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A B S T R A C T   

An accurate estimation of drift demands is crucial for designing and assessing structures under seismic loads. Given the novelty of massive timber 
buildings, predictive models for the estimation of drifts in mid-to high-rise CLT structures are lacking, particularly in the form of simple models 
suitable for preliminary design evaluations or regional seismic assessments. In this paper, we present and compare several Machine Learning (ML) 
models for the estimation of peak inter-storey and roof drifts in multi-storey Cross-Laminated Timber (CLT) walled structures. The ML techniques 
used include: Multiple Linear Regression, Regression Trees, Random Forest, K-nearest Neighbor, and Support Vector Regression. To this end, 69 
structures spanning mid-rise to tall timber buildings are subjected to a large collection of acceleration records and used to create the training and 
testing datasets. Different structural configurations and behaviour factors, related to the assumed energy dissipation capacity of the buildings, are 
considered. A diversity of feature selection techniques informs our choice of parameters to the reduced input space leading to a set of six most 
efficient features: the spectral acceleration at the building’s fundamental period (Sa(T1)), the Peak Ground Velocity (PGV), tuning ratio (T1/Tm), 
behaviour factor (q), wall height (Hw), and the wall subdivision ratio (Wr). After verifying the high accuracy of our model predictions, the SHapley 
Additive exPlanation method (SHAP) is used to gain insight into the influence of key input features on the ML model outputs. Finally, our ML drift 
estimations are compared against previous proposals and design code assumptions, and the potential causes of disagreement are discussed.   

1. Introduction 

Cross-Laminated Timber (CLT) is a sustainable engineered material that is gaining popularity in the building sector where it is used 
in load-bearing elements such as walls or slabs. Its comparative advantages include a low carbon footprint, high prefabrication po
tential, reduced construction times, high tolerances, and a high strength-to-weight ratio. These advantages have made CLT an 
attractive option for mid-rise and tall timber buildings. Besides, since CLT panels are formed from glued timber sections laid up in 
layers at right angles from each other, they have characteristically high in-plane strength and stiffness and oftentimes constitute the 
lateral force-resisting system of their host structures [1]. The design of CLT structures is also being included in the revision process of 
the Eurocodes [2,3]. 

The numerous sustainability and structural advantages of CLT have led to a worldwide expansion of the system’s use, including in 
earthquake-prone regions. However, the seismic response of CLT buildings is fundamentally different from that of other, more 
common, structural systems such as moment frames or reinforced concrete walls. For example, while the deformations of a moment- 
resisting frame are generally governed by the flexural behaviour of its elements, a CLT building deforms based on a combination of 
rocking and sliding mechanisms [4]. Moreover, as CLT panels are stiff but fragile, ductile components such as steel connectors are 
required to increase the ductility and energy dissipation capacity of CLT structures. All these properties call for dedicated models to 
predict the seismic response of CLT buildings. 
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To date, various research studies have investigated the hysteretic response of CLT walls and joints under seismic loads [5–7]. These 
experiments have shown that almost all the hysteretic energy dissipation in CLT walls concentrates at the steel connectors while the 
CLT panels remain largely elastic. The experimental evidence also points towards a complex coupling of rocking and sliding in CLT 
walls and their response is further complicated by pinching, friction, stiffness and strength degradation at the connection level. 
Therefore, as the number of mid-rise and tall CLT buildings increases worldwide and more cases of earthquake-hit timber buildings are 
expected, accurate models for predicting and assessing their seismic deformations are needed. 

In this context, seismic drift demands are essential for the assessment of structures under earthquakes. In particular, the maximum 
inter-storey drift ratio (MIDR) and the global roof drift ratio (RDR) can be directly related to building damage and subsequently to cost. 
Although nowadays drift demands can be accurately estimated on a case-specific basis using nonlinear response history analyses 
(NRHAs) under a correctly selected suite of ground motions, NRHA still involves high computational costs, long execution times, as 
well as a good level of modelling expertise. This is especially true in the case of CLT structures, whose structural modelling demands a 
deep understanding of their intricate seismic response, including the pinching and degradation phenomena mentioned above. These 
aspects stress the significant need for alternatives to NRHA in the way of simplified estimation methods of seismic drift demands like 
those proposed in this study. This need is particularly dire in the case of simplified models for preliminary design iterations or building 
population-level assessments. 

Although many simplified seismic drift predictive models have been proposed for steel [8,9] or concrete structures [10,11], to our 
knowledge, simplified models for seismic demand estimations in timber buildings are rare. For example, Heresi and Miranda [12] 
developed an expression for the spatial correlation of 5%-damped average spectral pseudo accelerations for MIDR estimations on 
low-rise single-family wood-frame constructions for regional risk assessments. In the case of CLT structures, in particular, Demirci et al. 
[13] constructed nonlinear regression models for the seismic drift estimation in multi-storey CLT buildings and highlighted the in
fluence of the ground-motion frequency content on the drift demands of CLT walls. However, although regression models can reduce 
significantly the computational and time demands compared to NRHA, their predictions might be associated with considerable errors 
as simple functional forms are usually employed in their development. Moreover, traditional regression usually requires a good level of 
background knowledge on the phenomena at hand to be able to define a priori suitable functional forms and relationships among 
parameters. This makes regression burdensome for dealing with complex problems involving high-dimensional data and intricate 
parameter relationships which, on the other hand, can be more easily mapped using Machine Learning (ML) techniques [14]. Besides 
overcoming the constraints associated with the selection of simple functional forms used in traditional methods, ML models and can 
also be employed to inform the choice of features to be used as predictors of the target response parameter. 

The application of ML techniques in seismic assessment and structural design has increased over recent years [17]. For example, 
Hwang et al. [18] used various ML techniques to predict the seismic response and structural collapse of reinforced concrete frames. 
Paral et al. [19] presented a deep learning-based method for the evaluation of semi-rigid connection’s conditions in steel frames. 
Neuyen et al. [20] proposed ML-based prediction models for the estimation of maximum displacements in seismically isolated 
structures. Although to our knowledge ML techniques have not yet been applied to the estimation of seismic demands in timber 
buildings, ML has been used to examine the response of timber structures to other actions. For instance, Li et al. [21] used an Artificial 
Neural Network (ANN) to estimate the long-term damage accumulation and failure probability of timber structural members, while 
Xin et al. [22] proposed a non-destructive testing method using ML algorithms to predict the density and mechanical properties of 
ancient timber elements. 

In this study, we develop ML-based predictive models for seismic drift demands in CLT-walled structures. Five different ML models 
are constructed for MIDR and RDR, which are considered as the target engineering demand parameters (EDPs). A database of seismic 
drift demands is first constructed by performing NRHA on 69 numerical models of mid-rise and tall CLT structures subjected to a large 
set of ground-motion records. The structures cover a broad spectrum of structural configurations and performance factors including 
practical ranges of panel fragmentation levels, storey heights, and force reduction factors. The total set of input variables comprises 30 
features including intensity measures (IMs) and structural parameters (SPs). We use a range of feature selection techniques to screen 
important features which are expected to have the greatest impact on the drift demand prediction and arrive to a final set of six most 
efficient input features. This leads to the identification of the spectral acceleration at the building’s fundamental period (Sa(T1)), the 
Peak Ground Velocity (PGV), the tuning ratio (T1/Tm), the behaviour factor (q), the wall height (Hw), and the wall subdivision ratio 
(Wr) as preferred predictors. After demonstrating the good accuracy of the model estimations, we use the SHapley Additive exPlanation 
method (SHAP) to explain the influence of key input features on the ML-model outputs and gain insight into the mechanics of CLT 
buildings’ seismic response. Finally, the drift estimates of our newly proposed models are compared against outputs from previous 
research and design codes, and the potential causes of disagreement are discussed. 

2. Drifts database development 

This section deals with the development of the dataset of CLT buildings to be used in subsequent analyses presented later in this 
paper. First, the 69 CLT structures considered in this study are introduced. These structures cover a broad range of structural con
figurations and force reduction factors. The design basis and typical loads employed for their structural design and modelling are 
provided. Second, the numerical modelling approach adopted is described in detail. Finally, typical examples of the extensive model 
validation carried out against available experimental results are presented. 

2.1. CLT buildings 

69 CLT structures representing residential multi-storey CLT buildings of different heights (number of storeys) and panel 
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fragmentation levels are considered. Fig. 1a shows a 3D view of a typical 8-storey CLT building as an example. All buildings share the 
same plan layout (Fig. 1b) and have a typical storey height of 3.5 m, except for the ground level which height is 4.3 m, depicted in 
Fig. 1c. The CLT buildings were designed based on widely accepted capacity design principles and current codified guidance. Ductile 
design and failure mode control principles were followed in consistency with Eurocode 8, Part 1 [4,23]. Dead loads were calculated 
considering all finishing and insulation whereas a superimposed load of 2.0 kN/m2 was assumed for both roof and floors. A combi
nation of 100% dead and 30% superimposed load was used for seismic mass calculations. The response spectrum of Eurocode 8 Type 1 
anchored at a Peak Ground Acceleration (PGA) of 3.0 m/s2 was adopted with an importance factor of 1.0. More details of the design 
processes of the CLT buildings can be found in Ref. [13]. A number of parameters were varied during the design to cover a wide range 
of CLT buildings and to evaluate the effect of these variations on the corresponding seismic demands. These parameters include the 
number of storeys, the panel fragmentation level, as well as the behaviour factors. Buildings of 6, 8, 12, 16, and 20 storeys were 
considered. 

The variation in building height leads to different wall slendernesses. Likewise, the panel fragmentation level affects the joint 
density since it dictates the number of vertical joints per wall. Besides, the number of sub-panels (Wr) was varied from 1 to 4 per wall, 
where a Wr = 1 corresponds to a single monolithic CLT wall (i.e., no vertical joint is provided) while Wr = 2 to 4 indicate the walls are 
subdivided into 2 to 4 panels, respectively. It should be noted that a single CLT wall will be associated with a low seismic energy 
dissipation capacity and a correspondingly more brittle failure [24]. However, due to the widespread use of the single walls in low-rise 
CLT buildings in some parts of Europe, a value of Wr = 1 was included in this study but it is limited to structures of 6–12 storeys. For 
jointed CLT walls (i.e., Wr ≥ 2), half-lap joints with self-tapping screws were provided for all the vertical step joints between panels. 
Moreover, to cater for the uncertainties still present around the appropriate q-factor for tall CLT buildings, the designs of the buildings 
under consideration are not done for a single value of q. Instead, a range of q-factor values (from 1.5 to 4.0) was used to design the CLT 
structures based on general guidance from EC8’s specific rules for timber buildings. Note that a limit of q = 3 was enforced in the cases 
with single walls (Wr = 1) as a low dissipation capacity is expected in these cases. Table 1 summarises the structural configurations of 
the CLT walls adopted. 

2.2. Numerical modelling 

The buildings under consideration are regular in plan and elevation, and the CLT walls are symmetrically distributed throughout 
the buildings in plan and elevation. Assuming that a rigid diaphragm action is ensured, and considering only on the lateral de
formations of the building, the use of one representative CLT wall is deemed to provide reasonable estimates of the building’s overall 
lateral drift response. To this end, the portion of the building enclosing the 8.5-m long CLT Wall 2-BC (marked with dashed lines in 
Fig. 1c was selected as the focus of this study. We developed 2D numerical models in OpenSees [25] representing the selected wall for 
all buildings under study. 

Fig. 2 shows a schematic representation of a typical model for a wall with Wr = 2. All CLT panels were discretised into a number of 
shell elements (4-node Quad Element [25]). Two-node link elements (zero length element [25]) were used to represent the three main 
types of steel connectors, namely hold-downs, shear brackets, and vertical screws. The link elements for hold-downs (presented in blue 
in Fig. 2) were located at the corners of the panels whereas shear brackets were distributed along the length of the panels in the X 
direction (presented in red). Self-threaded screws at the vertical joints were lumped into an equivalent single link element and placed 
at the mid-height of the panels (shown in green). 

Since most of the nonlinear deformations in CLT walls under lateral actions occur at their joints and since the CLT panels themselves 
are expected to remain largely elastic [26,27], an equivalent isotropic material model with linear elastic properties was assumed for 
the CLT panels. To this end, we used a panel stiffness of 108 N/mm following the sensitivity study of [28]. In the case of steel connectors 
(angle brackets, hold-downs, and screws), a hysteretic uniaxial material model [25] that captures the global nonlinear responses of the 
connectors was used. The parameters of this model were calibrated to represent the strength and deformation values as well as 
pinching strength and stiffness degradation factors of each connector type employed. To this end, pinching factors of 0.7 and 0.3 for 
strain and stress, respectively, were assigned for angle brackets, while pinching factors of 0.9 (strain) and 0.2 (stress) were used for 
hold-downs. Importantly, both the shear and axial direction responses were modelled in all brackets and hold-downs considering 

Fig. 1. Typical (8-storey) building under consideration.  
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un-coupled response between the two directions. This is in contrast with a majority of previous studies that have usually ignored the 
shear capacity of hold-downs [5] The respective force-deformation relationships were taken from previous experimental studies [5–7] 
as shown in Table 2. The interested reader can find further particular and specific strength and stiffness values in these references or 
[28]. Moreover, to account for P-Delta effects caused by gravity loads on largely deformed structures (i.e., geometric non-linearities), a 
leaning column was added into the models using beam-column elements connected to the wall by means of equal degree-of-freedom 
constraints [25] to simulate a rigid diaphragm action. A Rayleigh damping model with a damping ratio of 0.05 in the first mode 
was assumed in all cases. 

2.3. Finite Element model validation 

The Finite Element models described in the previous section were validated against experimental results in a two-stage process. The 
first stage involved the validation of steel connectors. An example of this is presented in Fig. 3 which compares the experimental 
hysteretic responses [5] and their numerical counterparts for a BMF 90x116x48x3 bracket and a WHT 540 hold-down. As shown in this 
figure, the numerical models capture well the key characteristics of the connector’s response in terms of strength, stiffness, degra
dation, and pinching in both directions. 

The second validation stage comprised the development of numerical models of CLT walls and wall assemblages. As an example, 
the results for the two CLT walls (single and coupled) tested by Ref. [26] are presented in Figs. 4 and 5. Fig. 4 compares the exper
imental and simulated hysteresis of the single wall case along with the cumulative dissipated energy whereas the corresponding 
comparisons for the coupled walls are shown in Fig. 5. The Solid lines and dotted lines in these figures correspond to the numerical and 
experimental results, respectively. It can be observed from these figures that our numerical models can reproduce the experimental 
hysteretic response of CLT assemblages with excellent accuracy. 

3. Ground motions and acceleration demand database 

In order to generate a large dataset of results using real ground motions without resorting to significant spectral scaling that may 
introduce undesirable bias [13,29,30], we used the set of 1656 records selected by Hancock et al. [29] from the NGA-West database 
[31]. These records come from shallow crust seismic events with moment magnitudes between 5.1 and 7.9 and an average PGA of 1 g. 

Table 1 
Variation of CLT wall configurations.  

Structural Parameters Range of values 

Number of stories (m) 6, 8, 12, 16, 20 
Number of subpanels per wall (Wr) 1, 2, 3, 4 
Behaviour factor (q) 1.5, 2, 2.5, 3, 4  

Fig. 2. Numerical model of CLT walls.  

Table 2 
Mechanical properties of CLT connections [5–7].  

Connection Loading direction Fy Δy 
F
max 

Δ
max Fu Δu 

(kN) (mm) (kN) (mm) (kN) (mm) 

WHT 540 hold-down Tension 40.46 8.810 48.33 20.30 38.79 23.75 
WHT 540 hold-down Shear 3.610 1.130 9.980 30.00 9.980 30.00 
BMF 90x116x48x3 bracket Tension 19.22 7.260 23.47 17.69 18.74 23.19 
BMF 90x116x48x3 bracket Shear 22.98 11.74 26.85 28.51 21.48 31.86 
Half-lap screwed connection Parallel 3.230 2.550 5.250 23.50 4.200 31.55 
Half-lap screwed connection perpendicular 2.910 2.340 4.910 17.51 3.930 23.76  
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More information regarding the ground motion set can be found in Ref. [29]. However, to increase the number of nonlinear responses, 
a factor of 2 was used to complement the original un-scaled group with records of increased intensity as discussed in Ref. [12]. 
Therefore, the total number of ground motion records used was 3312 leading to a total of 228,528 nonlinear response history analyses 
(NRHA) performed on the high-performance computing facility (HPC) at Imperial College London [32]. This extensive database of 
results forms the basis for the formulation of the ML models described below. 

4. Data curation and feature selection 

4.1. Data curation 

As noted before, the EDPs of interest in this study are the maximum storey drift ratio (MIDR) and the maximum roof drift ratio 
(RDR) both of which were directly obtained from the NRHAs described above. Two main parameter types are considered for the 
development of ML models, namely ground-motion intensity measures (IMs) that describe the earthquake action, and structural pa
rameters (SPs) that describe the buildings. We chose nine commonly used IMs with practical levels of hazard computability for our 
initial explorations. These IMs are: Peak Ground Acceleration (PGA), Peak Ground Velocity (PGV), Peak Ground Displacement (PGD), 
total Arias intensity at the end of the time series (Ia), significant duration (D5− 75 and D5− 95), and spectral acceleration values at the 
building’s fundamental period (Sa(T1)) and at n times T1 (Sa(nT1)) where n was varied from 1.1 to 3.0. Moreover, due to the strong 

Fig. 3. Validation example of the joint numerical models.  

Fig. 4. Validation of the numerical model for a single wall.  

Fig. 5. Validation of the numerical model for coupled walls.  
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influence of the frequency content on structural systems, including CLT buildings, identified by previous researchers [13,33], the mean 
period of the ground motion (Tm) and the ratio between the fundamental structural period and the ground-motion mean period (or the 
tuning ratio, T1/Tm) were also considered. 

The mean period (Tm) is an indicator of the frequency content of a ground motion which is determined as the weighted mean of the 
periods of the Fourier Amplitude Spectrum (FAS) over a pre-defined frequency range. The weights are assigned based on the Fourier 
amplitudes. The mean period (Tm) is calculated using the following relationship: 

Tm =

∑n

i=1
Ci

2 × 1
fi

∑n

i=1
Ci

2
(1)  

where Ci is the Fourier amplitude coefficient corresponding to a frequency (fi) obtained from a discrete Fast Fourier Transform (FFT) 
for frequencies between 0.25 and 20 Hz, and Δfi is the spacing of the frequencies for which the FFT is performed. 

Table 3 summarises the intensity measures examined as candidate input features for our ML models. Besides, the Pearson corre
lation among IMs is provided in Fig. 6. This figure depicts a Pearson correlation heatmap with a colour gradation that goes from blue 
which represents negative colinearity (− 1.0), to red which represents positive correlation (1.0). It is observed from Fig. 6 that most of 
the features are positively correlated with each other such as PGA, PGV, PGD, and spectral acceleration values, as expected. Negative 
correlations are observed in the case of significant durations and PGA, or T1/Tm and spectral acceleration values. 

In addition to the IMs, 6 structural parameters (SPs) are also considered as candidate input features. These include the behaviour 
factor (q), building height (Hw), slenderness (λw), length of fastening lines (Fl), joint density (βw), and wall subdivision ratio (Wr) as 
shown in Table 4. These SPs have been reported in the literature to significantly impact the seismic response of CLT wall structures [28, 
34,35]. 

4.2. Data partitioning 

A key concern around the development of ML models is the need to balance generalisation and overfitting. The latter term refers to 
the process of training a model so that it “memorises” the training data but is unable to make reasonably accurate estimates outside of it 
[36]. In order to prevent overfitting during the development of ML predictive models, we randomly divided the whole database into 
training and test sets following standard practice [37]. The training set contains 70% of the database and was used to train the model. 
The remaining 30% of the data was kept as unseen data and was used for performance testing purposes. Moreover, the common 
assumption of log-normality was also adopted for IMs [38,39] and hence we have transformed the IMs to the log-normal space together 
with the seismic drift demands of interest (MIDR and RDR). 

4.3. Feature selection 

It is usually not necessary nor practical to use all of the parameters identified in Tables 3 and 4 as predictors to estimate the drift 
demands even if a high accuracy was warranted. Instead, a sub-set of input features, which are most relevant to the drift demand 
prediction, is selected. Note that due to limited information on the seismic response of multi-storey CLT buildings being available to 
date, the key influencing features cannot be directly identified a priori. Thus, various feature selection techniques based on ML are 
applied to this end including Sequential Forward Floating Selection, LASSO, and Random Forest. Therefore, the efficiency of all the 30 
input features (both IMs and SPs) for predicting drift demands in CLT structures is evaluated using the training dataset alone. This is 
done prior to the formulation of the ML predictive models and only to assess the predictive potential of each of the parameters being 
considered and to determine an optimal subset to be carried out for the formulation of our ML models. The mean square error (MSE) 
was used to evaluate the fit and a 10-fold cross validation was applied to generalise the results. Cross validation (CV) is a re-sampling 
method that not only improves the model’s stability, but also mitigates overfitting [40]. A 10-fold is adopted following a preliminary 
analysis as the optimal number that provides good results within reasonable computational costs [41]. Therefore, the data is divided 
into 10 subsets of equal size. Then, for each training time, nine of the ten folds are used to train the model while the remaining subset is 
kept for measuring its performance. This process is repeated ten times. The performance of the model is obtained by averaging over the 
10 folds [42,43]. 

4.3.1. Sequential Forward Floating Selection (SFFS) 
Sequential Forward (or Backward) Selection accounts for the interactions between features during the process of feature selection 

by adding (or removing) one feature at a time until the best model is obtained based on a specified criterion. In SFFS, a number of 
backward steps are added at each forward step until the obtained result is better than that of the previous version of the model [44]. As 
a result, SFFS is able to leverage the trade-offs between forward and backward steps to find the optimal solution [45]. In this study, we 
carried out SFFS via Python’s MLxtend Library [46]. 

Fig. 7a shows the results of SFFS in terms of the evolution of the 10-fold CV score MSE as a function of the number of features in the 
case of MIDR estimations, as an example. It can be seen from this figure that the improvement of prediction power is relatively 
insignificant after the 7th feature is added. The selected features are: ln(PGV), ln(Sa(T1)), ln(Sa(1.1T1)), ln(Sa(1.4T1)), ln(Tm), ln(T1/ 
Tm), and Wr, in that order. A similar process was applied for RDR, however, in this case, a set of 8 features is retrieved including: ln 
(PGV), ln(Sa(T1)), ln(Sa(1.4T1)), ln(Tm), ln(T1/Tm), q, Hw, and Wr. The results from SFFS show remarkable consistency in the features 
selected for MIDR and RDR with PGV, Tm, T1/Tm, Wr, and spectral acceleration values appearing in both fronts. PGV is widely rec
ognised as a good IM for the structural seismic response [12,47] whereas spectral acceleration values, especially Sa(T1), is well 
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acknowledged to reduce the variability of the estimate in seismic responses [38]. The significant influence of Tm and T1/Tm on the 
structural response has also been highlighted in the scientific literature [13,28]. In the case of structural parameters, the wall ratio (Wr) 
which represents the level of panel fragmentation is found to be the main factor to influence the seismic response in CLT buildings [13, 
26,28]. 

4.3.2. LASSO 
Least Absolute Shrinkage and Selection Operator (LASSO) is a modified linear regression. The main distinct feature of LASSO, is 

that all input features are shrunk by adding a penalty to reduce their impact on the regression model. As a result, the regression 
coefficients of the features which have less importance on the target are penalised towards zero by increasing their shrinkage factors 
leading to a better generalisation of the regression model [42]. To this end, LASSO regression minimises the residual sum of squares as 
defined in Equation (2): 

Table 3 
IMs considered.  

Intensity measure Abbreviation Min. Max. mean 
(μ) 

SD (σ) 

Peak ground acceleration (g) PGA 0.003 3.559 0.145 0.177 
Peak ground velocity (cm/s) PGV 0.271 332.1 14.07 15.75 
Peak ground displacement (cm) PGD 0.073 525.5 6.373 8.748 
Total arias intensity at end of time series Ia 0.000 90.99 25.30 22.02 
Significant duration between when 5% and 75% of the arias intensity occurred (s) D

5 − 75 0.600 80.95 13.41 11.61 
Significant duration between when 5% and 95% of the arias intensity occurred (s) D

5 − 95 3.015 143.4 25.30 22.02 
Mean period of the ground motion (s) Tm 0.118 2.563 0.668 0.350 
Ratio between the fundamental period of a building and the mean period or tuning ratio T1/Tm 0.126 23.53 2.493 2.075 
Spectral acceleration at the fundamental period of the building (g) Sa(T1) 0.000 6.470 0.151 0.253 
Spectral acceleration at n times of the building’s fundamental period (g) (n = 1.1, 1.2, 1.3. 1.4, 1.5, 1.6, 

1.7, 
Sa(nT1) 0.000 6.309 0.089 0.168 

1.8, 1.9, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0)       

Fig. 6. Correlation heatmap among the considered IMs.  

Table 4 
Structural parameters considered.  

Structural parameter Abbreviation 

Seismic behaviour factor q 
Height of buildings Hw 

The slenderness of the CLT wall λw 

Length of the fastening line Fl 

Ratio of fastening lines and perimeter βw 

The number of sub-panels per wall Wr  
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β̂lasso =

argmin

β

{
∑n

i=1

(

yi − β0 −
∑p

j=1
xijβj

)2

+ λ
∑p

j=1

⃒
⃒βj

⃒
⃒

}

(2)  

where β̂ lasso is the parameter estimated, β0 the intercept, βj a feature’s coefficient for variable j, p the number of input features, xij a set 
features from the given data (n), λ the penalty factor, and the term 

∑p
j=1
⃒
⃒βj
⃒
⃒ indicates the L1 norm of βj. It should be noted that all 

predictor features are standardised in order to avoid dimensionality issues. 
Fig. 7b shows the reduction in average MSE obtained from the 10-fold CV for different values of λ for MIDR, as an example. The 

minimum averaged MSE is associated with a λ close to zero, meaning that all features remain in the model. As the goal of our feature 
selection process is to shrink insignificant features, we selected a value of λ = 0.01. This marks the point of inflection in Fig. 7b and is 
consistent with previous applications of ML in the area of seismic engineering [27,48]. The features selected by LASSO, on the basis of 
λ = 0.01 are provided in Table 5. In general, LASSO’s selection is broadly consistent with the findings of the previous section (SFFS), 
however, the number of features selected by LASSO is larger than those indicated by SFFS and most of the features are IMs. Moreover, 
the MSE of LASSO (= 0.18) is higher than that of SFFS (= 0.16). This can be attributed to the multicollinearity of some IMs contained in 
the LASSO model [42]. In particular, features such as spectral accelerations at different periods are highly colinear between each other 
and can be removed. 

4.3.3. Random forest 
In Random Forest, the entire dataset is partitioned into multiple subsets to develop individual Regression Trees. The results from 

these trees are averaged leading to a better precision of the estimations (i.e., variance reduction). Random Forest evaluates the 
importance of a feature based on an impurity reduction. For this, the algorithm ranks the input features based on how much they 
reduce the impurity during the tree training. A major advantage of using Random Forest feature importance measures is that the 
influence of each input feature is considered not only individually but also as part of multivariate interactions with other features [49]. 
Moreover, the algorithm is capable of informing relevant features in high-dimensional data with complex relationships [49,50]. In this 
study, the model’s hyper-parameters were tuned using Grid Search technique with cross-validation to obtain a suitable set of 
hyper-parameters that minimises the average MSE. Once the combination of hyper-parameters is obtained, the Random Forest model is 
developed and the feature importance is evaluated. More details regarding Random Forest and hyper-parameter tuning are presented 
later as part of our discussion on model training. 

The top 7 features with the highest importance as selected by Random Forest are summarised in Table 5. The selected features are: 
ln(PGV), ln(Sa(T1)), ln(Tm), ln(T1/Tm), q, Hw and Wr, and ln(PGV), ln(Sa(T1)), ln(Sa(1.1T1)), ln(T1/Tm), q, Hw and Wr, for MIDR and 
RDR, respectively. Among the features, PGV is the most important sharing around 60% of weight in the model prediction for both drift 
demand parameters considered herein. 

4.3.4. Discussion on feature selection results 
Table 5 compares the results of the different feature selection methods applied in this study for the estimation of MIDR and RDR. It 

should be noted that only the sub-set of selected features (among the original 30 features explored) are listed in this table. The table 
shows that different techniques lead to different sets and numbers of features. Instead of selecting the result coming from a single 
method, we have considered all feature sets in conjunction with the results from the correlation analysis (Fig. 6), as well as engineering 
judgement to arrive to the final set. We reasoned that in order to keep the model simple while ensuring high predictive performance, 
the number of the features included should be small i.e., < 7 as per the results of previous sections. The use of a small number of 
features also has a positive impact on the computational complexity of the models. Besides, in order to enable an easy adoption, and 
since most of the selected features for MIDR and RDR coincide, the same set of features was adopted for both drift demands. 

First, ln(PGV) was selected since its role as a good predictor has been recognised by all feature-selection techniques applied for both 
MIDR and RDR in this study. Besides, PGV has been previously identified as an efficient IM for the estimation of drift demands in 
wooden structures [12]. Similarly, spectral acceleration-related features like ln(Sa(T1)), ln(Sa(1.1T1)), ln(Sa(1.2T1)), and ln(Sa(1.4T1)) 

Fig. 7. Evaluation of MSE for MIDR.  
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have also been consistently identified as good predictors in Table 5. However, they are all multicollinear as can be seen from the 
heatmap of Fig. 6. This can threaten the predictability of regression models [51,52] and hence, only ln(Sa(T1)) was finally selected. 
Sa(T1) is the most commonly used IM [50] and has also been shown in past research to improve the estimates of seismic responses in a 
variety of structures [38]. With regard to frequency content-related features, both ln(T1/Tm) or ln(Tm) appear in Table 5, however, ln 
(T1/Tm) is structure-specific and has been highlighted in previous studies to improve the seismic response estimation of structures [13, 
53]. Therefore, ln(T1/Tm) was considered as the third-IM feature of the final set. 

In terms of structural parameters, q was the most frequently selected parameter by all algorithms. The other two consistently 
selected features are Hw and Wr, and can be associated with different aspects of the configuration of CLT structures. Hw is a proxy for the 
slenderness and flexibility of the building, while Wr represents the level of panel fragmentation which is related to the number of joint 
lines and correlates with the energy dissipation capacity of the buildings. In conclusion, the final set of features to be carried over for 
the development of ML models is comprised by: ln(PGV), ln(Sa(T1)), ln(T1/Tm), q, Hw and Wr. 

5. Development of ML models 

5.1. Model description and training 

Five ML algorithms are constructed to predict MIDR and RDR ratios in CLT structures in this paper. The algorithms used are: 
Multiple Linear Regression, Regression Tree, Random Forest, K-nearest Neighbors Regression, and Support Vector Machine Regres
sion. All these ML algorithms are widely adopted in structural and earthquake engineering [15,16] and are therefore readily available 
in commercial and open-source platforms which is a desirable feature that should facilitate the model adoption in practice. In this 
study, we have implemented the ML algorithms using Scikit-learn package in the Python-based computational platform [54] and all 
models and hyper-parameters are available from https://github.com/CMalagaC/ML-CLT-Drifts.1 

This section begins with an overview of the ML algorithms considered. Then, the process followed to optimise their hyper- 
parameters is discussed together with the performance measures adopted. A more indepth explanation of the ML algorithms and 
examples of their practical use can be found in Refs. [37,42,55]. 

5.1.1. Multiple Linear Regression 
Multiple Linear Regression [37] is a regression method that assumes a linear relationship between the regression function and the p 

input features (x1, x2, …, xp). Linear regression models have been effectively used in engineering practices to date due to their 
simplicity and easy interpretability. They can sometimes outperform more complex nonlinear ML models, especially in scenarios with 
sparse or limited training data [37]. Multiple linear regression can be described by: 

ŷi = β0 +
∑p

j=1
xjβj (3)  

where ŷi is the estimated target output, β0 is the intercept, βj is the feature’s coefficient for xj, p is the number of input features. The 
coefficients βj are generally estimated using a training dataset (x1,y1), (x2,y1), …, (xn,yn) by means of a least squares approach. Given a 
number of features (p), each xi can be written as a vector (xi1,xi2, …,xip)T. A vector of coefficients (β0,β1, …,βp)T can be found to 
minimise the sum of squared residuals such that: 

Table 5 
Feature selection using various ML techniques.  

Feature MIDR RDR Choose 

SFFS LASSO Random Forest SFFS LASSO Random Forest 

ln(PGA)  ●   ●   
ln(PGV) ● ● ● ● ● ● ● 
ln(Tm) ● ● ● ● ●   
ln(Sa(T1)) ● ● ●  ● ● ● 
ln(Sa(1.1T1)) ● ●  ● ● ●  
ln(Sa(1.2T1))  ●   ●   
ln(Sa(1.3T1))  ●   ●   
ln(Sa(1.4T1)) ● ●  ● ●   
ln(Sa(1.5T1))  ●   ●   
ln(Ia)  ●      
ln(T1/Tm) ● ● ● ● ● ● ● 
q  ● ● ● ● ● ● 
Hw   ● ● ● ● ● 
Wr ●  ● ●  ● ●  

1 The models will be freely accessible from this repository address (https://github.com/CMalagaC/ML-CLT-Drifts) upon acceptance of the paper. 
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RSS=
∑n

i=1

(

yi − β0 +
∑p

j=1
xijβj

)2

(4)  

5.1.2. Regression Tree 
Regression Tree [56] is a decision tree algorithm applied to regression problems [42]. This method fits the data by constructing a 

set of splitting rules from top to bottom [56] as shown in Fig. 8a, creating what is known as a decision tree. This process starts with 
dividing the whole dataset into m non-overlapping regions (R1, R2, …, Rm) called “terminal nodes” or “leaves”. The points at which the 
predictor space is subdivided are “internal nodes” while the tree segments that link the nodes are known as “branches” [37,42]. To 
construct the regions, the algorithm automatically selects the internal nodes to split input features and define the shape of the tree. The 
same prediction is made based on the output target yi in each region Rm, represented by the mean of yi. Subsequently, the regions (R1, 
R2, …, Rm) that minimise the RSS (function f (x)) are found: 

f (x)=
∑M

m=1

∑

i∈Rm

(
yi − ŷRm

)2 (5)  

where yRm is the mean of the target output observed in the training data in m. A greedy approach is adopted to split the input features j 
based on the lowest RSS. A splitting point j and s can be defined as the pair of half-planes: 

R1(j, s)=
(
X
⃒
⃒Xj ≤ s

)
,R2(j, s)=

(
X
⃒
⃒Xj > s

)
(6) 

and the value of j and s are determined to solve 
∑

i:xi∈R1(j,s)

(
yi − ŷR1

)2
+

∑

i:xi∈R2(j,s)

(
yi − ŷR2

)2 (7)  

where ̂yR1 
and ̂yR2 

is the mean target of the training data in R1(j, s) and R2(j, s), respectively. The process is repeated for all regions until 
a specific criterion is attained. However, Regression Tree models can be overfitted if the tree is very large while a small tree might 
result in underfitting [37,42]. 

Fig. 8. Machine learning schemes. 

f̂ RF =
1
B

∑B

b=1
Tb(x) (8)    
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5.1.3. Random forest 
Random Forest [57] is an ensemble of Decision Trees. This method modifies the bagging approach by reducing the correlation 

between the trees [37]. The choice of selecting feature subsets is the key distinction between random forests and bagging in the 
tree-growing process. The process of considering each split, called “tree decorrelation”, leads to a substantial reduction in variance 
over the trees, and to a more reliable model [42]. In other words, the decision tree algorithm is trained several times on a random 
variety of subsets in the training data. The final output value of the approach is determined by averaging the predictions obtained from 

a number of different decision trees (Fig. 8b), expressed by ̂f RF

(

x
)
= 1

B
∑

Tb(x)
B

b=1
, where f̂ RF(x

)

is the final prediction averaged over 

the output of the trees Tb, and B is the total number of Decision Trees. Since there are numerous independent trees considering in the 
prediction, Random Forest is superior to Decision Tree in terms of model generalisation. However, it demands a high computational 
cost to construct a large number of trees and integrate their results. 

5.1.4. K-nearest Neighbors Regression 
K-nearest Neighbors Regression or KNN Regression [42] predicts the target by interpolating the target values selected from the 

nearest k points from the training set [42], as illustrated in Fig. 8c. The KNN algorithm is significantly faster than other ML algorithms 
especially when the dataset size and the number of input features are small [58]. It is also easy to add new data without affecting the 
accuracy of the algorithm. However, KNN is sensitive to noisy data and outliers. Three main KNN hyperparameters are required to be 
tuned, namely the number of neighbors (k), weight function, and the distance metric [58]. The number of neighbors k has to be defined 
before training. The distance between neighbors is specified by the distance function as 

Dmink =

(
∑k

i=1
|xi − yi|

p

)1
p

(9) 

A value p = 1 leads to the Minkowski distances whereas a p of 2 refers to the Euclidean and Manhattan distances. Lastly, the weight 
function is neither an average nor an inverse of the distance-weighted average over the k neighbors. 

5.1.5. Support Vector Regression 
Support Vector Machine (SVM) [59] is commonly used in classification problems. However, SVM can also be applied to solve 

regression problems, called Support Vector Regression (SVR) which has a typical mapping function: 

f (x)=
∑M

m=1
wmφm(x) + b (10)  

where M is the number of mapping functions, wm are weights of the mapping functions from the original to high-dimensional feature 
spaces, φm are the vectors of the input features (x), and b is the bias parameter. 

The goal of the SVR algorithm is to find a hyperplane such that the majority of the training data points are within the margin or the 
tolerance level (ε). ε is a hyper-parameter that controls the maximum error margin between the target and the fitted hyperplane. 
Therefore, the algorithm tries to minimise their coefficients while constraining the error term depicted in Fig. 8d. The error function 
that is optimised by SVR can be expressed as: 

C
∑n

i=1
(ξi + ξ̂i) +

1
2
‖w‖2subject to

⎧
⎪⎪⎨

⎪⎪⎩

(
∑M

m=1
wmφm

(
xij
)
+ b

)

− yi ≤ ε + ξ̂i

yi −

(
∑M

m=1
wmφm

(
xij
)
+ b

)

≤ ε + ξ̂i

(11)  

where ξi and ξ̂i are the slack variables for the data points i, n is the total number of the training data, w is a dimensional vector, yi is a 
target output value, xi is a vector of features for yi, and C is a hyper-parameter representing regularization levels that shows the 
allowance for training data points outside of the error margin ε. 

Several mapping functions can be applied to develop a highly accurate prediction model. A kernel function, which can map 
nonlinear relationships [59,60], is often used to improve the accuracy. In this study, the radial basis function kernel is employed. 
Moreover, SVR hyper-parameters such as C and ε are needed to control the bias-variance trade-off. 

5.1.6. Hyper-parameter optimisation 
Each ML algorithm was tuned by varying its hyper-parameters to minimise a cost function using a tuning process called Grid

SearchCV available from the Scikit-learn package [54]. GridSearchCV stands for Grid Search Cross-validation approach that involves 
generating grids with varying hyper-parameter values, evaluating the performance at each grid point, and iterating until the optimal 
values are found. Thus, the use of GridSearchCV to optimise hyper-parameters during the training process does not only improve the 
model robustness but also minimises the risk of overfitting via the CV. A 10-fold CV was employed. It should be noted that Grid
SearchCV is computationally expensive due to the large number of components to be evaluated. We performed the hyper-parameter 
tuning on the high-performance computing facility (HPC) [32]. Optimised values of hyper-parameters for each model are summarised 
in Table 6. Finally, overfitting was checked by comparing the training and test error of the ML models through the 10-fold CV score. 
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The model which performed well on the test was considered effective and generalisable. 

5.2. Performance measures 

To evaluate the prediction performance of the newly developed ML models, we have used two performance metrics: i) the coef
ficient of determination (R2), and ii) the root mean square error (RMSE). These two indicators, which are widely adopted in ML 
performance studies, are calculated on the basis of the ‘unseen’ test dataset mentioned previously. The expressions for R2 and RMSE are 
given in Equations (12) and (13): 

R2 = 1 −

∑n

i=1
(yi − ŷi )

2

∑n

i=1
(yi − yi)

2
(12)  

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(yi − ŷi)

2

√

(13)  

where ŷi is the estimated target output, yi is the real target value, and n is the number of data points. 
Table 7 reports the values of the above-mentioned metrics for the training and test datasets and for all ML algorithms used. The 

corresponding predictions versus actual drift ratios are depicted in Fig. 9. Overall, all models show a comparable prediction perfor
mance between the training and the test set, indicating that they do not suffer from overfitting and should perform well on unseen data. 
Except for multiple regression, all other ML algorithms show high predictive power evidenced by the high values of R2 and low values 
of RMSE shown in Table 7. Even the worst performing model among the set, multiple regression, presents a value of R2 = 0.777 on the 
test set for MIDR which is of itself not particularly low in comparison with other similar studies in earthquake engineering, e.g, Refs. [9, 
61]. A notable mismatch between predictions and numerical results is clearly observed in Fig. 9a for Multiple Regression. This in
dicates that the traditional linear regression, which has been and continues to be broadly applied for estimating seismic demands in a 
variety of structures, may not capture the full range of drift responses observed in CLT structures. This can be partially attributed to its 
inability to describe highly nonlinear processes and relationships between the input features and the drift demands. A comparatively 
higher prediction performance was observed from all other ML models where values of R2 in excess of 0.90 on both training and test 
sets are found in all algorithms and for both MIDR and RDR demand parameters. 

This indicates that the ML algorithms applied herein can better capture the non-linearity in the seismic response of CLT walls. The 
highest R2 and lowest RMSE were obtained for estimates coming from Random Forest for both inter-storey (MIDR) and roof drift (RDR) 
demands. Although Random Forest is the best-performing ML model overall, and hence our recommended choice, different users may 
find the other ML models more appealing depending on their background and familiarity with the underlying algorithms.2 

It is worth noting that MIDR estimations had higher error rates than those of RDRs for any single predictive model. These relative 
differences obey, at least partially, to the influence of higher non-linear patterns caused by higher mode effects and rocking that will 
affect MIDRs more than RDRs making them relatively more difficult to predict. Structurally, higher mode effects tend to increase with 
increasing slenderness of structures whereas rocking is exacerbated in CLT structures with higher fragmentation levels. 

6. ML model interpretation using SHAP 

Even though the ML models proposed in the previous section have superior accuracy than previously proposed traditional pre
diction methods [13], as judged by their performance metrics. ML models are sometimes perceived as black boxes due to the 
complexity of their structure [58]. Therefore, it is essential to understand why and how an ML model makes predictions, not only to 

Table 6 
Optimised values of hyper-parameters for regression models applied.  

Model Optimised hyper-parameters 

Multiple Linear Regression None 
Regression Tree maximum depth = None (both MIDR and RDR) 

minimum samples split = 6 (MIDR), 9 (RDR) minimum samples leaf = 12 (both MIDR and RDR) 
n estimators = 380 (MIDR), 480 (RDR) 

Random Forest maximum depth = None (both MIDR and RDR) 
minimum samples split = 2 (both MIDR and RDR) minimum samples leaf = 1 (both MIDR and RDR) 
n neighbors = 12 (MIDR), 13 (RDR) 

K-nearest Neighbor weights = uniform (both MIDR and RDR) 
p = 1 (MIDR), 2 (RDR) 
leaf size = 5 (both MIDR and RDR) 

Support Vector Regression ε = 0.1 (both MIDR and RDR) 
C = 1 (both MIDR and RDR)  

2 The models will be freely accessible from this repository address (https://github.com/CMalagaC/ML-CLT-Drifts) upon acceptance of the paper. 
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evaluate its accuracy [62]. In this section, we use the SHAP methodology [62] to provide an interpretation of our ML models. To this 
end, the Random Forest model is taken as the case study given its high accuracy in comparison with the alternatives put forward in the 
preceding section. 

SHapley Additive exPlanations (SHAP) is a collection of explainers based on a game theory approach [63,64] that estimates 
Shapley values from an absolute average of the feature contributions over several simulations [62,65]. Since the original ML model is 
complex, this approach uses additive feature importance measures based on a linear explanation model to approximately interpret the 
original model. The function g(z′) is formulated using an explanation model that is a linear combination of binary variables [62] 
expressed as 

f (x)≈ g(z
′

) =φ0 +
∑M

i=1
φizi

′ (14)  

where f (x) is the original model and x is the original input feature. The explanation model uses x′ as a simplified input feature and links 
it with a mapping function x = hx(x′), while local methods attempt to guarantee that g(z′) ≈ f (hx(z′)) whenever z′ ≈ x′. The value φi is 
the Shapley value which is expressed as: 

φi(f , x) =
∑

z′ ⊆x’

|z′

|!(M − | z’| − 1)!
M!

(fx(z
′

) − fx(z’ \ i)) (15)  

when three desirable properties (local accuracy, missingness, and consistency) are satisfied [62]. |z′| is the number of non-zero entries in 

Table 7 
Comparison of the predictive performance of ML algorithms.  

ML model MIDR RDR 

Training set Test set Training set Test set 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

Multiple Linear Regression 0.778 0.368 0.777 0.369 0.841 0.316 0.842 0.316 
Regression Tree 0.926 0.182 0.919 0.242 0.929 0.173 0.924 0.228 
Random Forest 0.950 0.102 0.946 0.198 0.953 0.094 0.949 0.185 
K-nearest Neighbor 0.940 0.215 0.937 0.222 0.941 0.213 0.939 0.214 
Support Vector Regression 0.927 0.216 0.923 0.217 0.946 0.186 0.947 0.185  

Fig. 9. Performance of ML models for predicting MIDR.  
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z′, and all z′ vectors are a subset of x′. More information regarding SHAP can be found in Refs. [62,63,65]. 
The SHAP summary plot for MIDR is presented in Fig. 10. Each point in this graph shows the relation of the input features with a 

SHAP value obtained from the same amount of data for the six input features under consideration (i.e., ln(Sa(T1))). These input features 
are arranged from top to bottom according to their importance with the most important feature according to its SHAP value being ln 
(Sa(T1)) and appearing at the top followed by Hw, ln(PGV), Wr, q, and ln(T1/Tm), in this order of importance. Also, the variation of the 
input feature SHAP values is depicted by the variation in colour tones which changes from low (in blue) to high values (in red). Besides, 
data points which lead to the same SHAP value are scattered resulting in different distribution shapes for each feature. 

Fig. 10 indicates that MIDR is directly proportional to almost all features except ln(T1/Tm). That is, an increase in ln(Sa(T1)), Hw, ln 
(PGV), Wr, or q, leads to an increase in SHAP value which means that these features have a positive impact on MIDR. In the case of ln 
(T1/Tm), it can be observed that lower ln(T1/Tm) values have a stronger influence on MIDR than higher values. Moreover, small values 
of SHAP (SHAP values < 0 in our case) are sensitive to the variation all features. This is reflected in the long blue tails observed to the 
left in Fig. 10. This indicates that all features have a significant impact on the low range of MIDR. It should be recalled that in this range 
of responses MIDR is highly dependent on the elastic stiffness of the CLT structures, their yield strength and their structural config
uration. On the other hand, ln(PGV) is the only significant feature to play a vital role in the prediction of large MIDR as understood from 
the large SHAP values associated with it shown in Fig. 10. Other features become progressively less influential on the drift prediction 
after the significant reduction in the structural stiffness after yielding. 

A further examination of our ML model interpretability can be done with reference to Fig. 11. This figure shows scatter diagrams 
displaying local feature importance over a sub-set of input features where the interaction between the two features considered in each 
plot can be appreciated. In addition, the transition from one feature to another is also shown on the right of Fig. 11 represented by the 
transition from blue (low values) to red (high values). Overall, a markedly nonlinear influence of all the IMs examined over the 
maximum inter-storey drift (MIDR) is observed in Fig. 11 ln(Sa(T1)) and ln(PGV) have a positive relation with MIDR, although they 
follow different trends. This can be explained by the fact that higher values of ln(Sa(T1)) and ln(PGV) lead to higher SHAP values, 
which are associated with larger structural deformations. The impact of ln(Sa(T1)) on the estimation of MIDR decreases moderately 
while ln(PGV) tends to increase exponentially. In the case of ln(T1/Tm), a positive impact on the drift estimation is observed until ln(T1/ 
Tm) reaches a value of 1. After that, ln(T1/Tm) has no impact on the prediction denoted by the almost unchanged SHAP values. This 
marks a clear limitation to the predictive power of T1/Tm that peaks at “resonance” and decays afterwards. This reduction in the 
predictive ability of T1/Tm can be partially due to the raise in the importance of structural yielding. Fig. 11b, d, and 11f depict the SHAP 
dependency plots for the three structural parameters used for the formulation of our model. They show that Hw and q have a positive 
impact on the MIDR prediction. However, for q values of 3 or larger, MIDR becomes less sensitive to q. On the other hand, the trend of 
Wr changes from positive to slightly negative after a value of 3. This suggests that subdividing a CLT wall into more than 3 sub-panels is 
unnecessary. 

7. Comparative studies 

7.1. Comparison with previous studies 

As highlighted in the introduction, there is a dearth of predictive models for seismic drifts in CLT structures. To our knowledge, only 
the work by Demirci et al. [13] covers similar grounds. However, Demirci et al.‘s model does not incorporate PGV or Sa(T1) into its 
functional form and relies solely on the tuning parameter T1/Tm for its predictions. This means that a strict one-to-one comparison 
between our model and previous proposals is limited. Nevertheless, some comparisons with the predictive relationships suggested by 
Demirci et al. for drifts can be done and are provided in this section. 

Demirci et al.‘s nonlinear regression models [13] were developed on the basis of numerical models for CLT walls of 6–20 stories 
with varying joint density, wall slenderness, and behaviour factor (q). They proposed predictive expressions for maximum inter-storey 
and global drift demands in the form of maximum (θmod) and global (δmod) drift modification factors, defined as: 

θmod =
θmax

q × θ1,max
(16)  

Fig. 10. Impact of the predictor features on MIDR.  
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δmod =
Δmax

q × Δ1,roof
(17)  

where θmax is the maximum inter-storey drift ratio, θ1,max is the maximum inter-storey drift ratio at first yielding obtained from the 
building’s pushover curve, Δmax is the maximum roof displacement, Δ1,roof is the roof yield displacement at the first yielding also from a 
pushover analysis, and q is the behaviour factor. Worthy of note, the requirement of performing a nonlinear static (Pushover) analysis 
is avoided in our ML predictive models. 

However, given the difference in IM s considered, the comparisons presented below are organised into different levels of Sa(T1), 
PGV, and presented as a function of T1/Tm as illustrated in Fig. 12 to facilitate comparisons. To this end, global roof drift demands 
(RDRs) were estimated for different levels of earthquake intensities following the limiting values suggested in the Modified Mercalli 
Intensity scale (MMI). We acknowledge the empirical character of a MMI categorisation, however, for the specific case of the com
parisons that follow, the use of this scale allows us to divide the seismic demands into PGV bins that are broadly indicative of their 
structural damage potential. Consequently, bins are created for 6 levels of PGV representing the Median PGV and the median plus and 
minus one standard deviation (SD) (Median PGV ± SD) for violent and extreme MMI events. Likewise, Sa(T1) bins are constructed 
around the median (Median Sa(T1)), shown in orange in Fig. 12) and the median plus and minus one SD (Median Sa(T1) ± SD) pre
sented in red and green, respectively. For example, in the 6-storey building, three bins of PGV values in the lower intensity are provided 
with means of 66, 78, and 92 cm/s. For each PGV, the global roof drifts for three Sa(T1) bins are shown consisting of the Median Sa(T1) 
= 1.2 g, the Median Sa(T1)+SD = 2.1 g, and the Median Sa(T1)-SD = 0.7 g. 

The estimated RDRs obtained by means of our newly proposed ML model and the corresponding predictions from Demirci et al.‘s 
relationships are shown in Fig. 12 for three different building heights (6, 12, and 20 storeys), representative of low-, mid- and high-rise 
CLT walled structures. The 6-storey wall with Wr = 1 and q = 2 is used as an example of a wall with no joints whereas the 12-storey case 
presented has Wr = 3 and q = 3 and the 20-storey has Wr = 2 and q = 2. These two latter structures use half-lap joints. Fig. 12 depicts 
the values of RDR as a function of the tuning parameter (T1/Tm) for different levels of Sa(T1) and PGV, as discussed above. 

In general, it can be observed from Fig. 12, that the influence of T1/Tm on RDR identified by Demirci et al. [13] has been learnt by 
our ML model leading to larger RDR demands in the region of shorter T1/Tm period ratios. This trend is also consistent with previous 

Fig. 11. SHAP dependency plots for MIDR.  
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studies for other structural types [8,66]. However, the sensitivity of RDR to T1/Tm appears to be stronger in the model by Ref. [13] than 
in our newly proposed ML model, and this is specially evident at shorter periods. Interestingly, our ML model captures a more rapid 
change in the RDR at around T1/Tm = 1 compared to Demirci et al.‘s model which cannot detect this behavioural feature. This is 
probably due to the limitations of the functional form adopted by Demiric and their lack of consideration of the effects of Sa(T1) and 
PGV in the deformation demands of CLT buildings. This leads to an overestimation of RDR for short periods and an underestimation at 
large T1/Tm periods if their expression is used. 

In the case of the 12-storey wall (Fig. 12b), RDR predictions from our ML model and the regression model of Demirci et al. [13] are 
largely consistent for PGVs of 64–76 cm/s, approximately. The underestimations at longer periods from Demirci et al.‘s model are still 
evident in the 12-storey structure. This is attributed to the lack of consideration of other ground-motion IMs discussed earlier. It is also 
interesting to note that Demirci et al.‘s model predictions for the higher range of PGV ( > 112 cm/s) lead to noticeable low estimates of 
RDR. The fact that Demirci et al. relied solely on un-scaled records whereas scaling factors of 1 and 2 were used in the development of 
our model may account for these discrepancies at higher IMs. 

In the case of the 20-story structure shown in Fig. 12c, the ML model proposed generally produces low RDR values that are more in 
accordance with Demirci et al.‘s model predictions at longer periods for lower levels of PGV (≈ 73 cm/s). Also interestingly, the 
noticeable drop in RDR happens at a period ratio of around T1/Tm = 2.0, while in the case of 6 and 12 storeys such drop takes place at 

Fig. 12. Comparison of RDR obtained by the proposed model and previous studies.  

E. Junda et al.                                                                                                                                                                                                          



Journal of Building Engineering 70 (2023) 106365

17

approximately T1 = 1.0. This can be attributed to the shift of the fundamental period caused by the activation of rocking modes in taller 
CLT walls subjected to stronger earthquakes. 

7.2. Comparison with design provisions 

An alternative comparison between different models can be offered in terms of drift modification factors. If the structural over
strength is ignored (Ω = 1), the global drift modification factor can be expressed in terms of EC8, Part 1 or US provisions as: 

δmod = 1(for EC8)=
Cd

R
(for US provision) (18)  

where Cd is the deflection amplification factor and R is the response modification factor. In the case of US provisions [67], the Cd values 
proposed by Van de Lindt et al. for CLT structures [34] can be assumed. Therefore, δmod becomes 0.75 (for Cd = 3 with R = 4) and 1 (for 
Cd = 3 with R = 3, and Cd = 4 with R = 4). These δmod assumptions are compared with the ML predictions in Fig. 13. In these figures, 
two dashed horizontal lines are shown for δmod based on EC8 and US guidelines. As before, three CLT buildings, of 6-, 12-, and 20-sto
reys are selected for comparison. Likewise, the estimations are reported as a function of the period ratio (T1/Tm) for different levels of 
Sa(T1) and PGV which are grouped using the bin limits described in the previous section. This leads to three different PGVs (Median 
PGV and Median PGV ± SD) per PGV-intensity group and three values of Sa(T1) overall, where the ML results corresponding to the 
Median Sa(T1) are presented in orange in Fig. 13 and the Median Sa(T1) ± SD are shown in red and green, respectively. 

In the 6-storey wall (Fig. 13a), our ML predictions are consistent with EC8 demand estimations in the short T1/Tm range but become 
more in agreement with the US provisions at longer T1/Tm ratios for lower PGV levels (i.e. PGVs between 66 and 78 cm/s). For 
earthquakes of higher intensity (i.e. PGV ≈ 92 cm/s) the ML predictions are closer to the EC8 demand levels. This indicates that the 
expected displacement of low or mid-rise CLT structures designed using EC8 or US provisions are broadly consistent with the assumed 
seismic demands. However, for taller structures like the 12-storey building, the δmod obtained from the EC8 and US codes are higher 
than their ML estimates at smaller PGVs (≈ 76 cm/s) for almost the whole range of T1/Tm (Fig. 13b). Nonetheless, at higher PGVs (≈ 90 
cm/s) our ML estimates are closer to the EC8 demand assumptions in the short T1/Tm range and to the US assumptions at longer T1/Tm 
ratios. Relatively good matches are also appreciable in the range 112 cm/s < PGV < 140 cm/s between the code and our ML model at 
T1/Tm > 2.0, approximately. However, at very large PGV demands (≈ 176 cm/s), the code provisions seem to significantly under
estimate δmod at all periods. 

Finally, in the of 20-storey CLT wall case, both codes significantly overestimate the displacement of CLT walls at lower PGV levels 
(PGV ≈ 73 cm/s), except when the Sa(T1) is large (i.e., Median Sa(T1) + SD) as seen in Fig. 13c. These discrepancies can be explained by 
the large difference between the simplified period estimations of the code and their numerically obtained counterparts. This is 
illustrated in Fig. 14 which compares the T1 estimates of our numerical FE models, presented by the dark blue line, and the estimations 
made with the EC8 empirical formula presented in the form of bars. It should be noted that the numerical values of T1 obtained from 
our Eigenvalue analyses are consistent with those reported in the scientific literature [68–71]. The variability of the numerical esti
mations for T1 coming from buildings with the same height are due to the differences in wall partitioning and q-factors. As a result of 
the discrepancies shown in Fig. 14a, lower Sa(T1) values (around 30% lower than the EC8 calculations for the 12-storey buildings under 
consideration) are obtained. When higher PGV are expected, for example for PGVs over 107 cm/s in Fig. 13c, a better consistency 
between the ML model predictions and those of the codes are observed, especially at T1/Tm > 2. Overall, the code provisions seem to 
lead to consistent deformation demand estimates for low earthquake intensities in short or mid-rise structures and large earthquake 
intensities in taller structures. In other words, the code-based estimations for tall CLT buildings are more conservative than those of 
short to medium CLT buildings. The above comparisons also highlight the influence of PGV and T1/Tm on the drift demand in CLT 
structures and stress the need for their consideration in the design process. It should be noted that the comparison herein is based on 
the results from 2D-walled models and are therefore suitable for symmetric and regular structures. Additional validation results from 
the 3D models can be conducted in future work. 

8. Conclusion 

In this paper, we have examined the use of machine learning (ML) to predict peak seismic deformations in multi-storey CLT 
buildings. To this end, we have developed numerical models of 69 CLT walled structures with different structural configurations and 
design characteristics that represent a wide range of CLT building configurations. After calibrating them against available experi
mental results, our Finite Element models are used, in conjunction with a database of unscaled and mildly scaled 3312 ground-motion 
records, to conduct extensive nonlinear response history analyses and obtain a large dataset of seismic drift demands to be used as 
output targets. 

A total of 30 features, including ground-motion intensity measures and structural parameters, have been considered as input 
features. Various ML feature selection techniques have informed our identification of the 6 most important predictors of seismic drift 
demands. Three of these features – Spectral Acceleration at T1 (Sa(T1)), Peak Ground Velocity (PGV), and the period ratio (T1/Tm) – are 
related to the intensity of the ground motion while the other three – behaviour factor (q), structure height (Hw), and wall ratios (Wr) – 
are structural parameters. 

Five models, constructed using widely employed ML algorithms, are proposed for the estimation of maximum inter-storey drift 
ratio (MIDR) and maximum roof drift ratio (RDR). These models are based on Multiple Regression, Regression Tree, Random Forest, K- 
nearest Neighbor, and Support Vector Regression. Our results show that these ML algorithms have superior prediction power 
compared to traditional regression approaches. This is reflected in a good agreement between model estimates and numerical results 
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and expressed in high R2 and low RMSE for both MIDR and RDR. The Random Forest model moderately outperforms the rest in terms of 
performance metrics (with R2 of 0.946 and 0.949 for MIDR and RDR, respectively) while Multiple Regression shows the most limited 
predictive power (with an R2 ≈ 0.7). All models can be accessed from the following repository: https://github.com/CMalagaC/ML- 
CLT-Drifts. 

Fig. 13. Comparison of δmod obtained by the proposed model and codes.  

Fig. 14. Comparison of the fundamental period (T1), and spectral acceleration at T1 (Sa(T1)) between modal analysis and EC8.  
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Our examinations have also revealed that q, Hw, and Wr have a greater influence on MIDR than on RDR and particularly at lower 
levels of demand. This is partially explained by the relative dependency of MIDR on the building strength and stiffness distributions as 
well as its higher susceptibility to higher mode effects. This observation was further reinforced by the feature importance and the 
dependent plots developed using the SHAP technique. Likewise, Sa(T1) and T1/Tm actively define the drift prediction at small drifts 
where the structure remains (or is close to) elastic. However, PGV dominates the model outputs for large displacements. Besides, SHAP 
also served to identify that a q = 3 and a Wr = 3 are optimal for multi-storey CLT buildings and an increase in their value beyond those 
levels (by, for example, increasing the level of fragmentation of a CLT wall beyond 3 sup-panels) will bring practically no benefit to the 
overall ductility of CLT buildings. 

After comparisons with EC8 and US provisions, code-based predictions appear consistent with our ML estimations for low 
earthquake intensities in short or mid-rise structures and large earthquake intensities in taller structures. Besides, for taller CLT 
buildings and larger PGVs our ML estimates are closer to the EC8 demand assumptions in the short T1/Tm range and to the US as
sumptions at longer periods. The discrepancies between the simplified calculations of natural periods offered by codes serve to explain 
some of these differences. 

Our findings have stressed the limitations of current frameworks for drift estimation, and have highlighted the use of more 
advanced algorithms to improve their predictive accuracy. The comparative advantages of the ML models proposed herein lay in their 
ability to predict drift demands of CLT walls for a wide range of earthquake intensities and provide insight into the nonlinear behaviour 
of multi-storey CLT structures outside the constraints of a simplified functional form. 
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