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ABSTRACT

Marine zooplankton have global ubiquitous distribution and are fundamental in the

ocean carbon cycle, as prey for planktivores and use as indicators for ecosystem

health. Recent impetus has been on developing cost effective methods to better

sample the plankton. As a result, imaging devices are becoming synonymous with

plankton sampling. This study contributes to the development, and demonstrates

the ecological application, of a novel plankton imaging instrument: the Plankton

Imager (PI). The PI is a continuous, automated instrument that uses water pumped

onboard a ship and images all particles present. The images can be resolved to

a moderate (family-level) taxonomic resolution by experts. This method revealed

strong temporal changes in the zooplankton community of the Celtic Sea where

interannual variation was greater than seasonal. In order to better harness the

continuous nature of the PI, temporal subsampling (classifying 1 in 10 images)

allowed for greater spatial coverage at finer resolution. This approach revealed

that the choice of sampling resolution must be appropriate to the scale of the

ecological process as decreasing spatial resolution had a considerable effect on the

strength and significance of the relationship between zooplankton biomass and their

phytoplankton prey. Concurrently with development of the instrument, machine

learning classifiers, capable of classifying the millions of images the PI collects per

day, have been developed. Application of a machine learning classifier to PI images

resulted in zooplankton dataset with very fine spatiotemporal scales where data could

be resolved to minutes or meters. These data were aligned with other continuous

datasets to re-evaluate relationships with predatory commercial pelagic fish using

finer scale data. This thesis demonstrates the PI, and similar instruments, are a cost

effective method that can provide a similar description to existing methods as well as

provide new insight into plankton ecology by yielding fine spatiotemporal data.
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Zooplankton (Figure 1.1) have a ubiquitous global distribution in the world oceans

and seas. The range in their morphological and behavioural adaptations finds

them in the worlds coldest and deepest oceans to the warmest and shallowest seas

(Swadling et al., 1997; Wiebe et al., 1988). These organisms represent the most

abundant multicellular animals on Earth, outnumbering insects by more than ten

orders of magnitude and amassing to a collective biomass 50 times larger than the

human population (Schminke, 2007). The word zooplankton, and subsequently the

community it describes, is the combination of the Greek words for animal (Zoon) and

wanderer (Planktos). A more modern definition of Zooplankton are those organisms

that have the ability to invoke partial movement against a weak current but are unable

to move contradictory to a stronger current. The Zoon, or Zoo- prefix signifies the

organisms as heterotrophs; their energy is derived from consumption of autotropic

phytoplankton, smaller zooplankton or organic particulate matter. Zooplankton

further describes both permanent members of the plankton (holoplankton), and

temporary visitors (meroplankton), such as fish eggs and larvae. They are crucially

positioned between autotrophic phytoplankton and marine species at higher tropic

levels, such as fish, marine mammals and sea birds.

This range in morphology and behaviour also poses the most significant challenge

to zooplankton sampling. The smallest zooplankton can measure less than 2 µm

(e.g. protozoa) long compared to the largest jellyfish which can measure over

2 m with tentacles over 60 m long (Steinberg and Landry, 2017). This range

in morphologies makes designing instruments and effective sampling strategies

difficult: it is impossible to sample the variety of zooplankton with a single device.

This challenge is made more difficult by ‘plankton patchiness’. This phenomenon

is the seemingly random distribution of plankton in space and time over small

spatial scales (Mackas et al., 1985; Abraham, 1998). The devices traditionally used

for sampling zooplankton - ring nets, are the gold standard and responsible for

the majority of our current understanding of plankton ecology. Although, they are

both costly and timely, often involve use of hazardous chemicals and require a

division of the sample (subsampling) to make analyse feasible. These limitations

are explored in this chapter. Unfortunately, a decline in the taxonomic expertise
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Figure 1.1: Collage of example mesozooplankton images captured by the Plankton Imager
(this figure is taken from the published Chapter 3 Scott et al., 2021).

required to identify the zooplankton species (Agnarsson and Kuntner, 2007) means

analysing the net-caught samples is increasingly difficult. While these methods have

resulted in good understanding of the taxonomy (Mitra et al., 2008; Castellani and

Edwards, 2017), life history (Allan, 1976; Varpe et al., 2007) and response to stressors

(Garzke et al., 2016; Zervoudaki et al., 2017; Lewis et al., 2013). Although spatial

distributions remain uncertain although recent studies showed that the combination

of nets, imaging, machine learning and complex factorial analysis methods enabled

the characterisation of regional scale communities distributions (Scott et al., 2023;

Grandremy et al., 2023). Their importance, in combination with these challenges

(both ecological and financial), have placed impetus on developing cost and time

effective methods.

The Plankton Imager (PI) is a novel tool for the continuous sampling of

zooplankton and has been developed in response to these challenges. The PI has

the potential to, in-part, address some of these challenges and provide new insight

into the spatial dynamics of zooplankton. This thesis aims to use the PI to overcome

some of the challenges associated with zooplankton sampling and in doing so further
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understand zooplankton ecology. These challenges are first explored in more detail

to provide a context for the PI among other sampling devices in this chapter. The

potential benefits of the instrument to gaining new insight into zooplankton ecology

are also discussed. A detailed methodology for the instrument, including a standard

operating procedure for deployment aboard the RV Cefas Endeavour is detailed in

Chapter 2. Following this there are three data analysis chapters that explore the PIs

ability to describe the zooplankton. The first chapter explores seasonal changes in

the zooplankton community of the Celtic Sea (Chapter 3). The following chapter

begins to take advantage of the PIs continuous nature by using smaller scale data

to explore the relationship between zooplankton, physical variables and chlorophyll

(Chapter 4). Finally, an application of a machine learning classifier is used to obtain

zooplankton data at an unprecedented spatial scale and these data are used to

examine the relationship with fisheries (Chapter 5). These data chapters are largely

self contained and provide short, specific introductions to maintain readability. To

conclude, the key findings from the thesis, a discussion of the thesis limitations and

potential future applications are synthesised (Chapter 6).

1.1 ZOOPLANKTON’S GLOBAL IMPORTANCE

Zooplankton are found globally and encompass a great diversity of phyla with a

plethora of ecological adaptations to a range of environments. Their body size spans

over 15 orders of magnitude (Hirst, 2017) and include species that live from less than

a 1 day, such as flagellates (WETZEL, 2001), to immortal jellyfish (Matsumoto et al.,

2019). Zooplankton include both holoplankton and meroplankton. Holoplankton

describe those organisms that reside within the plankton for their whole life

and include copepods, decapods and gelatinous organisms such as ctenophores.

Meroplankton describe those organisms that only exist within the plankton for a short

time. These are mostly larval forms of a multitude of animals, for example: fish, crabs

and corals.

Zooplankton are crucial prey for a range of planktivorous species. These include

a large number commercial important fishes (Confer and Blades, 1975; Beaugrand
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et al., 2003), such as cod larvae (Pinnegar et al., 2003) and mackerel (Reid et al., 2001).

They are also prey to the worlds largest animals, the blue whale, and other marine

megafauna (Sims and Quayle, 1998; Sims, 1999), as well as sea birds (Pakhomov and

McQuaid, 1996; Lauria et al., 2012). Zooplankton are also a key component of the

global carbon cycle or the ‘Biological pump’ Hansell (2002); Steinberg et al. (2002);

Steinberg and Landry (2017); Boyd et al. (2019). They sequester carbon through

excretion of fast-sinking fecal pellets (Ducklow et al., 2001) and contribute to the

passive sinking of organic detritus on death (Buesseler et al., 2007). Their vertical

migration to the deep ocean (>1000 m) has been shown to help deliver carbon rich

lipids below the permanent thermocline (Huld et al., 2015). Zooplankton also have

use as an indicator species due to their short life cycles and are proving a reliable

indicator for climate change (Taylor et al., 2002; Field and Barros, 2014; Chiba et al.,

2018).

Due to their ecological position, zooplankton form an integral component of both

ocean biogeochemical and fisheries models. These models can advise the sustainable

use of fisheries (Mitra et al., 2014) or inform global climate change predictions

(Steinberg and Landry, 2017). The complexity and diversity of zooplankton

behaviours, size and spatial distribution, in addition to the variation in life history

between taxa, makes accurate parameterisation of the zooplankton component

challenging, regardless of model size (Travers et al., 2007; Mitra et al., 2014).

Zooplankton monitoring is also mandated by regulatory policy written into domestic

and international law. For example in the EU, the Marine Strategy Framework

Directive (MSFD, 2009) requires member states to achieve ‘Good Environment Status’

by 2020. Two of the 11 descriptors of Good Environment Status directly relate to

zooplankton, these are: (1) community-level monitoring of zooplankton to inform

maintained biodiversity and (2) normal occurrence of food web characteristics. Many

policy orientated studies debate how to best achieve these policy goals and what

type of monitoring would best inform our progress toward them (Bedford et al., 2019;

Romagnan et al., 2016; McQuatters-Gollop et al., 2019).

This brief overview only touches on zooplankton’s multitude of roles within

the global oceans but demonstrates the socioeconomic, climatic and ecological
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motivations for monitoring zooplankton. The introduction contained in each data

chapter explains in more detail the rationale for the specific study.

1.1.1 MESOZOOPLANKTON AND THE COPEPODS

Zooplankton are typically divided into three operationally defined classes based on

size (Steinberg and Landry, 2017). Those

smaller than 200 µm are the microzooplankton, comprised functionally of protistan

and juvenile mesozooplankton (Paffenhöfer, 1998; Quevedo and Anadón, 2000). The

mesozooplankton are those species that reside within 0.02 – 2 cm, comprised of

larger protists, true multicellular animals and Radiolaria (Stoecker and Gustafson,

1996). Those organisms larger than 2 cm, mainly gelatinous varieties and krill, form

the macrozooplankton. The PhD research was focused on mesozooplankton. This

results from the size range the PI can capture (discussed in Chapter 2.3). Thus, all

zooplankton data presented in the thesis is mesozooplankton.

There is exclusive focus on copepods in Chapters 4 & 5. The motivation for

this is two fold. Firstly, copepods tend to have relatively homogeneous morphology

across different species and a oval distinct body shape. This makes them easier

for machine learning classifiers (and manual taxonomists) to correctly classify (see

Chapter 2.6.2). The second reason is copepod’s ecological significance. Copepods are

small crustaceans found both in fresh and marine waters and are the most abundant

and diverse multicelluar organisms on earth (Mauchline et al., 1998). They can

be hetrotrophic, cannibalistic and parasitic (between themselves and higher fauna)

(Huys and Boxshall, 1991). They commonly constitute 55-95% of mesozooplankton

biomass (Longhurst, 1985). They perform all functions performed by the general

zooplankton, discussed above (e.g. movement of carbon from primary producing

phytoplankon, explored in Chapter 4) but have an important role in fisheries which

is examined in more detail in Chapter 5. Commercial pelagic fish (e.g. mackerel or

herring) primarily, preferentially predate copepods (Garrido et al., 2008) with the size

of the copepods being important in driving prey selection, controlling food quality

and availability (Pitois et al., 2016; Barton et al., 2013; Van Deurs et al., 2015).
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1.2 ZOOPLANKTON SAMPLING

1.2.1 NETS AND MICROSCOPY

The first methodology for the capture and analysis of plankton is usually credited

to Thompson, who in 1828 invented a thin-mesh net for qualitatively sampling

crustacea larvae (Fraser, 1968). The capture of plankton through netting, and

subsequent analysis by microscopy, remains relatively unchanged to the present

day and is the gold standard for zooplankton sampling. In 1895, Hensen proposed

the first comprehensive methodology in an attempt to steer sampling towards

quantitative assessment to begin resolving questions, such as plankton patchiness

(Mackas et al., 1985), that still puzzle ecologists today (Wiebe and Benfield, 2003). The

Hensen net and the diverse net-type descendants that have evolved over the history

of modern oceanography (Skjoldal et al., 2013), have become the cornerstone of

zooplankton sampling and are principally responsible for our current understanding

of zooplankton ecology. Improvements, adaptations and sampling strategies are

discussed in detail in an exhaustive review paper detailing the history of the plankton

sampling devices by Wiebe et al. (2017). Ring nets variants are still used routinely in

surveys and continue to provide new insight into plankton ecology (Capuzzo et al.,

2022; Kajiwara et al., 2022; Head et al., 2022). Despite the limitations discussed below

and the subsequent arguments for new devices, ring nets and analysis of a physical

specimen by light microscopy will remain a staple tool for sampling zooplankton.

Aside from the complexities that arise from designing effective sampling of the

seemingly random, patchy distribution of zooplankton using point sampling (Mackas

et al., 1985; Abraham, 1998), issues are inherent with both the netting of plankton

and the requisite analysis by microscopy. By design, net samples are subject to a

range of uncontrollable physical limitations, predominately escapement. To achieve

a minimal level of escapement a compromise is needed to balance extrusion and

avoidance (Vannucci, 1968). Extrusion is the escape of organisms which are smaller

than, or equal too, the mesh opening (Kofoid, 1897). When the net begins to fill

with biota, extrusion pressures within the net can lead to increased escapement as



1.2. ZOOPLANKTON SAMPLING 8

organisms are pushed through the mesh or lead to the destruction of delicate species

in the net periphery (Pitois et al., 2016). Avoidance can occur both passively and

actively. Passive avoidance occurs due to hydrodynamic effects that arise from the

physical net design; particles in the water are pushed away from the opening as

water flows past the device. Active avoidance is performed by those organisms which

can detect the approach of the device, usually by detecting the ‘bow-wave’ of the

instrument (Smith et al., 1968). Active avoidance can be described as a factor of

swimming speed and net size, the smaller the net size, the lower swimming speed

needed and lesser distance for an organism to swim to escape capture (Smith et al.,

1968). The speed at which a net can be towed is a function of the mesh and aperture

size. Nets have a maximum filtering speed, which, if exceeded results in limited or

no new water entering the net, and thus reducing the overall effectiveness of the

sampling operation. Vessel or tow speed and mesh size must be considered in parallel

for optimal sampling of the desired group (Skjoldal et al., 2013). In effect, the towing

vessel must adjust its speed, usually by reducing, to accommodate the sampling.

Issues with the analysis of these samples arise due to the complex, difficult nature

of zooplankton taxonomy. In almost all cases, to compromise between time and

samples processed, analysis of zooplankton samples consists of sub sampling an

aliquot containing 200 individuals and analysis by an expert using light microscopy.

In order to resolve the distribution of the full sample, aliquots are simply scaled up

by the split factor (Wiebe et al., 2017). Although plankton have been demonstrated

to follow a Poisson distribution within a single sample (Postel et al., 2000), allowing

for confidence when scaling up, sub sampling typically results in the under or

over reporting of rare species (Mack et al., 2012). In addition, analysis by light

microscopy, is considered an arduous task (McQuatters-Gollop et al., 2017), where

continued concentration is paramount and a high-level of personal diligence is

essential. Unquestionably, expert taxonomists, defined by Culverhouse et al. (2014)

as individuals that can expect 80 percent consistent repetition rate between samples,

have a difficult job. The reliability of experts has been questioned. Culverhouse

et al. (2014) empirically assessed both self-consistency and consistency between

labs. The study demonstrated significant differences between laboratories working
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on an identical sample, describing this as ‘cause for concern’. However, the count

error is usually eclipsed by the high sampling error that arises between replicate

tows, with variability ranging up from 1/6th to 6 times per tow (Wiebe and Wiebe,

1968). Inescapable human physiological factors present a further hurdle. Vreugdenhil

(1989), summarised by Culverhouse et al. (2003), highlighted several inherent factors

that can impair identification: short term memory limit of 5 to 9 items; bias toward

recently used labels; positivity bias, fatigue and boredom. Regardless of where

error arises, and in absence of an improved method, the continued practice of

manual taxonomy is crucial to maintaining time series and furthering understanding.

Furthermore, taxonomy is currently facing additional issues, described by multiple

authors as a discipline in crisis (Agnarsson and Kuntner, 2007; Pearson et al., 2011;

McQuatters-Gollop et al., 2017). These papers highlight reduced funding, the

unattractive nature of taxonomy and difficulty it poses for recruitment, as well as the

economic and time cost of training.

1.2.2 IMAGING, ACOUSTICS AND DNA

In response to limitations, mainly the financial and time incurred cost associated

with traditional ring nets, a multitude of acoustic and optical devices have been

developed over the last 30 years. Different mesh sizes in ring nets will sample different

portions of the plankton. This is analogous to more ‘modern’ approaches where

each device (acoustic, optical or DNA) will only sample a part of the zooplankton

(Lombard et al., 2019). They may be limited be size, depth, or face similar avoidance

issues as nets. The variations, as well as what size spectra each device can sample

are comprehensively reviewed by Wiebe et al. (2017). The key distinguishing

difference between the majority of these ’modern’ methods and ring nets is the need

to collect a physical sample (excluding DNA, although more recent eDNA approaches

negate this, as discussed below). Some zooplankton, particularly copepods, can

only be speciated by manipulating the organism to discern key morphological traits

(McQuatters-Gollop et al., 2017). Although as DNA identifications are matched with

reference species, an ever more detailed taxonomic resolution can likely be gained
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without needing a physical sample. Thus, newer methods are not designed to replace

ring nets but rather offer a more cost effective solution as well as potentially providing

new high-frequency, fine spatial and temporal data. Below is a brief review of each the

major ’modern’ approaches with an emphasis on imaging devices to better frame the

niche for the PI amongst other devices.

DNA

DNA is revolutionising many areas of ecology and its application to zooplankton is

growing. DNA / RNA sequencing of zooplankton has resulted in an explosion of

new species (Metzker, 2010). Although to successfully describe and categories these

species, reference species are needed which do not currently exist for all DNA-found

species (MacLeod et al., 2010; Djurhuus et al., 2018). Traditional DNA approaches

requires physical capture of the organism which is frequently achieved with ring nets.

Thus, these approaches are bound by the same constraints. Furthermore, successful

DNA analysis demands unique preservation protocols as standard preservation by

formalin, used for light microscopy, can damage DNA (Bucklin, 2000; Bucklin and

Allen, 2004; Wiebe et al., 2017). More recently environmental DNA (eDNA) is being

demonstrated as a powerful, less complex (e.g. does not require capturing of the

individual and only requires a water sample) alternative to sampling zooplankton

(Yang and Zhang, 2020; Djurhuus et al., 2018; Sun et al., 2018). Environmental DNA is

DNA that is has been shed by an organisms rather than being DNA collected directly

from the organism (Shokralla et al., 2012). For example, a water sample might be

taken from the ocean and its contents analysed for the DNA present. Like all methods,

eDNA has it’s own associated limitations. A major hurdle with eDNA, not specifically

to zooplankton, is not being able to obtain with confidence where the individual who

‘shed’ the DNA was spatially or temporally as eDNA is influenced by water movements

such as tides or currents (Barnes et al., 2014).

The application of DNA and eDNA to zooplankton is growing (MacHida et al.,

2021) and will likely prove to be a staple in future zooplankton sampling. The growing

consensus among both traditional taxonomists and genetic analysts is for traditional

descriptive taxonomy to work in unison with the added resolution genomics brings,
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working towards an integrated approach of the methods (Saunders and McDevit,

2012; McQuatters-Gollop et al., 2017; Will et al., 2005).

ACOUSTICS

High frequency acoustics provide another approach for describing the zooplankton,

following the sample principles as their use with fish (e.g. fishing vessel’s fish

finding devices). The echo (or ‘backscatter’) from an acoustic signal can be used to

discern biological data. Different acoustic frequencies can be used to target specific

organisms or size ranges (Foote and Stanton, 2000). Within the plankton these devices

can target the mesozooplankton, the macrozooplankton (> 20 mm) and micronekton

(mainly juvinelle pelagic fish) (Blanluet et al., 2019; Brophy and Danilowicz, 2002;

Sieburth et al., 1978; Mair et al., 2005). Through recent developments in acoustic

methods, broadband acoustics are allow its application to improve specific species

or group identification (Stanton, 2012; Jech et al., 2017). For a recent example of the

application of acoustics to zooplankton see (Blanluet et al., 2019) (2019). This study

was able to identify several taxonomic groups (Siphonophores, Copepods, Pteropods

and Euphausiids).

One of the distinct advantages of acoustic devices over nets, (e)DNA and optical

devices is their ease of deployment facilitated by low power demand. This means

acoustics can be used to describe the zooplankton by deployment on remote vehicles,

e.g. gliders (Berge et al., 2020; Ohman et al., 2019) or underwater vehicles (Guihen

et al., 2014). These vehicles can often sample places that are inaccessible or unsafe to

sample, e.g. under sea ice (Berge et al., 2020).

In its current state the technology can make rapid estimates of biomass, size

and numbers of zooplankton but identification of individual species cannot be

made (Wiebe et al., 2017; Benoit-Bird and Lawson, 2016). These techniques and

instruments are quickly developing and it is becoming increasingly common to

find these devices used in tandem with optical devices (Ohman et al., 2019) and

nets (Blanluet et al., 2019). Acoustics can provide fast, cheap data on zooplankton,

including size distributions (Holliday et al., 1989; Tanaka et al., 2021) and its

continued use will be essential to further understanding zooplankton ecology.
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IMAGING

Zooplankton imaging is becoming an increasingly common approach to sampling

zooplankton. There are several approaches to imaging the zooplankton with the main

difference being where or when the zooplankton are imaged, these are bench top, in

situ (deployed) and in situ (abord ship). For a in depth review of modern imaging

devices see: Romagnan et al. (2016); Wiebe et al. (2017) and Lombard et al. (2019).

The closest imaging systems to traditional microscopy are those devices that

image the zooplankton post sample collection, these are refereed to as ’bench top’.

The sample is collected in a traditional way - with a ring net. Stored and then

analysed back ashore in a laboratory. The two most prominent examples of these

are the ZooScan (Gorsky et al., 2010; Grosjean et al., 2004; Naito et al., 2019; Schultes

et al., 2013) and FlowCam (Alvarez et al., 2011, 2014; Kerr et al., 2020; Buskey and

Hyatt, 2006). These devices have been the principle method in 100s of zooplankton

studies. The ZooScan is a flat bed scanner that images a sampled poured onto the

scan bed. In the FlowCam a poured sample flows past a camera. Due to their

reliance on physical sample collection they are subject to many of the constraints

associated with physical sample collection (discussed above). Furthermore, they

are also associated with many of the limitations of imaging, such as orientation of

a specimen (discussed below). These devices are globally established and imaging

sharing platforms (mainly Ecotaxa: https://ecotaxa.obs-vlfr.fr/) (Picheral et al., 2017)

provide an easy and collaborative approach to image classification.

The vast majority of image devices are deployed and towed. The VPR is one of the

original, widely used devices to image the plankton (Davis et al., 1992; Ollevier et al.,

2022). The assembly of the VPR is representative of the many optical devices that have

been developed since, each with varying adaptations, often to a specific target taxon

(e.g. the In Situ Ichthyoplankton Imaging System) (Cowen and Guigand, 2008). Due

to the challenges associated with photographing plankton, devices are often tailored

(or limited by focus) to a specific size or taxa. In order to mitigate the uncertainty of a

passing particles distance from the camera and thus ensure a focused image, devices

primarily consisted of two designs.
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Closed systems are those where water flows through an aperture and particles in

the water are imaged. Open-range system is simply a camera pointing out into the

open water. The VPR, ZOOVIS (Benfield et al., 2001) and Under Water Vision Profiler

(Picheral et al., 2010) are popular examples of open-range systems where the position

of the organism relative to the camera is not certain and this brings issues with image

quality. Blurry images are the result of a particle at an uncapturable distance, either

too near or too far and thus outside the focus range (Marini et al., 2015; Colas et al.,

2018). While closed systems remove this chance for error by assuring particles are

imaged at a consistent, focused distance, they are restricted by the maximum size of

the inlet hole (Colas et al., 2018). Image resolution can also be limiting factor. Smaller

resolution images do not allow for zooming on the image. The higher the image

resolution the more likely small, distinguishing morphological traits will be captured

which are needed to speciate individuals. Another consideration, or compromise, is

the increase storage cost (in bytes) incurred by increased resolution, discussed below.

Although, newer camera technologies and increased storage on smaller physical disks

should result in less of a compromise in image resolution. The device inlet size is the

main control on determining the maximum size of imaged particles.

Optical tools have a few key advantages over traditional methods, arising

from the capture of images as opposed to the physical capture of the individual.

Foote and Stanton (2000) highlights the increased vertical and spatial resolution of

optical sampling systems, suggesting optical systems have the potential to provide

abundance data at shorter temporal intervals when compared to net sampling.

Optical devices also have the ability to sample delicate taxa that would otherwise

be destroyed by external pressures during capture by netting (Davis et al., 2004;

Biard et al., 2016). The capture of images makes the use of hazardous preservative

chemicals, commonly formalin, redundant and means the collected digital data can

be easily transferred, copied, archived and validated.

Established examples of towed imaging devices include the Optical Plankton

Recorder (Herman, 1988). Towed devices have similar requirements to nets; they

have a maximum speed and maximum sea state, where if either are exceeded the

instrument ceases to function or can become damaged or unsafe to operate (Pitois
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et al., 2018). They often require adjustments to the vessel behaviour or hardware, e.g.

reduced speed or suitable gear for towing and deployments (Culverhouse, 2015; Pitois

et al., 2016). Ideally these devices are towed alongside the ship and require robust

side gantry equipment infrequently found on smaller vessels making integration onto

these vessels difficult (Pitois et al., 2016). Instead the device is often towed in the

wake, which wholly disrupts small-scale plankton distributions and adds to passive

avoidance effects (Davis et al., 2005).

Finally there are those devices that reside aboard ship (Colas et al., 2018). These

are much less common than their towed of bench top counterparts. The Plankton

Imager, the device central to the this thesis is introduced below and the various

ecological applications are explored in the following chapters.

TOO MANY IMAGES?

Optical devices also share in unavoidable issues, such as the discussed active and

passive avoidance and hydrodynamic effects of the instrument. Alongside, a more

specific hurdle has arisen from zooplankton imaging: the sheer number of images.

For example, a system imaging at 30 Hz may collect over 2.5 million images per day

(Wiebe et al., 2017). Sorting all images manually would be an impossible task similar

to sampling all organisms caught in a ring net. Recent developments in applying

machine learning to zooplankton images means there is the potential to analyse and

classify all images. This would yield zooplankton data at unprecedented spatial and

temporal scales and provide new insight into plankton ecology. This potential and

the absolute size of the data imaging devices yield requires new techniques to sort,

analyse and classify the data.

1.2.3 MACHINE LEARNING CLASSIFICATION

Machine learning (Jordan and Mitchell, 2015) is being increasingly used in nearly all

research disciplines, from economics to physics to... zooplankton (Irisson et al., 2022;

Orenstein et al., 2022). Machine learning classifiers are statistical algorithms that can

be fine tuned to try to match unknown data to known data categories. A training

set is required to ‘train’ these algorithms for use on real-world data. The algorithm
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fine tunes various statistical parameters to best match the training data. This fine

tuning can be considered the learning element of the classifier - it’s learning which

statistical tweaks are needed to ensure a best fit of the known data (Irisson et al.,

2022). These training sets comprise data manually classified by experts. Typically

a machine learning algorithm will be trained on two thirds of the training set with the

final third used for testing the accuracy of the classifier (Faillettaz et al., 2016). Several

limitations arise with classifiers. Firstly, training sets are limited by the number of

classified data and the accuracy of those data manually classified. The larger the

training set, in terms of balanced example images per category, the higher the success

of the classifier (Faillettaz et al., 2016). Furthermore, the success of a classifier is

therefor largely subject to the quality of the training set, where quality is defined by

size of the training set and the absence of errors (images in the wrong categories).

APPLICATION TO ZOOPLANKTON

Machine learning (ML) is revolutionising many areas of ecology (Prasad et al., 2006;

Cutler et al., 2007) and may present a solution to analyse the entirety of the newly

amassed, and continually expanding, vast image archive. It is commonly paired with

imaging devices as it presents a viable solution to sorting and classifying millions of

images with a high degree of accuracy in a relatively short space of time. In the four

years of PhD research the application of ML to zooplankton has significantly matured,

for a review of the current application and detailed history of ML in zooplankton

science see: Irisson et al. (2022). Although in the current state, many optical records

still require or undergo manual classification (Culverhouse et al., 2016; Ellen et al.,

2019; Irisson et al., 2022) and exclusive use of imagery and machine learning are

unlikely replace traditional methods (MacLeod et al., 2010; Giering et al., 2022).

The are several hurdles that pose specific challenges to the application of ML

to zooplankton classification, mainly associated with the diverse morphologies and

total abundance (‘they all look the same’). The limits of machine classifiers can

be described as both internal and external. Internal limitations are dependent on

the chosen algorithm. Classifiers such as convolutional neural networks (CNN) and

support-vector machine (SVM) are subject to over fitting. This is a phenomenon
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whereby a classifier is over trained, and bias are introduced within the algorithms

statistical mechanism resulting in incorrect classification of new data. Although

CNNs are the recently the favourable approach to zooplankton classification which

can reports accuracys of up to 70-80% with modest taxonomic resolution (e.g. family

level) (Irisson et al., 2022; González et al., 2019; Orenstein et al., 2020).

External issues are those that concern both the data being passed to the classifier

(in our case zooplankton images), and the quality of the training set (Fernandes

et al., 2009). Zooplankton classification itself presents a set of unique challenges

to machine learning, presenting large sources of external errors (or user-dervied

errors). Irisson et al. (2007) highlight the predominant challenges associated with

the taxa themselves, independent of image capture, mainly: (1) the morphological

diversity of the zooplankton; (2) the presence of non-living particulate matter

within the water column; (3) intraspecies size variation; (4) intraspecies ontogenetic

morphological variation. These issues are exacerbated by the problematic task of

imaging zooplankton.

The application of ML to zooplankton remains somewhat silo-ed, where each

institute of group applies its own algorithms and big-data pipelines. Breaking down

these barriers and sharing information across databases would greatly imporove the

progress in sucesfful application of ML. For a review of several different approaches to

plankton science and their comparative success, see Rani et al. (2021) and The Turing

Centre (2021).

1.3 THE PLANKTON IMAGER

The Plankton Imager (PI) is a relatively new tool for sampling zooplankton in the open

ocean. The motivation for its creation was to create a cost effective, easy-to-integrate,

continuous, automated plankton sampler which harnesses the discussed benefits of

imaging while negating the discussed issues associated with nets or towed imaging

devices and manual taxonomy. The ultimate ambition is to use machine learning

to automatically classify the images in near-real time. ‘Easy-to-integrate’ means the

ability to deploy the instrument with relative ease onto multi disciplinary surveys.
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It requires no modification to the ship’s speed, direction or course and uses the

ship’s existing infrastructure (a continuous flow pump found on all research ships).

‘Automated’ means the devices require little to no human interaction, the device is

turned on at the start of the survey and left running till the end. The methodology is

explained in detail in Chapter 2. In brief, the PI is a line scan camera that images all

passing particles using an in-flow system from the ship’s continuous water supply.

The PhD research has helped the project realise these aims, although the thesis

mainly demonstrates the ecological applications of the Plankton Imager and explains

the methodology in detail. What is not included, is the continual back and fourth

between the ecology team and the instrument designers to make small and larger

improvements to realise these aims and bring the instrument to a commercially viable

version. The development and this collaboration started before the PhD research.

A very brief summary of the existing literature and know limitations of the PI are

detailed below.

1.3.1 THE PI PRE-PHD

The following is a brief review of the ecological studies published using predecessors

of the PI. The known limitations of the PI are briefly reviewed. These studies helped

inform the direction of the PhD research.

The initial prototype that would go on to become the PI and finally the commercial

version: PI-10, see Chapter 2.8, was called the Line-Scanning Zooplankton Analyser

(LiZA) (Culverhouse, 2015; Culverhouse et al., 2016). The LiZA was developed in

response to the discussed challenges associated with zooplankton sampling. The

LiZA was used once on the Atlantic Meridian Transect program (Aiken et al., 2000) in

2011 in conjunction with the Optical Plankton Recorder (Herman, 1992) for truthing

purposes. The name: Plankton Image Analyser (PIA), was coined for the software

that contained the machine learning classifier that attempted to identity the captured

images. Following a new collaboration with Cefas the name ‘PIA’ was adopted to

describe all parts of the imaging device (e.g. the camera and the machine learning

software). Hardware and software upgrades are described in Chapter 2.2. Prior to
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the PhD, the PIA was used for a similar ground truthing exercise aboard the RV Cefas

Endeavour.

Figure 1.2: A: LiZa set up aboard the AMT21 survey, line scan camera (central) and pumped
water supply hoses (right). B Plankton Imager Analyser aboard the RV Cefas Endeavour
showing the flow cell (gold, middle of the unit) and line scan camera (black, atop the flow
cell). A was reproduced from Culverhouse et al. (2016).

LINE-SCANNING ZOOPLANKTON ANALYSER, LIZA

The LiZa was used both as a continuous sampler, much the same as the PI, and a

discreet sampler to image the contents of ring nets which were pumped through the

instrument from a holding tank (Culverhouse, 2015) (Figure 1.2A). Although this type

of discreet sampling is a possibility with the PI, it is only used in this fashion for

instrument testing. The continuous sampling, from the ship’s continuous flow, was at

a reduced rate, compared to the PI, of 12.5 litres per minute. This method forms the

basis of the modern PI and the detailed description in Culverhouse (2015) still applies

for much of the image processing used in the PI. The then-termed ‘Plankton Imager

Analyser’ software was used to attempt to classify the 600,000 imaged particles. The

LiZA showed marginally higher counts in medium size classes and reduced counts
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in smaller and larger size classes when compared to the Optical Plankton Recorder

(Herman, 1988). The study reported a 67 % classifier success rate across 7 pre-defined

taxonomic classes, rising to 90 % with an expert validation step, with 4 % of captured

images being blurred. These studies also served to reveal areas for improvement

with the device, mainly: (1) under-reporting of rarer classes due to subsampling, (2)

confusion between artefacts, detritus, blurred images and plankton, (3) issues with

specific morphological types, mainly Chaetognatha, a long, thin looking taxa which

is often cropped by the image capture process, and (4) human derived training set

errors impinging classifier performance.

From an ecological perspective, the LiZa articles (Culverhouse, 2015; Culverhouse

et al., 2016) begin to show the benefit of sampling zooplankton continuously and the

advantages of imaging over capture then store then subsample. Culverhouse et al.

(2016) highlights the potential importance of capturing species such as filamentous

cyanobacteria Trichodesmium spp., a species that is usally destroyed by ring nets and

preservation by formalin. The articles also emphasises the speed between sampling

and results and comparisons are drawn the Continuous Plankton Recorder which

typically takes three months from sample collection to finished data. The sentiments

of the paper, in terms of the need for a device such as the PI and its benefits for

zooplankton sampling, are echoed and built on in this chapter.

PLANKTON IMAGE ANALYSER

In 2016, following a new collaboration between Cefas and the LiZa instrument

designers, the Plankton Imager Analyser (Figure 1.2B), now used to describe both

the camera system and the machine learning classifier, was installed on the RV Cefas

Endeavour as part of the PELagic ecosystem in the western English Channel and

eastern CelTIC Sea (Working Group of International Pelagic Surveys, 2015) survey.

This version of the instrument, excluding a few smaller upgrades (see Chapter 2.2),

is the version used for all data collected for the PhD. These data, collected for the

publication by Pitois et al. (2018), were also used as part of the analysis in Chapter

3. This study compared the PI with the Automatic Litter and Plankton Sampler

(CALPS) and traditional ring net vertical hauls. The deployment was also to test
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and demonstrate the ease of the PIAs integration as a low-cost, easily integrated

sampling device. The study found good agreement across all devices but suggested

the image capture and analysis step was partly responsible for discrepancies between

the datasets.

These publications, prior to the PhD research, proved the device. Knowing the

PI provided an accurate description of the mesozooplankton framed the work for

the thesis and subsequent publications. Work is now focused on harnessing the PIs

continuous nature and the development of machine learning classifiers.

The limitations of the PI are detailed in Chapter 2.5. The PhD thesis does address

some of these issues which are reviewed in the final synthesis chapter 6.

1.4 CONCLUSION

This chapter briefly summarises zooplankton’s global importance, their key role

within the global ecosystem and carbon cycle and their mandated monitoring by

policy. The overview of the challenges associated with zooplankton are described

followed by a brief review of the existing, major methods. The limitations of these

methods coupled with zooplankton’s global importance are used to demonstrate the

need and potential benefits of the PI. On thesis submission, the PI is an unique

instrument in terms of its speed and it’s continuous, automated nature which requires

little attention to vessel operation or installation.

Each chapter builds on this review in its respective introduction, giving more

detail as to why the PI provides a good solution to the chapter’s specific question.

The global importance of zooplankton is only briefly mentioned in each introduction

and there are infrequent examples or discussion of other specific devices or methods.

This chapter can therefor be used for reference as to the ecological or economical (in

terms of sampling ease) importance of the study. Finally, the aims and objectives for

the thesis are listed below.
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1.5 AIMS

The overarching aim of the thesis is to contribute to the continued development of the

PI and demonstrate its novel applications to zooplankton ecology, mainly through the

continuous and automated sampling. The thesis also aims to explore the data from

an ecological perspective, identify potential future applications as well as address the

instrument’s limitations.

1.6 OBJECTIVES

The thesis aims can be broken down into the following objectives which corresponds

with the chapter structure:

1. Through literature review provide a context for the PI amongst other

zooplankton samplers and demonstrate its potential value to zooplankton

research.

2. Contribute to ongoing development of the system and its methodology for full

operational and optimal deployment.

3. Evaluate the PI’s ability for community and biodiversity applications.

4. Develop an analytic method to best use the PI’s ability to collect continuous,

high frequency zooplankton data.

5. To help develop and test a machine learning algorithm on image data obtained

from the PI to yield unprecedented fine scale data.

6. To summarise the major findings from the thesis to provide context and

suggestions for future studies.
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1.7 THESIS STRUCTURE

The thesis is split into several sections. This chapter has provided the context for the

study, reviewed the PI literature to date and explored ecological applications. This

chapter addresses objective 1.

Chapter 2 provides a detailed method for the PI. The standard operating

procedure for deployment aboard the RV Cefas Endeavour is explored. The stages

involved in image capture and processing are explained. The machine learning

classifiers are also detailed in this chapter. There is some overlap with the short

methodologies in the data chapters. This chapter addresses objective 2.

The data chapters are written as stand alone chapters. This is more true for

Chapter 3 and 4 as both Chapters were written for publication (see Published Works).

Therefore there is minor overlap in the introductions and methodologies and limited

internal reference within the thesis. Chapter 5 was not written for publication but

will form part of a paper following the PhD research reviewing the applications of

machine learning to plankton. For this reason there is reduced overlap with the

method with a higher incident of internal referencing. Chapter 5 uses the PI in

a similar way to a traditional ring net through sub-sampling and more detailed

taxonomic resolution. It asses the PI’s capacity to detect changes in the zooplankton

community and addressees objective 4. Chapter 4 begins to take advantage of the

PI’s continuous nature. Here data are temporally subsampled and compared with

other continuous physical and chlorophyll data. The final data chapter, Chapter 5,

takes advantage of a machine learning classifier developed during the course of the

PhD research. Here continuous, non subsampled data are used to compare with

continuous fisheries data.

The final part of the thesis, Chapter 6 discusses the limitations of the instrument

and the data. Finally the results of the thesis are synthesised and suggestions made

for future applications of the PI.
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2.1 ABSTRACT

The following Chapter details the methodology for the Plankton Imager. The various

generations of the instrument are first explained. The Standard Operating Procedure

(SOP) for deployment aboard the RV Cefas Endeavour is detailed. These procedures

were responsible for all the data collected for the thesis which are used in the

subsequent data analysis chapters. The SOP includes all stages from image capture to

image analysis and explanation of the bespoke software used to generate ecological

data. The calculation of inferred variables, size and biomass, are also detailed.

The current limitations of the Plankton Imager are described, mainly the challenges

associated with collecting millions of images per day. The various classification

algorithms used to sort the images are described as well as their application within

the thesis and their construction. Finally, there is a brief report from the sea test of

the new commercially available PI-10.

2.2 THE PIA, THE PI AND THE PI-10

The Plankton Imager (PI) is introduced, the publications reviewed and the PIs method

in the context of other devices is discussed in Chapter 1.

The PI has been installed on the RV Cefas Endeavour intermittently since 2016.

The Plankton Imager Analyser (PIA, 2016-2020) was the original name for the device.

From 2020 onward, the device was renamed to Plankton Imager (PI). There were no

hardware changes from the PIA to the PI with the exception of upgrading the glass

in the flow cell to sapphire to reduce scratching from passing particles. All data for

the PhD and publications to date have been collected using the PIA and the PI from

2016-2020. From here onward the instrument is solely referred to as the PI. The

exception is with software where program names are prefixed by ‘PIA_’. This is a

remnant from the PIA era. The PI is a prototype instrument used for research and

development. Over the 2016-2020 period there have been several software changes

resulting from the collaborative relationship between the instrument engineers and

designers and the ecological end users. A survey report was written by the attending



2.3. STANDARD OPERATING PROCEDURE 41

scientist on conclusion of the survey detailing desired changes to the software. During

the survey, small, ad hoc, revisions were made through a GitHub repository. The

finished product, the soon to be commercially available, PI-10 was sea tested in June

2022. The report of the sea test, inclusive of hardware and software improvements are

detailed at the end of the Chapter (Section 2.8). The following method is for the most

recent version of the PI software.

2.2.1 DEVICE OWNERSHIP

The PI, PIA and PI-10 are owned by Plankton Analytics in Plymouth, United Kingdom.

For research and development the device is loaned free of charge to Cefas.

2.2.2 DATA OWNERSHIP

All data collected using the PI are owned by Cefas. These data are freely shared

with Plankton Analytics for instrument development and machine learning research.

Some output data is available on the Cefas Data Hub: 10.14466/CefasDataHub.101,

Table 2.1 provides an overview of the data collected by the PI across various surveys.

2.3 STANDARD OPERATING PROCEDURE

The following sections comprise the Standard Operating Procedure (SOP) for the PI.

This SOP outlines the installation on the vessel and describes each stage of the PI

method from image capture to classification.

2.3.1 CONNECTION TO THE RV

All versions of the PI followed the same installation procedure aboard the RV Cefas

Endeavour. The PI is installed in the CTD Garage (an area used for deploying and

housing wet-gear such as gliders, ring nets or rosettes) of the RV where it is connected

to one of two continuous flow pumps. These pump water continuously from 4 m

below sea level throughout the survey. The inlet is located off the ships starboard side

https://www.cefas.co.uk/data-and-publications/dois/zooplankton-abundance-data-derived-from-the-plankton-imager-system-from-the-western-english-channel-and-eastern-irish-sea-from-2016-to-2019/
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towards the bow of the vessel. The water passes enters the PI through the right side

of Box 1 and flows through a flow cell (Figure 2.1D, 2.2D). The water is piped down

into Box 2 where it passes through a flowmeter (Figure 2.1). Finally the water is piped

vertically back through Box 1 where it is connected to an overboard drain (Figure 2.1).

This generates >1 m hydrostatic head which is required by the flowmeter for proper

functioning. The PI samples at 22 L/min which equates to a through flow cell speed

of 1.4 ms−1.

The PIs external unit (Box 1 and 2, Figure 2.1 & 2.2A) requires two mains AC 240

volts power supplies for the controlling unit in Box 1 and the flowmeter in Box 2

(Figure 2.1A & B). These are connected to the ships AC circuit. The PIs camera, housed

in Box 1, is connected to the controlling Linux computer via two CameraLink cables

(Figure 2.1C) which pass through a cable access hole in the bulkhead to the right of

the PI. The flowmeter house in Box 2 is connected to the controlling unit (Box 1) via a

USB data cable (Figure 2.1E)

The controlling Linux computer (Figure 2.2G) is housed in the ‘CTD Annex‘

adjacent to the CTD Garage. The computer requires several mains AC 240 volts power

supplies. The CameraLink cables are connected to the controlling Linux computer. A

serial line from the ships network is connected to the controlling PC which provides

GPS and date-time.

2.3.2 CAMERA AND IMAGE ACQUISITION

The primary task is image capture. Water passes through a purpose built flow cell

(Figure 2.2D & Figure 2.3). The flow cell has two windows (Figure 2.3); the bottom

window allows for illumination from a high-power light emitted diode (LED, Figure

2.2E); whilst the top window allows for image capture. The flowcell has a width of

20.48 mm and internal depth of 12.8 mm.

The flow cell is positioned perpendicular to a line scan camera (Figure 2.2).

The camera lens (Figure 2.2C) is used to focus the camera on the middle depth of

the flowcell. The PI uses a colour 12-bit Basler 2048-70kc line scan camera with a

scanning rate of 70,000 lines per second. The lines consist of 2048 × 1 rows of Bayer
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Figure 2.1: PI Schematic 1 - Cable and plumbing required for installation on a research vessel.
Box 1 houses the camera, flow cell and control unit (for more detail see Figure 2.2). Box 2
houses flowmeter and drain valve. A and B: Mains 240 V AC power supplies. C: PCI Express
cables connecting to linux PC. D: Water piping. E: Data cable from flowmeter to control unit

pixels. The camera was focused through the lens (Figure 2.2C) such that 1 Bayer pixel

captures 20 µm2 of seawater. In order to correctly capture square pixels, the flow rate

is matched the to line scan speed. This is monitored by a Bell electro-magnetic flow

meter (Box 2, Figure 2.1) and can be calculated using equation 2.1.

F lowr ate =CW ∗C D ∗L∗P x ∗60 (2.1)

where

F R = Flow rate (L / m2)

CW = Flow cell width (m)

C D = Flow cell depth (m)

L = Line scanning rate

P x = Pixel size (m)
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Figure 2.2: PI Schematic 2: Detailed method. Image capture stage (A), consisting of a flow
cell (D), camera lens (C), camera (D), LED (E) with water flowing from pumped supply (F).
Image archiving and control of the image capture stage is undertaken on desktop (G). Images
are broadcast to a listening laptop or computer (I) using a local area network (H). Images
are stored on (multiple) external hard drives (J). Red arrows indicate data flow. Blue arrows
indicate water flow. Note, this figure is published in Pitois et al. (2021).

2.3.3 RAW IMAGE PROCESSING

Bayer lines are received on the controlling PC (Figure 2.2G) from the camera unit and

using bespoke software, the lines are stacked against the previous line to produce

a continuous image of potentially unlimited length (Figure 2.4A). This removes the

potential for overlapping frames, or gaps between frames. The joined scan lines

are separated into blocks of 128 lines. The contents of the blocks are analysed for

the presence of shadows which represent particles in the water (Figure 2.4B). The

presence of these shadows is determined by contrasting pixel illumination against a

background image. The background image is taken at the start of every ten minutes.

If a shadow is detected, the region of interest (ROI) is extracted from multiple blocks

using a stitching algorithm and saved as 16-bit tagged image file (TIFF / .tif, Figure

2.4C).

The .tif is time, date and GPS stamped. These data are stored in the .tif metadata

and received at 1 second intervals from a serial line connected to the vessel’s GPS
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Figure 2.3: The brass flow cell used in the PI. The water enters from the right side (red arrow).
A: The glass windows (located centrally) allows for illumination and image capture. B: A quick
release clamp allows for the flowcell to be removed for routine cleaning.

system. The .tif filename includes system name, the time and the image sequence

number.

2.3.4 IMAGE DISTRIBUTION

A local area network (LAN) was used to connect ‘listening’ computers (Figure 2.2I) to

the controlling Linux computer (Figure 2.2G). This was established using a domestic

router (Figure 2.2H). The User Datagram Protocol (UDP) is used to broadcast images

over the LAN via Ethernet from the Linux computer. In theory, these may be directed

to a designated Ethernet port anywhere on the ship’s network so the device can be

monitored anywhere on the vessel. Although this option was not used. Any machine

(running any operating system), and any number of machines can listen and save

the broadcast .tif files when connected to the same LAN. The benefit of using this

system is that more than one ‘listening’ device can collect PI images and secondly, PI

functionality can be checked anywhere aboard.
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Figure 2.4: Bayer lines (A) measuring 2048 ∗ 1 rows of Bayer pixels are received from the
camera unit. These are stacked to form scan line blocks of 128 lines. Regions of interest (B)
are identified. Finally images are converted to 8-bit RGB images (C). Images are for example
purposes only.

2.3.5 IMAGE ARCHIVING

Images are received on listening computers (Figure 2.2I) from the LAN using bespoke

software (PI_Backup.exe). These images are saved to removable storage devices

(Figure 2.2J). Images are binned first into date directories and then into 10 minute

directories for ease of data management. These are automatically created at the start

of each day and 10 minute interval. Post survey the images are backed up on large

external hard drives. PI Archive 1 is kept and maintained by James Scott. PI Archive 2

is kept and maintained by Plankton Analytics.

Prior to 2018, a consistent archiving protocol had not been implemented. This

resulted in subsequent compromises in both current analysis and training set

improvements. Therefore, the principal task on joining the project was to ensure a

stringent archiving system was implemented. The predominant hurdle was the size

of the PIA raw data; survey data can total 2 Tb of data. Cost of a shared drive space

(e.g. at Cefas or at a University) or cloud storage with sufficient upload/download
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speeds was deemed to be uneconomical and untimely for raw data backup. Instead,

only analysed data (commonly small .csv or .R files) and device metadata are stored

on a communal cloud drive for remote access.

2.3.6 TYPICAL CRUISE SAMPLING

Motivated by creation of a new time series in the Celtic Sea, sampling was planned to

be spring and autumn every year starting autumn 2016. (Table 2.1). So data could be

aligned with other data sources in the area, mainly the Continuous Plankton Recorder

Survey (Johns, 2006; Atkinson et al., 2018) and Plymouth Marine Laboratory L4 Station

(Eloire et al., 2010), data were sampled in a manner similar to ring net samples. An

hour was selected to align with other sampling (CTDs, fishing transects, etc.), was

randomly subsampled and images classified to the highest discernible taxonomic

resolution by experts. Various complications arising from instrument development

resulted on three occasions where the instrument was not sea faring. The Covid-19

pandemic also resulted in cancellation of two surveys. Finally, in 2022 a shorter survey

was selected to test the PI-10 (Section 2.8)

Table 2.1: Overview of PI point sampled stations from first survey to date. Data hub refers to
the publicly viewable data on the Cefas website.

Spring Autumn

Year Stations Data hub Stations Data hub

2016 pre-pi 40 uploaded

2017 53 uploaded 15 pending upload

2018 Hardware fault 45 uploaded

2019 20 uploaded 29 uploaded

2020 Covid-19 35 pending upload

2021 Covid-19 Instrument not sea faring

2022 Instrument not sea faring *summer, testing PI-10

https://www.cefas.co.uk/data-and-publications/dois/zooplankton-abundance-data-derived-from-the-plankton-imager-system-from-the-western-english-channel-and-eastern-irish-sea-from-2016-to-2019/
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2.4 IMAGE ANALYSIS

Image analysis follows collection of raw images and includes the extraction,

subsampling (if required) and classification of the raw images. Image analysis for all

chapters used bespoke software developed by Plankton Analytics for the PI. Chapter

5 also used a machine learning classifier produced in collaboration with the Turing

Centre, London UK (see Chapter 2.4.2). In the following section, the bespoke PI

programs are detailed followed by a description of how the Turing Classifier was used

on PI data. The construction of the classifier, and other in-house PI classifiers is

detailed later in section 2.6.

2.4.1 PI BESPOKE PROGRAMS

There are three main programs and these must be run in series, these are, in

order: Raw2RGB.exe, PIA_Analyse and PIA_LabelSort. Each program may be used

independently and can be run as an executable (.exe) from the shell command line.

These commands can easily be batched (using .bat files) to run the programs over

several images or target directories. Raw2RGB.exe and PIA_Analyse was used for

Chapters 4 and 5. More detail on the three main stages is given below.

STAGE 1: RAW2RGB

The raw saved images are 12-bit Bayer pattern images. These appear as black squares

on most common image viewers (e.g. Windows explorer) and are consequently

unusable by humans. This program converts these to 8-bit RGB colour images.

During conversion each 20 µm2 Bayer pixel is interpolated to four 10 µm2 RGB pixels.

This program has arguments that allow it to be run over a whole survey, day or a

single ten minute directory and also allows the user to skip n files (e.g., for temporal

subsampling in Chapter 4).

STAGE 2. PIA_ANALYSE.

This is the computer vision part of the program. Image features are extracted and

saved as a .csv which are used in Stage 3. Important size parameters, such as MajAx
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and MinAx are extracted at this stage (Figure 2.6). Similarly, to stage 1, the program

can be run on both ten minute bins or day samples as well as skip n images.

STAGE 3. PIA_LABELSORT

A random forest machine learning classifier uses the features .csv to attempt to

classify the images into predefined taxonomic classes. The classifier is discussed in

detail in Section 2.6. The classified images must be checked by an expert.

PIA_SUBSAMPLE

The programs can also be run through software with a graphical user interface (GUI)

called PIA_Subsample (Figure. 2.5). This automatically runs the programs based on

user-defined inputs on the GUI. PIA_Subsample was used for Chapter 3.

A broad user guide to PIA_Subsample is described below to provide the context

for how the software was typically used which is shown in italics.

• System Directory - This points the software to the parent cruise directory.

These are typically kept on removable storage or on one of the PI Archives with

the directory names matching Cefas cruise codes.

• Begin and End time - Allows the user to specify the time range for the target

sample.

These are commonly matched to other ship events, such as a physical plankton

sample (for example, see Chapter 3) or fishing trawl. Usually an hour is sampled

to approximately match the amount of water sampled by a vertical ring net trawl

with a 70 cm opening.

• Training set - This points the software to the relevant extensible markup

language (.xml) file. The .xml contains algorithm parameters needed for

classification. The parent directory of the .xml must also contain file label.txt.

This file contains a list of the predefined taxonomic categories into which the

classifier will sort the images.

There have been several iterations of the training sets, described in 2.6. These have
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been kept in communal cloud drives and are a result of collaboration between

various ecologists and the instrument and software engineers.

• No. of specimens - The number of images to be extracted by PIA_Subsample.

In order to align with ring net samples, the target number of zooplankton to be

classified was 200 (Wiebe et al., 2017). Samples would frequently be done in

sections. Initially 1000 images were sorted to provide an idea of the number of

plankton per 1000 images. The number of specimens for the next batch could

then be accordingly adjusted to reach target zooplankton.

• Ignore dirs. with more images than n - Directories over a certain number of

images may be skipped.

During a survey the instrument may be infrequently swamped by high particular

matter, bubbles of phytoplankton, see Section 2.5. This can be used to exclude

those directories with an unrealistic number of images to save processing time.

This number is arrived at anecdotally through trial and error and varies between

surveys.

• Station name and Prime ID - These dictate the name of the output directory

where all images and results are output to.

These have been typically matched to the plankton stations on the survey and

follow the Cefas station name codes for ease of comparison with other data.

• Flow rate The flow rate into the instrument.

Always set at 22 L/min

Following completion of the listed fields above, there are several functions that may

be run and each function can be run multiple times:

• Preview Sample - This estimates the total number of images within the time

range as well as showing the length of time to be sampled.
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Figure 2.5: Screenshot of PIA_Subsample.

The number of images directly correlates to amount of time taken to run the

Sample function, thus it can be used as an estimate to run time.

• Sample - This runs through all stages detailed below. The specified number

of specimens (/images) are first extracted randomly. These are converted to

RGB images and then a classifier attempts to classify each image to taxonomic

categories.

This is often run multiple times in batches to ensure the minimum number of

images are sampled to reach the target 200 specimens.

• Report - This is the last stage of image analysis using the PI_Subsample

software. Following manual validation of the images by an expert after the

Sample function has been performed, Report generates a file that summarises

the station. This contains the following data: PrimeID (as defined above),

Station Name (as defined above), Pumped Volume (calculated from flow rate

and time), Filename (each row contains the image filename in the sub sample),

Lat, Long, Date-time, Class (the taxonomic category decided by the classifier,

p-value (the statistical likelihood of the Class being correct, note these are 1

if the image had to be manually corrected by an expert), file_index (reference),

Major Axis (in pixels, longest distance between two pixels), Minor Axis (in pixels,
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smallest distance between two pixels) (10 µum), Area (in pixels, total number of

pixels (10 µum) in the particle).

This is the resultant usable ecological data. These are often read and merged by

the script which produces the final data.

2.4.2 TURING CLASSIFIER

The Turing Classifier, developed as part of a collaborative data study group between

Cefas and the Turing Institute was used for Chapter 5. The construction of the training

set for this classifier is detailed in Section 2.6.2. The Turing classifier only works on the

converted RGB images. Raw2RGB was batch run over all target directories to convert

the raw images to images that can be handled by the classifier. On completion, a

python script which classifies each image was looped over the converted images. For

each directory this reports a spreadsheet which contains the determined class and

the probability that the classifier has correctly sorted the image, this can also been

seen as the ‘confidence’ of the classifier. The performance of the classifier is detailed

in Section 2.6.2.

2.4.3 ABUNDANCE, SIZE AND BIOMASS

Abundance follows standard zooplankton subsampling procedure. Three size

measurements are available from the PI images described above: MajAx, MinAx and

Area. These are are extracted by the PIA_Analyse software. Biomass is derived from

size. The following size and biomass methods are a more detailed version than those

described in Pitois et al. (2021) and Scott et al. (2021), see Published Works.

ABUNDANCE (INDV. M−3)

Due to the vast number of plankton collected, physical or imaged, they are nearly

always subsampled (as discussed in the introduction, Chapter 1.2.1). For Chapter 3

data were randomly subsampled and for Chapter 4 data were temporally subsampled.

For Chapter 5 there was no subsampling and all images were used. Random
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subsampling is similar to the methods used on a physical sample where a folsom

(or another device) is used to randomly split the sample (Postel et al., 2000) as many

times are necessary to get the target number of individuals. Although this assumes

the individual abundances of each taxa present follow a Poisson distribution (Postel

et al., 2000). As a discussed in 1.2.1 rare species are underrepresented. The abundance

or density (number of plankton per meter cubed) is resolved using the following

equation 2.2.

D = N ∗S ∗1000

F ∗T
(2.2)

D = Density of organisms per cubic meter (Indv. m−3)

N = Number of organisms (n)

S = Split factor (also known as raising factor)

F = Flow rate (L min−1)

T = Time (minutes)

In Chapter 3 the split factor varied and was dependent upon the ratio of plankton

to detritus. This was calculated by using the total number of images within the time

range divided by the total number of images classified, thus the split factor varied. In

Chapter 4 we temporally subsampled 1 in every 10 images resulting in a consistent

split factor of ten. In Chapter 5 no subsampling was used. Therefore, the split factor

was simply 1 in the equation.

SIZE (µm)

Size parameters from the image, extracted by PIA_Analyse can be used to infer

organism sizes. This was only performed on copepod images. PIA_Analyse returns

three size parameters: MajAx (Figure. 2.6), MinAx and Area. Only MajAx was used as

it approximates the full length of the copepod. All size parametes are given in pixels.

Each pixel equates to 10 µm. To obtain the length of the copepod in µm the MajAx

was multiplied by 10 (Figure. 2.6).
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Figure 2.6:
Copepod length measurement from PI, extracted as one measurement between the
two end points of the red arrow. This figure is published in Pitois et al. (2021), see
Published Works.

BIOMASS

To date, biomass has only been calculated for copepods due to their symmetrical and

ellipsoidal shape. The following methods are used in Chapters 4, 5 and Pitois et al.

(2021).

To calculate biomass the longest size parameter from PI, the MajAx was converted

to copepod length (mm). Individual taxa biomass was calculated using a regression

to determine wet-weight (WW, µg) as a function of length. Equation 2.3 was derived

from regression and applied to each copepod (Pitois et al., 2021).

W W = 0.299∗T L2.8948 (2.3)

W W = Wet-weight (µg)

T L = Prosome length (mm)
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For the length-mass regression, we used the method described in Pitois and

Fox (2006) where information on the copepod promsome and urosome sizes were

gathered from the literature to convert length to wet weights (Pitois et al., 2016;

Chojnacki, 1983) using equation 2.4.

V copepod =
πw 2

p lp

6
+ πw 2

ulu

4
(2.4)

V = Body volume

wp = Prosome with

wu = Urosome width

lp = Prosome length

lu = Urosome length

To derive biomass values (mg WW m−3) using individual image sizes, the total

observed copepod wet weight for each station was summed, and then scaled by the

number of images analysed and the water volume sampled at each station. Using the

average size of each copepod group, the mean wet weight of the group was multiplied

by the abundance of that group in ind. m−3.

2.5 LIMITATIONS

2.5.1 DISK WRITE SPEEDS

Currently the PI can collect images at a faster rate than disk write speeds. Although

storage media with faster write speeds are commercially available, consumer units

are used for accessibility, compatibility and ease of purchase. There is negligible gain

in speed when using new solid state drives although more reliable. It is difficult to

put a maximum value on the number of images the PI can record per hour as the

number of images written per second varies on image size, number of images and

background processes between the operating system and the disk. If the minimum
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possible image size (10 µm) the PI can capture was saved the hard drives would

flood instantly (also these images would purely consist of noise and small particulate

detritus). Therefore, the current balance is between desired organism size range and

disk write speeds. Across all Chapters and Publications the minimum size was 180 µm

and the maximum size was 20 mm. We found this to be a good compromise to ensure

the target images within the size range are mostly captured. Although, images are still

lost when in areas of high particulate matter, e.g. bubbles or silt. For the duration

of the PhD these data and the number of images missed are lost as the protocol for

recording these has not yet been implemented.

EXAMPLE SURVEY

During the Autumn 2020 survey we collected 71 million images across 38 days. Figure

2.7 provides an overview of the number of images per ten minute bin. The maximum

number of images per bin was 111,326 averaging to 185 images per second. The

mean number of images per bin was 25,010 with the third quartile at 37,727. The vast

majority of the time the image range for this survey (180 µm - 20 mm) being captured

(Figure 2.7A. There are several bins > 80,000 images. It is likely for these bins images

were lost as a result of the disk flooding.

Figure 2.7: The number of images per bin for the Peltic autumn 2020 survey captured over 38
days in The Celtic Sea. All bins across full range (A) and bins larger than 80,000 (B). Number
of bins for both panels = 50
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HIGH PARTICULATE AREAS

The flooding results from areas where the PI sees a phenomenal number of images

within a short time period, these tend to be lots of smaller images. There are

several main causes: Bubbles, Phytoplankton or high detrital matter. Aside from

system flooding these can also making subsampling a very laborious processes as the

number of images required to obtain the target number of individual (see Section

2.3.6) is significantly increased.

Bubbles at a capturable size typically occur due to rough seas where air is mixed

into the surface layers of the ocean with ease through wave breaking. This has been a

particular problem in the April survey following rough winter seas. Anecdotally, one

can find themselves finding only 1 target plankton in 1000 bubbles. While machine

learning solutions may eliminate this task and easily sort bubbles from plankton, the

disk flooding is a trickier issue to resolve.

This principle is similar to both Phytoplankton and areas of high detritus. Areas of

high density phytoplankton are difficult to predict or mitigate against although these

are usually acute incidents as the vessel steams through the area relatively quickly.

Areas of high particulate matter tends to be a little more predictable and associated

with fluvial sources due to turbulence from saline and freshwater mixing. In 2020

the instrument was stopped when entering the Bristol Channel to stop the removal

storage filling with images of sand or mud.

2.5.2 VARIABLE FLOW RATE

The flow rate can vary due to unforeseen circumstance. On the Autumn 2019 survey,

bio fouling impinged the pump resulting in a reduced flow rate. The flow rate quickly

fell from the target 22 l/min to around 15 l/min. The flow rate of 22 l/min is essential

for capturing square pixels by matching the line scanning speed (Section 2.3.2).

Although, this can be adjusted to mitigate for reduced flow rates by reducing the line

scanning rate. This reduced flow rate must be manually recorded as it is required in

resolving plankton samples when splitting (Section 2.4.3)
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2.6 MACHINE LEARNING TRAINING SETS

To use machine learning for classification purposes, it must be trained on known,

example images. Machine learning classifiers and their required training sets

have been developed alongside the instrument since 2016. Their application to

zooplankton and the associated advantages are introduced and discussed in Chapter

1.2.3. Prior to Spring 2022 the only classifier used on PI data was in the in-house

Plankton Analytics random forest classifier. The training sets were created by myself

with help from taxonomists at Cefas. These were audited by Plankton Analytics before

being used to train the classifiers. All images classified by this classifier underwent

manual validation by an expert. In 2022 a collaborative data study group with the

Turing set produced a copepod only classifier, this was used for Chapter 5. Images

classified by the Turing classifier have not been manually validated as it was used to

sample 10 million images.

2.6.1 PLANKTON ANALYTICS TRAINING SETS

The images that comprise the Plankton Analytics training sets result from manual

classification of survey images. Thus, there is a very small pool of images to choose

from, especially for rarer species. This is the primary limitation for all classifiers used

(see Chapter 1.2.3). There have been several iterations of the training set with both

minor and major changes, only the major changes are detailed here. Minor changes

might include small changes to the algorithm weighting performed by Plankton

Analytics. For example they audited the images to ensure best performance (Bad

Images column, Table 2.2). None of the training sets performed reliably on real data

with an accuracy usually lower than 30 %. The accuracy seemed to vary class by class

but all images required manual sorting. The Plankton Analytics machine learning

classifier was only used for Chapter 3 as part of the PIA_Subsample software. The

major revisions are detailed below. Development of the classifier slowed in 2021 as

attention was focused on developing the PI-10. Therefore the most recent classifier is

dated 26/01/2021. The categories and respective counts are detailed in Table 2.2.
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POST SURVEY BOLSTERING

Following completion of a survey, and validation of images by experts, the classified

images are added into the training set. As a result, the training set grows and increases

the classifier accuracy. Although the gains are marginal. This method ensures there

are as many images of rarer species as possible.

ADDITION OF DETRITUS AND BUBBLES

Images of plankton make up a very small proportion of the total images captured

by the PI. This ratio depends on both the local abundance of plankton and non

target particles (Table 2.2). The not target particulates are highly diverse in their

appearance. Examples include dead flora and fauna, particulate aggregates or

phyotoplankton. These easily confused the classifier as they may look similar to target

zooplankton. Some not target particles are more consistent. For example bubbles

are nearly always almost-perfectly spherical and very opaque meaning they are easily

identified and disregarded. In the hope of gaining a improved performance detritus

and other classes were added to the training sets and populated.

2.6.2 TURING CLASSIFIER

A machine learning classifier was produced as the result of a collaborative Data Study

Group (DSG) between Cefas and Turing Institute, London. The resultant classifier was

a CNN within the ResNet50 architecture. The classifier was used for the Chapter 5.

The DSG platform invites participates to solve various applied data science problems.

Classifying PI images to increasing taxonomic resolution was a challenged proposed

by Cefas. 58,791 images were provided by Cefas, compiled by myself and Plankton

Analytics and audited by Cefas data science staff (duplicates removed etc.).

The DSG format requires objectives of increasing difficulty. The difficulty

associated with classifying plankton images to an increasing taxonomic resolution

provided several challenges. The data set was split into three subsets. The crudest

subset, in terms of taxonomic resolution consisted only of 17,069 zooplankton images

and 40,000 images of detritus (label 1, Table 2.3). The second set had a divsion of the
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Table 2.2: Overview of Categories and images per category to the most recent Plankton
Analytics training set (26/01/2021). Target taxa are those taxa of ecological interest. ‘Bad
Images’ are those than have been removed after audit by Plankton Analytics to try and improve
performance. Example may include blurry or unfavourable orientations. ‘Used to Train’
shows the actual images used to train the classifier.

Target

Taxa?

Category Image

count

Bad

Images?

Used to

train?

yes Amphipoda 2 yes no

yes Amphipoda 18 no yes

yes Amphipoda_Hyperiidae 6 no yes

yes Annelida_Polychaeta 7 yes no

yes Annelida_Polychaeta 141 no yes

yes Appendicularia 5 yes no

yes Appendicularia 80 no yes

yes Bivalvia-larvae 6 yes no

yes Bivalvia-Larvae 43 no yes

yes Byrozoa-Larvae 15 yes no

yes Byrozoa-Larvae 97 no yes

yes Chaetognatha 14 yes no

yes Chaetognatha 232 no yes

yes Cirripedia_Barnacle-Cyprid 11 no yes

yes Cirripedia_Barnacle-Nauplii 5 yes no

yes Cirripedia_Barnacle-Nauplii 77 no yes

yes Cladocera 37 no yes

yes Cladocera_Evadne-spp 32 no yes

yes Cnidaria 17 yes no

yes Cnidaria 63 no yes

yes Cnidaria_Siphonophorae 2 no yes

yes Cnidaria_Siphonophorae_Physonectae 22 no yes

yes Copepod 875 no no

yes Copepod 2076 no yes
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yes Copepod_Calanoida 542 yes no

yes Copepod_Calanoida 2053 no yes

yes Copepod_Calanoida_Acartia-spp 68 yes no

yes Copepod_Calanoida_Acartia-spp 483 no yes

yes Copepod_Calanoida_Calanus-spp 356 no yes

yes Copepod_Calanoida_Candacia-spp 41 no yes

yes Copepod_Calanoida_Centropages-spp 858 no yes

yes Copepod_Calanoida_Centropages-spp- 58 yes no

yes Copepod_Calanoida_Para-

Pseudocalanus-spp

2075 no yes

yes Copepod_Calanoida_Para-

Pseudocalanus-spp-Notused

1133 no no

yes Copepod_Calanoida_Temora-spp 12 yes no

yes Copepod_Calanoida_Temora-spp 178 no yes

yes Copepod_Cyclopoida 9 yes no

yes Copepod_Cyclopoida 100 no yes

yes Copepod_Cyclopoida_Corycaeus spp 1217 no yes

yes Copepod_Cyclopoida_Oithona-spp 139 yes no

yes Copepod_Cyclopoida_Oithona-spp 548 no yes

yes Copepod_Cyclopoida_Oncaea-spp 783 no yes

yes Copepod_Harpacticoida 70 yes no

yes Copepod_Harpacticoida 697 no yes

yes Copepod_Nauplii 302 no no

yes Copepod_Nauplii 1663 no yes

yes Decapoda-larvae 10 no yes

yes Decapoda-larvae_Brachyura 40 no yes

yes Echinodermata 10 no yes

yes Echniodermata-larvae 222 yes no

yes Echniodermata-larvae 910 no yes

yes Euphausiid 41 no yes

yes Euphausiid_Nauplii 141 no yes
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yes Fish-eggs 7 yes no

yes Fish-eggs 52 no yes

yes Fish-larvae 10 no yes

yes Gastropoda-larva 1 yes no

yes Gastropoda-larva 40 no yes

yes Marine Mite 2 no yes

yes Mysidacea 3 yes no

yes Mysideacea 34 no yes

yes Ostracoda 47 no yes

yes Para-Pseudocalanus 126 yes no

yes Para-Pseudocalanus 4176 no no

yes Phoronida-larva 10 no yes

yes Radiolaria 398 yes no

yes Radiolaria 2854 no yes

yes Radiolaria-Notused 1018 no no

yes Tintinnida 32 no yes

yes Tunicata_Doliolida 45 yes no

yes Tunicata_Doliolida 332 no yes

no Detritus 134 yes no

no Detritus-needs-resorting 37 no no

no Bubbles 43 no yes

no Detritus 1407 no yes

no Diatoms 6 no yes

no Phyto_Ceratium-spp 750 no yes

no Phyto_Rhizosolenia-spp 185 no yes

zooplankton into 10,346 copepods and 6,723 noncopepod as well as detritus (label 2,

Table 2.3). The final set consisted of zooplankton classes with detritus (label 3, Table

2.3). Each label posed increasing difficulty. Participants were challenged to classify

the images to increasing taxonomic resolutions. These are similar to the training set

created for the Plankton Analytics training sets 2.2.
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Only the copepod vs noncopepod vs detritus (label 2) classifier was used on real

data for Chapter 5. The final classifier has a reported accuracy of 97% when compared

with expert labelled images. The classifier was run from a python script and can only

be run on images post conversion using Raw2RGB. A script was written by Plankton

Analytics and modified by myself to loop through all target images.
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Table 2.3: Overview of Categories and images per category for the Turing Centre Classifier.
These images were curated by myself with help from Plankton Analytics as the training
images. This table is reproduced from The Turing Centre (2021).

Label 1

detritus 40000

zooplankton 17069

Label 2

detritus 40000

copepod 10346

noncopepod 6723

Label 3

detritus 40000

copepod para-pseudocalanus-spp 1988

copepod unknown 1853

radiolaria 1810

copepod calanoida 1665

copepod nauplii 1380

copepod cyclopoida corycaeus-spp 1117

echniodermata-larvae 799

copepod calanoida centropages-spp 773

copepod cyclopoida oncaea-spp 710

copepod harpacticoida 643

copepod cyclopoida oithona-spp 492

nt-phyto ceratium-spp 459

copepod calanoida acartia-spp 451

nt-bubbles 354

copepod calanoida calanus-spp 345

nt phyto chains 298

tunicata doliolida 291

nt-phyto rhizosolenia-spp 184

copepod calanoida temora-spp 168
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chaetognatha 158

annelida polychaeta 141

euphausiid nauplii 139

copepod cyclopoida 100

byrozoa-larvae 96

appendicularia 79

cirripedia barnacle-nauplii 77

cnidaria 63

fish-eggs 50

ostracoda 47

bivalvia-larvae 43

euphausiid 41

copepod calanoida candacia-spp 41

gastropoda-larva 40

decapoda-larvae brachyura 40

cladocera 37

mysideacea 33

tintinnida 32

cladocera evadne-spp 32

PERFORMANCE

As part of the DSG the accuracy of the classifier was assessed. These are available in

the full report which is pending publication on the Turing website: Turing Data Study

Group Reports. Only the level 2 classifier with detritus (Table 2.3) was used and only

these results are show in in Table 2.4.
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BIG DATA PIPELINES

Most of the published literature resolves plankton images to finer taxonomic

resolution (Dai et al., 2016; Orenstein et al., 2020; Kerr et al., 2020; Schröder et al.,

2019). ML is only used in Chapter 5 where images are only classified to copepod

/ non copepod level. This mainly due to not having the resources to construct a

more detailed training set (see Chapter 6). Although copepod / non-copepod still

provides usual taxonomic information (Scott et al., 2023) but it is difficult to find

comparable studies in the literature where a lower taxonomic resolution is used. We

report a high accuracy of 95% (Table 2.4) but this is most likely due to the lack of

taxonomic resolution. CNNs, specifically the ResNet Architecture are being used to

get classification acurracies of > 70% to moderate taxonomic resolution (Irisson et al.,

2022).

Handling the image data often demands a bespoke data pipeline. Using the PI as

an example (Section 2.3): Images are captured on an external drive; the drive it put in

another computer; images are archived and classified later in time. Other data flow

pipeline specifics used in various plankton ML studies are not often well reported

(including the material published on the PI) (Pitois et al., 2020; Scott et al., 2021),

especially when it concerns instruments that collects many images. Although there

are few instruments instruments that have the same potential capacity as the PI. The

device has the capacity to collect over 1 billion objects per day, limited by a size range

and a gigabit Ethernet cable. Thus, solutions in the literature on how to handle these

sorts of data sets are not always applicable to data rate of the PI. Although the issues

developing big data infrastructure is the next challenge for zooplankton imaging.

Key recommendations from a review on ML’s application to Zooplankton by Irisson

et al. (2022) suggests: "Effort should be directed toward the development of significant

infrastructure to store and curate images, with the help of machine learning, at a scale

that is beyond what plankton ecology laboratories are used to." and perhaps more

importantly "To leverage such an infrastructure and the data therein, oceanographers

should be trained in data science, not only to leverage machine learning methods but

also simply to deal with the massive data sets involved."
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Table 2.4: The performance of the machine learning classifier used in Chapter 5 (ResNet
CNN) against a RandomForest classifier. Accuracy measures the ratio of correctly predicted
observations to the total observations. Precision indicates the fraction of relevant positive
instances among all retrieved positive instances. Recall, also known as sensitivity, is the
fraction of relevant positive instances that were retrieved by the classifier. Reproduced from
The Turing Centre (2021).

Label 2: Copepod vs Non-Copepod vs Detritus

Metric RandomForest ResNet CNN

Accuary 84% 97%

Precision (average) 71% 95%

Recall (average) 70% 95%

F1 (average) 70% 95%

2.7 CONTRIBUTIONS TO DEVELOPMENT

The PhD has assisted in the development of the instrument through user testing and

feedback with the instrument designers. These contributions are listed in Appendix

C. Additionally various tools have be written to explore or manage the data. the

PI Metadata explorer was an early tool to try to get a handle on the large data the

PI collects, this is detailed in Appendix A. Another notable tool is a program for

spatiotemporally aligning the data (Appendix B) which was used heavily in Chapters

4 & 5). These are just two examples in a range of tools written in R, Python and

PowerShell to wrangle analyses and process the PI data.

2.8 PI-10

The PI-10 was sea tested in June 2022 as part of the Nephrops survey (Dobby et al.,

2021). The survey was only to test the commercial version of the instrument and

none of the images (and thus ecological) will be used. The instrument is essentially

the same as the PI with a few key upgrades. Primarily the camera unit (Figure 2.8D)

is now a Dalsa 4096 pixel line scan camera operating at 100,000 lines per sec in full

rgb colour (an upgrade from 70,000 in the PI). This increased line scan rate means
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an increased water flow of 34 L per min can be achieved. The camera also has twice

the resolution resulting in clearer images. The water inlet (Figure 2.8A) and drain

(Figure 2.8C) remains similar although a new, larger flow cell (Figure 2.8B) to suit the

camera is used. These are all now housed in an air and water tight acrylic waterproof

reduce dust on the flow cell (dust can result in artefact images as the dust is imaged).

This unit (the blue box in Figure 2.8) is removable and when deployed attaches to a

aluminium frame that is secured the vessel bulkhead.

The instrument was run with moderate success during the survey. The issue with

the data rate (Chapter 2.5.1) is made worse by the higher resolution (and thus larger)

images. Otherwise the instrument performed as expected and for the majority of the

survey, was fully automated.
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Figure 2.8: The PI-10 aboard the RV Cefas Endeavour. The PI-10 is now wall mounted. The
external aluminium frame (silver metal surrounding instrument) is attached to the bulkhead.
The major components are the water inlet (A), the flow cell (B), the drain (C), the camera
unit and control board (D) and a new LED error reporting (E). These are now housed in a
waterproof compartment (blue box, centre of figure).
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3.1 ABSTRACT

The Plankton Imager is an underway, semi-automated, high-speed imaging

instrument which takes images of all passing particles and attempts to classify the

zooplankton present. We used data (temperature, salinity and mesozooplankton

abundance) collected in the Celtic Sea in spring and autumn from 2016 to 2019 to

assess the ability of the PI to describe temporal changes in the mesozooplankton

community and to capture the seasonality of individual taxa. The description

obtained using the PI identified both seasonal and interannual changes in the

mesozooplankton community. Variation was higher between years than seasons

due to the large variation in the community between years in autumn, attributed to

the breaking down of summer stratification. The spring community was consistent

between years. The seasonality of taxa broadly adhered to those presented in

the literature. This demonstrates the PI as a robust method to describe the

mesozooplankton community. Finally, the potential future applications and how to

make best use of the PI are discussed.

3.2 INTRODUCTION

The ubiquitous distribution and high abundance of zooplankton makes them

fundamental in many ocean processes. They have an essential role in the global

carbon cycle and carbon sequestration, regulating the exchange of CO2 between

the atmosphere, surface ocean and ultimately the seabed (Hansell, 2002; Steinberg

et al., 2002; Steinberg and Landry, 2017). Zooplankton can be used in global

monitoring; providing reliable, sensitive indicators to climate change (Taylor et al.,

2002). Furthermore, the adult and juvenile stages of zooplankton are the principal

prey for many commercially fished species (Beaugrand et al., 2003; Heath, 2005).

Despite this, time-series data for zooplankton are sparse (Mackas and Beaugrand,

2010) and our knowledge of communities is spatially fragmented (Pitois et al., 2016).

At the same time, rising exploitation of our seas is putting increasing pressure

on critically assessing and protecting the marine environment (Bean et al., 2017).
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Resultant policy, such as the EUs Marine Strategy Framework Directive (MSFD

– Directive 2008/56/EC), demands increasingly complex metrics for plankton

communities (McQuatters-Gollop et al., 2017). However, the capacity to resolve

questions posed by policy are hindered by financial ceilings that limit monitoring

capacity (Bean et al., 2017; Pitois et al., 2018). To make matters worse, traditional

taxonomy by light microscopy, the required analysis on net samples, itself a ‘discipline

in crisis’ (Agnarsson and Kuntner, 2007), is laborious and time-consuming. These

factors place impetus on developing cost-effective methods to obtain sufficient data

to accurately describe plankton communities (Danovaro et al., 2016). In response, a

range of new devices, often using the latest technology have been developed (Wiebe

and Benfield, 2003). For example, acoustic tools can provide high temporal and

spatial resolution for assessing total biomass (Wiebe and Benfield, 2003), but cannot

answer questions requiring taxonomic information (Stanton et al., 1994; Benoit-Bird

and Lawson, 2016). Imaging devices, such as the FlowCam (Sieracki et al., 1998)

and ZOOScan (Gorsky et al., 2010) are well established, widely used methods. While

these devices can speed up identification and provide data archiving benefits, they

are commonly used on captured, preserved samples and therefore suffer the same

constraints as the deployment of nets and preservation of specimens.

Semi-automated, in situ, imaging devices take a different approach. Deployable

devices such as the Video Plankton Recorder (Davis et al., 2005), Underwater Vision

Profiler (Picheral et al., 2010) and The in situ Ichthyoplankton Imaging System (Cowen

and Guigand, 2008) capture images of passing particles for subsequent classification

removing the need for physical sample collection. For a comprehensive review of

these devices see: Lombard et al. (2019). More recent devices, for example The

Scripps Plankton Camera System (Orenstein et al., 2020) and PlanktonScope (Pollina

et al., 2020), are currently employed for routine monitoring. The Plankton Image

Analyser (Culverhouse, 2015; Pitois et al., 2018) uses a similar image-capture method

but is instead connected to the ship’s clean water inlet. This negates the need for

deployment and allows for continuous imaging of particles as they pass through the

system as the ship is underway. Continuous sampling allows for high spatial and

temporal resolution whilst retaining reasonable taxonomic resolution. The device
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also has economic advantages: it is easily retrofitted to existing vessels and runs

continuously with minimal human interaction after set-up. Furthermore, the use of

semi-automated image recognition algorithms has strong potential to significantly

reduce analysis time.

The first application of the Plankton Image Analyser (PIA) was a comparison with

ring net sampling (Pitois et al., 2018). The study found that the PIA performed well,

but noted limitations associated with depth of field issues leading to a high number of

unidentifiable blurred images. Here, the Plankton Imager (PI), an evolution of the PIA,

was used with an improved method to reduce the incidence of blurred images. We

used the Celtic Sea as a case study to assess the ability of the PI to describe temporal

changes in the mesozooplankton community.

3.3 METHOD

3.3.1 STUDY AREA SAMPLING METHODS

Data were collected at night during five fisheries surveys from 2016 to 2019 in the

Celtic Sea aboard the RV Cefas Endeavour (Figure 3.1, Table 3.1). Zooplankton

data were sampled at night to reduce the effect of vertical migration (Lampert,

1989; Pitois et al., 2018). Autumn data were collected as part of the PELTIC survey

(PELagic ecosystems in the western English Channel and eastern celTIC Seas) and

spring data aboard the SWECOSS survey (South West ECOSystems Survey). The

PI ran continuously and mesozooplankton counts were obtained at 107 stations by

extracting from the raw data. Temperature and salinity data were collected in autumn

using a SAIV mini Conductivity, Temperature, Depth (CTD) and in spring using the

Cefas-built ESM2 data logger at 93 stations. Due to sampling constraints, 14 stations

did not have corresponding temperature and salinity data (Figure 3.1). PI data are

freely available from the Cefas Data Hub: 10.14466/CefasDataHub.101.

https://www.cefas.co.uk/data-and-publications/dois/zooplankton-abundance-data-derived-from-the-plankton-imager-system-from-the-western-english-channel-and-eastern-irish-sea-from-2016-to-2019/


3.3. METHOD 76

Figure 3.1: Location of the 107 zooplankton stations and 93 CTD stations off the southwest
coast of the UK. Zoop. = Zooplankton. Stns. = stations.

Table 3.1: Number of available zooplankton stations per year

3.3.2 TEMPERATURE AND SALINITY

Temperature and Salinity data were bin averaged into 1 m depth increments starting

at the sea surface. Sea surface temperature (SST) was taken as the shallowest bin

available. Although the PI samples at 4 m, the difference in temperature between

the surface and 4m was only 0.02 °C on average and thus negligible. Differences
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in temperature (∆T) and salinity (∆S) were calculated between the shallowest and

deepest readings.

3.3.3 THE PLANKTON IMAGER (PI)

The Plankton Imager is an instrument for the continuous, semi-automated,

underway sampling of mesozooplankton in surface waters. The PI uses a Basler 2048-

70kc line scan camera with a scanning rate of 70,000 lines per second capturing 2,048

10 µm pixels per line (Culverhouse, 2015; Pitois et al., 2018). Water pumped from

4 m depth passes through the flow cell at 22 L min−1 equating to an approximate

1.3 m3 of seawater per hour. The flow cell has an internal depth of 12.8 mm

giving a field of view of 10 µm x 20.48 mm. The PI can capture particles sized

from 10 µm to 2 cm but was set up with a range of 200 µm to 2 cm. This was to

prevent the image capture rate exceeding the hard drive write speed which would

result in lost images. Captured images are classified by a Random Forest machine

learning algorithm which sorts images into predefined categories (Breiman, 2001).

The algorithm is trained on expert-sorted PI images (Figure 3.2). In line with PI

software and hardware developments, the classifier training set has been continually

improved. Classification accuracy varies between stations but currently all images are

checked and, if needed, resorted by an expert taxonomist.

Zooplankton counts were derived from 200 zooplankton images extracted at

random from all images obtained during a 1 hour period at each station (Pitois

et al., 2018). The actual number of images needed to reach 200 specimens varied

based on plankton density and detrital content. All non-target images (e.g. large

phytoplankton or particulates) are classified as detritus. This process of subsampling

is analogous that used by the Folsom Splitter where data are continually and

randomly split until the target number of individuals is reached. Images per hour

ranged by an order of magnitude. The PI operates on a semi-automated classification

method, similar to that used by ZOOScan (Gorsky et al., 2010). An expert taxonomist

validated the output from the machine learning classifier for each station. The PI flow

rate, sampling duration, number of images classified (including detritus) and total
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Figure 3.2: Collage of example mesozooplankton images used for training set for the 12 most
abundant categories across all surveys.

number of images sampled in the timeframe were used to resolve the scaling factor.

The scaling factor was then used to calculate zooplankton abundance (individuals

m−3; ind. m−3 henceforth).

Zooplankton were classified into 40 taxonomical categories. All images are

classified to the maximum discernible taxonomic resolution. In some cases, due

to orientation of the specimen or image blur, an image could only be confidently

identified to a low taxonomic resolution (e.g. unidentified copepod or decapod

larvae). Of the 40 categories, 12 contributed to less than 1 % of the total abundance

and were present in less than 5 % of all stations (fish larvae, cladocera, gammaridea,

monstrilloida, marine mites, ascidian larvae, siphonophora, Caligus spp., caprellidae,

ostracoda, physonectae and Clione spp.). These were removed prior to data analysis.

The abundance data from the remaining 28 taxonomic groups (Figure 3.7) were used

to compare the communities across the survey areas and between seasons.
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3.3.4 STATISTICAL ANALYSIS

All analyses were undertaken in R (version 4.0.2) using the Vegan package (Oksanen

et al., 2013; R Development Core Team, 2018).

The non-parametric Spearman’s correlation coefficient was used to test for

correlation between max depth and ∆T. For those sites with salinity and temperature

data, the community was analysed using non-metric dimensional scaling (NMDS)

on a Bray-Curtis dissimilarity matrix. Prior to NMDS abundance data were

transformed using the Hellinger transformation to reduce data asymmetry (Legendre

and Gallagher, 2001). The envfit() function, which fits supplementary variables

on the NMDS, was used to determine the correlation and forcing direction of

environmental factors. The ordisurf() function, which fits a smooth surface to an

ordination using a generalised additive model, was used to visualise the difference in

environmental variables between seasons as well as explore their relationship with

seasonal groupings.

To test for a significant difference between years and seasons, Permutational

Multivariate Analysis Of Variance Using Distance Matrices (PERMANOVA, using

the ADNOIS function) were used with 999 random permutations (Anderson, 2001).

The betadisper() function, which analyses multivariate homogeneity of group

dispersions, was used to determine if a significant result produced by PERMANOVA

was the result of the variable being tested (year or season) or variations within

seasons (Anderson, 2001). A NMDS was run, exactly as before, for all sites and the

envfit() function used to determine the correlation and forcing of each taxa toward

a particular survey / season. This was reinforced through use of a SIMPER analyses

(Clarke and Ainsworth, 1993).
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3.4 RESULTS

3.4.1 PHYSICAL CONDITIONS

There was a clear difference in temperature profiles between seasons (Figure 3.3).

Across all 4 years autumn temperature (range = 9.52 °C to 16.9 °C, mean ∆T = 4.8 °C)

was an average of 3.9 °C higher and had higher variability in ∆T than spring (range =

9.26 °C to 13.2 °C, mean ∆T = 2.35 °C). Varying degrees of stratification can be seen

in autumn where ∆T > 1 °C for a third of stations (Figure 3.3). The strength of the

stratification was positively correlated with deeper waters across all years (rs = 0.4, p

< 0.001), such that∆T was highest at the most westward stations. Near-shore stations,

those within the English Channel and in close proximity to the Bristol Channel, had

the lowest∆T values (Figure 3.4). Spring profiles show that the water column was well

mixed with little to no variation in temperature with depth (i.e. ∆T < 1 °C for 95 % of

spring profiles) or between years (Figure 3.3).

The NMDS plot (Figure 3.5A) was used to explore the relationship between

physical variables and mesozooplankton distribution. The larger variation in the

stratification between years in autumn compared to spring (Figure 3.3) was reflected

in the mesozooplankton community where variation between years was larger in

autumn than spring (indicated by the large spread along the x-axis in Figure 3.5A).

Autumn 2018 had no overlap in community with either 2016 or 2019 (Figure 3.5A) and

could reflect the cooler seas in 2018 (Figure 3.3). The envit() function suggested that

the supplementary physical variables with a more linear relationship to the NMDS

scores (indicated by the contour plots: SST, Figure 3.5D and ∆S, Figure 3.5C) were

related with dissimilarity between seasonal groupings (Figure 3.5A). ∆T is not shown

in Figure 3.5A as the model fitted by the envfit() function was not significant. The

contour plots for SST (Figure 3.5D) and ∆S (Figure 3.5C) indicate that cooler SST

(below 12 °C), and reduced ∆S (where variation was < 0.08), were found in spring.

Higher SST values and a more variable ∆S were found in autumn sites. Figure

5b highlights the non-linear relationship between NMDS site scores and ∆T. Lower

stratification (3.3) was associated with spring sites. Most autumn sites had a ∆T >
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Figure 3.3: Temperature profiles for each station per survey. The inverse y-axis shows depth
(1 m bins) with the x-axis showing temperature (◦C).

0.8 °C, although there was high variation between years (Figure 3.5B). The spread

of points across the ∆T contours may reflect the variation in ∆T between locations

(Figure 3.4)
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Figure 3.4: ∆T plotted as circle size for all autumn stations across all years.

3.4.2 MESOZOOPLANKTON COMMUNITY

Mesozooplankton abundance varied greatly between years and seasons (Figure

3.6). Autumn 2019 stations had the highest mean abundance (6,780.5 ind. m−3).

Conversely, the previous autumn had the lowest mean station abundance (2,323.5

ind. m−3). There appears to be no relationship between mean station abundance

and season. Although both surveys in 2019 had almost double the mean station

abundance of any other previous survey (Figure 3.6).

On average, 9 to 10 taxa contributed to over 95 % of the total abundance. Over

all 5 surveys common dominant taxa were ‘Unknown copepods’, copepod nauplii

and Centropages spp. Unknown copepod tended to be the largest contributor to

total abundance of any taxa, but this was inconsistent between years (Figure 3.7).

The contribution of copepod nauplii to total abundance was fairly consistent with

the exception of spring 2019 (mean relative abundance ranged from 1.32 % to

5.85 % excluding spring 2019 where relative abundance was 14.64 %, Figure 3.7).
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Figure 3.5: Analysis of interactions between environmental variables and plankton
community site dissimilarity for sites with physical data. All plots show the same non-metric
multidimensional scaling plot created using a Bray–Curtis dissimilarity matrix on Hellinger-
transformed abundance data. (A) Shows the supplementary environmental variables plotted
using the envfit() function. Plots (B) (∆T), (C) (∆S) and (D) (SST) show contour plots created
using the ordisurf() function to explore the relationships between environmental variables
and the NMDS site scores.
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Figure 3.6: Mean station abundance for each survey with taxa grouped into four major
categories.

Centropages spp. also made a consistent contribution to total abundance (mean

relative abundance ranged from 1.58 % to 4.17 % with an average value of 3.21 %,

Figure 3.7). None of these 3 taxa adhered to a particular season. Common to four of

five surveys dominant taxa were Oithona spp., Para-Pseudocalanus spp. and Acartia

spp.

With the notable exception of radiolaria in autumn 2019, which had an average

contribution of 61 % to the total abundance at each station (Figure 3.7), copepods

dominated the community accounting for > 70 % of the total abundance on average

(Figure 3.6). Of these, an average 30.9% were classified as “Unknown copepods”

(Figure 3.7). Para-Pseudocalanus spp. were particularly numerous in spring 2019,

contributing to a third of the total abundance (mean station abundance 1470.0 ind.

m−3).

Meroplankton constituted a larger portion of the spring community than autumn

(Figure 3.6). For spring 2017 and 2019, meroplankton made up 30 % and 8 % of

the total mesozooplankton abundance, respectively, while their contribution was

< 1% in all 3 autumn surveys. The higher proportion of meroplankton found
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Figure 3.7: Relative abundance (%) (Relative Abun.) for all surveys for taxa that contributed
to >1% of the total abundance. Axis labels are on bottom left subplot (Hyperiidae) and are the
same for all subplots. Categories are arranged in order of decreasing relative abundance from
highest in the top left to lowest in the bottom right.

in spring comprised different larval forms each year. In spring 2017, the high

meroplankton abundance was driven by decapod and barnacle larvae (25 % and

7.23 % of total abundance respectively, Figure 3.7). Spring 2019 mainly comprised

of echinoderm larvae, followed by Polychaete larvae (6.53 % and 0.71 %, Figure

3.7). Some meroplankton, mainly bryozoa and bivalve larvae, were found in high

abundance during autumn (Figure 3.7).
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Statistical analyses were performed on mesozooplankton abundances to

determine statistically which taxa were driving variation between communities and

add robustness to the prior description. A PERMANOVA suggested that both season

and year were significant factors in causing variations between the communities

(season p < 0.05, R2 = 0.08; year p < 0.05, R2 = 0.42). It is likely due to heterogeneous

dispersion effects (within-survey variation seen in all autumn surveys, Figure 3.8)

in autumn that year yielded a higher R2 value. Further evidence for this comes

from the lack of ellipse overlap for the autumn surveys in the NMDS plot (Figure

3.8). Subsequent ANVOVAs on the analysis of multivariate homogeneity of groups

(using the betadisp() function) confirmed this. Spring communities had homogeneity

among years (F(2,24) = 1.9145, p = 0.17) whilst autumn were significantly different in

groups between years (F(2,78) = 9.6832, p < 0.001). It is therefore likely that year had

some influence on our PERMANOVA result and perhaps reduced the seasonal effect.

The taxa loadings on the NMDS plot (Figure 3.8) echoes those trends seen

in relative abundance (Figure 3.7). For example, the high relative abundance of

radiolaria in autumn 2019 (Figure 3.7) is also seen in the ordination plot where

radiolaria are highly correlated with autumn 2019 stations. This forcing from an

individual, or a few key taxa, is characteristic for all autumn surveys (Figure 3.8).

Oithona spp. and Centropages spp. are strongly correlated with autumn 2016 where as

Candacia spp. and Corycaeus spp. are strongly correlated with 2018 and neither taxa

strongly correlated with other years. Spring stations show the opposite, where there

is high overlap in yearly ellipses and discerning taxa that correlate better to one year

than another is difficult (Figure 3.8). In general, the location of spring stations within

the ordination are forced by meroplankton, such as decapod and echinoderm larvae

compared to autumn. SIMPER analysis reported that average dissimilarity between

spring and autumn was 49.2 %. Six taxa were responsible for driving > 50 % of the

difference between spring and autumn communities and twelve for > 75 %. This being

said, it is important to consider the heterogeneity of autumn surveys.
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Figure 3.8: NMDS plot on Hellinger-transformed abundance data using a Bray–Curtis
dissimilarity matrix on Hellinger-transformed abundance data, where stress =0.18.
Supplementary variables taxa were plotted using the envfit() function with a P <0.05.

3.5 DISCUSSION

3.5.1 ENVIRONMENTAL DRIVERS OF SEASONALITY

The increased stratification offshore in early autumn (Figure 3.4) is consistent with

the established summer stratification of the Celtic Sea and Western Channel as

well as the breaking down of stratification through increased mixing in coastal

waters during late summer and autumn (Southward et al., 2004; Harris, 2010). This

trend is also consistent between years but is not reflected by consistency in the

mesozooplankton community between years. While there is a similar linear spread

of each autumn survey’s stations across the ∆S contours in the NMDS plot (Figure
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3.5C), the communities are dissimilar between years (Figure 3.8). Conversely, spring

had both consistency in the degree of stratification (negligible variation between

years and sites, Figure 3.4) and in community overlap on the ordination plot (Figure

3.8). This suggests that the summer stratification persists into early autumn, before

it begins to degrade (Southward et al., 2004; Smyth et al., 2015), and its increased

strength with distance offshore is likely to have contributed to the large dissimilarity

of autumn stations seen in the ordination analysis (Figure 3.8).

The potential processes driving community composition and taxa seasonality

at PML’s longstanding L4 timeseries station (Harris, 2010), which falls within our

study area, are summarised by Atkinson et al. (2018). The authors review a suite

of mechanisms that govern the mesozooplankton and suggest that a synergistic

combination of mechanisms is often responsible. Those most relevant to our study

are: the loophole hypothesis, whereby physiochemical changes favour some taxa

(Irigoien et al., 2009); changes in net heat flux where stabilisation of the water column

promotes the spring bloom (Smyth et al., 2014); mortality-controlled copepod

phenology (Irigoien and Harris, 2003; Maud et al., 2015) and zooplankton feeding

traits (Sailley et al., 2015). The high community variation we see in autumn between

years may be the result of a complex combination of these processes where each

hypothesis is more relevant in a specific year. For example, the persistence of the

summer stratification into autumn (Southward et al., 2004), may have been more

pronounced in 2019 resulting in the exceptional abundance of radiolaria in 2019,

although we do not see this effect in our data (Figure 3.3). Radiolarian diversity has

been shown to increase with distance offshore and depth of stratification (Biard et al.,

2017) and this may explain, in-part, their high abundance. On further investigation,

the highest numbers of radiolaria were found at the most stratified, offshore stations.

An additional factor may be the coincidence of the autumn bloom with the survey

timing. While survey dates tend to be consistent year on year (Table 3.1), the timing

of the environmental phenomena leading to phytoplankton blooms, and thus an

increase in mesozooplankton, are not so regular. This potentially resulting in a

mismatch between bloom conditions and the survey dates. It has been suggested

that survey ‘snapshots’ might be spatially misleading (Huret et al., 2018) and may be
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responsible for the large variation between the autumn communities despite similar

environmental conditions.

3.5.2 SYSTEM PERFORMANCE

The community description presented here reveals interannual and seasonal

variabilities in both the abundance of individual taxa and the mesozooplankton

community structure. Our findings were in line with those found by two time

series in the area: The Continuous Plankton Recorder (CPR) (Richardson et al.,

2006) and Plymouth Marine laboratories L4 Station (Eloire et al., 2010). Additionally,

the seasonality of individual taxa and observation of distinct seasonal communities

presented here agrees with previous descriptions of mesozooplankton in the Celtic

Sea (Johns, 2006; Eloire et al., 2010; Highfield et al., 2010; Giering et al., 2019).

This agreement between devices is found despite that loss of detailed taxonomic

information when using the PI compared to traditional methods (i.e. those samples

analysed by microscopy). For example, we find a high number of unknown copepods

in all surveys (Figure 3.7) due to occurrences where a specimen has a non-favourable

orientation relative to the camera when imaged (Tang et al., 1998), with copepods

being particularly troublesome.

Zooplankton are a morphologically diverse group of organisms in terms of size,

shape and behaviour. Therefore, any plankton sampling device will preferentially

sample, or be biased towards, a certain group of organisms (Owens et al., 2013). The

PI, like all plankton samplers, suffers gear specific issues such as active and passive

avoidance or damage to samples. The radiolaria peak presented here provides an

interesting example. Fragile varieties or those that form colonies, such as radiolaria,

are difficult to sample with nets or devices that require collection of the individual

(Cifelli and Sachs, 1966; Burki and Keeling, 2014). This is less problematic for imaging

devices. The high abundance of radiolaria seen in 2019, as well as its consistent

appearance within the dominant taxa of PI samples, adds to a growing body of

evidence from imaging devices that suggest radiolaria are highly abundant and an

important part of marine food webs which are often missed by traditional methods
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(Dennett et al., 2002; Picheral et al., 2010; Biard et al., 2017). Conversely, the PI

was found to underreport certain taxonomic groups when compared to a ring net;

Pitois Pitois et al. (2018) suggested that the fragility of Appendicularia resulted in

destruction beyond recognition and the strong swimming ability of chaetognaths

resulted in sampling avoidance. Although the seasonality exhibited by these taxa

(Figure 3.7) agrees with existing literature (Johns, 2006; Eloire et al., 2010). This

suggests that while the PI under samples these taxa, it still does so sufficiently to

detect seasonal trends. The fixed depth intake from which the PI samples may give

rise to variation as well as the choice to only use night stations. Many zooplankton

undergo diel vertical migration (Hays, 2003), which may introduce a sampling bias

toward those that only occupy the upper water column at night.

3.5.3 MOVING FORWARD

As a new device, the PI needs to find its niche amongst existing devices. How it

can best complement, build upon, or supplement existing data sets needs to be

determined. No single device is able to accurately capture all components of the

zooplankton and all systems underestimate parts of the zooplankton community

(Owens et al., 2013). Researchers must select a system, or a suite of systems, that

is most appropriate to answer the research questions posed (Skjoldal et al., 2013).

The findings presented here suggests that the PI captures the community

with sufficient accuracy to describe trends and community structures within the

mesozooplankton. The limitations of the PI, mainly the loss of highly detailed

taxonomic information and its fixed sampling depth, are balanced by several

advantages. From an economic standpoint, the automated nature of the device and

ease of integration onto existing surveys make it an attractive option for continuous

underway sampling where the level of description of the community presented here is

satisfactory (for example, a potential application may be food web studies). However,

the foremost advantages are seen from an ecological point of view, the PI can obtain

this information at an unparalleled spatial and temporal resolution due to sampling

24/7 with negligible down time. To date, and to demonstrate the robustness of the
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PI as a mesozooplankton sampler, the PI stations have been chosen to coincide with

ring nets. This does not use the PI to its full potential. For example, in autumn 2018,

a representative year in terms of images although with the most stations per survey,

the PI captured 8.3 million images (inclusive of detritus) over the whole survey. Of

these, only 50,162 (or 0.6 %) were used. On a more recent survey in 2020, not reported

here, the PI captured 16.2 million images. With recent improvements, mainly through

increasing the processing and storage speeds to keep up with the phenomenal data

collection rate, experiments at sea suggest the minimum size (currently 200 µm) can

be reduced by half. This would reveal more of the plankton community, although

anecdotal evidence suggests the number of images captured would increase by an

order of magnitude, in turn bringing its own data processing challenges. To tackle

these challenges, new tools must be developed to make best use of the ‘big-data’

produced by the PI.

3.6 CONCLUSION

We have demonstrated that the PI is able to detect changes in mesozooplankton

abundances in line with established devices. While the inherent strength of devices

such as the PI (i.e. cost effectiveness and high frequency sampling leading to fine

scale spatial data) can be used to address new research questions, they also give rise

to new challenges. Mainly, the data collection rate is faster than the processing rate.

Progress in the machine learning classifier and the emergence of innovative methods

in data analytics will remove the need to subsample images and classify all particles

at a modest taxonomic resolution. This will result in truly high mesozooplankton

resolution data, able to complement existing large-scale or simple point sampling

timeseries for this important group of marine organisms.
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4.1 ABSTRACT

Marine research surveys are an integral tool in understanding the marine

environment. Recent technological advances have allowed the development

of automated or semi-automated methods for the collection of marine data.

These devices are often easily implemented on existing surveys and can collect

data at finer spatiotemporal resolutions than traditional devices. We used two

automated instruments: the Plankton Imager and FerryBox, to collect information

on zooplankton, temperature, salinity and chlorophyll in the Celtic Sea. The resulting

data were spatiotemporally aligned and merged to decreasing spatial resolutions to

explore how distribution patterns and the relationship between variables change

across different spatial resolutions. Relative standard deviation was used to describe

variability of merged data within grid cells. All variables displayed large, area-wide

spatial patterns excluding copepod size which remained consistent across the study

area. Copepod biomass and abundance displayed high variations across small spatial

scales. Decreasing the sampling resolution changed the description of the data

where small spatial changes (those that occur over scales < 3 km) were lost and

area wide patterns were emphasized. Furthermore, we found that the choice of

resolution can affect both the statistical strength and significance of relationships

with high variability at lower resolutions due to the mismatch between the scales of

ecological processes and sampling. Determining the optimum sampling resolution

to answer a specific question will be dependent upon several factors, mainly the

variable measured, season, location and scale of process, which all drive variation.

These considerations should be a key element of survey design, helping move towards

an integrated approach for an improved understanding of ecosystem processes and

gaining a more holistic description of the marine environment.

4.2 INTRODUCTION

Research surveys are fundamental in furthering our understanding of the marine

environment. Motivated by providing a holistic, ecosystem approach to monitoring
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(Kupschus et al., 2016) or mandated by policy (Vinet and Zhedanov, 2011;

Danovaro et al., 2016), technological developments are helping surveys move toward

increasingly interdisciplinary approaches (Working Group of International Pelagic

Surveys, 2015; Doray et al., 2018). Installing automated technologies, which allow

for continuous data collection with little human input, are a straightforward step in

achieving this goal. Devices such as the FerryBox, used here, collects both physical

and biological variables continuously and reports high frequency data throughout

a survey (Petersen and Colijn, 2017). Due to their continuous, automated nature,

these data are readily available for (near) real time analysis, or retrospective, post-

collection, analysis. These often easy to implement devices can reduce vessel costs

(time, fuel or labor) when compared to traditional methods (deployment of nets) or

towed imaging devices (e.g., deployment and recovery or reduced vessel speed while

towing) and allow for an increased number of variables collected at no or little extra

cost. Their use can help surveys stay within financial limitations (Bean et al., 2017;

Pitois et al., 2018) and allow for optimized survey design (Kupschus et al., 2016) by

easily increasing sampling coverage and intensity (Owen, 2014; Doray et al., 2018).

These devices do not require an onboard expert, freeing up vessel space and further

reducing costs. They can typically sample in all weather conditions, allowing for

data collection in hard to sample locations or reduce the time spent waiting for safe

sampling conditions.

In recent decades, automated technologies have become commonplace in

multiple marine disciplines. The FerryBox is one of many established options for

continuous, automated sampling of physical parameters. Acoustic devices are used

globally, commercially and scientifically, for fishing (Mann et al., 2008; Simmonds

and MacLennan, 2008), marine mammal research (Johnson and Tyack, 2003; Johnson

et al., 2009) and bathymetry (de Moustier, 1986). Other purpose-built devices sample

a single component, for example, fish eggs (Checkley et al., 2000) or phytoplankton

(Olson et al., 2018). The continuous sampling of zooplankton, globally important in

carbon cycles (Steinberg et al., 2002; Steinberg and Landry, 2017), fisheries science

(Beaugrand et al., 2003; Heath, 2005; Lauria et al., 2013) and used as climate change

indicators (Taylor et al., 2002), provides a unique technological challenge arising
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from the difficulties with sampling the entire zooplankton component accurately.

Zooplankton includes a wide range of sizes and behaviors and undergoes rapid,

temporal and spatial changes, known as plankton patchiness (Mackas et al., 1985;

Abraham, 1998), making replicable sampling difficult. These fine scales changes can

be seen with traditional net haul data, which provide a ‘snapshot’ of the zooplankton

but have very high replicate tow variability (Wiebe and Wiebe, 1968; Lee and

McAlice, 1979; Skjoldal et al., 2013). Capture by netting, and analysis by microscopy,

form the gold standard of zooplankton sampling and are principally responsible

for our understanding of zooplankton ecology. Their continued use to maintain

time series and use as a reliable method is essential to further understanding the

zooplankton. Like all sampling devices, nets do suffer some limitations. Deploying

plankton nets is time consuming and the collected sample is often preserved using

hazardous chemicals for analysis on shore. These challenges have placed pressure

on developing cost-effective methods (Danovaro et al., 2016) and in response,

technological developments have resulted in a variety of newer devices (Wiebe and

Benfield, 2003; Lombard et al., 2019).

The Plankton Imager (PI) is a continuous, automated, imaging device used

to sample zooplankton. The PI takes images of all passing particles in seawater

pumped onboard a ship (Culverhouse et al., 2016; Pitois et al., 2018; Scott et al.,

2021). An initial study evaluating the first generation of the instrument (previously

known as Plankton Image Analyzer) against traditional net sampling, found good

agreement in the spatial distribution of zooplankton abundances, although noted a

portion of fragile organisms (e.g., Appendicularia) were likely to be damaged by the

system pump and consequently under-sampled. The study also described the overall

lower capture efficiency of the PI with discrepancies mainly resulting from image

quality, such as blurred images, which made accurate classification challenging. In

response, hardware changes have resolved these issues, resulting in much improved

image quality. The PI has since been used to describe temporal changes in the

mesozooplankton community Scott et al. (2021). This study found that those fragile

species (e.g., Appendicularia) are sampled in sufficient quantity to detect seasonal

difference. More recently the application of the PI to ecological indicators has been



4.3. MATERIALS AND METHODS 103

tested (Pitois et al., 2021). To date, all published studies have used the PI for point

sampling, similar to a deployed ring net, as opposed to continuous sampling. Here

we used a new data extraction method to best take advantage of the PI’s continuous

nature.

The PI has been used alongside the FerryBox routinely during UK fisheries surveys

in the Celtic Sea. We use data collected in parallel from these devices to explore

small scale changes in the zooplankton in the context of physical parameters and the

relationships therein. As automated devices and the ability to collect vast quantities

of data become increasingly common place, a new challenge has emerged in that

the data collection rate has become faster than the processing rate, resulting in data

bottlenecks. It is therefore important to focus collection efforts to gather the correct

type of information, at the required locations, times and scales to answer a particular

question, balancing research needs with budget limitations. Here, we aim to explore

how best to determine the optimal resolution appropriate for the target process

or relationship to avoid mismatching between sampling resolution and ecological

scales. These can be used to inform future survey design leading to an increasingly

holistic survey description.

4.3 MATERIALS AND METHODS

All data were collected in the Celtic Sea from the 3rd of October to the 7th of

November 2020 aboard the RV Cefas Endeavour as part of the PELTIC survey (PELagic

ecosystems in the Western English Channel and eastern celTIC Seas) (Working Group

of International Pelagic Surveys, 2015) (Figure 4.1). All in situ data were collected

using the ship’s continuous flow system sampling at 4 m below sea level. Zooplankton

data were collected using the PI (Pitois et al., 2018). Temperature, salinity and

fluorescence were collected using the FerryBox (4H-JENA, Germany). Zooplankton

data were sampled at night for consistency and to reduce the effect of vertical

migration (Lampert, 1989; Pitois et al., 2018).
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Figure 4.1: Celtic Sea study area and spatial extent of the collected data. Red filled symbols
represent in situ discrete chlorophyll samples. Black open symbols represent PI and FerryBox
(temperatures, salinity, fluorescence) 10-minute bins.

4.3.1 PLANKTON IMAGER (PI)

The PI was connected to the ship’s continuous flow pump, sampling at 22 L min-1

with negligible downtime (Figure 4.2). The inlet pipe and internal ships piping have

various internal diameters larger than the flow cell which has an internal depth of

12.8 mm, giving a field of view of 10 µm × 20.48 mm. As sea water passes through the

flow cell where all passing particles are imaged by a Basler 2048-70kc line scan camera

with a scanning rate of 70,000 lines per second. Lines are then stitched together, and

regions of interest (ROI) are extracted and saved as images. GPS, time and particle size

data (area, length and width) are saved in the metadata of each image. The PI worked

continuously throughout the survey. The PI has adjustable minimum and maximum

size parameters (min. 100µm to max. 2 cm). When using this range, the processing

rate of the images could not keep up with their collection rate (i.e., the images are

captured faster than they can be written to disk. For the survey, the size range was
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set from 180 µm to 2 cm. This reduced the number of captured images and allowed

for a more manageable dataset for archiving, processing and analysis. Even with this

reduced size range, a 1 month survey typically collects 1 tb of data.

Figure 4.2: Schematic of Plankton Imager (PI) and FerryBox setup aboard the RV Cefas
Endeavor. Water is pumped onboard from 4 m below sea level (A). This supplies the PI (B)
and FerryBox (C). Within the PI water flows through a flow cell (D) where passing particles are
imaged by a line scan camera (E). Within the FerryBox water passes through a suite of sensors
(F), here temperature, salinity and fluorescence are used.

Over 70 million images were collected during the survey. In the absence of an

accurate classifier for the PI, all images required manual classification. A series

of subsets were used to reduce the number of images classified to an achievable

quantity. A 0.25°grid was transposed over the study area. Each grid cell typically

had multiple transects passing through with the specific number of transects varying

based on vessel movements. Data were extracted from the shortest nighttime transect

within each 0.25° cell (min = 20 mins, mean = 136 mins, max = 420 mins). The transect

time (and therefore water sampled) varied within each grid cell dependent on vessel

activities (e.g., steaming between stations or fishing). This extraction resulted in 17

million images for classification. Finally, data were temporally subsampled where 1 in

10 images were extracted from each transect to further reduce the size of the dataset.

This process is similar to random subsampling or ‘splitting’ of a physical sample
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and assumes the distribution of organisms within a subsample follows a Poisson

distribution (Postel et al., 2000). The resultant 1.7 million images were manually

classified to “copepod” or “other” with copepod including the adult and copepodite

stages and the latter category comprising all non-copepod zooplankton and detritus.

Sorting to only these categories greatly sped up the classification process. The final

copepod count per grid cell was multiplied by 10 to resolve for subsampling.

For statistical analysis, the selected transects were divided into 10 minute bins

where each bin sampled 0.22 m3 of seawater. This totaled 853 bins (Figure 4.1).

The minimum bin size was determined as a compromise between obtaining the

smallest possible spatial resolution while sampling a sufficient amount of water to

allow for subsampling. Sampling a smaller amount of water (e.g. 1 min and 0.022

m3 of water) may have resulted in unrealistic values when resolving for subsampling.

Copepod density was reported as individuals per m3 (indv. m−3). Particle lengths

were obtained from image metadata files and used as a proxy for copepod size or

total length. Within each 10 minute bin, the geometric mean (geomean) size of all

individuals was calculated to take into account their non-normal distribution. This

mean value was used to calculate mean copepod wet weight (i.e., individual biomass)

following the equation from Pitois et al. (2021):

copepod wet wei g ht = 0.299∗ copepod pr osome2.8948 (4.1)

This was then upscaled with copepod density to calculate biomass across the bin

reported as mg m−3.

4.3.2 in situ CHLOROPHYLL MEASUREMENTS

The FerryBox consists of a water inlet connected to the ship’s continuous flow

(Figure 4.2). It comprises a suite of sensors for measuring physical variables

(e.g., temperature, salinity, turbidity, fluorescence and oxygen) and corresponding

metadata (GPS, date and time). All data are automatically bin averaged to 1 minute

on collection to save storage space. Only temperature (°C), salinity (psu) and

fluorescence were used in this study. Discrete chlorophyll samples were taken from
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the continuous flow passing through the FerryBox at 22 locations within the study

area Figure 4.1. The chlorophyll was extracted using 90% acetone and measured with

a Turner fluorometer (Strickland and Parsons, 1972). A linear model was used to

convert the FerryBox chlorophyll fluorescence to chlorophyll. The fitted regression

model was: [chlorophyll mg m−3 = 0.72 * chlorophyll fluorescence + 0.0637]. The

regression was statistically significant (R2 = 0.91, F = 206.1, p < 0.001). FerryBox data

were spatiotemporally aligned to the 853, 10-minute copepod bins described above.

This was achieved by taking the mean of three variables across the bin.

4.3.3 ANALYSIS

At the finest resolution (the 853, 10 minute bins), data were plotted to describe the

broader spatial patterns and examine small spatial scale changes in all variables. For

copepod biomass, size and density, the change in value between a 10 minute bin and

the previous 10 minute bin was examined to see if there was a relationship between

distance or time between bins and change in value. For statistical analysis and to

investigate how changes in resolution can affect how spatial patterns are described

and if small scale changes are omitted or accentuated, the 853 bins were merged to

decreasing resolutions. Merging was achieved by taking the mean value of all merged

bins for each variable. To explain variation within each cell at each resolution, Relative

Standard Deviation (RSD) was used as it expresses the variability of a data set as a

percentage relative to its location. RSD is calculated as: RSD = (sample standard

deviation / sample mean) × 100.

Four resolutions, 0.1°, 0.25°, 0.5°and 1°were selected. The largest resolution

was chosen based on the spatial extents of our study area. A resolution lower

than 1° would have resulted in too few cells or a cell that contained the entire

data. The selected resolutions were used to visually compare the changes in the

description of spatial patterns associated with merging data to coarser resolutions.

The relationship between RSD and decreasing resolution was also explored for all

variables at resolutions between 0.01°and 0.9°decreasing in 0.01° increments. Here

the mean RSD value across all cells was used. For statistical analyses, the same
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resolution range (0.01°to 0.9°, by = 0.01°) was used. Spearman’s ρ coefficient was

used to test for a significant relationship between number of stations per cell and

RSD and explore the relationship between copepod biomass and chlorophyll at these

resolutions. Copepod biomass, size and density were log-transformed (log10(x+1))

for Figures 4.3, 4.4 and 4.5 to highlight variability.

4.4 RESULTS

4.4.1 SPATIAL DISTRIBUTION

Spatial patterns across the study area for copepod density and biomass were closely

aligned (Figure 4.3A, 4.3B). Higher copepod densities (>8000 indv. m−3) and biomass

(>150 mg m−3) were typically found in the middle of the study area with lower values

found toward the south (< 2000 indv. m−3 and < 50 mg m−3, respectively) (Figure 4.3A,

4.3B). Density ranged from 45 to 8790 indv. m−3 and biomass ranged from < 1 to 155

mg m−3. Copepod size had a more uniform distribution across the study area with no

obvious spatial patterns with some localized exceptions of larger copepods found in

the northern most extents of the study area (Figure 4.3C). Size ranged from 199 to 2590

µm. Large fluctuations in each variable were seen over small spatial scales (between

adjacent bins, 5 km), this was less frequent for copepod size and is most evident in

the central study area for copepod biomass (Figure 4.3A – 4.3C).

Small scale changes were not present in chlorophyll concentration, temperature

or salinity (Figure 3D - 3F) with these variables displaying more gradual changes

across the area. Temperature was higher toward the east of the study area

(Figure 4.3E) and salinity was higher toward the south (Figure 4.3F). Chlorophyll

concentration was consistently low (< 0.6 mg m−3) except for the most south-westerly

extents of the study area where the maximum value of 1.5 mg m−3 was seen (Figure

4.3D).

The large variations across small spatial changes in all copepod variables are

better highlighted by Figure 4.4. The change in value between a 10-minute bin and

the previous 10-minute bin was explored for density (Figure 4.4A), size (Figure 4.4B)
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and biomass (Figure 4.4C). There was no clear relationship between the range and

distance from the previous station for any variable at small spatial scales (< 5 km). On

the contrary, the highest changes in density and biomass tended to be within 3 km of

the previous bin (Figure 4.3A, B). This was seen most clearly in adjacent datapoints

located in the middle of the study area (Figure 4.3B, C)

4.4.2 DESCRIPTION AT CHANGING RESOLUTIONS

Most resolutions captured the broad spatial patterns evident in the smallest

resolution for copepod biomass, density and size (Figure 4.5, Figure 4.3A - C). For

example, the regions of low biomass toward the north and higher biomass toward

the southwest of the study area (Figure 4.3B) were visible at all resolutions (Figure

4.5). Although, large changes in copepod variables over small spatial scales seen at

the smallest resolution were partly lost at a 0.1° resolution and absent entirely at 1°

(Figure 4.5). This is true for all copepod variables where a high level of detail was lost

by only halving the resolution. For example, the area of low biomass (7° W, 49° N)

seen at 0.5° resolution was lost when halving to 1° (4.5, column 1). This loss of small

scale detail while capturing broad patterns with decreased resolution was mirrored

by copepod density and size.

RSD is shown spatially for the selected resolutions (Figure 4.5) and in increasing

0.01° increments in a scatter plot (Figure 6) for all copepod variables. Using

Spearmans ρ, copepod mean density RSD and number of datapoints per cell were

consistently significantly related in cells < 0.27° resolution (at 0.26°, Rs = 0.31, p <

0.05, n = 78). For mean biomass RSD, there was consistent significance for cells <

0.4° (at 0.39°, Rs = 0.29, p = 0.05, n = 44). For mean size RSD there was no consistent

significant relationship at any resolution. For all three-copepod variables, there were

exceptions seen at lower resolutions which may result from an insufficient sample

size for the Spearmans ρ test. Copepod sizes were consistently low in RSD (< 30 %)

between grid cells both spatially and across resolutions (Figure 4.5). There was an

increase in mean RSD, from 9.96 % to 30.55 %, with decreasing resolution (Figure

4.6), although marginal when compared to other variables. Biomass had the highest
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Figure 4.3: Overview of each variable at the finest spatial resolution (10 minute bins, approx.
2.2 m−3 seawater) as point data where each point is the bin median latitude and longitude.
Point data are highlighted by using Voronoi triangles (with a maximum radius size around the
point of 0.1°) which allows for a bigger point size, while avoiding overlap to better highlight
small scale changes in the variable. For: (A) Copepod density (log10(x+1)) (indv. m−3),
(B) Copepod total biomass (log10(x+1)) (mg m−3), (C) Copepod geomean size (µm), (D)
Chlorophyll (mg m−3), (E) Temperature (°C) and (F) Salinity (psu). Color scales are consistent
with Figure 4.5 and Figure 4.5 for comparison.



4.4. RESULTS 111

Figure 4.4: Change in parameters value (y-axis) and time (color scales) between two bins as
a function of their distance from each other (x-axis) for (A) copepod density (indv. m−3), (B)
copepod geomean size (µm) and (C) biomass (mg m−3).

spatial variation in RSD at all resolutions (Figure 4.5). There was a larger increase meal

cell biomass, from 54.1 % to 140.57 %, with decreasing resolution (Figure 4.6). Density

RSD was more consistent and more closely aligned spatially with biomass than size

and a had reduced mean cell RSD.

4.4.3 RELATIONSHIP BETWEEN CHLOROPHYLL AND COPEPOD BIOMASS

AT VARYING RESOLUTIONS

At the smallest resolution (10 min bins, Figure. 4.3) there was a weak, significant

relationship between chlorophyll and copepod biomass (Rs = 0.3, p < 0.001, n =

823). The relationship between chlorophyll and copepod biomass was tested at
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Figure 4.5: 10 minute bins merged to decreasing resolution for (column 1) copepod biomass
(mg m−3) (log(x+1)), (column 2) copepod density (indv. m−3) (log(x+1)) and (column 3)
copepod size (µm)(log(x+1)) for example resolutions (row 1) 0.1°, (row 2) 0.25°, (row 3) 0.5°
and (row 4) 1°. Copepod color scales are the same as Figure 4.3 for comparison. The cell
border color indicates relative standard deviation (RSD, %) for the cell. Those cells without a
border contain less than 3 data points. RSD color scale is the same for Figure 4.5 and Figure
4.8.
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Figure 4.6: Mean cell Relative Standard Deviation (RSD, %) for (green) copepod biomass (mg
m−3), (red) copepod density (indv. m−3) and (blue) Size (µm), at all resolutions between 0.05°
and 0.9° (increments = 0.01°).

resolutions ranging from 0.05° to 0.9° increasing in steps of 0.01°. The strength of

the relationship (Spearmans ρ) and the significance of the relationship are reported

in Figure 7. The relationship at the smallest spatial resolution (0.05° x 0.05°) was

similar to the ten-minute bin (p < 0.001, n = 422). When decreasing resolution from

0.05° to 0.25°, there was little variation in the strength of the relationship and all

relationships were significant. For lower resolutions, the strength and significance

of the relationship between copepod biomass and chlorophyll became increasingly

variable. For example, at a resolution of 0.83° the relationship was not significant and

had weak positive correlation (ρ = 0.38, n = 11) while a resolution of 0.84° there was a

strong positive correlation and the relationship was significant (ρ = 0.75, n = 11). For

resolution lower than 0.9°, there were not enough data points (n < 10) to perform a

Spearmans rank analysis (ideally n > 25)
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Figure 4.7: The correlation between copepod biomass and chlorophyll using Spearmans ρ
against decreasing spatial resolution. Resolutions decrease from 0.05° to 0.9° in increments
of 0.01°. The number of grids (grid count) per resolution is indicated by the color scale. The
significance of Spearmans correlation (p value < 0.05) is indicated by filled points where non-
significant relationships are not filled, and significant relationships are filled.

4.4.4 APPLICATION TO OTHER VARIABLES.

The spatial distribution of chlorophyll concentrations is presented in Figure 4.8

to demonstrate merging of other variables to a decreasing spatial resolution.

Chlorophyll concentrations had a broader spatial pattern, where changes occurred

over larger distances, than all copepod variables (Figure 4.3A - C). These patterns

are well captured in all selected resolutions (Figure 4.8). There are no small-scale

changes in chlorophyll concentration (Figure 4.5) which was reflected in a lower,

consistent RSD both spatially and across resolutions (Figure 4.8). The area with the

highest chlorophyll concentration, toward the southwest of the study area, also had

the highest variation with adjacent cells, which was in turn reflected by a higher RSD

(Figure 4.8). Temperature and salinity (Supplementary materials) displayed similar

results due to the absence of small spatial changes and broad, slower changes across

the study area (Figure 4.8E, 4.8F).
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Figure 4.8: 10 minute bins merged to decreasing resolution for (column 1) chlorophyll (mg
m−3), (column 2) sea surface temperature (°C) and (column 3) salinity (psu) for example
resolutions (row 1) 0.1°, (row 2) 0.25°, (row 3) 0.5° and (row 4) 1°. Variable color scales are the
same as Figure 4.3 for comparison. The cell border color indicates relative standard deviation
(RSD, %) for the cell. Those cells without a border contain less than 3 data points. RSD color
scale is the same for Figure 4.5.
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4.5 DISCUSSION

CHANGING SPATIAL RESOLUTION

The use of continuous instruments allowed for data to be obtained at small spatial

scales, which in turn captured both wider spatial patterns and small-scale changes

in copepod size, abundance and biomass. The small-scale changes in the copepod

abundance, indicative of plankton patchiness (Mackas et al., 1985; Abraham, 1998),

are not seen in the physical variables where patterns are study area wide. The physical

oceanography of the Celtic Sea and Western Approaches, a seasonally stratified area,

is well documented (Pingree et al., 1976; Pinnegar et al., 2002; Southward et al., 2004;

Smyth et al., 2015). Stratification is known to influence plankton abundances (Fransz

et al., 1984; Hure et al., 2022) but the absence of vertical data in this study does not

allow for discussion of stratification or its influence on copepod abundance.

Neither surface temperature or salinity appeared correlated with copepod

variables. However, the absence of a correlation between zooplankton and physical

variables is in line with our understanding that small scale variations in the plankton

are driven by a complex series of biological and physical interactions. These were

reviewed by Atkinson et al.(2018), using a single point time series (L4 buoy) located

in our study area. Average annual densities from the Continuous Plankton Recorder

(Richardson, 2008) and reported by Johns (2006) find the majority of copepod families

in lower abundance off the North coast of Cornwall. Although our data only

cover 1 month, we find a similar spatial distribution, suggesting that the structure

of zooplankton communities, within a specific area, remain similar both in time

and space. The area wide patterns for copepod densities also match that of a

previous study for the region using the PI (Pitois et al., 2018). Despite a lower

taxonomic resolution obtained from image identification compared to microscope

identification, another study using the PI found that the community structure

described the PI is broadly in line with the L4 and CPR (Scott et al., 2021).

As machine learning classifiers for plankton identification from images collected

with automated instruments improve in accuracy (The Turing Centre, 2021), it will
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be possible to discern zooplankton to increasing taxonomic resolution automatically.

Added to the PI, this feature will allow for the removal of the subsampling step that is

necessary when manually processing the images. Thus, it will be possible to obtain

zooplankton data at higher taxonomic and spatial resolutions, quickly, and at a much

lower cost compared to traditional methods. This will be a clear advantage of such

systems. Although using the PI has the potential to yield an unprecedented spatial

resolution, it cannot replicate the temporal resolution associated with devices such

as CPR or longstanding time series such as L4. This is due to the PIs reliance on the

vessel on which it’s deployed, as it is unrealistic to expect a vessel to survey the same

area repeatedly over long periods of time.

4.5.1 OPTIMIZING SURVEY DESIGN

Survey demands often result in ad-hoc, last minute changes reducing assurances

of sampling the same spot at a consistent temporal resolution. Thus, a multi-

method approach would yield the most complete description of the zooplankton.

On the one hand, deploying plankton nets on vessels can help understand the

vertical distribution of the plankton, whilst time series are invaluable to understand

seasonal and long-term changes (Pitois and Yebra, 2022). On the other hand,

understanding the small-scale fluctuations in the plankton, and what drives the

high variation between neighboring water parcels, can be better understood using

continuous data. Although here, data were subsampled and manually classified

which limited the minimum achievable spatial resolution, the findings demonstrate

the potential for these instruments to resolve these fine scale interactions driving

variation. Furthermore, they demonstrate how the choice of resolution can affect

the perceived picture of the plankton as well as relationships between plankton and

related variables. Decreasing resolution can result in patterns being emphasized

(e.g., chlorophyll) or small-scale changes being lost (e.g., copepod biomass). This

demonstrates the ‘risk’ of a decreased sampling resolution in misrepresenting or

incorrectly capturing trends. The variability within cells when merged to a decreasing

resolution is not seen by an increased RSD, suggesting RSD is not sensitive to extreme
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values if the remainder of the merged cells are consistent. We can expect the changes

in the data representation with decreased resolution to be reflected in statistical

relationships between variables. Here, we chose to look at copepod biomass and

chlorophyll concentrations. Chlorophyll data are readily available as a remote sensing

package (Aumont et al., 2015) and many large-scale models rely on these data,

inferring prey or carbon from chlorophyll (Landry, 1976; Carlotti and Poggiale, 2010).

The relationships between chlorophyll and zooplankton are complex and reported

relationships are inconsistent in the literature (Casini et al., 2008; Llope et al., 2012;

Schultes et al., 2013; Giering et al., 2019). This variation partly stems from the different

types of data and spatial temporal scales used between authors (Pitois et al., 2021).

In our study, we find high variation in the strength and statistical significance of the

relationship resulting only from changing spatial sampling resolution. Although all

correlations are positive, we find both inconsistency in the significance and strength

of the correlation at lower resolutions. It is likely that even finer resolution data,

achieved through removal of subsampling, will yield the most accurate description

of these relationships.

Sampling to the finest possible resolution may not be necessary or relevant to the

survey’s aim, but rather the choice of resolution, whether in space or time, should

match the process studied. A sampling resolution too fine could incur unnecessary

costs (in data storage and processing) and not be needed to accurately capture large-

scale ecological patterns. For example, a coarser resolution than presented here (2°

cells), has been used to successfully capture changes in copepod abundances over

time as well investigate their relationship with various physical variables (Bedford

et al., 2020). Conversely, too coarse a resolution may miss ecological processes that

occur on scales finer than the selected sampling resolution. For example, collecting

samples at a specific location once a year (temporal resolution) will not allow to

capture seasonal variability.

For our descriptive study we find a spatial resolution of 0.25° to be a good

compromise between capturing small scales changes and broader spatial patterns

for copepod abundance and biomass. This resolution was the larger end of those

resolutions that had consistency in the statistical relationship between copepod
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biomass and chlorophyll. Additionally, this resolution can be easily matched to

existing products for modelling. For example, a remote sensing ecosystem model

output has spatial resolution 0.25° x 0.25° (Aumont et al., 2015). Although each study

will likely demand a different resolution dependent on the scale of the processes

involved. Let’s take, for example, a survey designed to study the timing and location

of a specific fish spawning and the ecological processes affecting this (assuming both

phyto- and zoo- plankton are variables measured). Prior knowledge will be used

to select the overall location and timing of this survey as well as the parameters to

measure. At this point, resolution of the measured processes and variables should

be taken into consideration. If the survey occurs during the winter months when

there is little activity in the plankton ecosystem, sampling these components at very

fine temporal and / or spatial resolution is unlikely to be necessary. If, however,

that survey occurs during the phytoplankton bloom, a time of fast change within the

plankton ecosystem, then a finer resolution that matches the scale of these processes

will need to be selected to accurately capture the changes. Similarly, sampling

intensity can be adjusted during the course of the survey when and if changes are

noticed.

Surveys tend to be designed to collect chosen parameters at preselected locations,

usually as many as possible as can be covered by the survey based on time and

budget available. In future, as automated tools become common place, optimizing

survey design will need to combine different instruments that collect information

complementary to each other. For example, automated devices, such as the PI to

collect surface data, alongside plankton nets to collect vertical data, would allow a

more comprehensive description of the ecosystem studied. Automated tools, and

the resolution they yield, may also help to quantify the variability associated with

replicate tows resultant from plankton patchiness and be used to better understand

its drivers (Wiebe and Wiebe, 1968; Lee and McAlice, 1979; Skjoldal et al., 2013).

In theory, this could be achieved with the data presented here, by using a linear

regression on the relationship between RSD and Resolution (Figure 4.6). Although,

it would be specific to this area and season, a ‘survey snapshot’ (Huret et al., 2018).
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The small-scale resolution presented here, and the future potential for even

finer resolution of biological parameters, achieved by reducing or eliminating

subsampling, has only become recently possible with devices such as the PI. For this

study, the time constraints associated with manually sorting images and the choice

to subset the data to the study area meant only a small portion entire survey data

were used ( 2.4 %). This constraint does not apply for other variables, such as physical

parameters, where no or little sample processing is required, and all data are instantly

available. Recent improvement in classification algorithms (The Turing Centre, 2021)

will bring the PI up to speed. Machine learning can eliminate the need for manual

classification and thus the PI will be capable of providing continuous data at very

fine resolutions (meters and minutes) where data do not need subsampling. Before

these solutions can be implemented there are however several challenges that must

be overcome, mainly related to the inability of the PI (and other similar systems) to

process data as fast as they can collect it. These devices entail a phenomenal data

collection rate. For example, if we were to use the full-size range the PI can image, we

would collect up to 1 tb of data in less than 10 minutes. This currently not feasible as

the technology or protocols to write images this fast does not yet exist. These devices

clearly entail a phenomenal data collection rate. While the survey data totaled 2 tb for

this study, we have made provision for 10 tb of data for the same survey to take place

in 2023. The cost of storage and of compute is reducing but these must also form part

of survey planning.

4.6 CONCLUSION

We demonstrate the importance of sampling resolution, in the context of pelagic

studies, and how it affects relationships between selected measured parameters

and their perceived resulting picture. The increasing use of automated and semi-

automated technologies allows us to sample at a much finer resolution than

previously possible across much larger spatial scales. This is especially true for

zooplankton where the PI has the potential to provide unprecedented fine spatial data

at moderate taxonomic resolution. Sampling resolution for each measured process
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will therefore need to be considered as part of optimum survey design. This is to

ensure that sampling matches the resolution of the measured process at a specific

place and time, and that only necessary data is collected to remain within the survey

budgetary constraints. Integrating data collected from various instruments (both

traditional and novel) will help to optimize sampling resolution for an improved

understanding of ecosystem processes and ultimately, a more holistic view of marine

ecosystems in all dimensions.
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5
HARMONISING CONTINUOUS

ZOOPLANKTON AND FISHERIES DATA TO

REEVALUATE THEIR RELATIONSHIPS

The following chapter aims to compare a new method with an existing published

article and thus has large overlap in the methodology, see Published Works.

129



5.1. ABSTRACT 130

5.1 ABSTRACT

Zooplankton, specifically copepods, are the principal prey for the majority of

commercial pelagic fish. Their relationship with fish is difficult to statistically

describe which stems from the complex range in behaviours, spatial distributions and

interactions between the zooplankton and fish. We used continuous zooplankton and

fish data collected concurrently in the Celtic Sea to investigate these relationships at

fine spatiotemporal resolutions. Zooplankton data were collected using the Plankton

Imager and all images were sorted using a machine learning classifier. Fish data were

collected using acoustics. Data were harmonised to a minimum spatial resolution of

1 nautical mile (1.85 km). There was good overlap of the datasets. High variability

in zooplankton size and abundance was seen over short spatial and temporal scales,

indicative of plankton patchiness. Fish spatial distributions varied between species.

Horse Mackerel, Anchovy and Sardine were found throughout the study area. The

following speices where found only in specific areas: Boarfish (south of Cornwall and

west of wales); Herring (north of Cornwall and west of Wales) and Sprat (north west

of France).

Anchovy and Horse Mackerel had a negligible correlation with copepod

abundance and size. Boarfish and Sardine had a weak positive correlation with

copepod abundance and size. An unexpected, negative correlation was found

between Sprat and Herring and copepod abundance and size, contrasting the

literature. The correlation with Sprat was likely due to a mismatch between data

coverage and Sprat behaviour, where a known spawning and feeding area (Lyme

Bay) was absent from the zooplankton data. Sampling at different spatiotemporal

resolutions did not have significant effect on the strength of correlations for those

relationships tested. This demonstrates that sampling to the finest spatiotemporal

resolution may not always be appropriate. Instead time series and larger

spatiotemporal resolutions may provide further insight into these relationships.
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5.2 INTRODUCTION

Zooplankton occupy a critical position within pelagic food webs, providing a crucial

carbon link between primary producing phytoplankton and larger planktivores. They

are the principal prey for a range of planktivorous fish species (Confer and Blades,

1975; Beaugrand et al., 2003), seabirds (Pakhomov and McQuaid, 1996; Lauria et al.,

2012) and marine mammals (Sims and Quayle, 1998; Sims, 1999). They are sensitive

indicators of climate change (Taylor et al., 2002) with climate change induced changes

in the plankton demonstrated to cascade up the trophic chain (Lauria et al., 2012;

Pitois et al., 2012). The difficulty in understanding these relationships in part

originates from the wide ranging scales seen by both prey and predator, such as

plankton patchiness (Mackas et al., 1985; Abraham, 1998) or behavioural patterns in

fish such as feeding. As a result, modelling the relationship between zooplankton

and fish in ‘end to end’ ecosystem models or individual fisheries models for stock

assessment remains a major challenge (Travers et al., 2007; Carlotti and Poggiale,

2010).

The ability to continuously infer fish biomass from acoustic data to a fine

spatial resolution is an established technique (Working Group of International Pelagic

Surveys, 2015; Van Der Kooij et al., 2016). Until recently, achieving a similar sampling

frequency for mesozooplankton has been impossible. Technological advances (for

a review see Lombard et al., 2019) have allowed zooplankton sampling at an

unprecedented temporal and spatial resolution and in turn brought about new data

challenges. Devices such as the Plankton Imager (PI), used here (Pitois et al., 2021;

Scott et al., 2021), Video Plankton Recorder (Davis et al., 1992) and Shadowed Image

Particle Profiling and Evaluation Recorder (SIPPER) (Samson et al., 2001) have the

capacity to collect millions of images over a short space of time. The challenge is in

identifying these images (Culverhouse et al., 2006; Benfield et al., 2007; MacLeod et al.,

2010) and understanding how to best use these types of data. Sorting these images

manually requires similar methods to those associated with traditional sampling (e.g.

splitting a sample to an achievable size) and can provide ecologically consistent data

for analysis (Gorsky et al., 2010; Scott et al., 2021). However, these methods do not
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take full advantage of the high volume of available data and share similar problems

to traditional methods associated with subsampling (Ohman and Lavaniegos, 2002).

Machine learning provides a solution for sampling all images quickly and at a reduced

cost (Grosjean et al., 2004; Fernandes et al., 2009; Faillettaz et al., 2016).

A recently developed classification algorithm, developed in collaboration with the

Alan Turing Institute (for a detailed description of the algorithm see Section 2.6.2,

(The Turing Centre, 2021) allows for application of a machine learning classifier to

Plankton Imager (PI) images. The PI is a continuous particle imager which take

images of all particles in a flow-through system connected to the ship’s water supply

(for a more in depth description, see Section 2.3). The PI is capable of collecting >

70 million images in a month long survey. In the previous chapters, subsampling was

used to reduce the dataset to a number of images achievable by manual classification.

Using a machine learning classifier allows us to move away from subsampling or point

sampling, thus making the most of the entire set of images.

Here we aim to follow up on the work by Pitois et al. (2021) on linking a

2-dimensional ecological indicator (Copepod Mean Size and Total Abundance -

CMSTA) to higher tropic levels, using pelagic fish biomass. (CMSTA) indicator is

derived from the HELCOM Mean Size and Total Stock (MSTS) indicator. It is a

two-dimensional indicator describing the relationship between mean zooplankton

(as copepod) size and total abundance (Pitois et al., 2021; Gorokhova et al., 2013).

These pelagic fish are prey for larger piscivorous fish (Trenkel et al., 2005), marine

mammals and seabirds (Kaschner et al., 2006) and have significant economic value

as commercial fisheries (Pinnegar et al., 2002; Rochet et al., 2010). Pitois et al. (2021)

found that Herring was the only fish positively correlated with copepod mean size,

being found where copepods were larger but not necessary more abundant. No other

statistically significant correlations were found between any copepod variable and

any pelagic fish. The data produced by using the machine learning algorithm presents

a unique opportunity to apply the same method of analysis using much larger and

finer resolved data. This will allow for the relationships between fish and copepods to

be re-evaluated and at the same time explore the benefits of using continuous data.
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5.3 METHODS

All data were collected in the Celtic Sea from the 3rd of October to the 7th of

November 2020 aboard the RV Cefas Endeavour as part of the PELTIC Survey (PELagic

ecosystems in the Western English Channel and eastern celTIC seas) (Working Group

of International Pelagic Surveys, 2015) (Figure 5.2). Plankton data were recorded 24/7

and collected using the Plankton Imager (PI) (Pitois et al., 2018). Fish biomass was

inferred from acoustic data. Although the acoustic data are continuous, only daylight

hours were processed.

5.3.1 PLANKTON IMAGER

All zooplankton data were collected using the PI. For detailed methods on the PI

operational usage see Section 2. During the Peltic Survey a total of 71 million images

were collected. Here, the raw data were subset to align with fish data and to reduce

the data to an achievable, analysable quantity in terms of compute time. In line

with fisheries data, only daylight hours were processed. This was achieved using the

suncalc R package (Thieurmel et al., 2019) which provided sunrise and sunset for each

survey day resulting in easy separation of the day data. The speed of the classifier also

required further reducing the data size, as it was not possible to sample all daylight

images. Data were filtered to a maximum ten minute bin size of 44,616 images

(see Section 2.3.5 for details on raw data storage). This value was the third quartile

of the data (Figure. 5.1) and used to avoid periods of high particulate matter or

phytoplankton content. The target images were converted using Raw2RGB (Section

2.4.1) as required by the Turing classifier (Section 2.6.2). The classifier was then run

using a looped python script to classify the images. Finally, the classifier output for

each 10 minute bin was merged to produce the final dataset.

Images were classified to two categories: copepod and non-copepods, where the

latter also included detritus. We assumed the error in copepod classification by the

Turing classifier is consistent across all data. The accuracy of the classifier was 97%,
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this is detailed in Section 2.6.2. Abundance, size and biomass were calculated as per

Pitois et al. (2021). For a detailed calculation of these variables see Section 2.4.3.

Figure 5.1: Number of images per 10 minute bin for the 2020 Peltic Survey. Data were captured
over 1 month. All data are shown in panel A. Only bins with > 80,000 images are shown in panel
B as these are indistinguishable in panel A. The Y-Axis changes between panels.

5.3.2 PELAGIC FISH BIOMASS ESTIMATES

The exact same method for extracting fish acoustic data were used as in Pitois et al.

(2021). See Published Works. The following is a quote from the publication:

Acoustic data were collected along transects during the day, using a Simrad

EK60 scientific echosounder, with the split-beam transducers mounted on

the vessel’s drop keel at a depth of 3.2 m below the vessel’s hull or 8.2

m sub surface. Three operating frequencies were used during the survey

(38, 120 and 200 kHz) for trace recognition purposes, with 38 kHz data

used to generate the abundance estimate for clupeids (and other fish with

swimbladder) and 200 kHz for Horse Mackerel (Van Der Kooij et al., 2016).

All frequencies were calibrated at the start of the survey.

A pelagic midwater trawl with a vertical opening of c. 12 m was

used to collect information on species and size composition and provide

biological samples, and was fitted with a 20 mm codend liner to ensure
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the retention of small and juvenile fish. Trawl monitoring, trawl door

type and dimensions and rigging are described in (Working Group of

International Pelagic Surveys, 2015). As the trawls were deployed to obtain

qualitative rather than quantitative information, no fixed trawl duration

was employed during the survey although deployment was generally 30

min, with haul targeted on schools. All components of the catch from the

trawl hauls were sorted and weighed; fish and other taxa were identified

to species level. Length frequency and individual length-weight data

were collected for all species of the catch. Total length measurements of

Sprat Sprattus Sprattus, Sardine Sardina pilchardus, anchovy Engraulis

encrasicolus, boarfish Capros acer and Herring Clupea harengus were to

be taken to the nearest 0.5 cm below, Horse Mackerel Trachurus trachurus

were measured to the whole cm below. Where possible the total catch

component of the haul per species was measured. When this was not,

a representative sub-sample was taken, species identified, and lengths

obtained to provide a true (length) representation of the species.

Biomass estimates for pelagic fish species followed routine methods

(Working Group of International Pelagic Surveys, 2015). The acoustic

recordings of Nautical Area Scattering Coefficient (NASC, m2 nmi-2) for

each nautical mile along the transects were partitioned by species based

on school characteristics and trawl catches. To determine the underlying

spatial distribution of pelagic fish species, statistical models (Generalized

Additive Models, GAMs) were employed using physical covariates as

predictors (i.e. latitude/longitude/depth/distance from coast). Analysis

of covariance between predictors using the Variance Inflation Factor

indicated that depth and distance from coast were strongly correlated (VIF

> 2). Similarly, depth and longitude where strongly correlated so models

were built for fish species using latitude/longitude/distance from coast only

(all VIF < 2).
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5.3.3 SPATIOTEMPORAL ALIGNMENT AND ANALYSIS

The main challenge was designing a program to spatiotemporally align the copepod

and fish data while allowing the flexibility to treat space and time as independent

variables. This was required as the ship often repeated transects or crossed a previous

track. Therefore, it was not possible to simply merge all datapoints within a chosen

spatial subset (e.g., a grid cell of 0.25° by 0.25° as done in Section 4) as there would

have been instances where the data range over 1 month, for example, when the

ship was steaming back to port crossing a transect from the start of the survey.

Although, this method was used to describe overall spatial trends of the data across

the survey month it was not used in any statistical analyses. The program for spatially

aligning the data was set up to accept user chosen spatial resolution (in degrees) and

temporal resolution (in minutes). The program has no upper or lower bounds on

these parameters and is only bound by the compute speed of the machine or the

maximum data resolution. For this study, the minimum resolution was set by the

fisheries data, where data were resolved to 1 nautical miles (1.8 km).

Following alignment, the program was used to experiment with how varying

spatial and temporal resolution can alter statistical relationships. The program was

looped through permutations of varying spatial (0.1, 0.2, 0.25, 0.4, 0.5, 0.75, 1 deg)

and temporal resolutions (20, 30, 40, 50, 60 minutes) to find the strongest relationship

between copepod size and abundance and fisheries biomass. The strength of

the relationship was determined using Spearmans ρ. After determining the best

spatiotemporal fit that specific resolution was used to align the data and produce 2D

plots to examine the influence of copepod size and abundance on fish biomass. The

code is published in Appendix B).
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5.4 RESULTS

5.4.1 DATA ALIGNMENT

The incident of aligned fish and copepod data depended upon the chosen

spatiotemporal resolution and increased with decreased resolution. Figure 5.2 shows

the spatial data alignment at an example 0.1 by 0.1 degree resolution. Fish data were

more frequently available than copepod data (Figure 5.2). At this example resolution,

fish data were present in 247 (fish only) + 238 (copepods and fish) grid cells whereas

copepod data were present in 74 (copepods only) + 247 (copepods and fish) grid cells

(Figure 5.2). Grid cells without either data are not shown.

In Lyme Bay area, the PI was being used for experiments with the size data and

data rates to determine a compromise between storage space and size range (see

Section 2.5.1). Based on experience from previous years the PI was turned off in

the Bristol Channel to avoid flooding the storage drive with images of detritus. The

detritus prevalence is particularly high due to freshwater input and estuarine mixing.

5.4.2 SPATIAL DISTRIBUTION

Figure 5.3 describes the spatial distributions of copepod abundance and size and

fish biomass. All present data were merged independently of the temporal scale and

therefore do not account for multiple vessel entries into the same grid cell. There are

no grey cells present for copepod abundance or sizes as when the PI was recording

(Figure 5.3), copepods were found in all 0.25° cells.

The spatial distribution of copepod abundance followed no obvious basin wide

pattern and there was high variation over small spatial scales across the study area

(Figure 5.3). There was marginal consistency in lower abundance off the coast of

Wales and the north coast of France. Copepod length had a more uniform distribution

with the exception of coastal waters off the south coast of the Cornwall where an area

of larger copepods (geomean length > 400 µm) was present. There was no obvious

relationship between size and abundance.
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Figure 5.2: Spatial alignment of variables at an example 0.1° to show those grid cells where
copepod data, fish data or copepod and fish data were present. Where cops = copepod. Note
there is high variability within grid cells at this resolution.

There was high variation between basin wide fish spatial distributions (Figure 5.3).

Anchovy, Horse Mackerel and Sardine were found throughout the study area (Figure

5.3). Sardine was found in highest abundance below the extents of Cornish peninsula

whereas anchovy had a more uniform distribution. Neither anchovy or sardine were

found in high abundance in the most seaward, south westerly cells. Sprat were only

found toward the north of the study area and in Lyme Bay. Boarfish were found in the
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Figure 5.3: Spatial distribution of all copepod and fish variables across the study area where
data were averaged over 0.25° grid cells. All data except for copepod geomean length were
logged (log(x+1)). The temporal component of our data was ignored. Grey cells indicate 0 for
fish data. The fish biomass legend (bottom right) is common to all fish.

bottom half of the study area, below Cornwall and in high abundance at the most

westerly, seaward sites. Herring had the lowest overall biomass of all fish species

present and was only found of the west coast of Wales. With this exception, the

remainder of the fish were found with similar overall biomass across the study area.

There appears no obvious spatial correlation between any of the fish species or either

copepod abundance or size when using only spatial data merging. There is reduced

overlap of copepod data with Sprat and Herring (Figure 5.3).

5.4.3 RELATIONSHIP BETWEEN VARIABLES

Anchovy and Horse Mackerel showed negligible correlation with copepod abundance

(ρ = 0.15 and ρ = -0.1, respectively, Table 5.1) and size (ρ = 0.18 and ρ = -0.12,
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respectively, Table 5.1). Horse Mackerel was the only fish with a non-significant

correlation with either copepod size or abundance (Table 5.1). Boarfish had a weak

positive correlation with copepod abundance (ρ = 0.37, p < 0.001, Table 5.1, Figure

5.4). For all fish with a moderate or stronger (ρ > 0.25) negative or positive correlation

with copepod abundance, the correlation was about 50% of the ρ for size. Sardine had

a strong positive correlation (ρ = 0.47, p < 0.001, Table 5.1, Figure 5.5) with copepod

abundance whilst Sprat and Herring both had a negative correlation (ρ = -0.4 and -

0.37, respectively, p for both < 0.001, Table 5.1). There was high variability between

fish in which spatiotemporal scale yielded the strongest correlations, although the

actual correlation only varied marginally across resolutions (Figure 5.4). Sprat had

the strongest correlation at the finest spatial resolution (0.1°). For Sardine and Horse

Mackerel the strongest correlation was found at 1 °. The temporal resolution yielded

the strongest correlation for all fish was either 40 or 60 minutes with the exception

of Horse Mackerel. The strongest correction between Horse Mackerel and copepod

biomass was at 20 minutes (Figure 5.4).

Every species was strongest correlated with size at a different resolution than

abundance except for Sardine where 60 minutes and 1 degree yielded both the

strongest correlations (Figure 5.4 and 5.5).

Fish Abundance (ρ) Abundance (p) Size (ρ) Size (p)
Anchovy 0.15 0.04 0.18 <0.001
Boarfish 0.37 < 0.001 0.10 0.01
Herring -0.53 <0.001 -0.28 <0.001
Horse Mackerel -0.10 0.08 -0.12 0.12
Sardine 0.47 <0.001 0.18 0.03
Sprat -0.53 <0.001 -0.26 <0.001

Table 5.1: Spearmans ρ for relationship between fish and copepod size (column 4) and
abundance (column 2). Corresponding p-values are shown in the next column and those
significant (p < 0.05) are show in bold. These are the strongest correlations from various
spatiotemporal scales (see Figure 5.4 and Figure 5.5).
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Figure 5.4: Copepod abundance and fish biomass dual plots for each fish species. The
left most plot for each species shows the varying strength of correlation (Spearmans ρ)
between copepod abundance and fish biomass with changing spatiotemporal resolution. The
resolution with the strongest positive or negative correlation is shown atop the figures (e.g.,
Sardine @ 60 minutes and 1 degrees). This resolution was used to create the species scatter
plot (right panel per species). This plot shows a scatter graph where points represent a grid
cell and are coloured by the fish biomass (NASC, m2 nmi-2) (log10(x+1)). The raw data were
averaged within grid cells then correlated. The legend colour scale varies for each fish. Points
are stacked from highest fish biomass to lowest.

5.5 DISCUSSION

Plankton patchiness (Mackas et al., 1985; Abraham, 1998) was evident in spatial

results. Similarly, to the findings of Section 4, fine spatial changes in copepod

abundance, indicative of plankton patchiness, were lost with decreasing spatial

resolution. Sampling all images allowed for analysis for the variation in plankton

(plankton patchiness) over temporal scales within a single grid cell. We find that
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Figure 5.5: Copepod size and fish biomass correlation plot for each fish species. Each plot
shows each species varying strength of correlation (Spearmans ρ) between copepod size and
fish abundance with changing spatiotemporal resolution. he resolution with the strongest
positive or negative correlation is shown atop the figures (e.g., Anchovy @ 20 minutes and 0.1
degrees). For scatter plots see Figure 5.4.

variation in copepod abundance was not necessarily a function of time, with large

changes in copepod abundances over small time scales, which aligns with high

variability seen between replicate new tows (Wiebe and Wiebe, 1968).

We had good overlap between fish and plankton data. This allowed for

investigation of relationships between fish and copepods at different spatiotemporal

resolutions. The program written, (Appendix B) to align the data, accepted spatial
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resolutions as small as meters and temporal resolutions as small as seconds, but

available computer power limited the minimal spatial and temporal resolutions

to 0.01° and 20 minutes. In future, as technology progresses to allow faster

processing speed, these smaller scales can be resolved. The spatial resolution

was also limited by the binned fish data (1 nautical mile), although these can be

resolved to a finer resolution for future studies. For all spatiotemporal combinations,

correlations between fish and copepods variables did not change significantly across

combinations. This contrasts with findings from Section 4 where changes in spatial

resolution had a considerable effect on the statistical correlation between chlorophyll

and copepod biomass. This suggests that the ecological processes that govern the

relationships between copepods and fish occur over greater spatial scales than those

between copepods and phytoplankton (Section 4, Figure 4.7) and the complexity of

the factors driving chlorophyll, zooplankton and fish are difficult to capture through

examining a single ’snapshot’ (Huret et al., 2018).

Independent of correlation type (positive, negative or neutral), we find all

relationships between fish species (excluding Mackerel) and both copepod size and

abundance, to be significant. This contradicts the results from Pitois et al. (2021) who

found a correlation between Herring biomass and copepod size, but none between

other fish species and copepod variables (both size and abundance). We used the

same data collection methods (PI for copepods and acoustics for fish) and analytical

techniques (Spearman’s ρ). The only difference resides in the number of zooplankton

images sampled and therefore the number of data points available for statistical

testing. The strength and consistency of significant correlations (many reported

relationships had p < 0.001) may arise from the number of stations and choice

of statistical analysis as Spearman’s ρ is sensitive to dataset size with a preferable

minimum of 15 data pairs. If more data had been available for Pitois et al. (2021)

they may have been more of a chance in finding significant relationships. This may

be the reason for the higher probability values, and thus confidence in our findings.

Plankton patchiness, not visible by point sampling used by Pitois et al. (2021), may

also distort the relationships we investigated here. In Section 4 we find that large, fine

scale changes in the copepod abundance are lost when merging data to a fixed spatial
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resolution. The loss of these extreme values when average, which could be areas with

high fish and plankton density, may be in part responsible for some of the negative

correlations we find here.

The positive correlation between copepod size and Herring presented in Pitois

et al. (2021, ρ = 0.51, p = 0.01) is supported by the literature (Flinkman et al., 1998;

Corten, 2000). Conversely, we find Herring to be negatively correlated to size and

abundance, although less so with abundance. We also find Sprat and Horse Mackerel

to be both negatively correlated with size and abundance. It is difficult to speculate

as to why we find the negative correlations, as copepods are known to be the primary

food source for most pelagic fish (Confer and Blades, 1975; Garrido et al., 2008; Reid

et al., 2001). Prey size is also known to be important in driving in prey selection as

well as controlling food quality and availability (Pitois and Fox, 2006; Barton et al.,

2013; Van Deurs et al., 2015). Sardine, Sprat and Horse Mackerel have similar feeding

apparatus meaning they have the ability to preferentially switch between filter feeding

to particulate feeding based on prey availability (Garrido et al., 2008). Another

explanation may be a temporal mismatch between our data and peak fish feeding.

Although this is unlikely as species such as Sprat and Herring are known to be feeding

in autumn to over winter (Patel et al., 2022; Capuzzo et al., 2022). Another potential

explanation is the hypothesis that these species are not limited by food (Pitois et al.,

2021) and are therefore not changing their behaviour to seek food. There is food

abundant enough in all locations meaning other factors are driving their spatial

distribution. The weak negative correlations between fish biomass and copepod size

may also arise from the the relatively uniform spatial distribution of copepod size

across the study area (also demonstrated with reduced spatial resolution in Pitois

et al., 2021, and Section 4) resulting from a similar distribution of species across the

study area (Johns, 2006; Scott et al., 2021). These negative correlations with size,

suggesting that these species preferentially eat smaller plankton, is at odds with the

published literature. An unlikely hypothesis is that solely top-down control, known

to be a governing factor for zooplankton (Lynam et al., 2017; Reid et al., 2000), is

dominating the processes and the reasons for our finding few and smaller copepods

is due to preferential predation from higher species. In reality a suite of processes
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govern zooplankton dynamics, review by Atkinson et al.. The most relevant are the

the loophole hypothesis, whereby physiochemical changes favour some taxa (Irigoien

et al., 2005), mortality-controlled copepod phenology (Irigoien and Harris, 2003;

Maud et al., 2015) and zooplankton feeding traits (Sailley et al., 2015). These processes

could be combined with top-down or bottom-up effects as well as fish behaviours

such as migration or speeding only in specific areas and result in the weak spatial

corrections presented here.

Unfortunately, the possibility exists that the stronger, negative correlations,

particularly those seen in Sprat and Herring, are coincidental artefacts and not a

true representation of ecological relationships. These correlations may result from

a spatial misalignment between fish behaviours and our data, a limitation of a ‘survey

snapshot’ where variables collected concurrently are too variable and longer time

series may be more informative (Huret et al., 2018). For example, fish are feeding

in an area where we have no data. Conversely, it may mean that for those areas with a

negative correlation fish are moving between target feeding or spawning areas. Lyme

Bay (Figure 5.2) is home to a consistent, resident population of Sprat (ICES, 2021).

We have no data for Lyme Bay and the negative correlation we find between Sprat

and copepod abundance elsewhere in the study area suggests that Sprat are transient

in these areas, moving between areas such as Lyme Bay for spawning and feeding.

On future surveys, now the PI is established, these areas will be incorporated in the

survey.

Although these findings contribute to the hypothesis that fish behaviour, such as

spawning and nursery grounds, are more important in governing spatial distributions

than prey availability (Pitois et al., 2021), the data provided no new insight into the

smaller scale processes of fish (e.g. local migration, changing in feeding behaviors

or shoaling). The reason for not capturing the Lyme Bay region and thus the

misalignment with Sprat was simply because experiments with the PI size parameters

were being run to determine the most appropriate compromise between storage and

target size (see Section 2.5.1). In the future, as the PI becomes fully operational and

automated, a more complete record will be available for each survey. This will allow

for areas of interest to other disciplines (e.g. fish spawning areas) or hydrodynamic
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features (e.g. fronts or upwelling) can be retrospectively subsampled. This can

be combined with the conclusions from the Section 4 regarding choice of spatial

resolution as analysing all data might not be necessary. The first consideration should

be the hypothesis-driven study area, followed by the choice of sampling resolution.

Here, where the choice of resolution did not have significant impact on the statistical

relationships it would be sensible to sample to the lower resolution possible.

5.6 CONCLUSION

We find that choice of resolution does not effect the correlation or significance

between fish biomass and copepod abundance or size. We find unexpected

correlations between Sprat and Herring and copepod abundance and size. These

relationships, if true could lead to new insight into and call for a rethink about what

governs the interactions between pelagic fish and their prey. The tools and programs

used for this chapter will form the basis for data analysis with the PI and mergers with

other continuous instruments going forward. Any continuous data can be used as

long as a latitude, longitude and ‘datetime’ are provided. Optimisation of the code will

quickly allow users to specify the spatial and/or temporal resolutions they require to

fit their question. These data when used as a time series could provide a powerful data

for trends and relationship analysis. The relationships also pose questions about the

need for collecting continuous data when looking at small scale processes (e.g. single

fish feeding) for a population wide question. Combining longer time series with larger

spatial or temporal scales and very fine frequency data may provide a better approach

to deciphering these relationships.
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6
SYNTHESIS

6.1 ABSTRACT

In the following chapter the key results are discussed in the context of the original

objectives. The limitations of the thesis are briefly reviewed. Limitations identified

with the instrument prior the PhD research which have been addressed during the

course of the PhD research are also reviewed. Finally, the wider implications and

recommendations for future research are discussed.

6.2 SUMMARY OF KEY RESULTS

This study presents zooplankton data at a unprecedented spatiotemporal resolution

and is the first study to match these data with other continuous variables at these

resolutions while maintaining the potential to discern species to a moderate (e.g.

family-level) taxonomic resolution. The analyses on these data captured seasonal

changes in the zooplankton community using a more traditional point-sampling

method. This demonstrates the importance of sample resolution when examining

fine-scale processes such as the relationship between chlorophyll and zooplankton

154
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and found an unexpected negative correlations with pelagic fish at finer resolutions.

These data have been obtained using the Plankton Imager which (at the time of

writing) is unparalleled in its ability to capture zooplankton data at these fine

resolutions to a moderate degree of taxonomic resolution without the need for

deployment where data collection is automated. Obtaining this resolution was

only possible due to the machine learning classifier developing during the PhD

reserach. While the programming, training and successful testing of the classifier

was achieved through a collaborative project with data scientists, images from the

PhD data were used to build the classifier. This demonstrates the exciting potential

of coupling high frequency data and machine learning classifiers may have on our

future understanding plankton ecology.

The data analysis chapters (Chapters 3, 4 & 5) essentially increase in

spatiotemporal resolution from the last chapter and follows the natural progression of

the instrument development and the increasing power of the analytics tools available

during the PhD. The first chapter (Chapter 3) uses the PI in a very similar way to

a traditional net with low spatial resolution and high taxonomic resolution. The

second chapter starts to take advantage of the continuous data but no machine

learning classifier was available. Data were therefore spatially subset and temporally

subsampled yielding a higher spatial resolution than Chapter 3 but at the cost of

taxonomic resolution. Only copepods were classified to speed up the classification

process. Finally, Chapter 5 takes advantage of the new classifier and samples all data

yielding the finest spatiotemporal resolution. To ensure image classification accuracy,

images were only classified to the copepod level.

The thesis successfully answers the objectives set out in Chapter 1.5. The key

results from each chapter and outlined in the context of the 6 objectives. Objective

6 (To summarise the major findings from the thesis to provide context and suggestions

for future studies) is excluded from the list below as it is addressed in this chapter

1. Through a literature review provide a context for the PI amongst other

zooplankton samplers and demonstrate its potential value to zooplankton

research.
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• The Plankton Imager is a unique instrument that has the potential

to describe zooplankton at an unprecedented spatiotemporal scale.

Through a brief review of common approaches and available devices

in Chapter 1 the place for the PI among existing devices, and its

unique properties, are described. Currently, it is difficult to compare

it any other available device. It harnesses the advantages associated

with imaging zooplankton as opposed to their physical collection (e.g.

speed, cost, automated) while negating the effects of the more common

towed approaches (e.g. changes in vessel behaviour, wake). It makes

use of existing ship’s infrastructure and requires little modification for

installation. Finally, it is automated, meaning it requires little human

effort during operation.

• The key findings answering objectives 3 to 5 also demonstrate the PIs

value to zooplankton research.

2. Contribute to ongoing development of the system and its methodology for full

operational deployment.

• A comprehensive method for the PI is detailed including the hardware,

software and standard operating procedure. The method described in

Chapter 2 provides a reference for the thesis for future applications of

the PI. Although the hardware is not applicable to the newer PI-10 the

operating procedure and data handling methods will remain largely the

same.

• The PI-10 is now a commercial, ready to purchase instrument, Figure

2.8. The PhD reserach has contributed to the development and ecological

demonstration of the instrument. The major contributions are detailed in

Appendix C.

3. Evaluate the PIs ability for community and ecosystem approach to fisheries.

• Interannual and seasonal changes were identified in mesozooplankton

community of the Celtic Sea. These data were obtained using point
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locations and subsampling in the Celtic sea across several years, totalling

107 stations. A moderate (family-level) taxonomic resolution was possible

with PI images which was detailed enough to describe changes in the

community.

• Variation was higher between years than seasons This was due to the

large variation in the community between years in autumn attributed to

a mismatch between the survey time and the breaking down of summer

stratification (Southward et al., 2004; Harris, 2010). The spring community,

where the water column is more stable during the survey period, was more

consistent between years.

• The seasonality of taxa adhered to those presented in the literature

(Johns, 2006; Eloire et al., 2010; Highfield et al., 2010; Giering et al., 2019).

4. Develop an analytic method to best use the PIs ability to collect continuous,

high frequency zooplankton data.

• Temporal subsampling yielded small scale zooplankton data. Sampling

1 in every 10 images and manually classifying those images described both

area wide patterns and large, small scale changes in copepods biomass,

size and abundance, indicative of plankton patchiness (Mackas et al.,

1985; Abraham, 1998).

• Reducing sampling resolution by merging adjacent data, changes the

spatial description of the data where small spatial changes (those that

occur in scales < 3 km) were lost and area wide patterns were emphasized.

• The choice of resolution can affect both the statistical strength and

significance of relationships. The relationship between copepod biomass

and chlorophyll varied significantly with spatial resolution. This variation

is also demonstrated by conflicting relationships between these variables

within the literature (Casini et al., 2008; Llope et al., 2012; Schultes et al.,

2013; Giering et al., 2019; Pitois et al., 2021).

• There was a negative correlation with Sprat and Herring with copepod

size and abundance and positive correlation with Anchovy and Sardine.
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These data were compared to pelagic fish data, another continuous

variables collected using acoustics. Comparison of these variables

revealed an unexpected negative correlation of copepod size and

abundance with Sprat and Herring where previous results in the literature

find the contrary (Pitois et al., 2021; Flinkman et al., 1998; Corten, 2000).

• Choice of resolution, both spatial and temporal, had little effect on

these correlations. Contrary to those results presented in Chapter 4

changing spatial or temporal resolution had little influence on the strength

or correlation. This demonstrates the importance of sampling scale versus

process size where fine spatial scales may not always be the best approach

and longer temporal scales (e.g. months or years) and time series would

be better suited.

5. To help develop and test a machine learning algorithm on image data obtained

from the PI to yield unprecedented fine scale data.

• Successful deployment of a machine learning algorithm yielded

copepod data at very fine spatial scales. Using the developed Turing

Classify all images collected during a 1 month survey were analysed. Data

can potentially be resolved to meters and minutes.

• Development will continue into the future. The training set will continue

development as more and more images are collected. If (when) the PI

becomes a more common place to a collaborative approach between

institutions will yield the best training set.

6.3 STUDY AND INSTRUMENT LIMITATIONS

The data chapters (Chapters 3, 4 & 5) use the PI in the ‘best way’ possible at the time,

meaning data were resolved to the finest spatial or temporal resolution using the tools

available. As aforementioned, in line with improvements to the instrument and our

ability to resolve data to finer spatiotemporal scales increases with time. Each chapter

uses a different data ‘type’: Chapter 3 uses point, subsampled data; Chapter 4 uses
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near-continuous temporally subsampled data and Chapter 5 uses continuous data

without any subsampling. This improvement in spatial resolution with each chapter

(at the cost of taxonomic resolution) partially negates, or avoids all-together, some of

the limitations in the previous chapter. The reduced taxonomic resolution seen in the

latter data analysis chapters is only a temporary limitation as the capacity to resolve

images to increased taxonomic resolution with machine learning classifiers is quickly

increasing.

In Chapter 3 (Zooplankton community seasonal and annual changes) data are

sub sampled, point data which is analogous to using ring nets and sub sampling for

microscopy. Thus, the data are subject to the same limitations of subsampling (see

Chapter 1.2.1). Mainly, the under or over representation of rarer species. Images

were manually classified to the highest possible taxonomic resolution which takes

time. As a result the data had a significantly reduced spatial coverage and resolution

compared with the latter chapters. Chapter 4 still uses subsampled data but here data

are temporally sub sampled. The limited spatial resolution is significantly reduced

using this approach (Figure 3.1 to Figure 4.1), although at the cost of taxonomic

resolution. Sampling to copepods only avoids the over or under representation of

rarer species but removes any capacity for community-type studies and analysis such

as those performed in Chapter 3. Finally, Chapter 5 builds on the work done in

the previous chapter but negates subsampling all together by employing the Turing

Classifier (Chapter 2.6.2). This removes completely the limitations associated with

subsampling and provides fine spatial zooplankton data but does not provide any

community data. Achieving subsampling-free, fine spatial data and an increased

taxonomic resolution is nearly achievable and is discussed below.

Two (Chapters 4 & 5) of the three data chapters provide only a ‘snapshot’ of the

zooplankton. They are single cruise analyses that only cover a single season. The

limitations of the ‘survey snapshot’ (Huret et al., 2018) are addressed in the respective

chapter discussions. This limitation primarily arises from the instrument being in a

developmental stage throughout the PhD and will be avoidable in the future when

the PI is resident aboard on the RV Endeavour or other research vessels. Additionally,

the late-PhD arrival of tools required to perform these non-subsample analysis and
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the time taken required to run them on the data archive was outside the scope of the

PhD timeline. The PI will now be routinely used in the spring and autumn surveys

(Table 2.1) and will allow for future time series studies at finer spatial resolution, and

in combination with improved classifiers, higher taxonomic resolution.

FIXED SAMPLING DEPTH

The PIs reliance on the vessels continuous flow restricts vertical sampling to 4 meters

below sea level. Instead of a limitation, this may be considered a characteristic of the

instrument, in-line with other plankton instruments where no device can sample the

whole plankton and each instruments samples a portion of the plankton. To obtain

vertical data, the PI can be used in combination with other instruments, see below

(section 6.5).

6.3.1 LIMITATIONS ADDRESSED WITH THE THESIS

The completion of the instrument coincided with the end of the PhD. A month

before submission, the finished, commercial purchasable product, the PI-10, was

tested (Chapter 2.8). In the final months of the PhD, a machine learning classifier

that allowed for classification all images with acceptable error (Chapter 2.6.2) was

developed. These developments successful complete objective 2 (Chapter 1.5) and

resolve many of the more major limitations present in the thesis.

The foremost limitation, now addressed, is the inability to sample all images. It

is now possible to sample all images and avoid subsetting or subsampling the data

which is required for manual classification. In turn, this avoids the issues associated

with subsampling (see Chapter 1.2.1) but also allows for data to be gained at an

unprecedented spatial and temporal resolution. This potential is initially explored in

Chapter 5 although limitations associated with device development (e.g. testing data

rate capacities) resulted in a mismatch between data and ecological processes (e.g.,

the absence of PI data in Sprat feeding zones, Figure 5.3). These limitations will be

absent in future surveys as the data rates (/ limits) are now known and the instrument

is virtually automated. The impetus is now on expanding capacity to store more data
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and refine classifiers to resolve zooplankton to even higher taxonomic resolution,

discussed below.

These two developments cover many of the limitations present in the course of

the thesis. In addition, over the course of the PhD, feedback between myself (from

experience as the end-user both at sea and during data analysis) and the instrument

designers also resulted in tweaks to the software and hardware as well as establishing

protocols in response to limitations (for some examples, see Appendix C).

6.4 WIDER IMPLICATIONS

The PI provides opportunity for collection of a new type of plankton data as well

as avoiding some of the complexities associated with zooplankton sampling. Thus,

the wider implications of the thesis are two fold. Firstly is the demonstration of PI,

and imaging devices in general, as a cost-effective alternative method for collecting

zooplankton data. Secondly is the ecological insight that can be obtained from these

tools that have the capacity to sample zooplankton data at new resolutions.

The PI was developed in response to the limitations associated with traditional

net sampling (Chapter 1.2.1) (Agnarsson and Kuntner, 2007; Bean et al., 2017; Pitois

et al., 2018; Danovaro et al., 2016) coupled with mandated monitoring through

policy (McQuatters-Gollop et al., 2017; Bedford et al., 2018) and increasingly complex

ecosystem (Mitra et al., 2014) and biogeochemical modelling (Steinberg et al.,

2002; Steinberg and Landry, 2017). The thesis begins to demonstrate the capacity

of one of these newer approaches to answering existing ecological questions at

reduced time and financial costs. The thesis, and the results therein, form part

of a large collection of work where imaging instruments are becoming increasingly

commonplace in monitoring strategies and providing a viable, and often preferential,

alternative to traditional devices. In Chapter 4 the PI is able to describe changes in

zooplankton community similarly to those methods that analysis the specimens via

light microscopy (Johns, 2006; Eloire et al., 2010; Highfield et al., 2010). There are too

many recent examples to cite, but a simple Google Scholar result for "zooplankton
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imaging" for articles post-2021 returns 1000s of hits, with the diversity of applications

for imaging devices also growing.

While there a range of imaging devices currently available, the PI remains fairly

unique in its high throughput capacity while retaining the ability to discern moderate

taxonomic resolution (e.g. copepods to family level). It is difficult to find a device

similar in the literature. The recently developed ‘Planktoscope’ (Pollina et al., 2020)

uses a similar method but samples at 0.1 ml/min, an order of magnitude less than the

PI. Now the PI is established the future implications, in terms of ecological studies

can start to be explored. Although, the PI, like all plankton sampling devices, is

constrained and thus biased, towards a certain portion of the zooplankton (Owens

et al., 2013). It may not be the most appropriate tool for specific ecological questions

and must be considered as an option among many other devices where the researcher

must choose the most appropriate device to the question (Skjoldal et al., 2013).

The wider ecological implications of the thesis are the exciting result of trying

to develop cost effective devices. The combination of imaging and machine

learning and its application to plankton science is growing (Crisci et al., 2012;

Irisson et al., 2022). This coupling allows for describing the zooplankton at an ever

increasing spatiotemporal resolution. Chapter 4 is an example of obtaining small

scale zooplankton data although manually classified. This is followed by Chapter

5 which builds on the previous chapter and presents even finer data obtained by

using a machine learning algorithm. This progression between chapters is itself

a demonstration in the benefits of using a machine learning approach compared

with manual taxonomy. Machine learning classifiers have the capacity to deal with

the large number of images collected by imaging devices (Culverhouse et al., 2006;

Benfield et al., 2007; MacLeod et al., 2010) which would be impossible to analyse

manually. Similarly to zooplankton imaging, there are numerous articles applying

machine learning to zooplankton. In terms of the wider implications, these chapters

form the foundation for a range of studies that can better harness continuous

zooplankton data.
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6.5 FUTURE RESEARCH

Although improvements to the instrument hardware, software and data analysis

pipelines will continue development, the PI (or now the ‘PI-10’) is now a finished

tool. The hardware and software are developed to a point that ensure the instrument

is automated. This means a dedicated crew member is no longer required to

accompany the instrument. Dedicated team members incur substantial costs (with

the notable exception of PhD students) and removing this requirement allows for a

much more flexible deployment regime of the instrument both in terms of surveys

and research vessels. There are currently plans to put the existing PI-10 on more Cefas

surveys aboard the RV Cefas Endeavour and deploy anther PI on a different research

vessel. Finally, as a finished instrument, periods of development or modification to

the instrument are no longer needed. These have previously resulted in a missed

survey (Table 2.1). In future, the instrument will be more consistently used at sea

which will allow for formation of new time series. This frames the context for much

of the future work suggestions detailed below.

Due to the novel nature of the PI data there were many potential research avenues

that might have been pursued during the PhD. For example, the PIs ability to capture

Radiolaria, discussed in Chapter 1 and seen in the results of Chapter 3, could have

been used to better understand the spatial distribution of these species. There are

likely many other examples of studies that can be achieved using the existing PI data

archive. Some future example applications of the PI, now it is established are detailed:

• Fine spatial changes in zooplankton over hydrodynamic features (e.g. fronts).

The PI could be used to explore fine changes in the zooplankton community,

biomass or sizes over relatively small hydrodynamic features. The width of

ocean fronts may be as small as 100 m (Belkin and Cornillon, 2007) and are

important governing features of zooplankton dynamics (Graham and Hamner,

2001; Genin et al., 2005) and the PI is well placed to resolve data to these

resolutions.
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• Use in hard to reach areas where deployment of nets or towed devices is not

safe. Deployment of any devices can be made impossible by sea conditions. For

example, Drakes Passage, in the Southern Ocean is hydrodynamically complex

(Grelowski et al., 1986; López et al., 1999) and can result in unfavourable sea

states for deployments. Several studies exist documenting the zooplankton

using nets with low sampling resolution For example Vedenin et al., 2019. If

the PI were to be installed on an annual survey that crosses these seas a time

series could be built with relative safety, cost and effort.

• Formation of fine scale, moderate taxonomic resolution time series. The

PI lends itself to the formation of time series in much the same way as the

Continuous Plankton Recorder (Richardson et al., 2006). The PI will be used

routinely and left aboard ship collecting data. These time series are powerful

tools in assessing long term changes in the zooplankton (for a review see

Mackas and Beaugrand, 2010), for example they have been used to identify

changes in the zooplankton in response to climate change (Richardson, 2008;

Taylor et al., 2002).

• Interpolate with vertical depth data. The PI data is solely horizontal.

Zooplankton undergo significant diurnal vertical migrations (Gliwicz, 1986;

Bandara et al., 2021) which are missed by our data. Future studies could

integrate vertical data, captured by ring nets or other imaging devices, to

provide a 3D description of the zooplankton.

• Data analysis pipeline. Although not strictly a research output, the analyses

within the thesis demanded a unique approach to harmonising several sources

of continuous data. The code written for Chapters 4 & 5 could be the base for

which a developer builds software for harmonising continuous data with ease.

This pipeline can be built on in future and perhaps automated. Bringing these

sources of data together over several years has the capacity to provide a detailed,

holistic description of ecosystem and describe changes over time.
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6.6 CONCLUSION

The thesis meets the aims set out in the introductory chapter and forms a foundation

for future studies using continuous plankton data of a similar nature. The examples

of future work listed above are only a few examples of where devices such as the

PI can provide a unique perspective on existing questions. Ecologically speaking,

the thesis demonstrates imaging devices have the capacity to sufficiently describe

temporal changes in zooplankton assemblages similar to a ring nets. Relationships

previous described in studies with lower spatial resolution are re-investigated at finer

spatiotemporal scales with varied results (compared to the literature), demonstrating

the complexity of these relationships, the importance of sampling scale and time

series. On completion of the thesis, work begins on deploying the PI routinely, the

formation of time series and the potential deployment of other PIs on other research

vessels.
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A
METADATA EXPLORER FOR PI DATA

A.1 INTRODUCTION

The PI generates millions of images per survey. Understanding where the data are and

how much data are in an area is useful knowledge when retrospectively subsampling.

A more educated decision can be made about where to sample of if its sensible to

sample an area (e.g. if there is an exceptional concentration of images in a specific

areas compute time might be unrealistic). The PI Meta data explorer (Figure A.1 was

developed in response to this need and provides and interactive tool for exploring the

data. This tool will continue to be developed post-phd and was never truly finished.

The code below was created in year 2 of the PhD and as such is not optimised or up in

line with best-coding practices for R.

The code makes use of the leaflet package, a geographical information system for

the interactive exploration of data. The code can accept user defined parameters to

create a single bin (Figure A.2, line 8). The code also has a ‘cutting factor‘ which keeps

only 1 in every n images. This improves render speed. After running the code an

interactive .html page is available. This has the potential to be shared online on a

server. The code also generates a start and end time which was originally required by
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the PI_Subsample software (Chapter 2.4.1). It also generates a polygon code which

can be used to subset the data.

Figure A.1: An overview of the interactive PI Metaexplorer program. This can be launched
in any web browser. This example shows data for 2018 Peltic Survey. The notes (bottom left)
show the user defined parameters as well as information on how each polygon is created.

Figure A.2: A selected bin (below the pop up) showing the meta data for the bin. The popup
shows the time, distance travelled as well as generating parameters for sub-setting the data.
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A.2 USE FOR MSC PROJECT

The code was successfully used to inform educated retrospective subsampling of PI

data for an MSc project. The user selected bins to ensure the best spatial coverage.

The project investigated the relationship between copepod biomass and remote

sensing derived chlorophyll data with consideration of the time lag between peak

chlorophyll and biomass.

A.3 CODE

1 # User defined variables
2
3 # How many images to keep
4 # e.g. a cutting factor of 25 would keep 1 in 25 images
5 cutting_factor = 5
6
7 # How much time to split the bins into
8 user_bin_time = "1␣hour"
9 # Must be a number and then a peroid

10 # week
11 # hour
12 # month
13
14 # ~ # ~ # ~ # Reading in data ####
15
16 # Set working directory
17 setwd("D:\\ OneDrive \\ OneDrive␣-␣University␣of␣East␣Anglia \\PIA_

,→ meta_explorer")
18
19 # Reading CSV from python script
20 joined <- read.csv("Metadata_allimages_2018. csv")
21
22 # ~ # ~ # ~ # Tidying and truncating data ####
23
24 library(dplyr)
25
26 # Renaming vars to standard format
27 joined <- joined %>%
28 rename(lat = img_lattitude ,
29 lon = img_longtitude)
30
31 # Clipping the dataset by X, entered before last )
32 joined_cut = joined[seq(1, nrow(joined), cutting_factor), ]
33
34 # Writing cut dataframe for ships transect
35 cut_file_name <- paste0("cut_data_by_1in",cutting_factor ,".csv")
36
37 write.csv(joined_cut , cut_file_name ,
38 row.names = F)
39
40 # Extracting just hour
41 # Function to select right most characters
42 substrRight <- function(x, n){
43 substr(x, nchar(x)-n+1, nchar(x))
44 }
45
46 # Removing hour and converting time to POSIX
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47 # and extracting date
48 joined_cut <- joined_cut %>%
49 mutate(hour = substrRight(img_time , 8),
50 img_time = as.POSIXct(img_time),
51 date = as.Date(img_time))
52
53 # ~ # ~ # ~ # Binning time by n hours ####
54
55 library(hms)
56 library(dplyr)
57 library(tibbletime)
58
59 # Creating a dummy variable not to loose time
60 joined_cut$bintime_start <- joined_cut$img_time
61
62 # Binning by time
63 binned_time <- joined_cut %>%
64 arrange(bintime_start) %>%
65 as_tbl_time(index = bintime_start) %>%
66 # Time choice below
67 collapse_by(period = user_bin_time ,
68 start_date = first(joined_cut$bintime_start),
69 side = "start",
70 # Choosing if to round up
71 clean = F)
72
73
74 # Summarising the needed variables for the plot
75 library(geosphere)
76
77 binned_time <- binned_time %>%
78 group_by(bintime_start) %>%
79 # Creating a lagged variable to calculate distance
80 mutate(lat_prev = lag(lat ,1), lon_prev = lag(lon ,1) ) %>%
81 # Using Geosphere to calculate a distance between two points
82 mutate(dist = distHaversine(matrix(c(lon_prev , lat_prev), ncol =

,→ 2),
83 matrix(c(lon , lat), ncol = 2)))

,→ %>%
84 # Summarising variables
85 summarise(dist_m = sum(dist ,na.rm=T),
86 count = length(filename),
87 #
88 avglat = mean(lat),
89 avglon = mean(lon),
90 maxlat = max(lat),
91 minlat = min(lat),
92 maxlon = max(lon),
93 minlon = min(lon),
94 #
95 min_time = min(img_time),
96 max_time = max(img_time),
97 avg_time = mean(img_time),
98 date = mean(date)) %>%
99 rename(lat = avglat ,

100 lon = avglon)
101
102
103 # ~ # ~ # ~ # Calculating sunrise and sunset ####
104
105 library(suncalc)
106
107 # Getting sunlight times based on average date
108 bin_time_sun <- getSunlightTimes(data = binned_time ,
109 keep = c("sunrise", "sunset"))
110
111 # Pulling those variables neede across
112 # Meta data
113 bin_time_sun$bintime_start <- binned_time$bintime_start
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114 bin_time_sun$count <- binned_time$count
115 # Min lats/lons
116 bin_time_sun$maxlat <- binned_time$maxlat
117 bin_time_sun$minlat <- binned_time$minlat
118 bin_time_sun$maxlon <- binned_time$maxlon
119 bin_time_sun$minlon <- binned_time$minlon
120 # Distance
121 bin_time_sun$dist_m <- binned_time$dist_m
122 # Mean time
123 bin_time_sun$avg_time <- binned_time$avg_time
124 bin_time_sun$min_time <- binned_time$min_time
125 bin_time_sun$max_time <- binned_time$max_time
126
127 # Calculating if a bin is mainly in day or in the night
128 bin_time_sun <- bin_time_sun %>%
129 mutate(day = ifelse(avg_time < sunset & avg_time > sunrise , "

,→ Day", "Night")) %>%
130 mutate(day = as.factor(day))
131
132
133 # ~ # ~ # ~ # Naming the polygons for future reference ####
134
135 # Simple name based on first to last time
136 bin_time_sun$poly_name <- paste0("Poly_", 1:as.numeric(count(bin_

,→ time_sun)))
137
138 # ~ # ~ # ~ # Saving he grouped data and cleaning the workplace

,→ ####
139
140 # Writing the data
141
142 user_time_bin_no_space <- sub("␣", "", user_bin_time)
143
144 time_bin_csv_name <- paste0("timebin_", user_time_bin_no_space ,"_

,→ cuttingfactor_",cutting_factor ,".csv")
145
146 write.csv(bin_time_sun , time_bin_csv_name ,
147 row.names = F)
148
149 # Removing all but that nasty csv
150 rm(list=ls()[! ls() %in% c("joined", "cutting_factor","user_bin_

,→ time","time_bin_csv_name","cut_file_name")])
151
152 # Reading data back in
153 plotdata <- read.csv(time_bin_csv_name)
154
155 # Changing time to factor
156 plotdata$day <- as.factor(plotdata$day)
157
158
159 # ~ # ~ # ~ # Creating the polygons ####
160
161 library(sf)
162
163 lst <- lapply (1: nrow(plotdata), function(x){
164 # Creating the polygons using the min and max lats and lons
165 # for each hour (need FIX here - better method ?)
166 res <- matrix(c(plotdata[x, ’maxlon ’], plotdata[x, ’maxlat ’],
167 plotdata[x, ’maxlon ’], plotdata[x, ’minlat ’],
168 plotdata[x, ’minlon ’], plotdata[x, ’minlat ’],
169 plotdata[x, ’minlon ’], plotdata[x, ’maxlat ’],
170 plotdata[x, ’maxlon ’], plotdata[x, ’maxlat ’])
171 , ncol =2, byrow = T
172 )
173 st_polygon(list(res))})
174
175 # Extracting the geometry per polygon
176 # Create simple feature geometry list column
177 plotdata$geomtry <- st_sfc(lst)
178 str(plotdata)
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179 data_assf <- st_sf(plotdata)
180
181
182
183 # ~ # ~ # ~ # Splitting the shapefile data frame by day and night

,→ ####
184
185 # night
186 night_only <- data_assf[data_assf$day == ’Night ’,]
187 # day
188 day_only <- data_assf[data_assf$day == ’Day’,]
189
190
191 # ~ # ~ # ~ # Getting the boat transect and changing to sp ####
192
193 # Reading cut file
194 transect <- read.csv(cut_file_name)
195
196 # Changing image time to indexing
197 transect <- transect %>%
198 mutate(img_time_num = as.numeric(as.POSIXct(img_time , tz = "GMT"

,→ )))
199
200 # ~ # ~ # ~ # Plotting in Leaflet ####
201
202 library(leaflet)
203 library(leaflet.extras)
204 library(htmltools)
205
206 # Title
207 rr <- tags$div(
208 (HTML("<b>Notes:</b><br>",
209 "-␣2018␣Peltic␣Survey␣PI␣Metadata␣<br>",
210 "-␣Each␣polygon␣is␣created␣using␣the␣max/min␣lat/lon <br>",
211 "&nbsp;&nbsp;of␣a␣two␣hour␣time␣bin␣<br>",
212 "-␣Data␣is␣clipped␣for␣rendering␣speed␣<br>",
213 "<b>User␣defined␣parameters:</b><br>",
214 "Only␣1␣in␣every", as.character(cutting_factor), "images␣kept"

,→ , "<br >",
215 "Time␣bins␣are", as.character(user_bin_time), "<br>"
216 )))
217
218 map <- leaflet () %>%
219 #
220 addTiles () %>%
221 #
222 addPolylines(data = transect ,
223 lng = ~lon ,
224 lat = ~lat ,
225 group = "Vessel␣track",
226 weight = 1,
227 color = "black") %>%
228 #
229 addPolygons(data = night_only ,
230 group = "Night",
231 color = "Grey",
232 highlightOptions = highlightOptions(color = "red",
233 weight = 4,
234 bringToFront =

,→ TRUE),
235 popup = ~paste0("<h3>Station␣Info:␣&#128674; </h3>",
236 "<b>Mean␣Bin␣Time␣&nbsp;&nbsp;&nbsp;

,→ &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&
,→ nbsp;&nbsp;</b>",

237 avg_time ,
238 "<br>",
239 "<b>No.␣Images&nbsp;&nbsp;&nbsp;&

,→ nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&
,→ nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&
,→ nbsp;&nbsp;&nbsp;␣</b>",
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240 count*cutting_factor ,
241 "<br>",
242 "<b>Boat␣distance␣(km)␣&nbsp;&nbsp;&

,→ nbsp;</b>",
243 round(dist_m/1000, digits = 2),
244 "<br>",
245 "<b>Litres␣Sampled:␣␣&nbsp;&nbsp;&

,→ nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&
,→ nbsp;</b>",

246 "&#128542;␣",
247 "<br>",
248 "<b>Polygon␣Code:␣␣&nbsp;&nbsp;&nbsp

,→ ;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
,→ &nbsp;&nbsp;</b>",

249 poly_name ,
250 "<br>",
251 "<br>",
252 "<h3>Subsample␣parameters:␣&

,→ #128187; </h3 >",
253 "<b>Start␣time␣&nbsp;&nbsp;&nbsp;&

,→ nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&
,→ nbsp;&nbsp;</b>",

254 min_time ,
255 "<br>",
256 "<b>End␣time␣&nbsp;&nbsp;&nbsp;&nbsp

,→ ;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
,→ &nbsp;&nbsp;</b>",

257 max_time)) %>%
258 #
259 addPolygons(data = day_only ,
260 group = "Day",
261 color = "White",
262 highlightOptions = highlightOptions(color = "red",
263 weight = 4,
264 bringToFront =

,→ TRUE),
265 popup = ~paste0("<h3>Station␣Info:␣&#128674; </h3>",
266 "<b>Mean␣Bin␣Time␣&nbsp;&nbsp;&nbsp;

,→ &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&
,→ nbsp;&nbsp;</b>",

267 avg_time ,
268 "<br>",
269 "<b>No.␣Images&nbsp;&nbsp;&nbsp;&

,→ nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&
,→ nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&
,→ nbsp;&nbsp;&nbsp;␣</b>",

270 count*cutting_factor ,
271 "<br >",
272 "<b>Boat␣distance␣(km)␣&nbsp;&nbsp;&

,→ nbsp;</b>",
273 round(dist_m/1000, digits = 2),
274 "<br>",
275 "<b>Litres␣Sampled:␣␣&nbsp;&nbsp;&

,→ nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&
,→ nbsp;</b>",

276 "&#128542;␣",
277 "<br>",
278 "<b>Polygon␣Code:␣␣&nbsp;&nbsp;&nbsp

,→ ;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
,→ &nbsp;&nbsp;</b>",

279 poly_name ,
280 "<br>",
281 "<br>",
282 "<h3>Subsample␣parameters:␣&

,→ #128187; </h3 >",
283 "<b>Start␣time␣&nbsp;&nbsp;&nbsp;&

,→ nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&
,→ nbsp;&nbsp;</b>",

284 min_time ,
285 "<br >",
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286 "<b>End␣time␣&nbsp;&nbsp;&nbsp;&nbsp
,→ ;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
,→ &nbsp;&nbsp;</b>",

287 max_time)) %>%
288 addLayersControl(
289 overlayGroups = c("Day", "Night", "Vessel␣track"),
290 options = layersControlOptions(collapsed = FALSE)) %>%
291 addControl(rr, position = "bottomleft")
292
293 map



B
HARMONISING CONTINUOUS DATA

STREAMS

B.1 INTRODUCTION

This tool is used to harmonise continuous data streams to user defined space and size

bins (lines 12 & 13). Data must be binned in order to run statistical analysis even if the

bins are small. Although used in thesis for zooplankton data the tool can be used with

any continuous data as long as longitude, latitude and datetime field are provided.

The only consideration is the minimum temporal bin of the raw data. For example, in

Chapter 5 the minimum bin size was 1 nautical mile due to the fisheries acoustic data

being binned to that spatial resolution. Finally the only consideration is: the smaller

the time / bin sizes the longer the code takes to run.

B.2 USE IN CHAPTERS

The code was used to merge various continuous data the thesis. For Chapter 4 only a

spatial merge was performed, this code is not shown but is essentially the same code

180
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excluded lines 73-142. In Chapter 5 data were merged by both space and time and

this is the code used.

B.3 CODE

1 library(reshape2)
2 library(here)
3 library(tidyverse)
4 conflict_prefer("filter", "dplyr")
5
6 gm_mean = function(x, na.rm=TRUE){
7 exp(sum(log(x[x > 0]), na.rm=T) / length(x))
8 } # geomean function
9

10 # changeable paramters
11
12 temporal_bin_size = "20␣mins"
13 spatial_grid_size = 0.05# must be x/1 of a degree
14
15
16 #### reading in raw data ####
17
18 # Ferrybox
19 ferrybox_data <- read_csv(here("data","ferrybox", "Peltic_fb_2020_

,→ JS.csv")) %>%
20 rename(lat = Latitude ,
21 lon = Longitude) %>%
22 dplyr :: select(dateTime ,
23 variable ,
24 Mean ,
25 lat ,
26 lon)
27
28 ferrybox_data <- dcast(ferrybox_data , lat + lon + dateTime ~

,→ variable ,
29 value.var = "Mean",
30 fun.aggregate = mean)
31
32
33 # Fish
34 fish_noJUV <- read_csv(here("data",
35 "fish_data",
36 "PELTIC20_nasc_by_species_noJUV_agg_

,→ final.csv")) %>%
37 rename(lon = Lon_M,
38 lat = Lat_M) %>%
39 drop_na() %>%
40 mutate(dateTime = paste(Date_M, hours_mins),
41 dateTime = as.POSIXct(dateTime , format = "%d/%m/%Y␣%H:%M

,→ :%OS",
42 tz = "UTC")) %>%
43 select(-c(Interval ,
44 Date_M,
45 Time_M,
46 hours_mins ,
47 NASC.SBF))
48
49 # Plankton
50 cops_only <- read_csv(here("data", "PI_FB_FC_ST", "

,→ Copepodnosubsample.csv")) %>%
51 drop_na() %>%
52 mutate(copepods_logged = log10(Major)+1) %>%
53 select(Major ,
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54 DateTime ,
55 lat ,
56 lon) %>%
57 rename(dateTime = DateTime) %>%
58 mutate(length_um = Major*10,
59 length_mm = length_um/1000,
60 taxa_ww_mg = 0.0299*(length_mm ^2.8348) ,
61 taxa_ww_ug = taxa_ww_mg * 1000,
62 bin_min_time = as.POSIXct(plyr:: round_any(dateTime , 600,

,→ f = floor),
63 tz = "UTC", origin = "

,→ 1960 -01 -01"),
64 bin_max_time = as.POSIXct(plyr:: round_any(dateTime , 600,

,→ f = ceiling),
65 tz = "UTC", origin = "

,→ 1960 -01 -01"))
66
67
68 # Plankton bin metadata
69 # PI_bin_times <- read_csv(here("data", "PI_FB_FC_ST", "bin_counts

,→ .csv"))$datetime
70
71 #### creating temporal and spatial bins ####
72
73 ## Time
74
75 temporal_bins <- as.data.frame(
76 seq(round(min(ferrybox_data$dateTime - 24*3600) , "hour"),
77 round(max(ferrybox_data$dateTime + 24/3600) , "hour"),
78 by = temporal_bin_size)) %>%
79 rename(temporal_bins_start = 1) %>%
80 mutate(temporal_bins_start_fact = as.factor(temporal_bins_start)

,→ )
81
82 temporal_bins$temporal_bin_id <- ids:: random_id(as.numeric(count(

,→ temporal_bins)), 3)
83
84 ## Space
85
86 gridder_consistentXY <- function(dataframe , resolution){
87
88 sing_res <- resolution
89 xCellSizeGrid <- yCellSizeGrid <- sing_res
90
91 # Projection
92 wgs .84 <- CRS("+proj=longlat␣+datum=WGS84␣+no_defs␣+ellps=WGS84␣

,→ +towgs84 =0,0,0")
93
94 datasetSP <- SpatialPointsDataFrame(coords = dataframe[,c("lon",

,→ "lat")],
95 data = data.frame("id" = 1:

,→ nrow(dataframe)),
96 proj4string = wgs .84)
97
98
99 extentDatasetSP <-extent(datasetSP)

100
101
102 mincellX <- -8.25
103 mincellY <- 48
104
105 maxcellX <- -2
106 maxcellY <- 53
107
108 xgridcount <- ((maxcellX -mincellX)/xCellSizeGrid)+2
109 ygridcount <- abs((maxcellY -mincellY)/yCellSizeGrid)+2
110
111 grid <- GridTopology(cellcentre.offset = c(mincellX , mincellY),
112 cellsize = c(xCellSizeGrid , yCellSizeGrid),
113 cells.dim = c(xgridcount , ygridcount))



B.3. CODE 183

114
115 # Create SpatialGrid object
116 gridSpatial <- SpatialGrid(grid = grid , proj4string = wgs .84)
117
118
119 # Convert to SpatialPixels object
120 gridSpatialPixels <- as(gridSpatial , "SpatialPixels")
121
122 # Convert to SpatialPolygons object
123 gridSpatialPolygons <- as(gridSpatialPixels , "SpatialPolygons")
124
125 # Add ’id’ and ’values ’ to every polygon
126 gridSpatialPolygons$id <- 1:nrow(coordinates(gridSpatialPolygons

,→ ))
127 # gridSpatialPolygons$values <- paste ("grid_",sing_res , "_",1:

,→ nrow(coordinates(gridSpatialPolygons)), sep = "")
128
129 # Get attributes from polygons
130 samplePointsInPolygons2 <- datasetSP %over% gridSpatialPolygons
131
132 # Result
133 datasetResult <- data.frame(dataframe , samplePointsInPolygons2)
134
135 output_df <- sf::st_as_sf(gridSpatialPolygons)
136 output_df <- merge(datasetResult , output_df , by = "id")
137 output_df <- sf::st_as_sf(output_df)
138
139 return(output_df)
140
141
142 }
143
144
145 gridder_consistentXY_gridgeo <- function(dataframe , resolution){
146
147 sing_res <- resolution
148 xCellSizeGrid <- yCellSizeGrid <- sing_res
149
150 # Projection
151 wgs .84 <- CRS("+proj=longlat␣+datum=WGS84␣+no_defs␣+ellps=WGS84␣

,→ +towgs84 =0,0,0")
152
153 datasetSP <- SpatialPointsDataFrame(coords = dataframe[,c("lon",

,→ "lat")],
154 data = data.frame("id" = 1:

,→ nrow(dataframe)),
155 proj4string = wgs .84)
156
157
158 extentDatasetSP <-extent(datasetSP)
159
160
161 mincellX <- -8.25
162 mincellY <- 48
163
164 maxcellX <- -2
165 maxcellY <- 53
166
167 xgridcount <- ((maxcellX -mincellX)/xCellSizeGrid)+2
168 ygridcount <- abs((maxcellY -mincellY)/yCellSizeGrid)+2
169
170 grid <- GridTopology(cellcentre.offset = c(mincellX , mincellY),
171 cellsize = c(xCellSizeGrid , yCellSizeGrid),
172 cells.dim = c(xgridcount , ygridcount))
173
174 # Create SpatialGrid object
175 gridSpatial <- SpatialGrid(grid = grid , proj4string = wgs .84)
176
177
178 # Convert to SpatialPixels object
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179 gridSpatialPixels <- as(gridSpatial , "SpatialPixels")
180
181 # Convert to SpatialPolygons object
182 gridSpatialPolygons <- as(gridSpatialPixels , "SpatialPolygons")
183
184 # Add ’id’ and ’values ’ to every polygon
185 gridSpatialPolygons$id <- 1:nrow(coordinates(gridSpatialPolygons

,→ ))
186 # gridSpatialPolygons$values <- paste ("grid_",sing_res , "_",1:

,→ nrow(coordinates(gridSpatialPolygons)), sep = "")
187
188 # Get attributes from polygons
189 samplePointsInPolygons2 <- datasetSP %over% gridSpatialPolygons
190
191 # Result
192 datasetResult <- data.frame(dataframe , samplePointsInPolygons2)
193
194 gridded_geo <- sf::st_as_sf(gridSpatialPolygons)
195 # output_df <- merge(datasetResult , output_df, by = "id")
196 # output_df <- sf::st_as_sf(output_df)
197
198 return(gridded_geo)
199
200 }
201
202
203
204
205
206 #### Assigning time bins to ferrybox , copepods and fishing ####
207
208 ## Time
209
210 # Ferrybox
211 ferrybox_data$temporal_bins_start_fact <- cut(ferrybox_data$

,→ dateTime ,
212 breaks = temporal_

,→ bins$temporal_
,→ bins_start)

213 ferrybox_data <- merge(ferrybox_data , temporal_bins ,
214 by = "temporal_bins_start_fact") %>%
215 select(-temporal_bins_start_fact)
216
217 # Fish data
218 fish_noJUV$temporal_bins_start_fact <- cut(fish_noJUV$dateTime ,
219 breaks = temporal_bins$

,→ temporal_bins_
,→ start)

220 fish_noJUV <- merge(fish_noJUV , temporal_bins ,
221 by = "temporal_bins_start_fact") %>%
222 select(-temporal_bins_start_fact)
223
224 # Plankton data
225 cops_only$temporal_bins_start_fact <- cut(cops_only$dateTime ,
226 breaks = temporal_bins$

,→ temporal_bins_start
,→ )

227 cops_only <- merge(cops_only , temporal_bins ,
228 by = "temporal_bins_start_fact") %>%
229 select(-temporal_bins_start_fact)
230
231
232 #### Assigning space bins to ferrybox , copepods and fishing ####
233
234 # Ferrybox
235 ferrybox_data <- gridder_consistentXY(ferrybox_data , spatial_grid_

,→ size) %>%
236 mutate(grid_time_id = paste(id , temporal_bin_id , sep = "_"))

,→ %>%
237 select(temporal_bin_id ,



B.3. CODE 185

238 everything ())
239
240 # Fish data
241 fish_noJUV <- gridder_consistentXY(fish_noJUV , spatial_grid_size)

,→ %>%
242 mutate(grid_time_id = paste(id , temporal_bin_id , sep = "_"))

,→ %>%
243 select(temporal_bin_id ,
244 everything ())
245
246 # Cops data
247 cops_only <- gridder_consistentXY(cops_only , spatial_grid_size)

,→ %>%
248 mutate(grid_time_id = paste(id , temporal_bin_id , sep = "_"))

,→ %>%
249 select(temporal_bin_id ,
250 everything ())
251
252 #### Summarising per grid_time_id
253
254 # Ferrybox
255 ferrybox_grouped <- ferrybox_data %>%
256 group_by(as.factor(grid_time_id)) %>%
257 summarise(mean_lat = mean(lat , na.rm = T),
258 mean_lon = mean(lon , na.rm = T),
259 mean_time = mean(dateTime , na.rm = T),
260 #
261 mean_fluor = mean(FLUORS , na.rm = T),
262 mean_FTU = mean(FTU , na.rm = T),
263 mean_sal = mean(SAL , na.rm = T),
264 mean_sst = mean(SST , na.rm = T),
265 mean_windsp = mean(WINDSP , na.rm = T))%>%
266 sf::st_drop_geometry () %>%
267 rename("grid_time_id" = 1) %>%
268 select(-c(mean_lat ,
269 mean_time ,
270 mean_lon))
271
272
273 # Fishies
274 fish_noJUV_grouped <- fish_noJUV %>%
275 group_by(as.factor(grid_time_id)) %>%
276 summarise(mean_lat = mean(lat , na.rm = T),
277 mean_lon = mean(lon , na.rm = T),
278 mean_time_fish = mean(dateTime , na.rm = T),
279 #
280 mean_depth = mean(Depth , na.rm = T),
281 #
282 SPR_mean = mean(SPR , na.rm = T),
283 PIL_mean = mean(PIL , na.rm = T),
284 ANE_mean = mean(ANE , na.rm = T),
285 HER_mean = mean(HER , na.rm = T),
286 HOM_mean = mean(HOM , na.rm = T),
287 BOF_mean = mean(BOF , na.rm = T),
288 WHB_mean = mean(WHB , na.rm = T))%>%
289 sf::st_drop_geometry () %>%
290 rename("grid_time_id" = 1) %>%
291 select(-c(mean_lat ,
292 mean_lon ,
293 mean_time_fish
294 ))
295
296 # Plankton
297 # first need to figure out run time per bin
298
299 cops_grouped <- cops_only %>%
300 group_by(as.factor(grid_time_id)) %>%
301 summarise(mean_lat = mean(lat , na.rm = T),
302 mean_lon = mean(lon , na.rm = T),
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303 mean_time_cops = mean(dateTime , na.rm = T),
304
305 PI_on_time = abs(difftime(min(bin_min_time),
306 max(bin_max_time),
307 units = "mins")),
308 PI_h20samp_m3 = as.numeric (22*PI_on_time/1000),
309
310 cop_len_geomean_um = gm_mean(length_um),
311
312 count_count = length(Major),
313 cop_mean_ww_ug = mean(taxa_ww_ug , na.rm = T),
314 cop_tot_ww_ug = sum(taxa_ww_ug , na.rm = T))%>%
315
316 mutate(copepod_abun = count_count*(1/PI_h20samp_m3),
317 cop_bio_ugM3_total = cop_tot_ww_ug*(1/PI_h20samp_m3),
318 cop_bio_mgM3_total = cop_bio_ugM3_total/1000) %>%
319 rename("grid_time_id" = 1) %>%
320 sf::st_drop_geometry () %>%
321 select(-c(cop_bio_ugM3_total ,
322 cop_mean_ww_ug ,
323 cop_tot_ww_ug ,
324 PI_h20samp_m3 ,
325 PI_on_time ,
326 count_count ,
327 mean_lat ,
328 mean_lon))
329
330
331
332
333
334 ultimatedata <- merge(cops_grouped , fish_noJUV_grouped , by = "grid

,→ _time_id", all = T)
335
336 ultimatedata <- merge(ultimatedata , ferrybox_grouped , by = "grid_

,→ time_id", all = T)
337
338 ultimatedata <- ultimatedata %>%
339 filter_if(~is.numeric (.), all_vars(!is.infinite (.)))
340
341
342 # ultimatedata <- ultimatedata %>%
343 # filter_at(vars(SPR_mean , PIL_mean , ANE_mean , HER_mean , HOM_

,→ mean , BOF_mean , WHB_mean), . > 0.0005)



C
CONTRIBUTION TO DEVELOPMENT OF

THE PI

C.1 INTRODUCTION

Part of the PhD aims were to develop the instrument. Feedback between myself as

user of the instrument and designers helped development. List below are some of the

more major changes to the PI I initiated.

C.2 ITEMS

• Max images per minute. This is likely my most important contribution to the

development of the PI. The PI originally had a buffer that was used to store

images that were waiting to be written to disk. This happened during areas of

high particulate concentrations (sand etc.). If the buffer was full, the next 10

min bin would be affected even if there was a more normal amount of particles.

A ‘bad’ ten minutes could effective spoil a few hours data with this method.

Using this max images per min meant that if a patch of high particulate was

hit then the next bin would be unaffected as the software would stop trying to

187
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write the previous bins images to disk and instead record the number of images

waiting. This resulted in a significant increase in the number of usable bins

following a survey.

• Preview window on PIA_Subsample redesign (Figure 2.5). This was designed

to be more user friendly and show more information when previewing a sample

(e.g. number of images in timeframe). Several bugs which crashed the GUI were

also removed during this process.

• ExtHDSpeedTest.exe - hard drive testing software. This software was written

by one of the PI developers to try to quantify the gains that could be made by

moving from spinning hard drives to solid states disks. It turns out gains were

marginal.

• Standard Operating Procedure (SOP). The SOP for the PI was written for

deployment aboard the RV Cefas Endeavour in the final few months of the PhD.

This is now used by other PI users.
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