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Abstract 

Soil moisture data is used in weather forecasting, drought detection, flood anticipation, and 

crop monitoring. NASA’s Soil Moisture Active Passive (SMAP) mission orbits the Earth 

and operates a L-Band radiometer measuring the natural emission from the Earth to retrieve 

soil moisture. Despite the L-Band being a protected part of the spectrum to allow for 

passive observation of the Earth, radio frequency interferences (RFI) are observed in the 

SMAP measurements. This RFI is generated by illegal emissions within the protected band 

or by transmitters in adjacent frequency bands. Detecting RFI is critical, as it corrupts the 

radiometer measurements and can potentially bias the soil moisture retrievals, if the RFI is 

undetected. The detection is possible thanks to nine detection algorithms that are 

implemented in ground processing. Despite the overall good performance of the detection 

algorithms, some undetected RFI, also defined as residual RFI, are still noticeable in the 

SMAP measurements. This research is divided into two parts. The first part of the work 

focuses on classifying RFI sources using deep learning to provide a better understanding 

of the RFI environment. In this part of this study, the brightness temperatures for each 

SMAP radiometer measurement, or footprint, are treated as an image which will be the 

input to a deep learning neural network to classify the types of RFI into three groups: no 

RFI, wideband RFI, and narrowband RFI. The first results confirmed that using a neural 

network to classify different RFI types is possible and the SMAP footprints were 
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successfully classified with and accuracy of 98%. The second part of the project 

investigates the implementation of image processing techniques to detect residual RFI by 

using mean filtering to detect and remove residual RFI in SMAP data. The filter was used 

on weekly max hold filtered brightness temperature maps, i.e., after RFI detection was 

performed and convolves over the global image, identifying regions with large spatial 

variations. Initial results for the mean filtering algorithm demonstrated the potential of this 

technique to detect spatial areas contaminated with residual RFI sources.
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Introduction 

SMAP Background 

On January 31, 2015, the National Aeronautics and Space Administration (NASA) 

launched their Soil Moisture Active Passive (SMAP) mission, which collects global soil 

moisture measurements for use in weather forecasting, drought detection, flood 

anticipation, crop monitoring, and water, energy, and carbon cycle tracking [1].  

SMAP operates a L-Band radiometer in the 1400-1427 MHz range, a protected part 

of the electromagnetic spectrum to allow for passive observations of the Earth. Despite 

measuring in the protected range, the SMAP dataset is frequently corrupted by RFI and 

contains high levels of RFI in some locations [2]. 

The SMAP digital backend was specially designed to be able to perform RFI 

detection and filtering. More than eight years of RFI data are now available and can be 

used to infer information about the RFI environment. Previous studies analyzed maps and 

their time variations to obtain insight about the changes of the RFI environment, but those 

analyses don’t provide information on the RFI sources directly (i.e., source types or the 

frequency most flagged). Given the large quantity of RFI data available, machine learning 

algorithms can be used to classify RFI sources to provide more information about the RFI 

sources. The first part of this research project focused on developing convolutional 

neuronal networks (CNN) to perform a classification of SMAP subband spectrograms into 
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three classes (no RFI, narrowband, wideband). This classification can be used to provide 

additional details about the RFI sources contained in each SMAP footprint. The accuracy 

of the classification using two CNNs will be presented in the first part of this thesis.   

 Figure 1 presents an example of max hold maps of the SMAP antenna temperature in 

vertical polarization over Europe for the week of 02/27/2023 before RFI detection 

algorithms are applied (Figure 1a) and after RFI detection is performed (Figure 1b). The 

RFI sources appear as “hotter” spots in the Figure and a lot of them are identified and 

filtered by the SMAP algorithms, as shown on Figure 1b. However, despite the good 

performance of these algorithms to filer the RFI sources [3], some RFI sources can still be 

noticed in the max hold maps of the filtered antenna temperature (Figure 1b). This indicates 

that some RFI are undetected and remain in the data even after the RFI detection and 

filtering are applied. Those residual RFI are a concern as they could potentially induce bias 

in the soil moisture retrievals. Finding techniques to identify those residual RFI is a critical 

a 

 

b 

 

Figure 1: Max hold maps of SMAP Antenna Temperatures in vertical polarization a) before 
RFI detection algorithms are applied b) after RFI detection algorithms are applied for the 

week of 02/27/23. 
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topic that this research investigates using basic image processing to identify spatial areas 

impacted by RFI. Preliminary results will be presented in the second part of this thesis. 
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Related Work 

SMAP is the first radiometer that provides information about RFI sources due to the 

design of its digital backend. Given the large amount of RFI data available, machine 

learning algorithms can be applied to SMAP spectrograms to do classification. Mohammed 

and Piepmeier [4] were the first to use a deep learning algorithm to detect the presence of 

RFI in SMAP spectrograms. In this case, deep learning was implemented by using a neural 

network to classify the output.  

Computer vision neural networks, that is, networks that use images for their input, are 

composed of many layers – the first layers have functions such as identifying edges and 

colors on the image, while the final layers are project specific and classify the output. 

Transfer learning is the practice of replacing these final, project-specific layers to train the 

neural network to solve a new problem. Mohammed and Piepmeier used transfer learning 

to classify SMAP spectrograms into two groups: “RFI” and “No RFI” to identify the 

presence of RFI in the footprints. Their results are presented in [4] and they demonstrated 

that machine learning algorithms using CNNs could identify RFI in SMAP footprints with 

an accuracy of over 96% for each of the three CNNs tested.  

Since they demonstrated the potential of using machine learning algorithms for 

separating SMAP footprints into RFI free footprints and RFI corrupted footprints, this work 

furthers their research by refining the classification to provide more characteristics about 
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the RFI sources. In this study, the use of machine learning algorithms using CNNs is 

investigated to classify the SMAP footprints into three classes: narrowband RFI, wideband 

RFI and no RFI.  

 The second part examines the issue of residual RFI and investigates new techniques 

to detect areas impacted these residual RFI. Previous studies were performed to investigate 

why the SMAP RFI algorithms failed to detect those RFI. Bringer et al. [5] studied several 

cases of residual RFI and showed, that in most cases, the residual RFI were moderate 

wideband continuous RFI. The SMAP algorithms were mainly designed to look for rapid 

changes in the antenna temperatures over time or frequency; therefore, they fail at detecting 

moderate wideband continuous RFI. Soldo et al [6] proposed an algorithm to identify 

spatial outlier in the antenna temperature measurements after RFI detection was applied 

for each SMAP half orbits. This spatial algorithm was based on contouring the antenna 

temperatures with iso lines and identify region with large gradients. In [6], Soldo et al, 

showed successful identification of residual RFIs. The second part of this work aims at 

using image processing algorithms to detect residual RFI on the weekly max hold maps of 

the filtered antenna temperature measurements, i.e., after RFI detection is applied, and 

potentially filter the residual RFIs. The first step of this work was to investigate the use of 

mean filtering to test the methodology before implementing the machine learning 

algorithm.   
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RFI Type Classification Initial Testing 

Materials and Methods 

The goal if this work is to classify the RFI sources to get more knowledge about the 

RFI environment. Previous studies [2] demonstrated the potential of using deep learning to 

identify the presence of RFI in SMAP footprints. This research expands upon their work 

by further classifying SMAP footprints that contains RFI into two different classes: 

narrowband and wideband. To do so, the SMAP footprints of the subband product, also 

referred to as spectrograms, were used as input to a deep learning neural network. The 

spectrograms represent the brightness temperature measurements for each of the 16 sub-

frequency channels in eight sub-intervals of time. The spectrograms were treated as images 

by the neural network and frequency characteristics of the RFI were used to define the two 

additional classes. Therefore, the SMAP footprints will finally be classified into three 

groups: no RFI, wideband RFI, and narrowband RFI by the neural network. There is no set 

metrics for defining narrowband and wideband RFI. However, after a first examination of 

a significant number of SMAP footprints, it was chosen to define the narrowband RFI as 

RFI contaminating four or fewer frequency sub-channels and wideband RFI as RFI that 

impacted more than five frequency channels. Example footprints for each class are shown 

in Figure 2.  
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Neural Network Setup.  

 Transfer learning is the process of using an existing neural network for a new 

purpose. Figure 3 shows a general outline of how a network is used in transfer learning. 

The first step consists in loading a pretrained network. Since these pretrained networks use 

images as their input, most of the network layers can keep their weights from their original 

training, since many of those layers are used to identify simple image characteristics such 

as edges, shapes, and color. The final layers of the network focus on classification and need 

to be replaced so that they will be trained for the new situation.  

 

 
Figure 3: The transfer learning process [7]. 

 
 

 
 

 

 
No RFI NarrowBand RFI WideBand RFI 

   
 

Figure 2: Example of SMAP footprints for each class. 
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In this work, transfer learning was chosen to be used as it is fast to setup, can require 

fewer images to train on, and works well for classification. Neural networks are usually 

evaluated on their accuracy, speed, and size, as presented in Figure 4. For this study, two 

neural networks, AlexNet and Resnet-101, are chosen and their performance in terms of 

classification accuracy will be compared. AlexNet has a lower accuracy, but it is faster to 

train. Resnet-101 presents a good compromise between accuracy and training time. Since 

AlexNet has a faster training time, it is easier to first determine the training parameters, 

such as learning rate and number of epochs to train, that are optimal for the training set. 

The parameters optimized for AlexNet serve as a starting point to find ResNet-101 

parameters and will be tweaked to optimize the accuracy of the classification.  

 
Figure 4: Comparison of accuracy and runtime for neural networks [8]. 
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To train and evaluate a neural network, the data is divided into three data sets: one 

for training, one for validation, and one for testing. The training and validation data sets 

are used when the network is trained. A convolutional neural network works by convolving 

a window over an image and using the regions from the window as input to the neural 

network. Neural networks have an input layer, output layer, and hidden layers, as shown 

in Figure 5. Each of the layers has one or more nodes, or neurons, that has a weight 

associated with it [9].  

 

The training data is processed by the network and the network’s weights are 

updated using backpropagation if the footprint is misclassified. After a user-defined 

number of iterations, the validation data is given to the network, and it determines the 

classes for each footprint. In the validation phase, which occurs periodically in the training 

phase, the network weights are not updated, even if the footprints are misclassified. This 

 
Figure 5: An example diagram of a neural network [9]. 
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means that the validation data is never used to train the neural network; it only serves to 

evaluate the performance of the neural network training.  

Once the neural network is trained, it is used on the testing data set to assess its 

performance on unseen data. This step is used to assess the accuracy of the neural network 

to classify unknown data. This helps to determine if the neural network and transfer 

learning can be used to classify SMAP RFI sources. After neural networks are trained and 

their parameters are finely tuned, they are evaluated using a confusion matrix. A confusion 

matrix is an analysis tool used in machine learning to show the number of true positives, 

true negatives, false positives, and false negatives for a neural network. The bottom row 

shows recall and the rightmost column displays precision [10].  

Data preparation. 

The first test was performed to demonstrate the concept of using transfer learning 

to classify the SMAP footprints into the previously defined categories (no RFI, narrowband 

RFI, and wideband RFI). For this initial experiment, a small data set was gathered, and the 

footprints were sorted by hand. Both AlexNet and Resnet-101 were trained and tested on 

this first attempt. A total of 1,012 SMAP footprints were divided into each class: 400 

 

CLASS NUMBER OF FOOTPRINTS 

NO RFI 400 (279 training, 12 validation, 109 testing) 

NARROWBAND 400 (279 training, 12 validation, 109 testing) 

WIDEBAND 312 (218 training, 9 validation, 85 testing) 

Table 1: The number of hand sorted footprints, restricted to have approximately 
the same number in each class. 
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spectrograms were labeled as containing no RFI, 400 spectrograms were labeled as 

containing narrowband RFI, and 312 spectrograms were labeled as containing wideband 

RFI. To prevent the neural network from overtraining on one class, the number of SMAP 

footprints in each class is of the same order of magnitude, as shown in Table 1.  

Results 

Both AlexNet and Resnet-101 were trained using the same parameters, with the 

validation images being tested every 129 iterations during the training phase. The 

confusion matrices of each neural network are shown in Figure 6. They present the 

accuracy of the neural network to classify the footprints of the testing data set (i.e., the 

unknown data).   

 

 
Figure 6: The confusion matrices for the test data using both AlexNet (left) and Resnet-

101 (right). 
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Both networks present an overall high accuracy of 97.7% and 98.3% for AlexNet 

and ResNet-101, respectively. Despite the small number of footprints in each class, these 

seem to confirm our hypothesis that deep learning can be used to classify the footprints 

based on RFI type. However, this initial data set was very limited, due to the hand-sorting 

of the footprints. Therefore, it was necessary to develop an automated way to create a larger 

dataset. Doing so will allow for more examples of each type of RFI to be used in training 

the network, making the neural network more robust.



23 
 

RFI Type Classification Further Testing 

Materials and Methods 

Hand sorting the data produced a limited number of footprints, so a way to automate 

the sorting of footprints was created. In this study, the classification of the spectrograms 

now relies on one of the SMAP RFI algorithms, the cross-frequency algorithm, that looks 

for rapid changes of the brightness temperature across the frequency channels. This 

algorithm flags the frequency channels that contain RFI.  

The classification of the spectrograms is based on the following conditions:  

• If no frequency channels are flagged by the cross frequency algorithms and by 

any other SMAP RFI detection algorithms, then the spectrogram was sorted 

into the no RFI class. 

• If the number of frequency channels flagged by the cross frequency algorithms 

was between one and five (inclusive), the spectrogram was classified as 

containing narrowband RFI. 

• If the number of frequency channels flagged by the cross frequency algorithm 

was greater than 5, then further processing was performed to determine if the 

spectrogram contained wideband RFI, multiple cases of narrowband RFI, or a 

more complicated RFI case. 



24 
 

In the last case, the classification is based on the number of consecutive frequency channels 

flagged by the cross frequency algorithm: 

•  If five or more channels were consecutively flagged, the footprint was labelled as 

containing wideband RFI.  

• If the number of consecutive channels flagged was less than five each time, then it 

was marked as having repeated cases of narrowband RFI sources. 

Figure 7 presents an example of the labelling of three SMAP spectrograms using the 

cross frequency algorithm. These footprints are classified as containing narrowband RFI 

(left), wideband RFI (middle) and two narrowband RFI (right). The initial labelling of the 

footprints is crucial, as the network needs to train on accurate data set in order to avoid 

misclassification. It is important to present all the possible examples of spectrograms 

contaminated by RFI to the neural network so that the training is the most inclusive 

possible. The total number of footprints in each class are shown in Table 2.  

 

 
Figure 7: Example of the labelling of SMAP spectrograms using the cross frequency 

algorithm. The footprint on the left is labelled as containing narrowband RFI, the 
footprint in the middle as containing wideband RFI and the last footprint as containing 
two narrowband RFI. The red rectangle highlights the frequency channels flagged by 

the cross frequency algorithm. 
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Given that AlexNet is faster to train, this part of the study focuses on the training and 

testing of AlexNet on this new generated data set. Two experiments were run. The first one 

was initiated to assess the effect of reducing the number of footprints to be similar between 

classes, which would prevent over-training. The second experiment was performed to test 

the difference between the two narrowband classes (multiple vs one case of narrowband 

RFI).  

  

FOLDER CLASS NUMBER OF 
FREQUENCY 
CHANNELS FLAGGED 

RFI NUMBER OF 
FOOTPRINTS 

No RFI  no RFI 0 0 23,052 

Multiple cases of 
narrowband 

narrowband Greater than 5 assorted 83,547 

One case of 
narrowband 

narrowband Greater than 0, 
Less than or equal to 5 

assorted 385,497 

Wideband wideband Greater than 5 assorted 144,664 

Table 2: The number of automatically sorted footprints. 

 
 

  

 



26 
 

Results 

To demonstrate the importance of distinguishing between the “wideband RFI” class 

and the “multiple narrowband RFI” class when the number of frequency channels flagged 

is greater than five, a simple test was performed. The neural network AlexNet was trained 

on three classes only: no RFI, one narrowband RFI class, and wideband class. The results 

of the testing of the network are presented in Figure 8. In this test, it is observed that 

AlexNet mostly misclassifies wideband RFI as narrowband RFI, as the wideband class has 

a lower recall value than for the other two classes. Even though the number of frequency 

channels flagged by the cross frequency algorithm is greater than 5, this spectrogram 

contains two narrowband RFI sources. This confirms the necessity of dividing this class 

into wideband RFI and multiple narrowband RFI. 

 
Figure 8: The confusion matrix when AlexNet was trained on three classes: no RFI, one 

case of narrowband, and wideband classes. 
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The second experiment aims at assessing the performance of AlexNet when the 

neural network is trained on a restricted number of footprints (20,000) per class. In this 

test, the classes were limited to one instance of narrowband RFI (i.e., the number of 

frequency channels flagged less than 5), wideband RFI, and no RFI. The results of the 

testing of AlexNet on unknown data set for that experiment is presented in Figure 9.  

For this particular experiment, the wideband class’s precision is much lower than 

the other two classes. The confusion matrix shows that many footprints containing one 

narrowband RFI are misclassified as footprints containing wideband RFI. Since the overall 

accuracy of the classification is 10% lower than the previous test, it seems that training the 

neural network on a restricted number of footprints, so that all the classes have 

approximately the same number of footprints, induces more misclassifications. A plausible 

 
Figure 9: The confusion matrix when AlexNet was trained on restricted number of 

footprints for one case of narrowband, no RFI, and wideband classes. 
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explanation for these results is that limiting the number of footprints provided fewer 

training examples for narrowband RFI and wideband RFI, so they were more often 

misclassified as each other.  

The last experiment consisted in training AlexNet on all the possible examples of 

RFI. This means that the narrowband RFI class includes footprints with fewer than five 

frequency channels flagged, as well as footprints containing multiple instances of 

narrowband RFI (which means the number of frequency channels flagged is greater than 

five). The confusion matrix of the testing of AlexNet trained over all the classes is 

presented in Figure 10. It is observed that the neural network misclassifies footprints 

labeled with wideband RFI the most, as the precision and recall is the lowest for the 

wideband class.  

 
Figure 10: The confusion matrices when AlexNet was trained on all narrowband, no 

RFI, and wideband classes. 
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From the results of the different tests performed, it can be concluded that, while the 

neural network is capable of learning the classification, it particularly struggles to classify 

footprints containing wideband RFI. The results also demonstrate that the network trains 

as well when only footprints containing one case of narrowband RFI are included as when 

footprints containing all cases of narrowband are considered. This is confirmed by the 

misclassification error of the footprints containing narrowband RFI being less than 1% in 

both cases.  

Training on an equal number of footprints for each class did not increase the overall 

accuracy of the network. This might be explained by the restricted number of footprints. 

Further testing would need to be performed to confirm this hypothesis. 

Training on all the narrowband footprints, instead of a subset, shifted the 

misclassified footprints from mostly narrowband being misclassified as wideband to a mix 

of narrowband and wideband being misclassified as each other. 

The results from the initial testing were presented at the RFI workshop 2021 [11]. 
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Residual RFI Detection 

Materials and Methods 

Despite the implementation of algorithms for RFI detection and filtering, RFI is 

still frequently noticeable in SMAP data. The second part of this study focuses on 

investigating the use of basic image processing techniques to detect residual RFI in weekly 

max hold maps of SMAP antenna temperature after RFI detection is applied. The goal of 

this study is to understand if image processing algorithms (that could be developed into 

machine learning algorithms) could help identify areas that are impacted by residual RFI. 

Before investigating the use of machine learning algorithms, this initial analysis 

implemented a mean filter to look for significant spatial variations in the max hold maps 

of the filtered antenna temperature. The mean filter is a basic filter used in image processing 

where the value for each pixel is found by averaging its value with its 8 neighbor pixels. 

An example of a mean filter is shown in Figure 11. 

 

 
Figure 11: An example of an n by n mean filter, where n=3. 
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The input to the algorithm is the weekly max hold maps of the antenna temperature 

after RFI detection and filtering were applied. The filter convolves over the global map and 

flags pixels that present a significant difference from its surrounding pixels. These flagged 

pixels will most likely be pixels containing residual RFI. An example of how the filter 

convolves around the input map is shown in Figure 12. 

 

The first step of this work is to mask the ocean and the inland water to avoid 

detecting coastlines or shores, as they present a significant transition between the colder 

antenna temperature acquired over water and the warmer antenna temperature measured 

over land. The mean filter is then applied on the weekly max hold maps of the filtered 

antenna temperature over the 8 years of SMAP mission. For each week, areas impacted by 

 
Figure 12: This shows an example of a (not to scale) filter and how it convolves, first 

moving across the row to the right, then resetting itself on the left edge, one row down. 
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residual RFI are identified. In this study, the impact of the size of the mean filter is assessed, 

as well as the detecting threshold. 

 
Results 

The first analysis explores the effect of the filter size on the detection of residual 

RFI. Figure 13 presents the results of the detection using a mean filter of size 3x3 (Figure 

13b), 11 x 11 (Figure 13c) and 19 x 19 (Figure 13d) and is an example of the original max 

hold map of the filtered antenna temperature over the middle east. On this figure, residual 

RFI can clearly be identified on the Mediterranean coast and in Saudi Arabia. From the 

comparison in Figure 13, it can be observed that smaller filters are more suitable to detect 

smaller patches of residual RFI, whereas using a larger filter helps filtering residual RFI 

covering a larger area.   
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Figure 13: These images show the effect that different filter sizes have on the ability 
of the filter to flag residual RFI. Part a shows the original map before any filtering. 

This results when filter sizes of 3x3, 11x11, and 19x19 are shown in parts b, c, and d, 
respectively. 
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The effect of the threshold of the mean filter on the detection of residual RFI was 

also explored, and the results are shown in Figure 14.  

 

 
Figure 14: The effect that the threshold has on the output. Part a shows the original map 
before any filtering. The results when thresholds of 4, 8, and 12 are shown in parts b, c, 
and d, respectively. 
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When the threshold value is low, as in part b, a lot of non- residual RFI pixels are 

flagged inducing a high false alarm rate. Increasing the threshold to a moderate threshold 

results in lower false alarm rate as less non residual RFI pixels are flagged. A stricter 

threshold, shown in part d, has a very low false alarm rate, but also a higher misdetection 

rate, as some residual RFI remain undetected in this case. The misdetections are because, 

in the case of larger areas impacted by residual RFI, the difference between the mean value 

of the surrounding pixels and the contaminated pixels will not be large enough to be 

identified as residual RFI, which results in a misdetection. 

The initial results for the mean filtering algorithm show that it could accurately 

detect a variety of areas impacted by residual RFI in the max hold maps of the filtered 

antenna temperatures. However, in order to build a robust algorithm to detect all residual 

RFI, different filter sizes and thresholds will have to be considered depending on the 

location of the residual RFI sources and the size of the area impacted. This indicates the 

potential of using a machine learning algorithm that could optimize the size of the filter 

and/or the threshold to improve the detection of residual RFI. 
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Conclusions and Future Recommendations 

This work was divided into two parts. The first one aims at using machine learning 

algorithms to classify RFI sources to provide information about the RFI type. The second 

part of the project focused on detecting residual RFI in the SMAP max hold maps of the 

antenna temperature, after RFI detection is applied, using basic image processing 

techniques.  

Being able to classify the RFI type is important for many reasons. The first is that, 

after the RFI type is detected, we can adapt existing algorithms to better detect and filter 

the RFI. Additionally, knowing where the RFI is occurring on the globe will give us more 

information about the global RFI environment. 

 Our results support both concepts that RFI can be classified using neural networks, 

along with that residual RFI can be detected using mean filtering. Although some classes 

of RFI footprints were still being misclassified, in many of our tests, the neural networks 

had a testing accuracy around 97%.  

One of the biggest limiters to the RFI type classification was the amount of time 

needed to generate and process a large number of the footprints. Another time-related 

limiter was the significant training time of the neural networks. By focusing on limiting 

the training time, we were able to demonstrate that it was successful at a smaller scale. 

More computing power, which would enable us to train the networks more thoroughly, 
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would further improve the results. Having more examples of narrowband and wideband 

footprints, along with training the networks for longer, should decrease the 

misclassification between narrowband and wideband footprints.  

We also demonstrated that mean filtering provides encouraging initial results for 

detecting residual RFI in the max hold maps of the SMAP filtered antenna temperature. 

Because the size of the filter and threshold for filtering vary based on the area impacted by 

the residual RFI, the algorithm should further be developed. A machine learning model 

would be used to train on and adapt the size and threshold of the filter depending on the 

size of the RFI patch to identify areas impacted by residual RFI, since the residual RFI can 

impact areas of different sizes. 
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