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SYNOPSIS

Magnetic Resonance Fingerprinting (MRF) accelerates quantitative magnetic resonance imaging. The
reconstruction can be separated into two problems: reconstruction of a set of multi-contrast images from
k-space signals, and estimation of parametric maps from the set of multi-contrast images. In this study
we focus on the former problem, while leveraging dictionary matching for the estimation of parametric
maps. Two different sparsity promoting regularisation strategies were investigated: contrast-wise Total
Variation (TV) which encourages image sparsity separately; and Total Nuclear Variation (TNV) which
promotes a measure of joint edge sparsity. We found improved results using joint sparsity.
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SUMMARY OF FINDINGS
Low-rank direct inversion, TV and TNV regularised reconstruction of MRF data were tested on 2D
BrainWeb phantoms. T1, T2 and proton density parametric maps were then obtained using dictionary
matching. Parametric maps estimated with TNV had the lowest mean squared error.

INTRODUCTION
Magnetic Resonance Fingerprinting (MRF) consists of taking a set of highly under-sampled measurements
of multi-contrast images. Then, on a pixel-by-pixel basis, the multi-contrast images are dictionary
matched to the underlying physical properties resulting in parametric maps. In this work we investigate
sparsity based regularisation for multi-contrast image reconstruction, and the effect on dictionary matched
parametric maps.

Sparsity based regularisation techniques such as Total Variation (TV)1 can act to penalise edges,
and therefore have a denoising effect on reconstructions. In addition to sparsity, it is observed that
multi-contrast images of underlying tissue properties show significant joint structural features.2 These
features can be exploited through regularisation that promotes a measure of joint edge sparsity. Total
Nuclear Variation (TNV) is a measure of joint edge sparsity that is known2–4 to promote sparse, co-located
and parallel edges. From observations of the MRF multi-contrast image set, it is hypothesised that through
TNV regularisation the accuracy of parametric maps can be increased. Therefore we propose the novel
use of TNV as a measure of joint edge sparsity for MRF reconstruction. This is distinct from previous
work that exploits redundancy in the image contrasts,5 as we exploit redundancy in the image gradients
(edges).

METHODS

The BrainWeb phantom (200×200 pixels)6, 7 was used as ground-truth parametric maps. On a pixel-by-
pixel basis, the maps were converted to the ground truth multi-contrast image set using the Extended
Phase Graph (EPG) formalism.8 EPG simulates an ensemble of spins of particular tissue properties under
the influence of a pulse sequence. The pulse sequence was defined as linear ramps of flip angles with
constant repetition time.9 Between each flip angle a read-out is taken as a single radial spoke that is rotated



by the golden angle between read-outs. The MRF signal is obtained by taking under-sampled k-space
measurements with a non-uniform Fast Fourier Transform (nuFFT)10 of the ground truth multi-contrast
image set. Additive complex white Gaussian noise was added to the k-space signal to reduce the overall
peak signal-to-noise to 40 dB.

The dictionary was simulated using EPG for a range of realistic T1 [100:10:4000 ms] and T2 [20:2:600
ms] values, whilst ensuring that T1 > T2 for all dictionary entries. The dimensionality of the multi-contrast
image reconstruction was drastically reduced through projecting the solution into a low-rank subspace of
the dictionary.11, 12 The low-rank subspace was determined by taking a singular value decomposition and
using the first ten right singular vectors corresponding to the ten largest singular values. Each pixel is
projected into this low-rank subspace resulting in ten multi-contrast singular images.

TV and TNV sparsity based regularisation techniques were implemented. TNV extends TV1, 3, 4 by
enforcing low-rankness in the pixel-wise Jacobian of image gradients along the set of images.

The optimisation problem was cast:3

min
X

δε(AX−S)+R(∇X)

The TV/TNV regularisation is denoted asR and the indicator function δε(AX−S) is defined as:

δε(AX−S) =

{
0 |AX−S|2 ≤ ε,

∞ |AX−S|2 > ε

where A is a block operator composed of forward models that combine linear operators for under-
sampling, low-rank subspace projection and Fourier transform. S is the MRF signal and X is the set
of singular images to be reconstructed. The tolerance ε is used as a regularisation parameter, whereby
error can be allowed into the data fitting term and the regularisation term R(∇X) is penalised more.3 The
notation ∇ denotes taking the image gradient. The Primal-Dual Hybrid Gradient (PDHG) algorithm13

was used to reconstruct in both the TV and TNV cases in order to deal with the non-smoothness of these
regularisation functionals. Direct inversion was obtained through a density compensated adjoint nuFFT.

The cosine similarity metric was used to match individual pixel-wise evolutions of the singular images
to a compressed dictionary entry, with the T1 and T2 values of that entry mapped back to the pixel. Proton
density (PD) was determined from the scale of the pixel evolution.

RESULTS
Solutions with TV and TNV regularisation were obtained with a range of ε values. Figure 2 gives the
effect of the ε values on the Mean Squared Error (MSE) of dictionary matched parametric maps. The
data-fitting term |S−AX|2 is used to give an indication of the (inverse of) regularisation strength. The
first five singular images are given in Figure 3 for direct inversion, TV and TNV solutions. The best
TV solution is shown with ε =

√
30 and best TNV solution with ε =

√
35. Furthermore, the resulting

parametric maps are given in Figure 4.

DISCUSSION AND CONCLUSION
Direct inversion resulted in MSE an order of magnitude larger than regularised reconstruction with TV
or TNV. Out of the two regularisation methods TNV provided less error regardless of ε value for T2
and PD maps. This can be seen in Figure 2 where the TNV curves lie below TV. For T1 maps there
are improvements in MSE for TNV with |S−AX|2 < 6.15. Through leveraging the low-rank subspace
of the dictionary, the majority of statistical information from the singular images is concentrated in the
first singular images. From figure 3, TNV reduces MSE on the first, third and fourth singular images as
compared with TV. This results TNV outperforming TV on parametric maps. With reductions in MSE of
2.4%, 32.6% and 23.6% for whole brain T1, T2 and PD maps.

The synergistic action of TNV, which penalises rank two pixel-wise Jacobians such that they are rank
one, aligns the edge set along the set of singular images. This results in appreciable reduction in MSE on
parametric maps as compared with TV. Sparsity based synergistic regularisation presents a method to
increase accuracy of reconstructed parametric maps for MRF. Code and data available here.
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Figure 1. Illustrative diagram of the framework developed. The linear inverse problem of multi-contrast
reconstruction was investigated with sparsity based regularisation techniques. Total variation promotes
edge sparsity, whereas total nuclear variation promotes joint edge sparsity.

Table 1. Results on white and gray matter with best preforming TV and TNV regularisation, ε =
√

30
and ε =

√
35 respectively.

White/Gray Matter Parametric Map Direct Inversion Total Variation Total Nuclear Variation
WM T1 (s) 0.051 0.0046 0.0057

T2 (s) 0.00075 5.3e-5 4.3e-5
PD 0.054 0.0022 0.0021

GM T1 (s) 0.072 0.013 0.0096
T2 (s) 0.0027 0.00030 0.00022
PD 0.060 0.0055 0.0034
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Figure 2. The colours correspond to total variation and total nuclear variation. The lowest error for TV
and TNV was with ε =

√
30 and ε =

√
35 respectively. The data-fitting value gives an indication of the

(inverse of) the regularisation strength. The MSE is the mean squared error of the corresponding
parametric maps over the whole brain.
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Figure 3. First five ground truth singular images, and images reconstructed with direct inversion, total
variation (ε =

√
30) and total nuclear variation (ε =

√
35). Mean squared error (MSE) on all the

reconstructed singular images. The colour bar limits were kept consistent between the same singular
images.
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Figure 4. Comparison between dictionary matched total variation (TV) and total nuclear variation
(TNV) solutions. Mean squared error (MSE) on T1, T2 and PD parametric maps. The colour bar limits
were kept consistent between the same parametric maps.
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