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ABSTRACT

Accurately counting numbers people is useful in many applications ranging from intelligent environments and
security/law enforcement, to management of areas that experience high levels of footfall such as transport
hubs and shopping malls. Currently, camera-based systems assisted by computer vision and machine learning
algorithms represent the state-of-the-art. However, they have limited coverage areas and are prone to blind
spots, obscuration by walls, shadowing of individuals in crowds, and rely on optimal positioning and lighting
conditions. Moreover, their ability to image people raises ethical and privacy concerns. WiFi-based RF sensing
systems are attracting growing attention above owing to their ability to uncooperatively detect people through
solid opaque barriers, provide 360 degrees of surveillance coverage, derive target velocity/Doppler characteristics,
and operate in all light levels and environmental conditions that inhibit optical sensors.

In this paper we propose a distributed multistatic passive WiFi radar (PWR) consisting of 1 reference and
3 surveillance receivers, that can accurately count up to six test subjects using Doppler frequency shifts and
intensity data from measured micro-Doppler (µ-Doppler) spectrograms. To build the person-counting processing
model, we employ a multi-input convolutional neural network (MI-CNN) that takes into account features such
as the movement speed of the targets, and their aspect angle to the receiver. The results demonstrate a 96%
classification accuracy for six subjects when data from all three surveillance channels are utilised, and significant
improvements when compared with the classification accuracy from one- or two-surveillance channels.

Keywords: Multi-channel Passive WiFi Sensing, People Counting, Convolutional Neural Network, Wireless
Sensing

1. INTRODUCTION

Counting the numbers of people in both in- and outdoor environments, and in a privacy-conscious manner has
a wide range of possible applications. For example, to assist with the management of people flows, provide
situational awareness in security & policing scenarios, acquiring visitor data in retail and entertainment venues,
and ensuring room occupancy numbers are not exceeded when social distancing measures are in place. Currently,
the most frequently deployed solutions for counting numbers of people are camera-based technologies that make
use of computer vision and machine learning algorithms.1–3 However, their coverage areas are limited to the
cameras’ field-of-view, and other factors such as blind spots, obscuration by walls and shadowing by other
individuals, which all have a detrimental effect on the systems performance. Additionally, they rely on being
optimally positioned and having sufficient lighting and contrast conditions. Moreover, their ability to image
people raises ethical and privacy concerns. These limitations on both the performance and ability to deploy
such systems have driven the emergence of wireless-based RF sensing technologies, particularly systems that
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exploit WiFi communication networks which are now a ubiquitous in urban environments. These RF systems
offer robust and reliable solutions to the issues described above. Furthermore, they do not produce images of
people which could raise ethical questions and privacy concerns.

One area of WiFi based sensing that has attracted significant attention concerns systems that make use of
the WiFi channel state information (CSI). These have been examined extensively for numerous sensing tasks,
including counting people.4,5 Although studies have shown CSI based WiFi sensing can perform with relatively
high accuracy, the phase information from the WiFi subcarriers is generally unusable due to unsynchronized
local oscillators in a WiFi network.6,7 This can act as a barrier to further development for example to increase
the sensitivity and specificity of detecting large numbers /crowds of people.

Passive WiFi radar (PWR) offers a good alternative to the above issues. PWR has itself also been studied for
various applications from through-the-wall sensing8 and vehicle tracking9 to gesture recognition10 and localisation
of UAV’s.11 Moreover, unlike CSI-based methods, the use of time-frequency spectrograms in the PWR not only
considers the received signal strength, but also uses the phase information to reveal the micro-Doppler (µ-Doppler
signatures), providing richer information relating to micro-motions associated with the target. Previously, our
work12 demonstrated the potential of using a single-channel PWR for people counting. To develop the system
for deployment in more complex and challenging scenarios, and address issues around shielding as well as having
only a single look-angle on the target, we propose a multistatic PWR system for counting people. Experiments
were limited to small numbers of test subjects due to Covid-19 restrictions but will be increased in future work.
We design a multi-input deep convolutional neural network (MI-CNN) to access data from different receivers
under various conditions, which can efficiently help manage various information and extracted features. The
experimental results show that the system can achieve up to 96.33% accuracy in identifying up to six people,
providing significant improvement compared with a single- or dual-channel PWR system.

2. SIGNAL PROCESSING

In the IEEE 802.11 standard, WiFi transmission signals are OFDM modulated and the source signal Sref (t) can
be modelled as:

Sref (t) =
1√
N

N−1∑
n=0

ane
j2πnt (1)

where N is the number of OFDM symbos for each carrier an, and n represents the nth OFDM. The signal will
be reflected by objects from multiple paths, resulting in delayed and phase-shifted copies of Sref (t). So, the
received signal Ssur(t) can be described as the summation of these copies:

Ssur(t) =
∑
p

Ape
j2πfdtx(t− τ) + n(t) (2)

where p is the number of reflected paths, Ap is the attenuation factor, τ and fd represent time delay and Doppler
shift for the pth path, respectively. Additionally, n(t) is used to describe the noise. PWR employs separately
located reference and surveillance receiver channels to respectively collect Sref (t) and Ssur(t), and then applies
cross ambiguity function (CAF) processing to measure variations in received signal strength as well as Doppler
information.

The CAF processing takes Fast Fourier Transform (FFT) of cross-correlated signals from Ssur(t) and Sref (t)
to extract range (from τ) and Doppler (from fd) information, which can be described as:

CAF (τ, fd) =

∫ T

0

Ssur(t)S
∗
ref (t− τ)ej2πfdtdt (3)

where ∗ is the complex conjugate for cross-correlating complex numbers, and Ti is the integration time that
determines the Doppler resolution as: δfd = 1

Ti
.



Figure 1. Block diagram of the multistatic PWR system

Furthermore, to avoid the impacts caused by the component from the direct path between the WiFi access
point and the receiver. We can utilise the CLEAN algorithm to suppress the direct signal interference (DSI).
The CLEAN algorithm is based on a self-cancellation mechanism, and can be described as:

CAF
′
(τ, fd) = CAF (τ, fd)− αCAFself (τ − Tk, fd) (4)

where CAFself (τ, fd) is the CAF over the reference channel and α is the maximum absolute value of CAF (τ, fd).
Finally, the cleaned CAF values can be used to generate µ-Doppler spectrograms from which features can
be extracted to provide estimates of the number of people present in the area being monitored.Furthermore,
our processing incorporates two additional strategies; the first is a batch processing techniques to lower the
computational overhead, facilitating real-time output; the second relates to maintaining high-performance, even
when only low bandwidth WiFi beacon signals are being transmitted.10

3. MULTI-CHANNEL PWR SYSTEM AND NEURAL NETWORK

Within a passive bistatic radar geometry, a single surveillance channel comprising of a directional antenna has
a limited field of view that depends on its beamwidth. Additionally, it only has a single viewpoint of the target
which may or may not be favourable for measuring µ-Doppler fluctuations i.e. a target may be side-on to the
antenna shielding reflections arising from arm and leg motions on the far side of their body. To circumvent
these issues we have advanced our bistatic PWR system described in12 to a multistatic architecture (consisting
of one reference and three surveillance channels) permitting the spatial distribution of the receivers around areas
being monitored to provide three aspect angles on the target. Additionally, careful placement of the surveillance
antennas can provide a wider coverage area permitting measurements of reflected WiFi signals from numerous
people in an area. The increase in the signal processing overhead of our updated multistatic system in minimal as
each surveillance channel will perform CAF processing with the reference channel independently. In this section,
we briefly introduce the new multistatic PWR system and explain how our MI-CNN is employed to extract and
classify features from the measured spectrograms generated from our experimental work.



Figure 2. Multi-channel PWR people counting system

Networks Type of Networks Network Architecture

C1 CNN ResNet5013

C2 CNN ResNet5013

C3 CNN ResNet5013

F FCN

Linear(3*2048, 128),
BatchNorm1d(),
ReLU(),
Dropout(),
Linear(128, 64),
BatchNorm1d(),
ReLU(),
Dropout(),
Linear(64, 4),
Softmax()

Table 1. The architecture details of the neural network

3.1 System Overview

The multistatic PWR is built around the Universal Software Radio Peripheral (USRP-2945). The block diagram
of the system is illustrated in Fig. 1.

For people counting, the multistatic PWR system employs use one reference channel (Rxref ) and three
surveillance channels (Rx1, Rx2 and Rx3) for monitoring the transmitted WiFi and reflected target signals
respectively. Fig. 2 shows the experimental topology: Rxref and Rx1 are configured in a monostatic geometry
while Rxref has bistatic geometry with Rx2 and Rx3. We define the aspect angle of Rxref as 0◦, so that the
aspect angles of three surveillance antennas are 0◦, 45◦and -45◦. Combing data from these receivers can provide
more detailed target characteristics from various perspectives to assist target detection and counting.

3.2 Multi-input Neural Network

To handle the recorded data from multiple receivers, we design a MI-CNN for extracting and classifying features.
µ-Doppler spectrograms were generated through standard time-frequency processing and treated as one-channel



Figure 3. The architecture of the multi-input CNN

images, permitting the CNN to learn spatial and intensity patterns within the images themselves. The architec-
ture of the network is presented in Fig. 3. We first have several individual feature extraction networks based
on ResNet5013 to receive data from different channels, where the number of the networks is same as the number
of channels. Each feature extraction network outputs 2048 by 1 feature vectors, and then these vectors are
concatenated together and passed into a classification fully-connected network (FCN). In Table 1, we list the
detailed architecture and parameters of the CNNs. During the training phase, we use the stochastic gradient
descent (SGD) optimization technique and set its learning rate to 0.001.

4. EXPERIMENTS AND EXPERIMENTAL RESULTS

The aim of the experiments was to explore the improvements in counting accuracy when increasing the number
of aspects on the target, afforded through multistatic PWR. If any improvements are realised, future work will
then be to carry out a more detailed quantitative analysis on the effects of the look angles themselves on the
performance on the system. This section outlines the experiments designed to initially assess the people counting
ability of the multistatic PWR. To that end we have performed a qualitative analysis of the results output, and
report classification accuracy to validate the expected improved performance of the system.

4.1 Data Collection

The three surveillance receivers were positioned to cover the entire space of a 2.45 x 4.40m room and record
continuously. Six participants were present in the room initially and were instructed to walk around continuously
at a typical walking pace in a random manner, utilising the whole space. The experiment lasted 30 minutes in
total, and at 5-minute intervals one participants was instructed to leave the room being monitored. Ground-truth
data was recorded from a camera system and an ultrawideband (UWB) tracking system for labelling purposes.
Though target localisation is not withing the scope of this work, the positional information recorded by the
UWB system permitted in-depth interpretation and validation of the results. Moreover, it forms part of our
larger OPERAnet study to enable future work.14



Figure 4. The qualitative results

4.2 Experimental Results

4.2.1 Qualitative Presentation

Figure 4 presents the spectrograms of four occupancy states from the three surveillance receiver channels. For
all receiver channels, as the number of people present increases, it can be observed that both the complexity of
the Doppler patterns and signal intensity also increase. Closer inspection of channels 1 and 2 reveal that as the
room is occupied firstly by a single person, followed by another, a single sinusoidal trace is superimposed with
another. Comparing spectrograms of different channels, but for the same number of people highlights marked
differences in the recorded spectrograms which are attributed to the aspect angle of the receiver on the target, as
well as shielding and multipath effects. This suggests that the combination of all three-receiver channel through
the MI-CNN permits more comprehensive perception of the dynamic nature of people within the surveillance
area to enable improved counting performance.

4.2.2 Classification Results

Post-processing analysis focused on examining the effect of using different numbers and combinations of receiver
channels on classification performance. Table 2 shows the classification results achieved when processing data
from the surveillance channels individually, in different pairing combinations and when using recorded data from
all three. Table 2 also compares the impact of using different volumes of training data on the accuracy of the
model. It clear that the using more surveillance channels provides enhanced classification accuracies of over
90%, and 96.3% in the best-case scenario where 80% of the data is used for training. The results indicate that
aggregating Doppler information from different perspectives is beneficial for people counting.

5. CONCLUSION

In this paper, we propose a multistatic PWR system for the people counting. Using both qualitative and
quantitative approaches to assess the Doppler spectrograms generated when people are present and in-motion



80% 70% 60% 50%
ch1 86.24% 84.05% 80.47% 75.66%
ch2 92.66% 86.50% 81.58% 78.28%
ch3 91.74% 88.95% 83.25% 77.90%

ch1 and ch2 93.25% 91.41% 87.44% 82.39%
ch1 and ch3 94.49% 92.02% 89.30% 81.52%
ch2 and ch3 95.41% 90.80% 90.69% 86.64%

ch1, ch2 and ch3 96.33% 93.25% 92.09% 90.52%
Table 2. Classification accuracy: each row presents the results of using different channels (ch), each column presents the
results of using different amounts of training data

within a room, we observe marked differences in the presence of Doppler traces and the intensity of the Doppler
bins for different room occupancy conditions. Features associated with various room occupancy levels were then
learnt by our MI-CNN to provide accurate estimates of the number of people present when tested in unseen
conditions. The study was however limited by the number of people allowed to participate in the experiments
due to Covid-19 restrictions. We hypothesize that the increased surveillance coverage and perspectives on targets
when spatially distributing numerous receivers around room will address key issues associated with shielding and
aspect angles on targets. Future work will therefore focus on experimentation involving large crowds of 10+
people in a room, and further evolution of our multistatic PWR to increase the number of surveillance channels
available. To conclude, multistatic PWR could prove to be a valuable tool for people counting, and particularly
useful if it is able to accurately estimate the presence of large number of people.
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