

ENABLING EFFICIENT FLEET COMPOSITION SELECTION THROUGH THE

DEVELOPMENT OF A RANK HEURISTIC FOR A BRANCH AND BOUND

METHOD

An Undergraduate Honor Thesis

Presented in Partial Fulfillment of the Requirements for Graduation with Honor

Distinction in Mechanical and Aerospace Engineering

By

Sun Siyuan

The Ohio State University

May 2023

Thesis Committee

Dr. Stephanie Stockar

Committee Member

Dr. Ali Jhemi

Copyrighted by

Sun Siyuan

2023

Abstract

In the foreseeable future, autonomous mobile robots (AMRs) will become a key enabler

for increasing productivity and flexibility in material handling in warehousing facilities,

distribution centers and manufacturing systems.

The objective of this research is to develop and validate parametric models of AMRs,

develop ranking heuristic using a physics-based algorithm within the framework of the

Branch and Bound method, integrate the ranking algorithm into a Fleet Composition

Optimization (FCO) tool, and finally conduct simulations under various scenarios to

verify the suitability and robustness of the developed tool in a factory equipped with

AMRs. Kinematic-based equations are used for computing both energy and time

consumption. Multivariate linear regression, a data-driven method, is used for designing

the ranking heuristic. The results indicate that the unique physical structures and

parameters of each robot are the main factors contributing to differences in energy and

time consumption. improvement on reducing computation time was achieved by

comparing heuristic-based search and non-heuristic-based search. This research is

expected to significantly improve the current nested fleet composition optimization tool

by reducing computation time without sacrificing optimality. From a practical

perspective, greater efficiency in reducing energy and time costs can be achieved.

Acknowledgments

I would like to sincerely appreciate the guidance and support Dr. Stephanie Stockar and

Mithun Goutham provided during my research. Your expertise and mentorship played a

vital role in the success of this project. Mithun's contributions were particularly

noteworthy, as he played an instrumental role in helping me overcome many of the

challenges I faced.

Mithun's extensive coding skills and ability to explain complex concepts in a simple and

easy-to-understand manner were critical to the success of my project. He patiently guided

me through many difficult concepts that I struggled with and provided invaluable

feedback on my work. Without his expertise and dedication, I would not have been able

to achieve the level of success that I did.

Dr. Stephanie Stockar also provided valuable guidance and feedback on my project, and

her knowledge and expertise in the field were instrumental in helping me develop a

strong foundation for my research. Her availability and willingness to assist me

throughout the process were greatly appreciated.

Overall, I am truly grateful for the guidance and support provided by Mithun and Dr.

Stephanie. Their insights and suggestions were invaluable to my research, and their

dedication to helping me succeed was truly appreciated. Thank you both for your

contributions to my project.

Table of Contents

Abstract ... ii

Acknowledgments.. iv

Table of Contents ... vi

List of Tables ... viii

List of Figures .. ix

Chapter 1. Introduction ... 1

1.1 Background ... 1

1.1.1 Implementation of Branch & Bound Method in the Node Sequence Layer 3

1.2 Motivation for a Heuristic ... 5

1.3 Methodology ... 5

1.4 Research Goal ... 6

Chapter 2. Development of Robot Models and Integration with Branch and Bound 7

2.1 Development of Robot Models ... 7

2.1.1 Updating Robot Dynamics Based on Type & Cargo Mass 8

2.1.2 Equations for Computing Energy and Time Cost of Pure Traversal 9

2.1.3 Equations for Computing Energy & Time Cost of Pure Rotation Case 12

2.1.4 AMR Types and Important Parameters for Equation Calculation 17

2.2 Plot of Energy and Time Consumption for All Types of Robots Under Identical

Inputs... 19

2.3 Integration of Energy and Time Consumption Within FCO 24

Chapter 3: Multivariate Regression Implemented with Branch and Bound Method........ 28

3.1: Illustration of Ranking Heuristics and Introduction to Method of Multivariate

Linear Regression (MMLR) ... 28

3.2: Important Parameters Tracking ... 33

3.2.1: State 1: Remaining Cargo Mass Capacity .. 33

3.2.2: State 2: Euclidian Distance between Task Location and Robot’s Route’s Edge.

... 38

3.3: Implementation of Multivariate Regression Method ... 39

Chapter 4: Conclusion... 42

Chapter 5: Future work ... 43

Reference .. 44

Appendix A. Model .. 46

Analytical Hierarchy Process (AHP) Analysis: .. 46

Breadth First Search .. 48

Appendix B. MATLAB Code ... 49

Appendix C. Methods for Computing Euclidean Distance .. 61

List of Tables

Table 1 Types of Robots ... 7
Table 2 Types of Parameters Required for Modeling Energy and Time Consumption ... 18
Table 3 Controlled Variables for Pure Traversal Plotting .. 19

Table 4 Controlled Variables for Pure Rotation Plotting.. 21
Table 5 Comparison of Two Sets of Max Angular Acceleration 22
Table 6 Structure Array “Robots”... 25
Table 7 States Specification for Data-Driven Method .. 30

Table 8 Example data of historic Task 𝑡 costs .. 30

Table 9 Task assignment for A Simple Testing Scenario ... 34
Table 10 Plot of Spatial Movement for Task [1,3,9] and [2,3,4,7,8] 37
Table 11 Sample Euclidean Distance between Each Task Point and Each Edge 39

Table 12 Connotation of each element for the first column of Edge_matrix 63
Table 13 Example of Tabulated results for point-edge distance 68

List of Figures

Figure 1 Structure of the Nested Fleet Composition Optimization and Methods 2
Figure 2 Illustration for Simple Factory Layout ... 3
Figure 3 Branch & Bound Algorithm implemented in the Node Sequence Layer 3

Figure 4 Some of the different drive directions possible with a Mecanum 9
Figure 5 Illustration for a Simplified Trapezoidal Trajectory .. 18
Figure 6 Energy Consumption of All Types of Robots for Pure Traversal Case 20
Figure 7 Time Consumption for All Types of Robots for Pure Traversal Case 21

Figure 8 Energy Consumption of All Types of Robots for Pure Rotating Case. 23
Figure 9 Time Consumption of All Types of Robots for Pure Rotating Case. 23

Figure 10 Time Consumption of All Robots for Pure Rotation Case with Updated

Limitation for Maximum Angular Acceleration ... 24
Figure 11 Illustration of Methods for Storing Energy & Time Cost 26

Figure 12 Schematic of Task Assignment .. 28
Figure 13 Illustration for Using Data from Past Exploration for Ordering Future

Exploration .. 29

Figure 14 Function of Ranking Heuristic ... 30

Figure 15 Example of Time Consumption For MMLR .. 33
Figure 16 Task Visualization for All Feasible Robot ID and Robot Types...................... 35

Figure 17 Visualization for Task [5,10] .. 35
Figure 18 Plot for Spatial Movement and Time Series for Task [5,10] 36
Figure 19 Evolution of Cargo & Volume Capacity for Robot ID 1 38

Figure 20 (a) 12 tasks assigned to the fleet ... 41
Figure 21 (b) 13 tasks assigned to the fleet... 41
Figure 22 Illustration of the Function of TaskList.TaskCoordinates at Task 1 62

Figure 23 Example of matrix “Edge_info” ... 63
Figure 24 Graphical validation of elements ‘placement in Edge_info matrix 64
Figure 25 Cell array: D_cell_min ... 66
Figure 26 Overview of Structure Array Solution ... 67

Figure 27 Overview of Structure Array Solution ... 67
Figure 28 Task & Route for solution.bestAssignment .. 69

Chapter 1. Introduction

1.1 Background

To enable industry 4.0, assembly lines will likely be substituted with AMRs for enhanced

automation and flexibility in material movement [1].The optimal number and type of

robots for carrying out specific tasks depend on the material movement needs and facility

layout. The objective is to minimize fleet energy usage, task completion time, and

purchase cost. Minimizing fleet energy usage, task completion time, and purchase cost is

critical for improving operational efficiency, reducing costs, and maximizing profits. To

prepare for a future factory that utilizes advanced technologies like autonomous robots, a

virtual simulation environment is necessary for testing different fleet compositions,

layout designs, and operating procedures. A nested FCO has been developed at the OSU

Center for Automotive Research (OSUCAR) as part of a Ford Alliance Project and it will

assist with making informed decisions about fleet purchase and implementation while

minimizing costs and risks associated with these decisions The structure of the optimizer

together with the optimization methods is shown in Figure 1.

Figure 1 Structure of the Nested Fleet Composition Optimization and Methods

Given a specific cost function that might include total fleet energy, time required,

investment cost or a combination of the above metrics, the FCO provides the global

optimal solution to the fleet composition problem. However, even for simple factory fleet

composition, see in Figure 2, and small number of requirements, the optimization

problem is large-scale and solving it with an exhaustive search approach is

computationally intractable. For example, with a set of 20 tasks and 5 types of AMRs

available, the computation time required to find the optimal fleet composition will be in

order of weeks.

At the node sequence layer, the optimization determines the order of nodes that the AMR

must visit for minimizing the cost of meeting all pick-up and drop-off locations

requirements. For this combinatorial 𝑁𝑃-hard optimization problem, where NP stands for

nondeterministic polynomial, a Branch & Bound (B&B) algorithm has been

implemented.

Figure 2 Illustration for Simple Factory Layout

1.1.1 Implementation of Branch & Bound Method in the Node Sequence Layer

Figure 3 Branch & Bound Algorithm implemented in the Node Sequence Layer

The principle of a B&B algorithm is that an unexplored discrete search subspace can be

represented by nodes in a dynamically generated search tree, only branching for further

exploration when the candidate node is within upper and lower estimated bounds, thereby

discarding nodes that initiate a branch of sub-optimal solutions [3]. At any instance, the

incumbent solution is the best solution found thus far by the algorithm and is constantly

updated as the algorithm progresses. This serves as the upper bound that eliminates

provably suboptimal branches as the search space is explored.

An illustrative example of B&B for the node sequency optimization problem is shown in

Figure 3. a factory floor positions a to b, and from c to d. The objective of using a branch

and bound method is to solve optimization problems efficiently. To solve this problem,

the B&B algorithm starts from an initial feasible solution, shown on the left-hand side of

Figure 3, which consists in the sequence (a,c,d,b) associated with a cost of 𝐽1 = 227,

where 𝐽 is computed as the sum of fixed cost for working robots and operational cost.

This represents an initial candidate solution sequence and forms the first upper bound that

can be used to discard any sub-optimal nodes. The algorithm then begins exploring the

search space, for example by investigating node b as the second point in the sequence.

However, as shown in Figure 3, the sequence (a,b) results in a cost of 𝐽2 = 220, which is

higher than the previous cost. Since there is no possible solution that would allow to

complete the task of visiting all the points with a lower cost than 𝐽1, this branch is cut and

none of the associated combination are considered further. The process is then repeated

until all the possible combinations are explored. It is therefore clear that, if a near-optimal

initial cost is obtained, the B&B can cut the branches early in the exploration process and

therefore find the global optimal solution faster.

1.2 Motivation for a Heuristic

Using a near-optimal feasible solution as initial cost can reduce the number of

explorations by discarding sub-optimal solution branches earlier than with a randomly

generated initial exploration [4]. To further optimize the sequence optimization layer, a

convex-hull insertion heuristic was implemented to reduce computation time significantly

in some cases [5]. This heuristic builds upon the initial cost by iteratively refining the

sequence until a near-optimal solution is obtained, thus improving overall fleet

composition optimization.

One shortcoming of the existing nested FCO is that an exhaustive search method is used

AMR assignment layer, where responsibilities are assigned to each robot. For improving

the overall computation time of the FCO, the B&B algorithm can be implemented in this

layer. If a near optimal initial guess of the robot to be selected can be provided to the

algorithm, significant computation time improvements compare to a brute-force search

are expected.

1.3 Methodology

This research aims to develop an efficient correlation of robot attributes (such as

maximum speed, maximum payload, and electric driving range) with the objective

function at the AMR Assignment level. To achieve this goal, a data-driven approach

within the framework of Multi Attribute Decision Making (MADM) is proposed.

Analytical Hierarchy Process (AHP) is initially selected and combined with the pair-wise

comparison matrix generated by the Branch & Bound algorithm. The reason for selecting

the approach of AHP is because of its outstanding ability for enabling individuals or

teams to make complex decisions based on multiple criteria and alternatives.[6-10]

However, such method has become outdated since AHP was originally developed for

subjective preferences with expert-assigned priorities and needs, and under the

inspiration of it, an extension of the approach to accommodate a data-driven method was

developed. Specifically, a method of multivariate linear regression is used.

1.4 Research Goal

In this research, equations for modeling energy and time consumptions for five types of

different AMRs will be developed and a ranking heuristic for robot selection based on

historic exploration data will be generated to speed up the branch & bound algorithms.

Chapter 2. Development of Robot Models and Integration with Branch and Bound

In this chapter, the energy usage and nominal vehicle profiles for five different types of

autonomous robot have been developed. These modes are crucial for determining which

tasks will be assigned to which robot in the FCO because this decision is based on the

comparison of energy and time consumption of each combination. The accuracy of the

models is compared against literature data. Finally, the models are integrated in the FCO,

such that the library of available robots for selection by the optimizer is increased.

2.1 Development of Robot Models

This study considers the modeling of five types of robots that the FCO will then be able

to select as part of the optimal composition of the fleet. The five robot types are

summarized in Table 1.

Table 1 Types of Robots

Types Robots

Type 1 Large Differential Drive Autonomous Cart Puller

Type 2 Large Differential Drive Autonomous Forklift

Type 3 Smaller High-Capacity Omnidirectional Drive Mobile Robots

Type 4 Small Lower Capacity Differential Drive Mobile Robots-Large

Type 5 Small Lower Capacity Differential Drive Mobile Robots-Smaller

2.1.1 Updating Robot Dynamics Based on Type & Cargo Mass

The mass of the robot is given by

𝑀𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 𝑀𝑒𝑚𝑝𝑡𝑦 + 𝑀𝑐𝑎𝑟𝑔𝑜 (1)

where 𝑀𝑒𝑚𝑝𝑡𝑦 is the mass of the robot, and 𝑀𝑐𝑎𝑟𝑔𝑜 is the mass of the cargo. Then,

assuming that the robot is a cuboid, the inertia calculated with respect to the center of

gravity is

𝐼𝑐𝑔 =
1

12
⋅ 𝑀𝑑𝑦𝑛𝑎𝑚𝑖𝑐 ∗ (𝐿2 + 𝑊2) (2)

where 𝐿 and 𝑊 are the length and width respectively. Then the moment of inertia is

obtained using the parallel axis theorem [11]:

𝐼𝑜 = 𝐼𝑐𝑔 + 𝑀𝑑𝑦𝑛𝑎𝑚𝑖𝑐 ⋅ 𝑎2 (3)

where 𝑎 is the distance between driven axle and center of gravity.

For a robot with 𝑛𝑑 driven wheels and 𝑛𝑝 passive wheels, let 𝑊 ∈ ℝ𝑛𝑑+𝑛𝑝 be the weight

distribution such that 0 < 𝑊𝑖 < 1 and ∑ 𝑊𝑖
𝑛𝑑+𝑛𝑝

𝑖=1
= 1. If 𝐶𝑟𝑟𝑖

 is the coefficient of rolling

resistance at wheel 𝑖, then the rolling resistance to be overcome is given by:

𝐹𝑟𝑟 = ∑ 𝐶𝑟𝑟𝑖
⋅ 𝑊𝑖 ⋅ 𝑀𝑑𝑦𝑛𝑎𝑚𝑖𝑐 ⋅ 𝑔

𝑛𝑑+𝑛𝑝

𝑖=1

(4)

In case of differential drive robots where turning involves slipping at the driven wheels,

there are additional frictional forces to be overcome, resulting in a moment given by

𝑀𝑓 = 𝑎 ∑𝜇𝑠𝑖
⋅ 𝑊𝑖 ⋅ 𝑀𝑑𝑦𝑛𝑎𝑚𝑖𝑐 ⋅ 𝑔

𝑛𝑑

𝑖=1

 (5)

where 𝜇𝑠𝑖
 is the sliding coefficient at wheel 𝑖.

It is worth noting that this model formulation is valid only for 3 types of all the driving

directions shown in Figure 4 [13], forward, reverse and rotation. Once these parameters

and quantities are found, an energy-based modeling approach is used for calculation.

Figure 4 Some of the different drive directions possible with a Mecanum

drive system.

2.1.2 Equations for Computing Energy and Time Cost of Pure Traversal

In this section, a simple energy-based model of a generic robot is developed for pure

traversal and pure rotational operation, which is consistent with the operation of the five

robot types considered in the optimization. The objective of the model is to evaluate the

energy consumption and travel time taken by each robot to complete a task.

1. Acceleration phase for pure traversal case

Maximum acceleration between acceleration limit and acceleration calculated through

using Newton’s second law of motion, 𝑎 = 𝐹/𝑚, is given by :

𝑎𝑚𝑎𝑥 = max{𝑀𝑎𝑥𝐴𝑐𝑐𝑒𝑙,
2 ⋅

τmax

rwheel
− Frr

𝑀𝑑𝑦𝑛𝑎𝑚𝑖𝑐
} (6)

where τmax stands for maximum torque. Maximum velocity can be obtained by conducting

a similar comparison between the maximum velocity limit and the calculated velocity, and

it’s given by:

𝑣𝑚𝑎𝑥 = max{𝑀𝑎𝑥𝑆𝑝𝑒𝑒𝑑,√2 ⋅ 𝑎𝑚𝑎𝑥 ⋅
𝑑

2
} (7)

By doing so, it can be guaranteed that both calculated velocity and acceleration never

exceed the specified limits. Distance traveled for acceleration portion is related by distance,

velocity, and acceleration, and it’s defined as :

𝑑𝑎 =
𝑣max

2

2 ⋅ 𝑎𝑚𝑎𝑥
2

 (8)

Torque is computed by using the classic torque formula: moment arm multiplies applied

force, is defined as:

𝑎𝑚𝑎𝑥 ⋅ 𝑀𝑑𝑦𝑛𝑎𝑚𝑖𝑐 + 𝐹𝑟𝑟 (9)

𝜏 =
1

2
⋅ 𝑟𝑤ℎ𝑒𝑒𝑙 ⋅ (𝑎𝑚𝑎𝑥 ⋅ 𝑀𝑑𝑦𝑛𝑎𝑚𝑖𝑐 + 𝐹𝑟𝑟) (10)

where the moment arm is defined as the distance between the axis of rotation and the point

where the force is applied, which is half of the wheel radius. The applied force is defined

as the sum of the rolling resistance force and product of maximum acceleration and

dynamic moment.

Energy consumed during acceleration phase is given by:

𝐸 = (𝑎𝑚𝑎𝑥 ∗ 𝑀𝑑𝑦𝑛𝑎𝑚𝑖𝑐 + 𝐹𝑟𝑟) ∗ 𝑑𝑎/0.95 (11)

where “0.95” is a numerical scaling factor, representing efficiency.

2. Deceleration phase for pure traversal case:

In order to find acceleration during deceleration phase, 𝑎𝑚𝑎𝑥 was changed into negative

since in this case, velocity is decreasing which implies a negative acceleration. Torque and

energy consumption during deceleration phase is given by:

𝜏 =
1

2
⋅ 𝑟𝑤ℎ𝑒𝑒𝑙 ⋅ (−𝑎𝑚𝑎𝑥 ⋅ 𝑀𝑑𝑦𝑛𝑎𝑚𝑖𝑐 + 𝐹𝑟𝑟) (12)

𝐸 = (−𝑎𝑚𝑎𝑥 ⋅ 𝑀𝑑𝑦𝑛𝑎𝑚𝑖𝑐 + 𝐹𝑟𝑟) ⋅ 𝑑𝑎 ⋅ 0.95 (13)

where all variables remain the same meaning as above.

Time used during both acceleration and deceleration is given by:

𝑇 = 2 ⋅
𝑣𝑚𝑎𝑥

𝑎𝑚𝑎𝑥
 (14)

where it can be interpreted as two times the time required reach the 𝑣𝑚𝑎𝑥, starting from rest

and accelerating at a constant rate 𝑎𝑚𝑎𝑥, and then coming to a stop again by decelerating

at the same constant rate.

3. Coasting phase for pure traversal case:

Distance traveled during coasting phase (𝑑𝑐) is defined as :

𝑑𝑐 = 𝑑 − 2 ⋅ 𝑑𝑎 (15)

Where d is total distance, and 𝑑𝑎 is the distance traveled during both acceleration and

deceleration phase.

Torque during coasting phase is defined as:

𝜏 =
1

2
⋅ 𝑟𝑤ℎ𝑒𝑒𝑙 ⋅ 𝐹𝑟𝑟 (16)

Where differs slightly from its counterparts in non-coasting phase and this is directly

resulted from the fact that acceleration (deceleration) is zero here, and the applied force in

this case will just be rolling resistance force (𝐹𝑟𝑟) alone.

Energy consumed during coasting phase is defined as :

𝐸 = 𝐹𝑟𝑟 ⋅ 𝑑𝑐 ⋅ 0.95 (17)

Time taken during coasting phase is defined as:

𝑇 =
𝑑𝑐

𝑣𝑚𝑎𝑥
 (18)

2.1.3 Equations for Computing Energy & Time Cost of Pure Rotation Case

The rotational force is being defined as:

𝐹𝑤 =
𝜏𝑚𝑎𝑥

𝑟𝑤ℎ𝑒𝑒𝑙𝑠
 (19)

where it equals to the ratio between maximum torque (𝜏𝑚𝑎𝑥) and wheel radius (𝑟𝑤ℎ𝑒𝑒𝑙𝑠),

with maximum torque is given as one of robot’s parameters.

Rotating moment is given by:

𝑀𝑟 = 𝐹𝑤 ⋅ 𝑡𝑤 (20)

where 𝑡𝑤 trackwidth.

Then, the maximum acceleration is given by:

𝛼𝑚𝑎𝑥 = min{𝑀𝑎𝑥𝐴𝑙𝑝ℎ𝑎, (𝑀𝑟 − 𝑀𝑓)/𝐼𝑜} (21)

where a similar comparison conducted for pure traversal case is adopted here. From here,

the minimal value between maximum angular acceleration (MaxAlpha) and acceleration

calculated using classic formula, where 𝑀𝑟 , 𝑀𝑓 , 𝑎𝑛𝑑 𝐼𝑜 stands for rotational moment,

frictional moment, and moment of inertia, respectively.

Maximum angular velocity is given by:

𝜔𝑚𝑎𝑥 = min{𝑀𝑎𝑥𝑂𝑚𝑒𝑔𝑎, √2 ⋅ 𝛼𝑚𝑎𝑥 ⋅
𝜃

2
} (22)

where it’s obtained by the same fashion as 𝛼𝑚𝑎𝑥.

Theta rotated during the acceleration process is given by:

𝜃𝑎 =
𝜔𝑚𝑎𝑥

2

2 ⋅ 𝛼𝑚𝑎𝑥

(23)

Distance traveled during the acceleration process is given by:

𝑑𝑎 = 𝜃𝑎 ⋅
𝑡𝑤

2
(24)

1. Acceleration phase for pure rotational case:

Rotational moment (𝑀𝑟) is defined as:

𝑀𝑟 = 𝛼𝑚𝑎𝑥 ⋅ 𝐼𝑜 + 𝑀𝑓 (25)

where it’s equivalent to the sum of moment of inertia (𝐼𝑜) and the product of maximum

angular acceleration (𝛼𝑚𝑎𝑥).

Rotational force (𝐹𝑤) is given by:

𝐹𝑤 =
𝑀𝑟

𝑡𝑤
 (26)

where the rotational moment calculated earlier here will be used to divide by trackwidth.

Energy consumption during the acceleration phase is defined as:

𝐸 = 2 ⋅ 𝐹𝑤 ⋅
𝑑𝑎

0.95
 (27)

where 𝑑𝑎 stands for distance traveled for accelerating process, and 0.95 is the same scaling

efficiency stated earlier.

2. Deceleration phase for pure rotational case:

Equation (30-32) covers calculation of energy cost during deceleration process by simply

changing the maximum angular acceleration into negative and repeating the same process

above.

From here, the rotational moment during deceleration phase is given by:

𝑀𝑟 = −𝛼𝑚𝑎𝑥 ⋅ 𝐼𝑜 + 𝑀𝑓 (28)

Rotational force (𝐹𝑤) during deceleration phase is given by:

𝐹𝑤 =
𝑀𝑟

𝑡𝑤
 (29)

Energy consumption during deceleration phase is given by:

𝐸 = 2 ⋅ 𝐹𝑤 ⋅
𝑑𝑎

0.95
(30)

Time used during non-coasting (including both acceleration and deceleration) process is

given by:

𝑇 = 2 ⋅
𝜔𝑚𝑎𝑥

𝛼𝑚𝑎𝑥

(31)

where it’s similar to the procedure employed in the pure traversal case, the computation of

time consumption during non-coasting phase involves multiplication of two by the ratio

between maximum angular velocity (𝜔𝑚𝑎𝑥) and maximum angular acceleration (𝛼𝑚𝑎𝑥).

3. Coasting phase for pure rotational case:

During the coasting phase, the amount of angle rotated (𝜃𝐶) is obtained by subtracting the

total rotated angle from the amount of angle traveled for both acceleration and deceleration

(𝜃𝑎), thus necessitating the numerical scaling factor of two. This is clearly depicted in

Equation (26), whereby the distance traveled for turning angles during the coasting process

can be determined through a similar process. The equations used to calculate crucial

parameters, such as 𝑀𝑟 , 𝐹𝑤 𝑎𝑛𝑑 𝐸, are analogous to those utilized for both the acceleration

and deceleration phase, except for the moment created by rotational force (𝑀𝑟), which is

equated to the moment generated by frictional force (𝑀𝑓). In terms of time consumption,

positive angle values are employed to divide the positive maximum angular velocity.

Angle rotated (𝜃𝐶) is obtained by:

𝜃𝐶 = 𝜃 − 2 ⋅ 𝜃𝑎 (32)

where 𝜃 is total rotated angle and 𝜃𝑎 is the amount of angle traveled for both acceleration

and deceleration.

The distance traveled for turning angles during the coasting process, 𝑑𝑐, is given by:

𝑑𝑐 = 𝜃𝐶 ⋅
𝑡𝑤

2
 (33)

Rotational moment during coasting phase is given by:

𝑀𝑟 = 𝑀𝑓 (34)

Rotational force is defined as:

𝐹𝑤 =
𝑀𝑟

𝑡𝑤
 (35)

Energy consumed during coasting phase is given by:

𝐸 = 2 ⋅ 𝐹𝑤 ⋅
𝑑𝑐

0.95
 (36)

where 0.95 is the same scaling factor listed above.

Time used during the coasting phase is defined as:

𝑇(𝜃 > 0) =
𝜃𝑐(𝜃𝑐 > 0)

𝜔𝑚𝑎𝑥(𝜃𝑐 > 0)
(37)

where only positive angle values are employed to divide the positive maximum angular

velocity.

Recall at the end of part 1, “Updating Robot Dynamics Based on Type & Cargo Mass”,

differences between omnidirectional robots and non-omnidirectional robots for

computing two major parameters have been listed for comparison. Additionally, it is also

equally important to note that such differences will further affect the calculation for both

frictional force (𝐹𝐿), moment caused by front wheel sliding (𝑀𝑓) , and eventually for

energy consumption and time usage.

I also noticed that approximated energy consumption will become zero during coasting

phase, as rotation moment (𝑀𝑟) become zero as a result of 𝑀𝑓 being zero, and this will

lead rotational force (𝐹𝑤) become zero.

Energy consumed by omnidirectional robot during coasting phase is given by:

𝐸𝑜𝑚𝑛𝑖𝑐𝑜𝑎𝑠𝑡𝑖𝑛𝑔 = 2 ⋅ 𝐹𝑤 ⋅
𝑑𝑐

0.95
 (38)

where it is evident that the energy cost can be approximated as zero due to rotational force

is zero.

2.1.4 AMR Types and Important Parameters for Equation Calculation

Fundamentals of kinematics has been used extensively for developing the equations to

describe both energy usage and time take by a robot to traverse a segment of the

manufacturing plant [11]. This was accomplished by postulating that the AMR speed

follows a prescribed trapezoidal trajectory, as the one shown in Figure 5[13]. The speed

trajectory is composed by three segments, namely the acceleration phase, the cruise phase

and the deceleration phase, and this provides several advantages when modeling energy

consumption for vehicles.

First, it offers a more accurate representation of real-world driving conditions, resulting in

a more precise model of energy consumption. Second, analyzing energy consumption

across different velocity situations can optimize energy use and identify inefficiencies.

Third, customizing the model for different vehicle types and driving conditions can

improve its accuracy and usefulness. Overall, this approach provides a more realistic and

effective means of identifying opportunities for reducing energy use and improving

efficiency in vehicles.

Figure 5 Illustration for a Simplified Trapezoidal Trajectory

Each of the robot parameters defined in Table 3 were provided by the Ford Motor

Company for the 5 different types of robots. Based on these parameters, the developed

robot models provide the energy and time for each type of robot.

Table 2 Types of Parameters Required for Modeling Energy and Time

Consumption

Parameters:

Physical Constant Robot Length [m] Robot Width [m] Robot Height [m]

 Track Width [m] Distance between

rear axle and the

center of gravity

[m]

Distance between

front axle and the

center of gravity [m]

Mass & Volume Empty Mass [Kg] Mass Limit [Kg] Volume Limit [m^3]

Wheel Number of Driven

Wheels

Number of Passive

Wheels

Wheel Radius

 Rolling Resistance Sliding Friction Weight Distribution

Dynamic Limitation Maximum Speed

[m/s]

Maximum

Acceleration

[m/s^2]

Max Angular

Velocity

[rad/s]

 Maximum Angular

Acceleration

[rad/s^2]

Motor and Battery Reduction Ratio Max Torque [Nm] Battery Size

 Battery Capacity

[kWh]

Motor Efficiency

To conveniently store the parameters in TABLE REF and use them in the FCO, a structure

is created in MATLAB.

2.2 Plot of Energy and Time Consumption for All Types of Robots Under

Identical Inputs

The energy consumption and time utilization models for each robot are simulated under

both pure traversal and pure rotational case. The parameters used in the simulation for a

pure traversal case, across the five robots, are summarized in Table 3.f

Table 3 Controlled Variables for Pure Traversal Plotting

𝜃 = 0 [𝑑𝑒𝑔], 𝑎𝑠 ℎ𝑒𝑟𝑒 𝑖𝑡 𝑖𝑠 𝑎𝑠𝑠𝑢𝑚𝑒𝑑 𝑛𝑜 𝑎𝑛𝑔𝑙𝑒 ℎ𝑎𝑠 𝑏𝑒𝑒𝑛 𝑡𝑢𝑟𝑛𝑒𝑑

𝑐𝑎𝑟𝑔𝑜 𝑚𝑎𝑠𝑠 = 20 [𝑘𝑔], 𝑤𝑖𝑡ℎ 𝑎 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 𝑜𝑓 0.8 𝑘𝑔.

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 10 [𝑚], 𝑤𝑖𝑡ℎ 𝑎 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 𝑜𝑓 0.5 𝑚.

Figure 6 Energy Consumption of All Types of Robots for Pure Traversal Case shows the

energy utilization for each of the five considered AMRS when conducting the same

maneuver for different cargo mass and travelled distance. Similarly, Figure 7 shows the

corresponding time required by the robot to complete the same task. Intuitively, as the

distance between two points increases, or the weight being carried increased, both energy

and time increase. Due to the physical limitations of each robot, some have similar

characteristic surfaces in both energy and time. For example, the forklift and the puller

have the same time profile due to the limitation in the acceleration. Similarly, both

differential drive robots also have overlapping surfaces. Moreover, there is an intersection

of characteristic surfaces for the fork lifter and omnidirectional robot. Specifically, the

omnidirectional robot has a higher energy demand than the fork lifter when the travel

distance is small. The opposite trend is observed, however, when the distance between two

points increases. This is due to the trapezoidal speed trajectory considered. From Figure 6,

it is observed that the omnidirectional robot is always slower than any of the other AMRs.

This is due to the lower torque to mass ratio, which impacts the acceleration ability of the

system.

Figure 6 Energy Consumption of All Types of Robots for Pure Traversal Case

Figure 7 Time Consumption for All Types of Robots for Pure Traversal Case

The parameters used in the simulation for a pure traversal case, across the five robots, are

summarized in Table 4

Table 4 Controlled Variables for Pure Rotation Plotting

𝜃 = 45 [𝑑𝑒𝑔]

𝑐𝑎𝑟𝑔𝑜 𝑚𝑎𝑠𝑠 = 20 [𝑘𝑔], 𝑤𝑖𝑡ℎ 𝑎 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 𝑜𝑓 0.8 𝑘𝑔.

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 0 [𝑚], 𝑎𝑠 ℎ𝑒𝑟𝑒 𝑖𝑡 𝑖𝑠 𝑎𝑠𝑠𝑢𝑚𝑒𝑑 𝑛𝑜 𝑎𝑛𝑔𝑙𝑒 ℎ𝑎𝑠 𝑏𝑒𝑒𝑛 𝑡𝑢𝑟𝑛𝑒𝑑

Figure 8 shows the energy utilization for each of the five considered AMRS when

conducting the same maneuver for different cargo mass and travelled distance. Similarly,

Figure 9 shows the corresponding time required by the robot to complete the same task.

It was also observed that as the distance between two points increased or the weight being

carried increased, both energy and time requirements for the task also increased. However,

due to the specific physical limitations of each robot, certain entities exhibited similar

performance characteristics in terms of both energy consumption and time. For example,

all AMRs except omnidirectional robot share the same time profile due to the limitation in

the acceleration. However, no intersection of characteristic surfaces has been spotted for

either of the two types of robots. Particularly, the fork lifter robot has the highest energy

demand and omnidirectional robot has the highest demand for time usage.

Another intriguing observation that has been made for Figure 9 is that only two surfaces

exist. Yet this again could be explained by the fact that all non-omnidirectional robots’

maximum angular acceleration has been set to the same.

Table 5 below indicates the original value and revised value for 𝛼𝑚𝑎𝑥, with revised values

are arbitrarily assigned and the sole purpose is to illustrate the overlapping will disappear

once different values for maximum accelerations are being used.

Table 5 Comparison of Two Sets of Max Angular Acceleration

 Old 𝛼𝑚𝑎𝑥 (rad/s^2) New 𝛼𝑚𝑎𝑥(rad/s^2)

Puller 10 6.5

Forklift 10 7.5

Smaller Low-Capacity DDR 10 8.5

Larger Low-Capacity DDR 10 9.5

Figure 8 Energy Consumption of All Types of Robots for Pure Rotating Case.

Figure 9 Time Consumption of All Types of Robots for Pure Rotating Case.

Figure 10 Time Consumption of All Robots for Pure Rotation Case with Updated

Limitation for Maximum Angular Acceleration

Through plotting, the issue of surfaces overlapping is indeed addressed, and from Figure

10, Smaller Low-Capacity DDR is proved to be least time-consumptive, and

omnidirectional robot still dominates the position for being most time-consumptive type of

robot. The same explanation used for the surface overlapping observed in the case of pure

traversal case still could be employed here.

2.3 Integration of Energy and Time Consumption Within FCO

This section will be used for showing the adopted method for having previously analyzed

kinematic based equations integrated into the currently existing FCO.

At this stage, energy and time costs for carrying out a specific task by each robot can be

computed, given the constrained conditions and parameters. However, a convenient

method to store all the calculated energy and time costs becomes crucial.

To achieve this, a structure array “Robotics” is created, which has multiple fields, see

Table 6listed as below:

Table 6 Structure Array “Robots”

Name Field(s) Subfield

Robots mass Limit

 volume Limit

 battery Limit

 charge Power

 Kerb Weight

 cost Matrix Energy Cost Matrix

Time Cost Matrix

From here, six fields are being included, and energy & time cost are being stored in the

form of matrix, secured as two subfields within the field “cost matrix”. A graphical

illustration explaining how energy and time consumption being stored are listed below,

see in Figure 11 Illustration of Methods for Storing Energy & Time Cost.

Figure 11 Illustration of Methods for Storing Energy & Time Cost

From Figure 11, as denoted on the graph itself, both energy and time cost are being stored

as a 3-dimensional array, also commonly known as “3D matrix” for every AMR type.

For 𝑛 tasks, all possible payloads are first obtained by (
𝑛
𝑘
) for 𝑘∈{1,2…𝑛}, and this

yields the mass vector = [𝑚1 𝑚2 𝑚3 ……𝑚𝑝] , with p representing a user defined vector

length, that represents all realizations of payload.

In the present study, a cost analysis of AMR fleet composition optimization was

conducted, with a particular focus on the energy and time requirements of transporting

mass K from node i to node j by each specific AMR type. To achieve this, a 3-

dimensional array was utilized, with each value representing the cost associated with a

given layer and specific AMR type. The lookup table was restricted to include only

stations, charge stations, and task locations, as all possible realizations of payload were

considered, and no interpolation was necessary. This pre-computation significantly

reduced computation time. As the present study was entirely code analysis-based, a

simplified and visually comprehensible methodology was employed to integrate the

energy and time cost analyses into the FCO. By doing so, the logical flow of the process

was reinforced, and the results were made more accessible. To achieve this purpose, a

simplified pseudocode written in MATLAB has been provided for comprehension, see in

Appendix B: Section 2.3.

Chapter 3: Multivariate Regression Implemented with Branch and Bound Method

This chapter introduces the multivariate linear regression method and its implementation

within the Task Assignment B&B algorithm.

3.1: Illustration of Ranking Heuristics and Introduction to Method of

Multivariate Linear Regression (MMLR)

Consider the following schematic of the task assignment tree in Figure 12, where the

highlighted branch signifies the decision for having both tasks 𝑇1 and 𝑇2 assigned to

robot 𝑟2 and task 𝑇3 to robot 𝑟3.

Figure 12 Schematic of Task Assignment

The implemented branching order uses the 'Breadth First' approach, which evaluates the

costs of children nodes first and then branches to them in a cheapest-first order. This has

a significant effect on how the incumbent solution is updated and is limited by being able

to only access information about costs of robot assignment at that branching decision, as

opposed to using information about the historic performance of the robot for all the

remaining tasks.

For the highlighted branching decision of Figure 12, where task 𝑇3 is to be assigned to

robot 𝑟1, 𝑟2 or 𝑟3, costs associated with branching selections exist in the highlighted red

box of Figure 13. By utilizing this information, it is expected that a more sophisticated

data-driven branching order can be developed, instead of a breadth-first approach.

Implementing such an approach is expected to lead to greater efficiency, especially when

the number of robots and tasks increases.

Figure 13 Illustration for Using Data from Past Exploration for Ordering Future

Exploration

The objective of the heuristic is to rank the available robots 𝑟1, 𝑟2, 𝑟3 for priority in

exploration when being assigned task T. For instance, Figure 14 illustrates a worthy

question, such that which robot should be assigned to task 2 after having task 1 assigned

to robot 2. Should we explore robot 3 for the first one?

Figure 14 Function of Ranking Heuristic

Table 7 States Specification for Data-Driven Method

State 1: Remaining cargo mass capacity after finishing previous exploration.

State 2: Total Euclidean distance between robot’s route and remaining task positions

At every branching instance, the fleet state includes details of each robot’s minimum

remaining cargo capacity and Euclidean distance (between each task and all route’s

edges) at the end. As an example of the previous explorations, Table 8 shows the state of

robots 𝒓𝟏, 𝒓𝟐 and 𝒓𝟑 and the resulting leaf node cost of branching to those robots. The

decision to branch out into one of the available robots is highlighted. By using this

information that relates the states of the robots with the costs associated with assigning

the task 𝑇 to a robot, a data-driven approach can be used to predict the costs of each type

of robot when a new fleet state is encountered.

Table 8 Example data of historic Task 𝑡 costs

 𝑟1

State 1

(kg)

𝑟1

State 2

(m)

𝑟2

State 1

(kg)

𝑟2

State 2

(m)

𝑟3

State 1

(kg)

𝑟3

State 2

(m)

Task

𝑇
Robot

Cost at

Leaf

Node

(kJ)

Exploration

25

13.2 246 2.4 68 3.7 141 𝑟1

3243

Exploration

26

13.2 246 2.4 68 3.7 141 𝑟2

1724

Exploration

27

13.2 246 2.4 68 3.7 141 𝑟3

2425

Exploration

28

12.7 252 2.7 48 3.2 203 𝑟1

3453

Since the ranking heuristic must be implemented within a large-scale optimization

problem that requires significant computational resources, an additional objective is that

the data-driven approach must be computationally efficient. The overhead associated

with ranking the robots must be a negligible computational expense that can be used

every time a branching of robots is to be ordered. For this reason, predicting the cost of

the branching decision using a neural network is ruled out. A multi-variate linear

regression approach is selected for computational efficiency as detailed below.

Consider the case where there are 𝑟𝑝 robots in the fleet and as explorations are being

conducted in the task assignment search space, the states as defined in Table 8 are tracked

for each robot at some task level 𝑡. If 𝑛 branching instances were conducted in the past

and a total of 𝑚 fleet states were tracked at each exploration, then the ordered states of

the fleet form the 𝑋 ∈ ℝ𝑛×𝑚 matrix.

𝑋 = [

𝑥11 𝑥12 … 𝑥1𝑚

𝑥21 𝑥22 … 𝑥2𝑚

⋮ ⋮ ⋱ ⋮
𝑥𝑛1 𝑥𝑛2 … 𝑥𝑛𝑚

] (39)

Similarly, let the matrix 𝐽𝑡 capture the cost at the leaf node for assigning each robot type

at each exploration.

𝐽𝑡 =

[

𝐽1𝑟1 𝐽1𝑟2 … 𝐽1𝑟𝑝

𝐽2𝑟1 𝐽2𝑟2 … 𝐽2𝑟𝑝

⋮ ⋮ ⋱ ⋮
𝐽𝑛𝑟1 𝐽𝑛𝑟2 … 𝐽𝑛𝑟𝑝]

 (40)

The objective of multivariate regression is to find a matrix 𝑊𝑡 that best approximates the

relation between the fleet state and the cost of assigning a robot, i.e, 𝑋𝑊𝑡 approximates

𝐽𝑡. This is achieved by finding 𝑊𝑡 that minimizing the difference between 𝑋𝑊𝑡 and 𝐽𝑡,

defined as

𝑔(𝑊) = [

𝑥11 𝑥12 … 𝑥1𝑚

𝑥21 𝑥22 … 𝑥2𝑚

⋮ ⋮ ⋱ ⋮
𝑥𝑛1 𝑥𝑛2 … 𝑥𝑛𝑚

]

[

𝑤1𝑟1 𝑤1𝑟2 … 𝑤1𝑟𝑝

𝑤2𝑟1 𝑤2𝑟2 … 𝑤2𝑟𝑝

⋮ ⋮ ⋱ ⋮
𝑤𝑚𝑟1 𝑤𝑚𝑟2 … 𝑤𝑚𝑟𝑝]

−

[

𝐽1𝑟1 𝐽1𝑟2 … 𝐽1𝑟𝑝

𝐽2𝑟1 𝐽2𝑟2 … 𝐽2𝑟𝑝

⋮ ⋮ ⋱ ⋮
𝐽𝑛𝑟1 𝐽𝑛𝑟2 … 𝐽𝑛𝑟𝑝]

 (41)

This can be achieved by minimizing 𝑔(𝑊) or ||𝑔(𝑊)||
2
by choosing 𝑊𝑡 appropriately.

By differentiating ||𝑔(𝑊)||
2
with respect to 𝑊, the best fitting matrix 𝑊�̂� is found:

𝑊�̂� = 𝑎𝑟𝑔𝑚𝑖𝑛‖𝑔(𝑊𝑡)‖
2 = (𝑋𝑇𝑋)−1𝑋𝑇𝐽𝑡 (42)

Thus, for a new fleet state �̅�, the cost for assigning available robots to task 𝑡 can be

efficiently approximated as 𝐽�̅� = �̅�𝑊�̂�. While the obtained costs may not be accurate, it is

expected that the ranking of the robots for the task can be selected based on the

approximated costs.

The approach is also confirmed to be computationally efficient as illustrated in Figure 15,

where, for randomly generated matrices 𝐽𝑡 and 𝑋 matrices, the computation time to find

matrix 𝑊𝑡 is shown to be negligible. To limit memory demand, only the last 20

explorations are stored for each task.

Figure 15 Example of Time Consumption For MMLR

3.2: Important Parameters Tracking

Section 3.1 introduces the construction of the X matrix, involves the use of two states, as

indicated in Table 7. This section will delineate the process of acquiring states 1 and 2, as

well as elucidate the significance of both states.

3.2.1: State 1: Remaining Cargo Mass Capacity

Graphical illustrations pertinent towards the evolution of remaining cargo capacity and

volume capacity have been achieved. Specific tasks have been assigned to individual

robots based on previous analyses of their energy and time consumption.

 An example of testing scenario with detailed task assignments is listed in Table 9.

Table 9 Task assignment for A Simple Testing Scenario

Types of Best

Assignments

Robot Type Assigned Task

1 Large Differential Drive Autonomous Cart

Puller (Type 1)

[5,10]

2 Large Differential Drive Autonomous Cart

Puller

(Type 1)

[1,3,9]

7 Small Lower Capacity Differential Drive

Mobile Robots-Large

(Type 4)

[2,4,6,7,8]

Note here number under the column of “Assigned Task” represents their order from a

calculated list of tasks by using given information.

Figure 16 shows a detailed illustration for each of the ten tasks on a map, with each task

being represented by an arrow. For each arrow, its head’s coordinate stands for the

location where cargo being dropped off and its tail’s coordinate stands for the location

where cargo being picked up.

 On Figure 16’s right part, for example, row 1 stands for in order to complete task 1, the

robot has to pick up a 180 kg cargo and drop off within the indicated time range (37min-

43min in this case.) This provided a direct visualization of time consumption at each

stage for assigned robots to finish tasks.

Figure 16 Task Visualization for All Feasible Robot ID and Robot Types

Here the first case, task [5,10] will be used for simple illustration. Figure 17should be

interpreted in the same manner as Figure 16, except being highlighted in yellow.

Figure 17 Visualization for Task [5,10]

The left-hand side of Figure 18 is the plot of robots’ spatial movement, and it depicts the

route traveled by an assigned robot, where directions are marked by tiny arrows. From

there, it can be concluded that in order to finish task [5,10], the robot would have to

follow a certain visiting sequence:

1. pickup point of task 10 (tail of arrow 10)

2. pickup point of task 5 (tail of arrow 5)

3. drop-off point of task 10 (head of arrow 10)

4. drop-off point of task 5 (tail of arrow 5)

Figure 18 Plot for Spatial Movement and Time Series for Task [5,10]

Such a sequence is validated by the time plot on the right-hand side, where cross

represents pick up and “O” represents drop off. indicates the situation of the second case,

which a similar layout is shown below.

In Table 10, spatial plot for the task case [1,3,9] and [2,3,4,7,8] is shown, and from here,

it’s evident that the complexity of traveled route increased as the number of tasks

increased.

Table 10 Plot of Spatial Movement for Task [1,3,9] and [2,3,4,7,8]

Spatial Movement

for Task [1,3,9]

Spatial Movement

for Task [2,3,4,7,8]

Back to case of task [5,10], plots of the evolution of remaining cargo capacity and

volume capacity be helpful for introducing a visual understanding of shear amount of

available capacity, and volume capacity. Such plots were generated through storing each

robot’s distinctive mass limits and volume limits and had it subtracted by originally

defined mass and volume from task list.

The remaining cargo capacity and volume capacity for carrying out assigned tasks [5,10]

is shown in Figure 19, and both volume and cargo capacity have been stored to their

original value, and such a phenomenon is reasonably explained by the fact that all cargo

have been dropped off at drop-off locations. Recall in section 3.1, only remaining cargo

mass capacity after finishing previous exploration will be used for constructing the X

matrix, and volume capacity evolution is plotted for visualization only.

Figure 19 Evolution of Cargo & Volume Capacity for Robot ID 1

3.2.2: State 2: Euclidian Distance between Task Location and Robot’s

Route’s Edge.

Another required information for using the multivariate linear regression method is the

shortest distance between each assigned task and all edges of its corresponding task’s

route, also known as the Euclidean distance.

In section 3.2.2, a method for computing the shortest Euclidean distance [14] between the

location of a task (pick up or drop off) and edge of route traveled by robots is presented.

A detailed solving procedure is included in Appendix.C. Through running this procedure

under the same tasks [5,10] and route traveled for task [5,10], Table 11 was obtained.

From Table 11, state 2 can be computed as sum of shortest distance between robot’s

traveled route and all remaining task locations. In Table 11, all remaining tasks points are

highlighted in light blue, and task [5,10] are highlighted in light red.

Table 11 Sample Euclidean Distance between Each Task Point and Each Edge

The shortest distance between point 1 and all edges is 284.5, with edge index is 3

The shortest distance between point 2 and all edges is 336.5501, with edge index is 3

The shortest distance between point 3 and all edges is 134, with edge index is 3

The shortest distance between point 4 and all edges is 215.1447, with edge index is 12

The shortest distance between point 5 and all edges is 0, with edge index is 1

The shortest distance between point 6 and all edges is 234.0908, with edge index is 17

The shortest distance between point 7 and all edges is 0, with edge index is 1

The shortest distance between point 8 and all edges is 38.0088, with edge index is 13

The shortest distance between point 9 and all edges is 0, with edge index is 6

The shortest distance between point 10 and all edges is 0, with edge index is 13

The shortest distance between point 11 and all edges is 0, with edge index is 10

The shortest distance between point 12 and all edges is 216.9038, with edge index is 3

The shortest distance between point 13 and all edges is 253, with edge index is 10

The shortest distance between point 14 and all edges is 0, with edge index is 14

The shortest distance between point 15 and all edges is 284.5, with edge index is 3

The shortest distance between point 16 and all edges is 92.5, with edge index is 5

The shortest distance between point 17 and all edges is 134, with edge index is 3

The shortest distance between point 18 and all edges is 262.8636, with edge index is 3

The shortest distance between point 19 and all edges is 0, with edge index is 1

The shortest distance between point 20 and all edges is 0, with edge index is 8

3.3: Implementation of Multivariate Regression Method

At each branching instance, for each robot in the fleet, the remaining cargo capacity after

having completed the previously assigned tasks and the total Euclidean distance to the

remaining pickup and delivery locations is found. These form the states of the fleet at the

branching instance. From each branch where a robot has been assigned the task, after the

B&B algorithm progresses until the leaf nodes, the costs that are found are then saved as

the result of that task assignment. The fleet state and the costs are saved as the

explorations proceed and after sufficient data has been collected, multivariate regression

can be used to compute the approximate costs for future exploration. The obtained costs

are used to order the robots for exploration, forming the ranking heuristic.

A computational experiment is created in which a fleet of 5 robots were assigned varying

number of tasks to be completed. The previously implemented B&B algorithm that used

a breadth first search is compared with the proposed method that uses the ranking

heuristic.

The evolution of the best-found solutions are shown in Figure 20 and Figure 21for 12 and

13 number of tasks to be completed. The red dotted line corresponds to the case where

the multivariate linear regression method was employed, and the blue line represents the

scenario where the breadth first search was used. It is clear that by utilizing the previous

information about costs obtained from the branching decision, it is possible to find better

solutions quicker than with the breadth first search method.

Figure 20 (a) 12 tasks assigned to the fleet

Figure 21 (b) 13 tasks assigned to the fleet

Chapter 4: Conclusion

As part of this research, 5 different robot models were developed to capture the energy

and time consumption of different types of autonomous mobile robots for both traversal

and pivoting movements. The energy and time provided by these models were included

in a large-scale optimization problem with the objective of minimizing energy costs when

the fleet of robots completes assigned tasks.

This optimization problem was previously solved using a breadth-first search within a

Branch & Bound algorithm that ordered the exploration of tasks using a cheapest-first

approach. A data-driven ranking heuristic was developed that uses leaf-node costs from

previous explorations to approximate the solution cost when assigning a task to a robot.

After successful implementation to order task exploration, computational experiments

showed that the developed data-driven approach was able to find better solutions to the

problem quicker than the cheapest-first approach.

Chapter 5: Future work

The fleet composition optimizer tackles a large-scale optimization problem, which has

been developed for a high-performance computing environment to achieve fast

computation results. By utilizing multiple processing cores, the algorithm runs much

faster, enhancing the efficiency of the optimization process. Although the developed

ranking heuristic has been implemented successfully in a single-core version, adapting it

to the parallel processing framework requires some adjustments in the architecture.

Specifically, it is necessary to ensure that the information obtained from each processing

core can be accessed and utilized by every processor. This adjustment ensures the

availability of cost data for the multivariate regression method to maximize the benefits

of this approach across processors. This is expected to provide significant benefits in

terms of time and cost savings, and overall computational effectiveness.

 Reference

[1] Fragapane, Giuseppe, et al. "Increasing flexibility and productivity in Industry 4.0

production networks with autonomous mobile robots and smart intralogistics." Annals of

operations research (2020): 1-19.

[2] Goutham, M., Boyle, S., Menon, M., Mohan, S., Garrow, S., Stockar, S. “Path

Planning through a Waypoint Sequence" IEEE Robotics and Automation Letters.

[3] Clausen, Jens. "Branch and bound algorithms-principles and examples." Department

of Computer Science, University of Copenhagen (1999): 1-30.

[4] Nilsson, Christian. "Heuristics for the traveling salesman problem." Linkoping

University 38 (2003): 00085-9.

[5] Goutham, M., Boyle, S., Menon, M., Mohan, S., Garrow, S., Stockar, S. “Adapting

convex-hull based TSP heuristics for the Vehicle Routing Problem." IEEE Transactions

on Intelligent Transportation Systems.

[6] Petrov, "Multi-criteria selection of industrial robots: modelling users' preferences in

combined AHP-Entropy-TOPSIS," 2022 5th International Conference on Computing and

Informatics (ICCI), 2022, pp. 126-131, doi: 10.1109/ICCI54321.2022.9756084.

[7] Racz, Sever-Gabriel, et al. "Mobile Robots—AHP-Based Actuation Solution

Selection and Comparison between Mecanum Wheel Drive and Differential Drive with

Regard to Dynamic Loads." Machines 10.10 (2022): 886

[8] Breaz, Radu Eugen, Octavian Bologa, and Sever Gabriel Racz. "Selecting industrial

robots for milling applications using AHP." Procedia computer science 122 (2017): 346-

353.

[9] Zhang, Nuo, et al. "Labelling robots selection based on AHP and TOPSIS." UPB

Scientific Bulletin, Series D: Mechanical Engineering 82.3 (2020): 29-40.

[10] Horňáková, Natália, et al. "AHP method application in selection of appropriate

material handling equipment in selected industrial enterprise." Wireless Networks 27.3

(2021): 1683-1691.

[11] Abdulghany, A. R. (1970, January 1). Generalization of parallel axis theorem for

rotational inertia. American Association of Physics Teachers. Retrieved April 1, 2023,

from https://aapt.scitation.org/doi/10.1119/1.4994835

[12] Martins, Felipe & Sarcinelli-Filho, Mário & Carelli, Ricardo. (2017). A Velocity-

Based Dynamic Model and Its Properties for Differential Drive Mobile Robots. Journal

of Intelligent & Robotic Systems. 85. 10.1007/s10846-016-0381-9.

[13] Phillips, J.G., 2000. Mechatronic design and construction of an intelligent mobile

robot for educational purposes. Master of Technology Thesis, Massey University,

Palmerston North, New Zealand, pp: 150

[14] Sunday, D. (2001). Practical Geometry Algorithm. Geometry Algorithms Home.

Retrieved March 11, 2023, from http://www.geomalgorithms.com/index.html

http://www.geomalgorithms.com/index.html

Appendix A. Model

Analytical Hierarchy Process (AHP) Analysis:

Analysis was done for the AHP method is primarily conducted through coding via

MATLAB.

% Subject: Analytical Hierarchy Process

% Date: 9/6/2022

% Name: Sun Siyuan

%

% Notes:

%Logically, Consistency ratio (CR) should be calculated at first place as the

%calculation of matrix will be meaningful only when it's reasonably

%consistent, such that CR < 0.1

%However, here we will be calculating criteria weights first and then

%perform consistency test.

clc

clear

%input matrix

%This is just an example for a pair-wise comparison matrix. In our actual research, we

don’t have the leisure for having expert assigned criteria weights for each specific

attributes (for example, efficiency, battery size, capacity, weight, and max speed). The

lack of such values prohibited us from developing a pair-wise comparison matrix. Thus,

another method is being considered, which is the data-driven method that utilizes data

from past exploration.

A=[1 5 4 7;

 0.2 1 0.5 3;

 0.25 2 1 3;

 0.14 0.33 0.33 1]

Sum_A=sum(A,1)%Sum up all elements on each column

n=size(A,1)%find the size of our matrix

Norm_A=A./repmat(Sum_A,n,1)%Find the normalized pairwise matrix A

CW_A=mean(Norm_A,2) %Calculate Criteria Weights

%calculating the Consistency:

WS_A=A*CW_A %Calculating Weighted Sum Value

Ratio=(WS_A)./(CW_A)

Lamda=mean(Ratio)

Lamda_max=max(Lamda) %lamda max

Consistency_Index=(Lamda_max-n)/(n-1)

if n==1

RI=0

elseif n==2

 RI=0

elseif n==3

 RI=0.58

elseif n==4

 RI=0.9

elseif n==5

 RI=1.12

elseif n==6

 RI=1.24

elseif n==7

 RI=1.32

elseif n==8

 RI=1.41

elseif n==9

 RI=1.45

elseif n==10

 RI=1.49

else

 fprintf('Something went wrong, please do check your matrix.')

end

 Consistency_ratio=Consistency_Index/RI %calculate consistency ratio

 %determine if it can pass the consistency test

 if Consistency_ratio < 0.1

 fprintf('This matrix is reasonably consistent.')

 else

 fprintf('Further adjustments is required in order to have matrix being consistent')

 end

Breadth First Search

Major attributes of breadth first search here are listed in the box below as well as their

implications.

Pro Con

Completeness: BFS guarantees that all

nodes at a distance k from the source

vertex will be visited before any node at

distance k+1 is visited. Therefore, if a

solution exists at a certain depth in the

graph, BFS will find it.

Space complexity: BFS requires a lot of

memory to keep track of the visited nodes

and the nodes in the queue. This can be a

problem for very large graphs.

Shortest path: BFS is guaranteed to find

the shortest path between the source

vertex and any other vertex in an

unweighted graph.

Time complexity: The worst-case time

complexity of BFS is O(|V| + |E|), where

|V| is the number of vertices and |E| is the

number of edges in the graph. This can be

slow for very dense graphs.

Implementation simplicity: BFS is easy

to implement and can be used as a

building block for more complex

algorithms.

Not optimal for weighted graphs: BFS

does not guarantee the shortest path in a

weighted graph. For weighted graphs,

Dijkstra's algorithm or A* algorithm are

more appropriate.

Finding all connected components: BFS

can be used to find all the connected

components in an undirected graph.

Multiple solutions: BFS can find

multiple solutions if they exist at the same

depth, which may not be desirable.

Appendix B. MATLAB Code

function: p = robot_parameters (type)

 for i = 1: 5

 if type =1

store all parameters for type 1 robot as fields for structure array p

elseif type = 2

 store all parameters for type 2 robot as fields for structure array p

elseif type = 3

store all parameters for type 3 robot as fields for structure array p

elseif type = 4

store all parameters for type 4 robot as fields for structure array p

else

store all parameters for type 5 robot as fields for structure array p

end

end

Section 2.3:

File name: LauchFile.m

%% Optimizer Parameters:

%Initialize and name folders where file sharing occurs:

%Import Problem Parameters:

Import number of tasks, number of available robot types, and maximum number

of robots for each available type.

% Initialization & Problem Parameters

Map = definition_map (2) %Generating structure array “Map” through calling

user defined function “definition_map”, with 2 stands for the map type defined by

Ford.

[TaskList] = definition_tasks(2,numTasks,Map); %Generating structure array

“TaskList” through calling user defined function “definition_tasks”. “2” here is

the map type defined by ford.

[Map, Robots] = definition_robots(Map, TaskList); %Results from the previous

two line are being used as inputs for another user defined function

“definition_robots” to update current “Map” structure and generate new “Robots”

structure, which has been briefed in the beginning part of section 2.3.

Function [Map, Robots] = definition_robots(Map, TaskList);

Generate path and distance through calling a user-defined function

“pathcostMatrix” where it takes same input as definition_robots.

for i=1:size (number of available robot types)

loaded= robot_parameter(i) %User defined function “robot_parameter”

has been defined in section 2.1.1, and here all corresponding value for

robot type i is stored to variable “loaded ”.

%Extract and store all variables into desired structure array “Robots”.

%Such that:

Robots(i).massLimit = loaded.massLimit % mg

Robots(i).volumeLimit = loaded.volumeLimit; % m^3

Robots(i).batterySize = loaded.BatteryCapacity; % kWh

Robots(i).chargePower = 2*Robots(i).batterySize; % kW

Robots(i).kerbWeight = loaded.EmptyMass; % kg

%Variable Initialization:

cargoMass=0;

energyMatrix =zero(size(path)); timeMatrix=zero(size(path));

for i= 1: size(path,1)

 for i= 1: size(path,2)

 pathDistance = distance{i, j} % “distance” is a user defined

function which computes the shortest path distance between nodes pairs in

a digraph, and results are stored as variable “pathDistance”.

 [E,T]=robot_cost (pathDistance, 0, i, cargoMass)

 energyMatrix=sum(E);

 timeMatrix = sum(T);

 end

end

%Store computed matrix into desired structure array “Robots”

Robot(i).costMatrix.Energy = energyMatrix;

Robot(i).costMatrix.Time = timeMatrix;

 end

end

Values for energy cost and time cost are calculated through calling the user-defined

function “robot_cost”, which its algorithm is entirely based on the kinematics-dependent

equations shown in section (2.1.2)-(2.1.4). Likewise, better is a simplified pseudocode

written for “ robot_cost”:

Function [E, T] = robot_cost(Distance, Theta, Type, cargoMass)

 Units Conversion and taking absolute value

 Make sure both Distance and Theta vector shared the same length

% Covering Section 2.1.1: Updating Robot Dynamics based on Cargo Mass

 obj.params= robot_parameters(Type); %Importing parameters through calling

user defined function “robot_parameter”, and having it stored in a structure array “obj”.

 Calculate 𝑀𝑑𝑦𝑛𝑎𝑚𝑖𝑐 , 𝐼𝑐𝑔, 𝐼0, 𝑎𝑛𝑑 𝐹𝑟𝑟

 if type = 3 % Number “3” here representing the type of omnidirectional robot

 Calculate 𝜇 𝑎𝑛𝑑 𝑁

 else % For non-omnidirectional robot

 Calculate 𝜇 𝑎𝑛𝑑 𝑁

 end

 Calculate 𝐹𝐿 𝑎𝑛𝑑 𝑀𝑓

% Covering Section 2.1.2: Equation Set for Traversal Traveling Portion

% Initialization for Energy and Time Cost

E = 0; T = 0;

if any(Distance>0)

Calculate maximum velocity, acceleration and distance traveled for non-

coasting phase

end

% Covering Section 2.1.3: Equation Set for Pure Rotation Portion

if type == 3

if any(Theta>0)

Calculate Rotating force 𝐹𝑤, rotating moment 𝑀𝑟, maximum angular acceleration

𝛼𝑚𝑎𝑥, maximum angular velocity 𝜔𝑚𝑎𝑥, and angle rotated for non-coasting phase

𝜃𝑎

 Calculate energy and time cost for acceleration, deceleration and coasting phase.

else

 if any(Theta>0)

Calculate Rotating force 𝐹𝑤, rotating moment 𝑀𝑟, maximum angular acceleration

𝛼𝑚𝑎𝑥, maximum angular velocity 𝜔𝑚𝑎𝑥, and angle rotated for non-coasting phase

𝜃𝑎.

 Calculate energy and time cost for acceleration, deceleration and coasting phase.

end

Units conversion for E & T

end (end function)

Equations for the above can be found from section 2.1.2 to section 2.1.3. At this stage, all

variables listed in table 7 all have been computed and systematically stored inside the

structure array “Robots” for data extraction.

Section 3.2.2:

1. Algorithm for finding Edge_info

for i = 1: number of best assignments

 if task is empty; end;

 update Children of assigned task

 update robot Parameters based on

 update assigned Task ID

 compute (*update) node sequence and create sequence vector

 generate plot of base figure

 calling “staticImage_spatial” to get Edge_info;

 Edge_info{i}=Edge_info;

end

where:

Number of best assignments: a subfield from a structure array “solution,” derived from

previous coding work. It contains critical information, such as cost and assigned tasks for

the type of robot of each best solution. In this case, the total number of best solutions is 8,

and therefore, 8 iterations can be expected.

Node sequence: A structure array that contains valuable information, such as best cost,

worst cost, and best sequence, and it will be used for one of the inputs for the user

defined function: StaticImage_spatial.

StaticImage_spatial: A user defined function takes input of robot parameters, node

sequence, task list, map and output the Edge_info matrix.

Edge_info: A matrix that contains all required information to compute one single edge

for analyzing the tour path. Edge_info’ s size will be m x n, where m= 4, and n = number

of edges at that specific task. The reason m = 4 is because it takes 4 points in total to form

two points’ coordinates. An example of such is listed in the picture below:

2. Function for “dist_point_to_line_segment”

Function: dist = dist_point_to_line_segment(point, v1, v2)

 % Calculate distance from point to line segment defined by v1 and v2

 % point: a 2-element vector representing the point (x, y)

 % v1: a 2-element vector representing the start of the line segment (x1, y1)

 % v2: a 2-element vector representing the end of the line segment (x2, y2)

 % Returns:

 % dist: the distance from point to the line segment

 % Reference: http://geomalgorithms.com/a02-_lines.html

 % calculate the length and direction of the line segment

 len = norm(v2 - v1);

 dir = (v2 - v1) / len;

 % calculate the vector from v1 to the point

 vec = point - v1;

 % calculate the projection of vec onto the line segment

 proj = dot(vec, dir);

 % clamp the projection to lie within the line segment

 proj = max(0, min(proj, len));

 % calculate the point on the line segment closest to the point

 closest = v1 + proj * dir;

 % calculate the distance from the point to the closest point on the line segment

 dist = norm(point - closest);

end

3. Algorithm for constructing D matrix.

D = zeros (number of points, number of edges) %Initialize an empty D matrix:

for f = 1: size(D,1)

 for g = 1: size(D,2)

 v1 = 𝑉1(g, :); %𝑉1 stores all starting points coordinates

 if g == number of edges

 v2 = 𝑉2(1, :); %𝑉2 stores all ending points coordinates

 else

 v2 = 𝑉2 (g+1, :);

 end

 p = TaskList.TaskCoordinates(f, :);

 d = dist_point_to_line_segment (p, v1, v2) %Compute shortest distance

 D (f, g) = d %Entering calculated distance value into empty D shell

 end

 end

4. Algorithm for integration into previous work

%Initialize empty cell structure:

D_cell = cell (1, number of best assignment);

D_cell_min = cell (1, number of best assignment);

Edge_index_cell= cell (1, number of best assignment));

for i = 1: number of best solutions

.

.

.

 D_cell{i}=D;

%Find shortest distance between each point and all edges and display

 [D_min, Edge_index]=min (D, [],2); %D with both each row's minimum

value and corresponding index found

 Edge_index_cell{i}=Edge_index;

 D_cell_min{i}=D_min;

end

Section 3.3:

1. Logistic for recursive function “BnB_TaskAssignment”

function

outState = BnB_TaskAssignment(inState, Fleet, Robots, TaskList,

remainingTaskIDs,opSettings,Map)

% Recursive code implementation of the Branch & Bound algorithm for finding

% optimal task assignment.

% This implements a depth first search, and only saves the best cost &

% sequence. It also saves the worst cost for the MCTS.

%%

deltaRobots = Fleet.deltaRobots;

TaskID_next = remainingTaskIDs(1);

%% Find and sort valid expansion, and Find minimum Distance and remaining mass

capacity here:

[childrenRobotIDs,ChildrenCost,AllRobotIDs,xVector] =

validSortedExpansions(inState,TaskID_next,Robots,deltaRobots,TaskList, opSettings,

Map); % Function in this one is where equations for calculating 2 states being

integrated!!

 yVector = NaN(1,length(AllRobotIDs)); %Initialize. Do not sort.

 %Initiate Search

if childrenRobotIDs is not empty

 outstate = instate

 for i = 1: length(childrenRobotIDs)

 outState.AssignmentSoFar(childrenRobotIDs(i)).assignedTasks

= [inState.AssignmentSoFar(childrenRobotIDs(i)).assignedTasks, TaskID_next];

 outState.AssignmentSoFar(childrenRobotIDs(i)).cost = ChildrenCost(i);

[fixedCostWorkingRobots,workingRobots] = fixedCost(outState,AllRobotIDs,Robots);

%compute fixed cost

 if fixedCostWorkingRobots < outState.bestCost

 if there’s >= 1 delta robot

 [outState] =

nonDeltaOpCost (outState, TaskList, workingRobots, deltaRobots, Robots, opSettings);

 operationalCost = sum([outState.AssignmentSoFar.Cost]); %operational cost

computing

 outState.costSoFar = fixedCostWorkingRobots + operationalCost;

 outState = par_updateBestSolution(outState,opSettings); % Check shared folders

to find best cost (MCTS & FCO)

 if outState.costSoFar < outState.bestCost

 if TaskID_next < TaskList.numTasks

 if verbosity > 0, printData(…), end

 outstate = BnB_TaskAssignment(………) %recursive entry

 bestAssignment = outState.bestAssignment;

 bestCost = outState.bestCost;

 outState = inState;

 outState.bestAssignment = bestAssignment;

 outState.bestCost = bestCost;

 else %If TaskID_next >= TaskList.numTasks

 bestAssignment = outState.AssignmentSoFar;

 bestCost = outState.costSoFar;

 parsave_FCO(opSettings.FCOcache, bestCost, bestAssignment)

 if opSettings.verbosity >0,

 outState.bestCost = bestCost; printData(outState,'improved'), end

 outState = inState;

 outState.bestCost = bestCost;

 outState.bestAssignment = bestAssignment;

 end

 else % if cost so far > best cost

 bestAssignment = outState.bestAssignment;

 bestCost = outState.bestCost;

 outState = inState;

 outState.bestAssignment = bestAssignment;

 outState.bestCost = bestCost;

 continue

 end

 else % no delta robot

 if TaskID_next < TaskList.numTasks % Recursive re-entry

 if opSettings.verbosity >0,

 printData(outState,'noDelta_intermediate')

 end

 outState = BnB_TaskAssignment(…, remainingTaskIDs(2:end), …);

 %Recursive Entry for no delta robot

 bestAssignment = outState.bestAssignment;

 bestCost = outState.bestCost;

 outState = inState;

 outState.bestCost = bestCost;

 outState.bestAssignment = bestAssignment;

 else

 if opSettings.verbosity >0, printData(outState,'noDelta_leaf'), end

 bestAssignment = outState.bestAssignment;

 bestCost = outState.bestCost;

 outState = inState;

 outState.bestCost = bestCost;

 outState.bestAssignment = bestAssignment;

 end

 end

 else % fixed cost > or = best cost

 if opSettings.verbosity >0, printData(outState,'existenceFutile'), end

 bestAssignment = outState.bestAssignment;

 bestCost = outState.bestCost;

 outState = inState;

 outState.bestCost = bestCost;

 outState.bestAssignment = bestAssignment;

 end

 end

else

No valid children

end

2. Function for “ValidSortedExpansions”

function

[childrenRobotIDs,ChildrenCost,AllRobotIDs, xVector] =

validSortedExpansions(inState,TaskID_next,Robots,deltaRobots,TaskList, opSettings,

Map)

% Find valid Expansions & Only delete robots that are completely incapable of that task

checkMassLimit=[Robots.massLimit]>=

TaskList.mass(TaskID_next)*ones(size(Robots));

checkVolLimit=[Robots.volumeLimit]>=

TaskList.volume(TaskID_next)*ones(size(Robots));

cargoLimitationsOK = checkMassLimit & checkVolLimit;

AllRobotIDs=1:size(inState.AssignmentSoFar,2);%The fields make up the Robot IDs

childrenRobotIDs =

AllRobotIDs(ismember([inState.AssignmentSoFar.Type],find(cargoLimitationsOK ==

1)));

% Time based deletions(as we don’t want disqualified robots)

 pickupTimeStart = TaskList.timeStart(TaskID_next);

 dropoffTimeEnd = TaskList.timeEnd(TaskID_next+TaskList.numTasks);

 deleteChildren = zeros(1,length(childrenRobotIDs));

 for i = 1:length(childrenRobotIDs) %Remove any time-infeasible pickups

 robotType = inState.AssignmentSoFar(childrenRobotIDs(i)).Type;

 initPos = TaskID_next + 1;

 % Add 1, because station is at 1st index of cost matrix

 finPos = TaskID_next+ TaskList.numTasks + 1;

 % Add 1, because station is at 1st index of cost matrix

 minTimeToMove = Robots(robotType).costMatrix.time(initPos,finPos);

 if minTimeToMove + 2*TaskList.exchangeTime > dropoffTimeEnd -

pickupTimeStart

 deleteChildren(i)=1;

 end

 end

childrenRobotIDs(logical(deleteChildren)) = [];

%% Calculate costs to sort children:

ChildrenCost = NaN(1,length(childrenRobotIDs));

addedemploymentCost = NaN(1,length(childrenRobotIDs));

xVector = NaN(1,2*length(AllRobotIDs)); %This is never sorted! Maintain robot IDs

here

 %Initialize

 for i = 1:length(childrenRobotIDs) %Doing this before the Initiate Search section

allows cheapest-first ordering

 rID = childrenRobotIDs(i);

 if ismember(rID,deltaRobots) % Only compute costs if the child robot is a delta

robot

robotParameters = Robots(inState.AssignmentSoFar(rID).Type);

ChildrenassignedTasks = [inState.AssignmentSoFar(rID).assignedTasks, TaskID_next];

assignedsubTaskIDs = [ChildrenassignedTasks , ChildrenassignedTasks +

TaskList.numTasks];

opSettings.tic2 = tic;

nodeSeq = BnB_NodeSequence([],robotParameters,assignedsubTaskIDs, TaskList,

opSettings);

ChildrenCost(i) = nodeSeq.bestCost;

 if ~isempty(nodeSeq.bestSeq)

[dist2RemTasks,cargoCapRemaining]

=insertionStates(nodeSeq,TaskList,Map,ChildrenassignedTasks,robotParameters);

xVector(2*(rID-1)+1:2*(rID-1)+2) = [dist2RemTasks,cargoCapRemaining];

 else

 xVector(2*(rID-1)+1:2*(rID-1)+2) = [NaN,NaN]; %Only 2 states per robot

<< remove HARDCODING LATER

 end

 else

 continue % The other robot costs are computed only if useful

 end

 addedemploymentCost(i) = ChildrenCost(i) + robotParameters.purchaseCost;

 end

% Cheapest First Ranking is done considering the cost of employment

% Reported costs are operational costs

 [~,Index] = sort(addedemploymentCost);

 childrenRobotIDs = childrenRobotIDs(Index);

 ChildrenCost = ChildrenCost(Index);

End (end of function “ValidSortedExpansion”)

3. Function for “InsertionStates”

%This function shows detailed work of how previously developed algorithm for

computing 2 states is used for generating the X matrix in “validSortedExpansion”.

[dist2RemTasks,cargoCapRemaining] =

insertionStates(nodeSeq,TaskList,Map,ChildrenassignedTasks,robotParameters)

 taskcoordinate_x=[];taskcoordinate_y=[];

TaskRemaining = setdiff([1:TaskList.numTasks],ChildrenassignedTasks);

%setdiff(A,B)-->find data in A that is not in B

 for k=1:length(TaskRemaining)

 taskcoordinate_x = [taskcoordinate_x

Map.Corner_Coordinates(TaskList.position(k),1)

Map.Corner_Coordinates(TaskList.position(k+TaskList.numTasks),1)];

 taskcoordinate_y = [taskcoordinate_y

Map.Corner_Coordinates(TaskList.position(k),2)

Map.Corner_Coordinates(TaskList.position(k+TaskList.numTasks),2)];

 end

 TaskList.TaskCoordinates = [taskcoordinate_x' taskcoordinate_y']; %matrix two

columns representing x and y coordinates.

edge_info = staticImage_spatial(robotParameters,nodeSeq,TaskList,Map);

%Edge_info's each column contains all necessary info to compute the edge

Shortest_Distance = EuclideanDistance(TaskList,edge_info);

%Calling UserDefined Function for finding Shortest Distance

 D_min = min(Shortest_Distance,[],2);

 dist2RemTasks = sum(D_min,1);

% Here the Sum of shortest distance between each task location and all edges for the

current i, this should return only 1 number.

 %--------State Remaining Cargo (& Volume Capacity)

 sequence = [nodeSeq.bestSeq];

 cargoCapRemaining = robotParameters.massLimit;

 volumeCapRemaining= robotParameters.volumeLimit;

 %It’s calculated yet won’t be used.

 for j = 1:length(sequence)

 cargoCapRemaining = [cargoCapRemaining cargoCapRemaining(end)-

TaskList.mass(sequence(j))];

% volumeCapRemaining =[volumeCapRemaining

volumeCapRemaining(end)-TaskList.volume(sequence(j))];

 end

 cargoCapRemaining = min(cargoCapRemaining);

% volumeCapRemaining = min(volumeCapRemaining);

end

Appendix C. Methods for Computing Euclidean Distance

This research often involves complex scenarios for task arrangements, hence a

straightforward way for analysis and computation is desired. Appendix C delineates a

detailed procedure for finding the state 2, Euclidean distance, from given tasks and

traveled route.

Each task can be interpreted as an arrow, with its head representing the drop-off location

and its tail representing the pick-up location. Two variables, "taskcoordinate_x" and

"taskcoordinate_y," were created to store the x and y coordinates of all points,

respectively. In the current testing scenario, covered in Figure 16, there are 10 tasks

under investigation, resulting in a total of 20 points, since each task comprises a head and

a tail.

For simplicity, coordinates are stored within the structure array called “TaskList.”

Below is an example provided to demonstrate this: In the table on the left-hand side,

number 22.5 and 292.5 stand for the coordinate of the tail of the arrow with number 128

and 7.5 stand for the head of arrow.

Figure 22 Illustration of the Function of TaskList.TaskCoordinates at Task 1

To analyze the robots' tour path, it's important to gather key information about the route

they took. Conceptually, this is approached by collecting information for each edge,

formed by two adjacent points, and having them stored in a matrix, called “Edge_info”,

for future use. To achieve this, a simple for-loop has been developed and a pseudocode

has been demonstrated below for better comprehension, and code is listed in Appendix

B.: Section 3.2.2:Algorithm for creating Edge_info Figure 23 is the generated example

matrix for Edge_info:

Figure 23 Example of matrix “Edge_info”

This matrix contains all the required information to compute one single edge for

analyzing the tour path. Edge_info’ s size will be m x n, where m equals 4, and n equals

number of edges at that specific task. The reason m is 4 is because it takes 4 points in

total to form two points’ coordinates.

In Table 12, it’s evident to conclude that 22 edges can be expected at this specific

scenario since the n here is 22, or we have 22 edges for the current best solution’s route.

Meanwhile, the number of rows can be comprehended as the x and y coordinates for both

starting and ending points for each edge, respectively.

Detailed information for thoroughly understanding the first edge by inspecting the

Edge_info matrix is listed in Table 12:

Table 12 Connotation of each element for the first column of Edge_matrix

Edge_info (1,1) = 447 x coordinates of starting point for edge 1

Edge_info (2,1) = 420 y coordinates of starting point for edge 1

Edge_info (3,1) = 447 x coordinates of ending point for edge 1

Edge_info (4,1) = 360 Y coordinates of ending point for edge 1

The aforementioned information was substantiated by means of meticulous inspection of

the plot depicted below, wherein the red line corresponds to the first edge, while the blue

line represents the second.

On this basis, it was reasonably inferred that the edge's coordinates are accurately stored

as values from the matrix that correspond with the values from the axes of the cartesian

coordinate system, shown in Figure 24.

 Figure 24 Graphical validation of elements ‘placement in Edge_info matrix

The next step is to separated Edge_info matrix into two matrices, 𝑉1 𝑎𝑛𝑑 𝑉2, with 𝑉1

contains all starting points’ coordinates and 𝑉2 contains all ending points’ coordinates,

and it serves a sole purpose of better data arrangement.

At this point, each edge has been expressed in a vector form, and I computed the distance

between each point and each edge. Analysis upon “Edge_info” has been thoroughly

conducted, and to compute the shortest distance, information regarding points is still

required. Recall from previous part, we have all tasks’ (pick up & drop off) location

stored inside a structure array, TaskList.TaskCoordinates. At this specific scenario, the

matrix “TaskCoordinates” has a size of 20 by 2 and this is corresponding to the total

number of tasks being equal to 10.

To compute the shortest Euclidean Distance between each task point and each edge, a

user-defined function, “dist_point_to_line_segment”, has been developed for achieving

this goal. This user defined function is used to calculate the distance between a point and

a line segment using the Euclidean distance formula and it will first calculate the

projection of the point onto the line defined by the line segment, and then calculates the

distance between the projected point and the original point using the Euclidean distance

formula. Inputs along with outputs are listed below, and a simplified pseudocode is

provided in Appendix B: function for “dist_point_to_line_segment”

Inputs for this function are the following:

1. point: a 2-element vector representing the point (x, y)

2. edge 1: a 2-element vector representing the start of the line segment (x1, y1)

3. edge 2: a 2-element vector representing the end of the line segment (x2, y2)

Outputs for this function are the following:

1. distance: the distance from point to the line segment

Six main calculating procedures of this function are listed below:

1. calculate the length and direction of the line segment.

2. calculate the vector from v1 to the point.

3. calculate the projection of vectors onto the line segment.

4. clamp the projection to lie within the line segment.

5. calculate the point on the line segment closest to the point.

6. calculate the distance from the point to the closest point on the line segment.

Each of the calculated shortest distance will be stored in a matrix, named “D”, and D

matrix’s size is dictated by the number of points and number of edges. With that been

said, in this best solution example, the D matrix thus will have a size of 20 by 22, and

each D matrix element, say D (a, b) will be interpreted as the shortest distance between

𝑎𝑡ℎ point and 𝑏𝑡ℎ edge. Again, this is accomplished through a simple setup of for-loop,

and the corresponding pseudocode is attached in Appendix B. Section 4.2: Algorithm for

constructing D matrix.

At this point, a 20 by 22 D matrix is successfully calculated. However, what’s even better

is to filter out the most valuable information from the D matrix as well as index of which

specific edge for each best solution’s route has the shortest distance with each task points.

More importantly, this part will be integrated into the first for-loop shown in section 4.2,

and the details are listed in Appendix B.: Algorithm for integration into previous work.

Through integrating and running the code above, D_cell_min can provide with valuable

information as shown in Figure 25.

Figure 25 Cell array: D_cell_min

One might be wondering why D_cell_min{3,4,5,6,8} are empty, and it is entirely due to

the initial testing cases from given condition, or also known as the computed “solution”

array. Recall in Figure 26, detailed task list has only been listed for the first, second and

seventh robot ID, and the reason the rest are not being listed is because such information

is simply not given. Content of structure array “solution” is shown in both Figure 26 and

Figure 27:

Figure 26 Overview of Structure Array Solution

Figure 27 Overview of Structure Array Solution

From Figure 27, one can conclude that no task(s) have been assigned for subfield 3,4,5,6

and 8. Henceforth, this should explain the emptiness one spotted in

D_cell_min{3,4,5,6,8}. To gain a more comprehensive understanding of the findings, the

task point, corresponding edge, and their Euclidean distance were correlated and

presented in tabular format. Specifically, this was achieved by analyzing the results of the

solution.bestAssignment field for field 7. In this particular case, there were a total of 61

edges and 20 task points, which remained constant throughout the analysis. The detailed

results are given in Table 13.

Table 13 Example of Tabulated results for point-edge distance

The shortest distance between point 1 and all edges is 0, with edge index is 6

The shortest distance between point 2 and all edges is 162.5, with edge index is 52

The shortest distance between point 3 and all edges is 0, with edge index is 4

The shortest distance between point 4 and all edges is 0, with edge index is 29

The shortest distance between point 5 and all edges is 0, with edge index is 2

The shortest distance between point 6 and all edges is 162.5, with edge index is 48

The shortest distance between point 7 and all edges is 0, with edge index is 1

The shortest distance between point 8 and all edges is 0, with edge index is 20

The shortest distance between point 9 and all edges is 77.5, with edge index is 21

The shortest distance between point 10 and all edges is 0, with edge index is 44

The shortest distance between point 11 and all edges is 0, with edge index is 38

The shortest distance between point 12 and all edges is 0, with edge index is 52

The shortest distance between point 13 and all edges is 0, with edge index is 36

The shortest distance between point 14 and all edges is 0, with edge index is 42

The shortest distance between point 15 and all edges is 0, with edge index is 6

The shortest distance between point 16 and all edges is 0, with edge index is 14

The shortest distance between point 17 and all edges is 0, with edge index is 4

The shortest distance between point 18 and all edges is 70, with edge index is 52

The shortest distance between point 19 and all edges is 0, with edge index is 2

The shortest distance between point 20 and all edges is 71, with edge index is 38

Upon careful examination of the Table 13 listed above, it becomes readily notable that

multiple shortest distance between points and edges are zero. While such an observation

may instill a sense of concern, it is crucial to note that this phenomenon is directly

contributed by the superimposition of many points (each task’s head and tail) on the

route’s edges, see in the Figure 28.

Figure 28 Task & Route for solution.bestAssignment

