (Henderson et al., 
2017).  

2.2.4. Blood pressure 
Blood pressure refers to the pressure generated by the heart to move blood around the 
circulatory system. High blood pressure places excess strain on circulatory system that can 
lead to damage tissue and the accumulation of plaques that narrow the arteries. High blood 
pressure, or hypertension, increases the risk of CVD (Kannel, 1996; Vasan et al., 2001) and 
is among the most important predictors of cardiovascular health (Damen et al., 2016; Wilson 
et al., 1998). 

2.2.5. Gold standard  
The gold standard measure of blood pressure is mercury sphygmomanometers but concerns 
over the safety of mercury has led to the development of non-mercury sphygmomanometers 
and other methods (Arakawa et al., 2018). These methods all involve a sphygmomanometer 
with an inflatable cuff that is inflated around the arm to compress the artery and cut off the 
blood flow. As the cuff is slowly deflated, blood flow returns to the artery and different 
devices can be used to detect systolic and diastolic blood pressure.  

While these methods are accurate, they require specialist equipment, must be performed by 
a medical worker and can be uncomfortable due to cuff inflation. They are only able to give a 
discreet measurement of blood pressure at one time. Most blood pressure readings are 
conducted in a medical environment, which may itself cause error due to discomfort or 
anxiety.  

2.2.6. Options in the field 
Several devices for measuring blood pressure without a cuff have been developed to allow 
continuous monitoring outside of medical settings. These devices are typically measure the 
time it takes for a volume of blood to move from the heart to a peripheral organ, yielding 
metrics such as pulse transit time and pulse arrival time (Sharma et al., 2017). These times 
can be used to estimate blood pressure through arterial compliance,  

One promising new multimodal wrist-based biosensor uses a combination of 
photoplethysmography and impedance plethysmography to estimate blood pressure 
(Rachim & Chung, 2019). In a validation study with 10 participants, the device performed 
well against an ambulatory blood pressure monitor for measuring systolic (r = 0.81) and 
diastolic (r = 0.78) blood pressure. Another promising device is the Freescan self-blood 
monitor (Maisense Inc., Taiwan). After initial calibration with basic anthropomorphic 
information, this handheld monitor uses three electrodes and a force sensor to estimate 
blood pressure when held to the radial pulse on the wrist. Compared with a mercury 
sphygmomanometer, the Freescan device estimated blood pressure well in ~80% of 
participants (n = 85), with mean difference of − 0.6 ± 1.6 mmHg for systolic and 0.5 ± 1.8 
mmHg for diastolic blood pressure (Boubouchairopoulou et al., 2017). Another cuffless 
device is the Somnotouch-NIBP (Randersacker, Germany) which has been measured over a 
24-hour period in a sample of 71 participants (Krisai et al., 2019). Against a validated cuff-
based oscillometric device, there was a mean absolute difference between systolic blood 
pressure of 10.2 mmHg and 8.2 mmHG with diastolic blood pressure with Somnotouch-
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NIBP. The difference was significant in clinical practice and further work is required to fully 
validate this device.  

There are many cuffless devices being developed and accuracy is improving (Arakawa et 
al., 2018). But many are in a prototypical stage of development and few have been validated 
in clinical settings (Schoot et al., 2016). They are also costly, which may be prohibitive for 
population-based research at this stage.  

2.2.7. Cardiorespiratory fitness 
Cardiorespiratory fitness (CRF) is the capacity of the cardiovascular and respiratory systems 
to supply oxygen to muscles and other bodily tissues, typically during exertion (Blair et al., 
1996). It is an objective measure of heart, lung and skeletal muscle efficiency. CRF is 
consistently associated with an elevated risk of CVD, cardiovascular events and all-cause 
mortality across all age groups in a series of prospective, longitudinal studies (Blair et al., 
1996; Berry et al., 2013; Carnethon et al., 2003, 2005; Kodama et al., 2009; Lee et al., 2011; 
Mora et al., 2003). In one prospective study including 211,996 person-years of data, low 
CRF (RR, 1.52; 95% CI, 1.28-1.82) was a stronger predictor of CVD than smoking (RR, 
1.65; 95% CI, 1.39-1.97), chronic illness (RR, 1.63; 95% CI, 1.37-1.95), increased 
cholesterol level (RR, 1.34; 95% CI, 1.13-1.59), and elevated systolic blood pressure (RR, 
1.34; 95% CI, 1.13-1.59) (Blair et al., 1996). Another prospective study with 21,080 
participants, the adding CRF to standard clinical risk factors significantly improved CVD 
classification by 37%, and low CRF was the strongest predictor of CVD (HR, 1.91; 95% CI 
1.74-2.09) of all other variables in the model (Myers et al., 2017). This relationship is likely 
due to the broad influence that CRF has on an array of cardiovascular risk factors, including 
insulin sensitivity, blood lipid and lipoprotein profile, blood pressure, body composition and 
inflammation (DeFina et al., 2015; Lee et al., 2010; Myers et al., 2015).  

The primary determinant of CRF is physical activity (Carrick-Ranson, et al., 2014) and the 
American Heart Association recently included physical activity as a clinical indicator of 
cardiovascular risk along with traditional risk factors, such as blood pressure (Strath et al., 
2013). CRF can be used as a surrogate measure of habitual physical activity that objectively 
encapsulates trends over time. But CRF is more than a marker of habitual physical activity 
(DeFina et al., 2015; Myers et al., 2015). CRF has been found to be a stronger predictor of 
cardiovascular events than physical activity (Myers et al., 2017; Swift et al., 2013). In 
addition to physical activity trends, CRF also encapsulates interactions between a range of 
other factors important to cardiovascular health, such as smoking and adiposity (DeFina et 
al., 2015). There is also a large genetic component to CRF, that could account for as much 
as 49% of variation in CRF between individuals (Bouchard et al., 2011).  

Many now believe that the importance of CRF has been overlooked and should be included 
as an independent clinical risk factor for CVD (Blair et al., 2009; DeFina et al., 2015; Lee et 
al., 2010; Myers et al., 2015). Part of the reason CRF has been overlooked is a lack of large 
population-based research due to the difficulty of administering gold standard CRF 
measures at scale.  

2.2.8. Gold standard 
Gold standard measures of CRF use a maximal exercise test protocol with gas analysis 
(American College of Sports Medicine, 2013). But these tests are expensive and difficult to 
administer in population-based cohorts. 

2.2.9. Options in the field  
It is possible to estimate CRF with minimal equipment through methods that determine 
oxygen consumption through measuring performance on field tests. Many of these tests 
involve walking or running certain distances or for certain time periods, the results of which 
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are compared with direct measures of oxygen consumption. The 20m shuttle run test is one 
of the most common examples (Castro-Pinero et al., 2010). The test involves one-minute 
stages of continuous running between two lines 20 meters apart. The pace is set using audio 
cues, starting at 8.5km/h and increasing 0.5km/h every minute (Leger et al., 1984). It is 
possible to use this test in large groups simultaneously, with minimal equipment or training. 
A meta-analysis including 57 studies found that compared to direct, laboratory-based 
measures the 20m shuttle run test to have a moderate to high validity for estimating oxygen 
uptake (r = 0.66-0.84), which increased when considering sex age and body mass (r = 0.78-
0.95) and was significantly more accurate in adults (r = 0.94, CI 0.87-1.00) than for children 
(r = 0.78, CI 0.72-0.85) (Mayorga-Vega et al., 2015). Submaximal step tests are another 
method of estimating CRF, where participants step up and down on a platform. One 
systematic review found these tests to have a moderate to strong correlation with direct 
measures of maximal oxygen uptake, depending on the protocol (r = 0.47-0.95) (Bennett et 
al., 2016).   

Another meta-analysis including 122 studies comparing walk/run tests against direct 
measures of oxygen consumption found the 1.5 mile and 12-minute walk/run test were 
significantly more accurate than all other forms of the test (Mayorga-Vega et al., 2016). 
These test variants involve either walking or running for 1.5-miles or 12 minutes, with time to 
completion or distance travelled taken to estimate CRF. According to the meta-analysis, both 
the 1.5-mile test (r = 0.79, CI 0.73-0.85) and the 12-minute test (r = 0.78, CI 0.72-0.83) have 
a moderate to high validity estimating oxygen uptake, based on 18 and 26 studies 
respectively. 

2.3. Conclusions 
Cardiovascular health is challenging to measure in populations due to the great variety 
contributing factors. Dried blood spots are a promising method of collecting blood lipids on a 
large scale, with comparatively low costs. It is even possible for samples to be collected by 
participants themselves. Advances in analytical techniques have greatly increase the 
number of relevant biomarkers that can be obtained through dried blood spots, maintaining 
good comparability with gold standard measures. Blood pressure is another important 
marker of cardiovascular health. While cuffless devices could be a useful method in the 
future, their reliability, cost, and practicality in large-scale studies is still unclear. CRF has 
long been overlooked as a predictor of CVD, possibly due to the impracticalities of 
administering gold standard exercise tests. But the 20m shuttle run, 1.5 mile walk/run and 
12-minute walk/run are promising methods for estimating oxygen consumption on a large 
scale at low cost.  
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