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Abstract
We introduce a procedure to test a theory for point particle entity, that is,
whether said theory takes into account the discrete nature of the constituents of
the system.We then identify the mechanism whereby particle entity is enforced
in the context of two field-theoretic frameworks designed to incorporate the
particle nature of the degrees of freedom, namely the Doi–Peliti field the-
ory and the response field theory that derives from Dean’s equation. While
the Doi–Peliti field theory encodes the particle nature at a very fundamental
level that is easily revealed, demonstrating the same for Dean’s equation is
more involved and results in a number of surprising diagrammatic identities.
We derive those and discuss their implications. These results are particularly
pertinent in the context of active matter, whose surprising and often counter-
intuitive phenomenology rests wholly on the particle nature of the agents and
their degrees of freedom as particles.

Keywords: field theory, particle entity, statistical physics,
Doi–Peliti formalism, response field formalism

(Some figures may appear in colour only in the online journal)

∗
Author to whom any correspondence should be addressed.

Original Content from this work may be used under the terms of the Creative Commons Attribution
4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the

title of the work, journal citation and DOI.

1751-8121/23/175002+33$33.00 © 2023 The Author(s). Published by IOP Publishing Ltd Printed in the UK 1

https://doi.org/10.1088/1751-8121/acc498
https://orcid.org/0000-0003-1741-7892
https://orcid.org/0000-0002-8551-1461
mailto:g.pruessner@imperial.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1088/1751-8121/acc498&domain=pdf&date_stamp=2023-4-11
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


J. Phys. A: Math. Theor. 56 (2023) 175002 M Bothe et al

1. Introduction

The mathematical description of non-equilibrium many-particle systems typically requires a
choice of scale at which their behaviour is resolved.When the focus is on the collective dynam-
ics of a large ensemble of particles, it can be convenient to disregard some of the microscopic
information and to rely on a coarse-grained description in terms of densities ρ(x, t), which
are continuous in space. What is generally lost upon such coarse-graining is ‘particle entity’,
namely the familiar attribute of classical point particles whose initial property of being local-
ised at one point only is preserved under the dynamics, in other words that individual particles
can only exist at one position in space at any given time. The distinction between effective and
microscopically resolved theories has recently been debated in the context of active matter and,
more specifically, entropy production [1–4], where different levels of description grant access
to different types of information about the degree of irreversibility of a stochastic process
[5]. More generally, the study of sparse collections of interacting particles [6–8] can make it
necessary to equip theories with a notion of ‘granularity’ of their constituents. Field theories
have traditionally been the most successful approach to capture the physics and mathematics
of phenomena emerging from the interaction of many degrees of freedom [9–11]. The Doi–
Peliti formalism, which has a discrete number-state master equation as its starting point, is
perhaps the best known example of a path-integral approach that preserves particle entity [12,
13]. Another, less familiar example is the response field or Martin–Siggia–Rose–Janssen–De
Dominicis [14–16] field theory [17] that derives fromDean’s equation [18–20].While it is gen-
erally accepted that these theories correctly describe the behaviour of physical point particles
by construction and that they are, in fact, equivalent [21], the precise mechanism whereby this
property is enforced, as well as a general procedure to determine whether a given field theory
possesses particle entity, have not been identified. We fill this gap in the following by intro-
ducing a signature of particle entity, equation (63), that draws solely on the moments of the
integrated number density in a patchΩ of space. These moments can be computed by standard
Feynman diagrammatic techniques.

This work is organised as follows. In section 2, we set the scene by introducing the Doi–
Peliti field theory and the response field formalism. As an illustrative example, we compute the
two-point correlation function of the number density of n0 non-interacting diffusive particles,
thus highlighting some of the key similarities and differences between the two approaches. In
section 3 we formalise the concept of single-particle entity and derive different observables to
probe it. This signature of particle entity is then applied to the Doi–Peliti field theory (section 4)
and the response field formalism of Dean’s equation without interaction (section 5), confirming
that both are indeed valid descriptions of physical point particles. In this last section we also
discuss the role of integer particle numbers and relate some of the results to a more intuitive
probabilistic picture. Finally, in section 6, we summarise our findings and highlight some open
questions. Some of the technical details are relegated to the appendices.

2. Setting up the formalisms

2.1. Doi–Peliti field theory

A Doi–Peliti field theory, sometimes referred to as a coherent-state path integral, is a stand-
ard procedure to cast the discrete-state, continuous-time master equation of reaction-diffusion
processes in a second quantised form that is amenable to a perturbative treatment [12, 13, 22].
Its derivation starts from the master equation for the probability P({ni}, t) to find the system
in state {ni}= {n0,n1, . . .}, that is to find precisely ni particles at each site i, which is then
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written in a second quantised form by introducing a Fock space vector |{ni}⟩, together with
the ladder operators a†i and ai for creation and annihilation on each lattice site i. The operators
satisfy the commutation relations

[ai,a
†
j ] = δij, [ai,aj] = [a†i ,a

†
j ] = 0 (1)

and act on |{ni}⟩ according to

aj|{ni}⟩= nj|{nj− 1}⟩, a†j |{ni}⟩= |{nj+ 1}⟩ , (2)

so that a†i ai is the number operator counting the number of particles at site i. The notation
{nj+ 1} and similar is a suggestive shorthand to indicate that this is the same particle number
state as {ni} except that the count at site j is increased by one. The state of the system is thus
described by the mixed state

|Ψ(t)⟩=
∑
{ni}

P({ni}, t)|{nj}⟩ , (3)

which evolves in time according to an imaginary-time Schrödinger equation of the form
[12, 13]

∂t|Ψ(t)⟩= Â(a,a†)|Ψ(t)⟩ . (4)

For a simple diffusive process on a one-dimensional lattice with homogeneous hopping rate h
and extinction rate r, the operator Â reads

Â(a,a†) =
∑
i

h(a†i+1 + a†i−1 − 2a†i )ai − r(a†i − 1)ai . (5)

The formal solution of equation (4), |Ψ(t)⟩= eÂt|Ψ(0)⟩, can then be cast into path-integral
form, whereby the creation and annihilation operators are converted to time-dependent fields,
denoted ψ†

i (t) and ψi(t), respectively. For technical reasons discussed extensively elsewhere
[12, 13], it is convenient at this stage to introduce the so-called Doi-shifted creation field, ψ̃i(t),
according to the convention ψ†

i (t) = 1+ ψ̃i(t). For the case of simple diffusion, equation (5),
generalised to d dimensions, the action functional of the resulting field theory reads, upon
taking the continuum limit,

A[ψ̃(x, t),ψ(x, t)] =
ˆ

ddxdt ψ̃(x, t)(∂t−D∆+ r)ψ(x, t) (6)

and is fully bilinear. In the continuum limit, the hopping rate h and the diffusion constant D
satisfy D= liml→0 hl2 where l is the lattice spacing. In momentum and frequency space it
reads

A[ψ̃(k,ω),ψ(k,ω)] =
ˆ

d−
d
kd−ω ψ̃(k,ω)(−̊ıω+Dk2 + r)ψ(−k,−ω) (7)

where we have used the convention

ψ (x, t) =
ˆ

d−
d
kd−ω eı̊k·xe−̊ıωtψ(k,ω) and ψ (k,ω) =

ˆ
ddxdt e−̊ık·xeı̊ωtψ(x, t) , (8)

with d−dk= ddk/(2π)d and d−ω = ddω/(2π) (similarly for ψ̃). We will change freely between
different representations.

The diffusive propagator can be obtained by Gaussian integration and reads in k,ω

⟨ψ(k,ω)ψ̃(k ′,ω ′)⟩= δ−(ω+ω ′)δ−(k+k ′)

−̊ıω+Dk2 + r
(9)
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with δ−(k) = (2π)δ(k) and δ−(ω) = (2π)δ(ω). Diagrammatically, the propagator is represented
by the Feynman diagram [22]

Henceforth we will use the symbol
△
= to indicate equivalence between diagrams and other

mathematical expressions. In all diagrams the arrow of time runs from right to left. Expressing
fields in x, t, the propagator reads

⟨ψ(x, t)ψ̃(x ′, t ′)⟩= θ(t− t ′)

(
1

4πD(t− t ′)

)d/2

exp

(
− (x− x ′)2

4D(t− t ′)

)
, (11)

for r→ 0+, with the Heaviside theta function θ(t) enforcing causality. The extinction rate
r has solely the role to establish causality, as it generates the Heaviside theta function, and
regularize the large t behaviour, as it guarantees that any density vanishes in the large t limit.
In the following, we may take the limit r→ 0+ whenever convenient. For completeness, the
propagator in mixed momentum-time representation reads

⟨ψ(k, t)ψ̃(k ′, t ′)⟩= θ(t− t ′)δ−(k+k ′)e−Dk2(t−t ′) . (12)

A general observable in the Fock space system is given as a function of occupation numbers
O({ni}). In the Doi–Peliti formalism this corresponds to an operator Ô ′({a†i ai}), which is
defined by acting on the pure state |{ni}⟩ according to Ô ′({a†i ai})|{ni}⟩=O({ni})|{ni}⟩. We
can use the commutation relation (1) to normal-order Ô ′({a†i ai}) such that all annihilation
operators are on the right and all creation operators are on the left. We define the normal
ordered operator that acts identical to Ô ′({a†i ai}) as Ô({a†i },{ai}). Its expectation translates
into a path integral according to the following procedure [23]

⟨O⟩=
∑
{ni}

O({ni})P({ni}, t)|{nj}⟩ (13)

= ⟨☼|Ô({a†i },{ai})e
Ãt|Ψ(0)⟩ (14)

=

ˆ
DψDψ̃ Ô({ψ̃i(t)+ 1},{ψi(t)}) eA[ψ̃,ψ]I(ψ̃(0)+ 1) (15)

where we have introduced the coherent state,

⟨☼|=
∑
{ni}

⟨{ni}| (16)

with
∑

{ni}⟨{ni}| summing over all n-particle occupation number states, as well as the initial-

isation operator I(a†i ), which satisfies I(a†i )|0⟩= |Ψ(0)⟩, with |0⟩ the vacuum state. Going to
equation (15) the normal ordering of the operator Ô({ai},{a†i }) allowed us to replace anni-
hilation and creation operators by the right and left eigenvalues of the coherent states Ψi and
Ψ̃i+ 1 respectively.

For an initial condition where mi particles are placed at each site i at time t= 0, the initial-
isation appears within the path integral equation (15) as

I(ψ̃(0)+ 1) =
∏
i

(ψ̃i(0)+ 1)mi =
∏
i

mi∑
k=0

(
mi

k

)
ψ̃ki (0) (17)
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after the Doi shift. The process can also be initialised in a statistical mixture of occupation
number states, e.g. where the occupation number at each site is drawn from a Poisson distri-
bution with mean q,

IPoiss(ψ̃(0)+ 1) =
∏
i

[ ∞∑
k=0

(
e−qqk

k!

)
(ψ̃i(0)+ 1)k

]
=
∏
i

eqψ̃i(0) . (18)

2.2. Dean’s equation in the response field formalism

Dean’s equation [18] is a stochastic differential equation of the Itô type obeyed by the number
density function ρ(x, t) for a system of Langevin processes interacting via a pairwise potential.
It is an exact mapping of, and thus contains the same information as, the full set of Langevin
equations for the individual ‘single particle’ processes. It reads

∂tρ(x, t) =∇·

(
ρ∇ δF[ρ]

δρ

∣∣∣∣
ρ(x,t)

)
+∇· (ρ1/2η(x, t))+

∑
i

ni δ(t− ti)δ(x− xi) (19)

where F[ρ] denotes the free energy functional, defined as

F[ρ(x)] =
ˆ

ddxρ(x)
(
V(x)+D log(ρ(x))+

1
2

ˆ
ddyU(x− y)ρ(y)

)
, (20)

with V(x) a general single-particle potential and U(x− y) a translationally invariant pairwise
interaction potential. The term D log(ρ)in equation (20) is the additional second derivative
from Ito’s lemma rewritten as an entropic contribution to the free energy. The last term on
the right-hand side of equation (19) describes the initialisation of ni ∈ Z particles in state xi
at time ti so that limt→−∞ ρ(x, t) = 0. The vector-valued noise η(x, t) ∈ Rd is an uncorrelated
white noise with covariance

⟨ηµ(x, t)ην(x ′, t ′)⟩= 2Dδµνδ(t− t ′)δ(x− x ′) , (21)

for µ,ν = 1,2, . . . ,d. The unique feature of Dean’s formalism is the nature of the noise term in
equation (19),∇· (ρ1/2η), which is both conservative and Itô-multiplicative, thus conserving
the total particle number while preventing fluctuations from producing regions of negative
density. Following the standard procedure [11, 17], which requires special attention due to
the multiplicative nature of the noise [20, 24], Dean’s equation (19) for the time and space
dependent field ρ(x, t) can be cast as a response field, or Martin–Siggia–Rose–Janssen–De
Dominicis, field theory with action

A[ρ, ρ̃] =
ˆ

ddxdt ρ̃

(
∂tρ−∇ · ρ∇ δF[ρ]

δρ

∣∣∣∣
ρ(x,t)

)
− ρD(∇ρ̃)2 − ρ̃

∑
i

ni δ(t− ti)δ(x− xi),

(22)

which simplifies to

A[ρ, ρ̃] =
ˆ

ddxdt ρ̃(x, t)(∂tρ(x, t)−D∆ρ(x, t))− ρ̃
∑
i

ni δ(t− ti)δ(x− xi)− ρD(∇ρ̃)2 (23)

=

ˆ
d−
d
kd−ω ρ̃(−k,−ω)(−̊ıω+Dk2)ρ(k,ω)− ρ̃(k,ω)

∑
i

ni e
ı̊k·xie−̊ıωti

+

ˆ
d−
d
kd−

d
k ′d−ωd−ω ′D(k ·k ′)ρ̃(k,ω)ρ̃(k ′,ω ′)ρ(−(k+k ′),−(ω+ω ′)) (24)
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in the case of non-interacting particles undergoing simple diffusion without external potential.
Unlike the Doi–Peliti path integral, equation (15), the initialisation here shows up as a term in
the action. In a diagrammatic perturbation theory, these ni particles starting from positions xi
will be shown as a small, filled circle acting as a source:

We will make the simplifying assumption of having only a single non-zero ni, namely n0,
and generalise our result in appendix B. The presence of the source spoils translational invari-
ance and as a result, the hallmark δ-function as it normally multiplies any correlation function,
say δ−(k0 +k1 + . . .+kn) will be replaced byˆ

d−
d
k0 e

ı̊k0·x0 δ(k0 +k1 + . . .+kn) = eı̊k1+...+kn·x0 (26)

where readability is improved by it, we will retain the integral.
The expectation value of a field-dependent observable O[ρ] can then be computed via the

path integral

⟨O[ρ]⟩=
ˆ

DρDρ̃ O[ρ]e−A[ρ,ρ̃] (27)

where ρ̃ is the purely imaginary response field. The normalisation is chosen such that ⟨1⟩= 1.
The actionA is then split into a bilinear and an interacting part, denotedA0 andAint respectively,
according to

A0[ρ, ρ̃] =

ˆ
ddxdt ρ̃(∂tρ−D∆ρ) (28)

and

Aint[ρ, ρ̃] =−
ˆ

ddxdt

{
ρ(x, t)D(∇ρ̃(x, t))2

+ ρ̃(x, t)∇x ·
(
ρ(x, t)∇x

[
V(x)+

ˆ
ddy

1
2
U(x− y)ρ(y, t)

])
+ ρ̃(x, t)

∑
i

ni δ(x− xi)δ(t− ti)

}
(29)

=

ˆ
d−
d
k1,2,3 d

−ω1,2,3 δ
−(k1 +k2 +k3)δ−(ω1 +ω2 +ω3)

×
{
ρ(k1,ω1)D(k2 ·k3)ρ̃(k2,ω2)ρ̃(k3,ω3)

+ ρ̃(k1,ω1)((k2 +k3) ·k3)ρ(k2,ω2)

[
V(k3)δ−(ω3)+

1
2
U(k3)ρ(k3,ω3)

]}
−
ˆ

d−
d
kd−ω ρ̃(k,ω)

∑
i

ni e
ı̊k·xi e−̊ıωti . (30)

Finally, expectations are computed in a perturbation theory about the bilinear theory using

⟨O[ρ]⟩=
∞∑
n=0

〈
(−Aint[ρ, ρ̃])

n

n!
O[ρ]

〉
0

, (31)
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where

⟨•⟩0 =
ˆ

DρDρ̃ • e−A0[ρ,ρ̃] (32)

denotes expectation with respect to the bilinear action, equation (28). The right hand side of
equation (31) involves products of fields and the Wick–Isserlis theorem [9] can be invoked to
express these in terms of the bare propagator,

obtained from the bilinear action. In d dimensions, the bare propagator reads

G(x− x ′, t− t ′) = θ(t− t ′)

(
1

4πD(t− t ′)

)d/2

exp

(
− (x− x ′)2

4D(t− t ′)

)
, (34)

with the Heaviside theta function θ(t) enforcing causality. This propagator is identical to that
of the corresponding Doi–Peliti field theory, equation (11). For later use, we recall the form of
the propagator in momentum-frequency representation,

⟨ρ(k,ω)ρ̃(k ′,ω ′)⟩0 =
δ(k+k ′)δ(ω+ω ′)

−̊ıω+Dk2 + r
, (35)

which we have amended by the extinction rate r→ 0+ to enforce causality, as equation (9).
Further, we introduce the mixed momentum-time representation,

⟨ρ(k, t)ρ̃(k ′, t ′)⟩0 = θ(t− t ′)δ(k+k ′)e−D(t−t ′)k2 , (36)

see equation (12). For non-interacting particles in a flat potential,∇V(x) = 0,∇U(x) = 0, the
bare propagator equals the full propagator,

⟨ρ(k, t)ρ̃(k ′, t ′)⟩= ⟨ρ(k, t)ρ̃(k ′, t ′)⟩0 (37)

as the only non-linear term in the action is the amputated three-point vertex

with the dashes on the propagators denoting spatial derivatives acting on the response fields
and the dotted line the scalar product of these derivatives. The presence of such a vertex in
the free particle case is a non-trivial feature of Dean’s equation and clashes somewhat with
the notion of ‘interaction’ associated with terms of order higher than bilinear [11]. As we will
demonstrate below, equation (38), which we will refer to interchangeably as Dean’s vertex or
a virtual branching vertex, is the term that implements the particle nature of the degrees of
freedom within the Dean framework. In contrast to Doi–Peliti, particle entity in the response
field formalism of Dean’s equation is a perturbative feature. The effect of Dean’s vertex is
illustrated in figure 1 by comparison with the standard diffusion equation, which lacks particle
entity.

The Doi–Peliti field theory and the response field theory derived from Dean’s equation can
be mapped onto each other by means of a Cole–Hopf transformation of the fields [21],

ψ† → eρ̃, ψ → ρe−ρ̃ . (39)

This equivalence implies that the two formalisms should be equally capable of capturing
particle entity. The precise mechanisms by which each does so, however, turn out to be very
different, as we will see in detail in sections 4 and 5.

7
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Figure 1. The time-dependent number density ρ(x, t) for a physical point particle under-
going diffusion is expected to remain localised under the dynamics, indicating that the
particle can only occupy one position in space at any given time. While this property
is preserved under Dean’s dynamics (left column), it is generally lost when resorting
to effective descriptions, such as the classical diffusion equation (right column). This
difference is most obvious when measuring the instantaneous particle number density
at two points a finite distance away from each other (bottom row).

2.3. Example: the two-point density correlation function

To illustrate the similarities and differences between the two formalisms introduced above, we
now calculate the two-point correlation function of the particle number density for n0 non-
interacting diffusive particles in a flat potential, ∇V(x) = 0 and ∇U(x) = 0, all initialised at
the same position x0 and time t0, first in the Doi–Peliti scheme and then using Dean’s equation.
While the result of this detailed calculation is somewhat trivial and can be derived by straight-
forward probabilistic arguments, its derivation elucidates certain formalism-specific cancel-
lation mechanisms that will play an important role in the remainder of this work. The reader
interested in the generic definition of particle entity but not in the details of the field theoretic
approach can skip directly to section 3.

We first use the parameterisation of the field theories in k and ω, which is very commonly
used in field theories. In real-space and time, the two-point correlation function C(x1,x2, t1, t2)
in the Doi–Peliti framework is the observable [11, 12]

C(x1,x2, t1, t2) =
〈(
ψ†(x2, t2)ψ(x2, t2)

)(
ψ†(x1, t1)ψ(x1, t1)

)
ψ†n0(x0, t0)

〉
(40)

=

(
n0
1

)〈
ψ(x2, t2)ψ̃(x1, t1)

〉〈
ψ(x1, t1)ψ̃(x0, t0)

〉
(41)

8
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+

(
n0
1

)〈
ψ(x1, t1)ψ̃(x2, t2)

〉〈
ψ(x2, t2)ψ̃(x0, t0)

〉
+ 2

(
n0
2

)〈
ψ(x2, t2)ψ̃(x0, t0)

〉〈
ψ(x1, t1)ψ̃(x0, t0)

〉

where we assume x1 ̸= x2 to avoid the special case of non-commutation of the operators. The
high number of terms in equation (40) is due to the Doi-shift, which splits each daggered
creator field in two terms, ψ† = 1+ ψ̃. This turns the contribution of the initial particles into
ψ†n0 =

∑n0
k

(n0
k

)
ψ̃n0 . The vertices made from a crossed circle in equation (42) are meant to

indicate an annihilation field at the indicated position and time with immediate re-creation.
Equation (40) has the generic form of a two-point correlation function in the Doi–Peliti frame-
work without interaction.

Equation (41) is still expressed in real space and direct time and needs to be Fourier-
transformed to write it in the common k,ω parameterisation. Each of the three terms in
equation (41) requires four integrals in k and four in ω, for example

△
= n0

ˆ
d−
d
k2d

−d
k ′1d

−d
k1d

−d
k0d

−ω2 d
−ω ′

1 d
−ω1 d

−ω0
δ−(k2 +k ′

1)δ
−(ω2 +ω ′

1)

−̊ıω2 +Dk22 + r

δ−(k1 +k0)δ−(ω1 +ω0)

−̊ıω1 +Dk21 + r

× eı̊(k2·x2+k ′
1 ·x1+k1·x1+k0·x0) e−̊ı(ω2t2+ω

′
1 t1+ω1t1+ω0t0) (44)

drawing on the propagator introduced in equation (9). Using the δ-functions, the integrals in
each term are immediately reduced to only two, all differing solely in the arguments of the
exponentials:

C(x1,x2, t1, t2) =
ˆ

d−
d
k2d

−d
k1d

−ω2 d
−ω1

1
−̊ıω2 +Dk22 + r

1
−̊ıω1 +Dk21 + r

×
{
n0 e

ı̊(k2·(x2−x1)+k1·(x1−x0)) e−̊ı(ω2(t2−t1)+ω1(t1−t0))

+ n0 e
ı̊(k2·(x2−x0)+k1·(x1−x2)) e−̊ı(ω2(t2−t0)+ω1(t1−t2))

+ n0(n0 − 1)eı̊(k2·(x2−x0)+k1·(x1−x0)) e−̊ı(ω2(t2−t0)+ω1(t1−t0))
}

(45)

with r→ 0+ still to be taken. The first of the three terms in the integrand describes the propaga-
tion of any of n0 particles from x0 at t0 to x1 at t1 and from there to x2 at t2. This term will
contribute only if t2 ⩾ t1 ⩾ t0. The second term describes a similar process, from x0 at t0 to
x2 at t2 and from there to x1 at t1, contributing only if t1 ⩾ t2 ⩾ t0. The last term describes the
propagation of two independent particles from x0 at t0 to x1 at t1 and another one from x0 at t0
to x2 at t2. There are n0(n0 − 1) such pairs. If n0 ⩽ 1, the last term vanishes, leaving only the

9
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first two terms, both of which vanish if t1 = t2 and x1 ̸= x2 as we will show below, because a
particle cannot possibly be found at two different places simultaneously. Equation (45) com-
pletes the derivation of the correlation function in the Doi–Peliti framework.

To derive the correlation function in Dean’s framework, we use the action as stated in
equation (23) with both the interaction and the source treated perturbatively. The role of the
creator fields in the field theory of Dean’s equation is very different from Doi–Peliti. In the
Dean framework, the two-point correlation function is

as every field ρ(x, t) can be matched with a creator field from the perturbative part of the action,
shown as a small filled circle at the right end of the incoming propagators. Each such creator
field appears with a coupling n0, which we have highlighted by writing it in brackets behind
each source in the diagram. While the second term in equation (46) is structurally identical
to the last term in equation (42) and indeed captures the same process, the pre-factors of the
two differ by n0. The first two terms in equation (42) on the other hand seem to be absent
from equation (46). In turn, the first diagram of equation (46), is solely due to the Dean-vertex
equation (38) and therefore absent in Doi–Peliti, equation (42). Writing this term in k,ω gives

using equation (35) for the propagator and where the factor (−2n0Dk1 ·k2) is due to the sign
of the interaction term in the action equation (23), including a factor 2 from symmetry.

The second term in equation (46) can be read off from equations (42) and (45). Its pre-factor
of n20 has to be split into n

2
0 = n0(n0 − 1)+ n0 to reveal the cancellation mechanism,

△
=

ˆ
d−
d
k2d

−d
k1d

−ω2 d
−ω1 e

ı̊(k2·(x2−x0)+k1·(x1−x0)) e−̊ı(ω2(t2−t0)+ω1(t1−t0))× 1
−̊ıω2 +Dk22 + r

× 1
−̊ıω1 +Dk21 + r

(
−2n0Dk1 ·k2

−̊ı(ω1 +ω2)+D(k1 +k2)2 + r
+ n0 + n0(n0 − 1)

)
(49)

10
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=

ˆ
d−
d
k2d

−d
k1d

−ω2 d
−ω1 e

ı̊(k2·(x2−x0)+k1·(x1−x0)) e−̊ı(ω2(t2−t0)+ω1(t1−t0))

×

{
n0

1
−̊ı(ω1 +ω2)+D(k1 +k2)2 + r

×
(

1
−̊ıω2 +Dk22 + r

+
1

−̊ıω1 +Dk21 + r
− r

(−̊ıω1 +Dk21 + r)(−̊ıω2 +Dk22 + r)

)
+ n0(n0 − 1)

1
−̊ıω2 +Dk22 + r

1
−̊ıω1 +Dk21 + r

}
. (50)

The term proportional to r in the numerator eventually vanishes when r→ 0. To see now that
equation (50) is in fact identical to the first two terms in equations (42) and (45) requires a
simple substitution of the dummy variables, for example k1 +k2 becoming k1,ˆ

d−
d
k2d

−d
k1d

−ω2 d
−ω1 e

ı̊(k2·(x2−x0)+k1·(x1−x0)) e−̊ı(ω2(t2−t0)+ω1(t1−t0))

× 1
−̊ı(ω1 +ω2)+D(k1 +k2)2 + r

1
−̊ıω2 +Dk22 + r

(51)

=

ˆ
d−
d
k2d

−d
k1d

−ω2 d
−ω1 e

ı̊(k2·(x2−x1)+k1·(x1−x0)) e−̊ı(ω2(t2−t1)+ω1(t1−t0))

× 1
−̊ıω1 +Dk21 + r

1
−̊ıω2 +Dk22 + r

. (52)

In summary, after pairing in equation (50) the interaction term of Dean’s equation with the
two independent propagators, the field theory of Dean’s equation reproduces the two-point
correlation function as the Doi–Peliti framework, equation (45), except for a term proportional
to r which vanishes in the limit of r→ 0:

△
=

ˆ
d−
d
k2d

−d
k1d

−ω2 d
−ω1

1
−̊ıω2 +Dk22 + r

1
−̊ıω1 +Dk21 + r

×
{
n0 e

ı̊(k2·(x2−x1)+k1·(x1−x0)) e−̊ı(ω2(t2−t1)+ω1(t1−t0))

+ n0 e
ı̊(k2·(x2−x0)+k1·(x1−x2)) e−̊ı(ω2(t2−t0)+ω1(t1−t2))

− n0
r

−̊ı(ω1 +ω2)+D(k1 +k2)2 + r

× eı̊(k2·(x2−x0)+k1·(x1−x0)) e−̊ı(ω2(t2−t0)+ω2(t1−t0))

+ n0(n0 − 1)eı̊(k2·(x2−x0)+k1·(x1−x0)) e−̊ı(ω2(t2−t0)+ω1(t1−t0))
}
. (54)

This concludes the demonstration that the Doi–Peliti framework and Dean’s equation produce
identical results for the two-point correlation function. Equation (50) illustrates the central
cancellation mechanism, which we generalise to the relevant observables below, in particu-
lar appendix A. As equation (38) is a perturbative term, the resulting branching diagrams in
equation (53) discount contributions due to independent particle movement, shown as two
parallel propagators in equation (53), of which there are n20 rather than n0(n0 − 1).

11
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Performing the calculation above immediately in direct time and real space is most easily
done assuming a particular time ordering, say t2 > t1 > t0. In that case, Doi–Peliti produces

C(x1,x2, t1, t2) = n0
e−

(x2−x1)
2

4D(t2−t1)

(4πD(t2 − t1))d/2
e−

(x1−x0)
2

4D(t1−t0)

(4πD(t1 − t0))d/2

+ n0(n0 − 1)
e−

(x1−x0)
2

4D(t1−t0)

(4πD(t1 − t0))d/2
e−

(x2−x0)
2

4D(t2−t0)

(4πD(t2 − t0))d/2
(55)

directly from equation (42) using the propagator equation (11). As t2 > t1, only the first and the
last diagrams of equation (42) contribute, the first due to a particle travelling from x0 to x1 and
then to x2 and the last due to two particles travelling independently. In the limit of t2 ↓ t1 the
first term, proportional to n0, becomes n0δ(x2 − x1)(4πD(t1 − t0))−d/2 e−(x1−x0)2/(4πD(t1−t0),
vanishing if x1 ̸= x2 as the same particle cannot be at two different places simultaneously.
Figure 1 provides a visual illustration of this property.

Although this approach no longer requires regularisation by the extinction rate r, it is some-
what more demanding to perform the calculation of the correlation function within Dean’s
equation in direct time and real space using equation (34), because the Dean-vertex requires a
convolution over the time and the position where the virtual branching takes place,

After some algebra, Dean’s equation produces of course the same correlation function
equation (55) as Doi–Peliti.

In explicit calculations below, notably appendix A, we will make use of a mixed
momentum-time, k, t, parameterisation, for which we briefly outline the cancellation mech-
anism in the following. In Doi–Peliti, the diagrams equation (42) can immediately be written
as

C(x1,x2, t1, t2) =
ˆ

d−
d
k2d

−d
k1

×
{
n0 e

ı̊(k2·(x2−x1)+k1·(x1−x0)) θ(t2 − t1)θ(t1 − t0)e
−Dk22(t2−t1)−Dk21(t1−t0))

+ n0 e
ı̊(k2·(x2−x0)+k1·(x1−x2)) θ(t1 − t2)θ(t2 − t0)e

−Dk21(t1−t2)−Dk22(t2−t0))

+ n0(n0 − 1)eı̊(k2·(x2−x0)+k1·(x1−x0)) θ(t2 − t0)θ(t1 − t0)

× e−Dk22(t2−t0)−Dk21(t1−t0))

}
(57)

by replacing each of the bare propagators of equation (41) by equation (12) and making use
of the δ-functions on the momenta, or by direct interpretation of the diagrams.

Dean’s equation, equation (46), on the other hand, produces

12
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C(x1,x2, t1, t2) =
ˆ

d−
d
k2d

−d
k1d

−d
k0 e

ı̊k2·x2 eı̊k1·x1 eı̊k0·x0 δ−(k2 +k1 +k0)

×

{
(−2n0Dk1 ·k2)

ˆ ∞

−∞
dt ′ θ(t2 − t ′)

× e−Dk22(t2−t ′) θ(t1 − t ′)e−Dk21(t1−t ′) θ(t ′ − t0)e
−Dk20(t

′−t0)

}

+

ˆ
d−
d
k2d

−d
k1 e

ı̊k2·(x2−x0) eı̊k1·(x1−x0)

×
{
n20θ(t2 − t0)e

−Dk22(t2−t0) θ(t1 − t0)e
−Dk21(t1−t0)

}
, (58)

with the convolution over t
′
, the time of the virtual branching in the first diagram. While the

lower limit of this integral is fixed to t0 by θ(t ′ − t0), the upper limit is tmin =min(t1, t2) via
the product of two Heaviside θ-functions. Its two possible values generate two terms as in
equation (42), conditioned by θ-functions. Using the δ-function in the first line of equation (58)
to eliminate the integral over k0, the n0 branching terms each produceˆ tmin

t0

dt ′ e−Dk22(t2−t ′) e−Dk21(t1−t ′) e−D(k1+k2)2(t ′−t0)

= e−Dk22(t2−t0) e−Dk21(t1−t0)
(
1− e−2Dk1·k2(tmin−t0)

) 1
2Dk1 ·k2

. (59)

The 1-term in the bracket is independent of tmin and cancels with n0 of the n20 disconnected
terms. The remaining terms can be simplified using for example

e−Dk21(t1−t0) e−2Dk1·k2(t1−t0) = e−D(k1+k2)2(t1−t0) eDk
2
2(t1−t0) (60)

in the case of tmin = t1 and, after a shift in ki, such as k1 +k2 → k1 in the example above,
reproduce the result from Doi–Peliti, equation (57). This concludes the illustration.

To summarise this section, the correlation function of the particle position of n0 non-
interacting particles is not a single term, as it needs to capture multiple scenarios of particles
moving, while keeping track of the particle nature of the constituent degrees of freedom. Both
frameworks result in the same expressions, such equations (45), (54), (55) and (57). A can-
cellation mechanism such as equation (49) in the k,ω parameterisation and the convolution
in equation (59) for k, t, connects Doi–Peliti and Dean, revealing that the perturbative, virtual
branching in Dean’s framework is in fact a sum of sequential propagation of a single particle
and independent propagation of two distinct ones.

The calculation in this preliminary section suggests that the interaction vertex equation (38)
in Dean’s formalism, a vertex that would be missing in a naive response field theory of the
corresponding Fokker–Planck equation, contains the same information as the commutation
relation of the Doi–Peliti ladder operators. The importance of this observation will become
evident in sections 4 and 5, where we analyse the particle nature in greater detail.

3. Probing for particle entity

Within the Dean framework ρ(x, t) denotes the instantaneous particle number density in state
x at time t. We define particle entity as a property of the evolution equation for ρ(x, t)whereby
this time-dependent random variable can be written as a finite sum of ‘single particle densities’
with integer coefficients. In the case of a discrete phase space, the single-particle density for

13
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a particle in state x̄ is the Kronecker-delta with unit prefactor, δx,x̄. For continuous degrees
of freedom, the single-particle density for a particle in state x̄ is the Dirac-delta distribution
normalised to unity, δ(x− x̄). Correspondingly,

ρ(x, t) =

{∑
i ni(t)δx,x̄i , for discrete states∑
i ni(t)δ(x− x̄i), for continuous states

(61)

where ni(t) ∈ N. It follows from this requirement that the integral of the particle number dens-
ity ρ(x, t) over any (sub-)volume Ω of the space is an integer-valued random variable,

∀Ω⊂ Rd :

{∑
i∈Ω ρ(xi, t) ∈ N, for discrete states´

Ω
ddxρ(x, t) ∈ N, for continuous states

, (62)

where integrals are performed in the Dirac measure, rather than by expressing the Dirac-delta
distribution as the limit of a series of bump functions under a Lebesgue integral.

For discrete states, equation (62) also implies equation (61), i.e. there can be no densities
satisfying equation (62) that are not a sum of Kronecker deltas with integer coefficient. We
leave the proof that this equivalence also holds in the continuum for future work. Such a proof
will surely draw on the arbitrariness of Ω, which can be used to include or exclude from the
integral in equation (62) any part of ρ(x, t). In the case of stochastic dynamics, it is convenient
to re-express the condition equation (62) in terms of an expectation value as〈

exp

(
2π ı̊
ˆ
Ω

ddxρ(x, t)
)〉

= 1 , (63)

which needs to be satisfied for any volume Ω and all times t. Equation (63) will play the role
of a signature of particle entity in the following.

Obviously, equation (62) implies equation (63). Yet, expressing the particle entity con-
dition as an expectation might appear less stringent than demanding it at the level of indi-
vidual trajectories. However, rewriting equation (63) as ⟨cos(2π

´
ddxρ(x, t))⟩= 1 on the basis

of ρ(x, t) being real, shows that the integral must be integer valued almost surely, because
R ∋ cos(x)⩽ 1 for x ∈ R.

In order to ease the calculation of the left-hand side of equation (63) for a particular field
theory of interest, we can expand the complex exponential as a Taylor series and invoke lin-
earity of the expectation to obtain the particle entity signature,

where the left-hand side is now a function of the nth full moment of the integrated particle
number density,

〈(´
Ω
ddxρ(x, t)

)n〉
. In equation (64) we have also introduced the diagram-

matic notation for the nth full moment of the integrated particle number density. The hatched
vertex henceforth indicates generally a sum of possibly disconnected diagrams involving an
arbitrary amount of sources. More specifically, here it is the n-fold spatial integral of a sum of
products of connected diagrams. An example for such a sum is equation (46). These moments
are perfectly suited for being calculated in both Doi–Peliti and response field theories, as done
in the following.

An alternative form of our particle entity signature can be obtained by recognising that
the left hand side of equation (63) is also the moment-generating function ⟨ezX⟩ of the random
variableX=

´
Ω
dxρ(x, t) evaluated at z= 2π ı̊. It is a well-known result from the field-theoretic

literature on equilibrium critical phenomena [9, 25] that the generating function of the full
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moments ⟨Xn⟩ can be expressed as the exponential of the generating function of the so-called
connected moments, denoted ⟨Xn⟩c. Outside the field-theoretic literature, connected moments
are usually referred to as cumulants [26]. While one would normally expect source fields j(x, t)
to be introduced corresponding to a conjugate variable z at each point in space and time, in the
present context a single variable suffices, as in equation (64) every field ρ(x, t) is integrated
over the same volume Ω. Diagrammatically,

where we have introduced the notation for the nth connected moment of the integrated particle
number density, shown as a circular vertex on the right, which differs from that of the corres-
ponding full moment also by the presence of an explicit, single, ingoing propagator emerging
from a single source, shown as a filled circle, the only possible form of a connected diagram
contributing to moments of the density. In equilibrium statistical mechanics, this relationship
provides the connection between the partition function and the Helmholtz free energy [9, 25].
Generating functions of observables such as n-point correlation functions of ρ(x, t) can be
reduced to those of connected diagrams as long as the observables can be written as (func-
tional) derivatives of an exponential and provided that each resulting diagram can be written
as a product of connected diagrams. Under these conditions, equation (65) does all the right
accounting.

Evaluating equation (65) at z= 2π̊ı, according to equation (64) one can write

exp

( ∞∑
n=1

(2π ı̊)n

n!

〈(ˆ
Ω

ddxρ(x, t)
)n〉

c

)
= 1 , (66)

or, equivalently,

for some integer ℓ ∈ Z, on the basis of the connected moments of the particle number, to be
compared to the particle signature on the basis of the full moments, equation (64).

4. Particle entity in Doi–Peliti

Doi–Peliti field theories are designed to respect particle entity and they do indeed do so on a
rather fundamental level. To probe for particle entity, we want to use equation (63) with ρ(x, t)
replaced by an object suitable for a Doi–Peliti field theory. In such a field theory, the instant-
aneous particle number at any position x is probed by the number operator n̂(x) = a†(x)a(x).
The expected particle number at position x and time t is therefore

⟨n(x, t)⟩= ⟨☼|a†(x)a(x) |Ψ(t)⟩ , (68)

using a continuum version of the notation introduced in section 2, in particular equation (3).
While this expectation might be any non-negative real, the instantaneous a†(x)a(x) is an
integer. As already discussed in section 3, equation (63), we therefore expect

⟨☼|exp
(
2π̊ıa†(x)a(x)

)
|Ψ(t)⟩= 1 (69)
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to hold for every x, as e2π̊ın = 1 for any n ∈ Z. If this holds for every point x, it also holds for
every patch Ω, since

⟨☼|exp

(
2π̊ı
∑
x∈Ω

a†(x)a(x)

)
|Ψ(t)⟩= ⟨☼|

∏
x∈Ω

exp
(
2π̊ıa†(x)a(x)

)
|Ψ(t)⟩ , (70)

where we have used that operators at different x commute. In the continuum, one might argue
that the particle number at x can only ever be 0 or 1, possibly leading to some simplifications,
but on the lattice occupation is not bound to be sparse in this sense.

To show that equation (69) is indeed satisfied in general Doi–Peliti field theories, we recall
that the state |Ψ(t)⟩ can be written as a statistical superposition of integer occupation number
states on the lattice, equation (3), which are eigenstates of the number operator a†(x)a(x)with
integer eigenvalue nx ∈ N. The left hand side of equation (69) thus immediately simplifies to
the desired result,∑

{ni}

P({ni}, t)exp(2π̊ınx)⟨☼|{ni}⟩=
∑
{ni}

P({ni}, t) = 1 . (71)

To see more clearly which features of the formalism are responsible for this particular prop-
erty of the state |Ψ(t)⟩ being preserved under the dynamics, and to see this at the level of fields,
we can alternatively follow the standard procedure, outlined in equation (15), to express the
operator exp

(
2π̊ıa†(x)a(x)

)
in terms of scalar fields ψ(x, t) and ψ†(x, t). The simple mapping

of operator to field applies as soon as the operators are normal ordered,

exp
(
za†(x)a(x)

)
=

∞∑
n=0

1
n!
zn
(
a†(x)a(x)

)n
(72)

=
∞∑
n=0

1
n!
zn

n∑
k=0

{
n
k

}(
a†(x)

)k
a(x)k (73)

where we have replaced 2π̊ı by z to improve readability and used [23] to normal order(
a†(x)a(x)

)n
. In terms of fields, the observable equation (70) is thus

O = ⟨☼|exp

(
z
∑
x∈Ω

(
a†(x)

)
a(x)

)
|Ψ(x, t)⟩ (74)

= ⟨☼|
∏
x∈Ω

∞∑
n=0

1
n!
zn

n∑
k=0

{
n
k

}(
a†(x)

)k
a(x)k |Ψ(x, t)⟩ (75)

=

〈∏
x∈Ω

∞∑
n=0

1
n!
zn

n∑
k=0

{
n
k

}
ψk(x, t)I(ψ̃(0)+ 1)

〉
(76)

=

〈
exp

(∑
x∈Ω

ψ(x, t)(ez− 1)

)
I(ψ̃(0)+ 1)

〉
(77)

as ⟨☼|(a†(x))k = ⟨☼| [13] and using equation (17) for the initialisation I(ψ̃(0)+ 1). From
equation (76) to (77), we draw on the mixed bivariate generating function for the Stirling
numbers of the second kind [27],

∞∑
n=0

n∑
k=0

{
n
k

}
1
n!
znyk = exp(y(ez−1)) . (78)

For z= 2π̊ı, and any integer multiple thereof, equation (77) indeed produces O =
⟨I(ψ̃(0)+ 1)⟩= 1 as required by equation (63). Because this calculation never draws on any
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particular action, but rather on the fundamentals of normal ordering, Doi–Peliti field theories
respect particle entity universally in the presence of any interactions and potentials.

5. Particle entity in response field theories: Dean’s equation

Demonstrating that the response field theory derived from Dean’s equation possesses particle
entity turns out to be a much more challenging task, which requires us to compute explicitly
the connected moments of the integrated particle number density to arbitrary order. This cal-
culation draws on the specific action equations (23) and (24) as we perform it here for the case
of non-interacting diffusive particles without external potential. This is done most conveni-
ently by first computing the connected moments of the density in the mixed momentum-time
representation, where Dean’s action reads

A[ρ, ρ̃] =
ˆ

d−
d
kdt ρ̃(k, t)(∂t+Dk2)ρ(−k, t)− ρ̃(k, t)

∑
i

ni e
ı̊k·xiδ(t− ti)

+

ˆ
d−
d
kd−

d
k ′dtD(k ·k ′)ρ̃(k, t)ρ̃(k ′, t)ρ(−(k+k ′), t). (79)

In this parametrisation, we find (appendix A, equation (A26))

⟨ρ(k1, t) . . .ρ(kn, t)⟩c = n0θ(t− t0)e
ı̊k1+...kn·x0

n∑
m=1

(−1)m−1(m− 1)!

×
∑

{P1,...,Pm}∈P({1,...,n},m)

e−T(t−t0)
∑m

i=1K(Pi)2 (80)

with P ({1, . . . ,n},m) the set of all partitions of the set {1, . . . ,n} into m non-empty, distinct
subsets Pi with i = 1, . . . ,m, i.e.∪m

i=1Pi = {1,2, . . . ,n} and Pi ∩Pj = ∅ for i ̸= j. The sum thus
runs over all possible partitions of {1,2,…,n} into m non-empty sets. There is one partition for
m= n and n for m= 1. The vector featuring in the right-most exponential of equation (80)

K(Pi) =
∑
p∈Pi

kp (81)

is the total momentum given by the indices in the subset Pi, i.e. it is the total momentum of the
subset Pi, and by linearity,K(A)+K(B) =K(A∪B). For example, one partition into two of
{1,2,3,4} is {P1 = {1,2,4},P2 = {3}}, which is one of seven elements of P ({1,2,3,4},2).
In this example, the momenta of the subsets are K(P1) = k1 +k2 +k4 and K(P2) = k3. Dia-
grammatically, the right-hand side of equation (80) is obtained by summing over all connected,
topologically distinct diagrams with a single incoming propagator and n outgoing propagators
labelled by the external momenta ki (i = 1, . . . ,n), where we need to account for all non-
equivalent permutations of the latter.

The connected moments of the integrated particle number density in a patch Ω are then
obtained by Fourier back-transforming equation (80) into position-time representation and
integrating over the probing locations xi ∈ Ω,〈ˆ

Ω

ddx1 . . . d
dxnρ(x1, t) . . .ρ(xn, t)

〉
c

(82)
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=

ˆ
Ω

n∏
i=1

ddxi

ˆ n∏
j=0

d−
d
kj exp

(
−̊ı

n∑
ℓ=1

kℓ · xℓ

)
⟨ρ(k1, t) . . .ρ(kn, t)⟩c (83)

=

ˆ
Ω

n∏
i=1

ddxi

ˆ n∏
j=1

d−
d
kj exp

(
−̊ı

n∑
ℓ=1

kℓ · (xℓ− x0)

)

× n0θ(t− t0)
n∑

m=1

(−1)m−1(m− 1)!
∑

{P1,...,Pm}∈P({1,...,n},m)

e−D(t−t0)
∑m

p=1K(Pp)2 . (84)

The integrals in equation (84) can be carried out partition by partition, by taking the integ-
ration inside the summation over m= 1, . . . ,n and the partitions {P1, . . .} ∈ P ({1, . . . ,n},m).
As xi and kj are both dummy variables, we may think of subset Pp containing indices 1, . . . ,a
with a= |Pp|, so that the integrals to be carried out for each p= 1, . . . ,m are

Jp =
ˆ
Ω

a∏
i=1

ddxi

ˆ a∏
j=1

d−
d
kj exp

(
−̊ı

a∑
ℓ=1

kℓ · (xℓ− x0)

)
e−D(t−t0)K(Pp)2 . (85)

In this indexing we have K(Pp) = k1 + · · ·+ka which simplifies to k̃1 after suitable shifting
of the origin in the integration over k1 = k̃1 − (k2 + · · ·+ka), so that

Jp =
ˆ
Ω

a∏
i=1

ddxi

ˆ
d−
d
k̃1 e

−̊ık̃1·(x1−x0) e−D(t−t0)k̃21 ×
ˆ a∏

j=2

d−
d
kj exp

(
−̊ı

a∑
ℓ=2

kℓ · (xℓ− x1)

)
(86a)

=

ˆ
Ω

a∏
i=1

ddxiG(x1 − x0, t− t0)δ(x2 − x1) . . . δ(xa− x1) (86b)

= IΩ(t− t0) (86c)

where we have used equations (34) and (36) in equation (86b) and introduced

IΩ(t− t0) =
ˆ
Ω

ddxG(x− x0, t− t0) , (87)

in equation (86c), which is the probability to find a particle at time t within the volume Ω that
had at time t0 been placed at x0. We may drop the time-dependence of IΩ where that improves
readability.

As Jp is independent of the specific partition, the sum over partitions {P1, . . . ,Pm} ∈
P ({1, . . . ,n},m) in equation (84) amounts to multiplying a product of m such integrals by
the number of partitions, given by the Stirling numbers of the second kind. Overall,

which provides us with the information we need to probe the theory for particle entity. It is
a key result of the present work. Its derivation is generalised to distinct initial positions in
appendix B.

Using the particle entity signature based on connected diagrams, equation (67), confronts
us with some undesirable hurdles due to convergence. We therefore turn our attention to the
full moments, which can be constructed from the connected moments via equation (65), so
that for t> t0,
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=
dn

dzn

∣∣∣∣
z=0

exp

( ∞∑
m=1

zm

m!

〈(ˆ
Ω

ddxρ(x, t)
)m〉

c

)
(90)

=
dn

dzn

∣∣∣∣
z=0

exp

( ∞∑
m=1

zm

m!
(−n0)

m∑
ℓ=1

(−IΩ)ℓ
{

m
ℓ

}
(ℓ− 1)!

)
(91)

=
dn

dzn

∣∣∣∣
z=0

exp

(
−n0

∞∑
ℓ=1

(−IΩ)ℓ(ℓ− 1)!
∞∑
m=ℓ

zm

m!

{
m
ℓ

})
, (92)

where we have changed the order of summation in the exponential to arrive at the final equality.
This step deserves further scrutiny below. Using in equation (92) the generating function of
the Stirling numbers [27] in the form

∞∑
m=ℓ

zm

m!

{
m
ℓ

}
=

(ez− 1)ℓ

ℓ!
, (93)

as used previously in the Doi–Peliti field theory, equation (78), leads to

We briefly return to the change of the order of summation from equation (91) to (92). To justify
this, we require absolute convergence

∞∑
ℓ=1

∞∑
m=ℓ

|z|m

m!
IℓΩ

{
m
ℓ

}
(ℓ− 1)!<∞ (95)

for IΩ ∈ [0,1] and zwithin a finite vicinity around the origin, given the repeated differentiation
in equation (94). As equation (93) holds for all z ∈ C, we require

∑∞
ℓ=1 I

ℓ
Ω(exp(|z|)− 1)ℓ/ℓ <

∞ and thus |z|< ln(2) by the ratio test.
Rewriting the exponent in equation (94) for any |z|< ln(2) as a logarithm,

∞∑
l=1

(−x)l

l
=− log(1+ x) , (96)

we have

=
dn

dzn

∣∣∣∣
z=0

n0∑
k=0

(
n0
k

)
(ez− 1)kIkΩ (98)

=

n0∑
k=0

(
n0
k

)
IkΩ

dn

dzn

∣∣∣∣
z=0

k∑
j=0

(
k
j

)
(−1)jez(k−j) (99)

=

n0∑
k=0

(
n0
k

)
IkΩ

k∑
j=0

(
k
j

)
(−1)j(k− j)n , (100)
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and using the definition of the Stirling numbers of the second kind [27]

k∑
g=0

(
k
g

)
(−1)g(k− g)n = k!

{
n
k

}
, (101)

we finally arrive at

This is the first central result of the present section. The derivation above implicitly used that
n0 is integer. This requirement turns out to also be important for the physical interpretation of
the result, which we discuss in detail in appendix C.

We now derive a different form of equation (102), which offers a more immediate physical
interpretation. To this end, we draw on the identity

n0∑
k=0

(
n0
k

)
(1− x)n0−kxkkn =

n0∑
ℓ=0

(
n0
ℓ

)
xℓℓ!

{
n
ℓ

}
(103)

which can be obtained by resolving the binomial (1− x)n0−k on the left into a sum, collecting
terms of order xℓ and then using

(n0
k

)(n0−k
ℓ−k

)
=
(n0
ℓ

)(
ℓ
k

)
to arrive at an expression that simplifies

to the final sum by means of equation (101).
Using equation (103) in equation (102) gives〈(ˆ

Ω

ddxρ(x, t)
)n〉

=

n0∑
k=0

(
n0
k

)(
1− IΩ(t− t0)

)n0−k(
IΩ(t− t0)

)k

kn , (104)

which has a rather simple physical interpretation: of the (integer) n0 particles, k can be found
in the volume Ω, each independently with probability IΩ, so that the probability of such a
configuration is that of a repeated Bernoulli trial,

(n0
k

)
(1− IΩ)n0−kIkΩ. As k particles are in the

relevant volume, the contribution to the nth particle number moment is kn.
In the form equation (104), the particle number moments can be used in our particle entity

signature equation (64),

=

n0∑
k=0

(
n0
k

)
(1− IΩ)

n0−kIkΩ

( ∞∑
n=0

(2π̊ı)n

n!
kn
)

= 1 , (106)

where we have used e2π̊ık = 1 for k ∈ Z in the last bracket and the normalisation of a bino-
mial distribution. To change the order of summation going from equation (105) to (106) we
draw on the absolute convergence of the last line equation (106). This concludes the proof
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of particle entity on the basis of equation (64) in the Dean formalism, the second central res-
ult of this section. As already hinted at in section 2.3, we have seen that the precise form of
Dean’s vertex equation (38) plays a fundamental role in generating the diagrammatic structure
responsible for the enforcement of particle entity in its field theory. We expect that perturb-
ative treatments affecting the vertex form, the extreme case being its complete removal and
subsequent treatment of Dean’s equation as a classical diffusion equation, results in the break-
down of particle entity under the dynamics (figure 1).

Therefore a counterexample that fails to satisfy equation (63) would be a regular Fokker–
Planck equation without the multiplicative noise of Dean’s equation. The solution is the prob-
ability density of a single degree of freedom, but may be misinterpreted as an instantaneous
particle density, and powers of this density as correlation functions, thereby allowing a single
particle to have a finite density at multiple points simultaneously. Treated in the response-
field theory framework this Fokker–Planck equation would lack the three-point vertex of
Dean’s theory, meaning that such a naive Fokker–Planck theory would not preserve particle
entity.

6. Conclusion

To the best of our knowledge, this paper presents the first formalisation and systematic study
of the concept of particle entity in the context of statistical field theory. Focusing on two well-
known field theoretic formalisms applied to the study of stochastic processes, namely the
Doi–Peliti [11] and the Martin–Siggia–Rose–Janssen–De Dominicis [14–16] response field
theories, we have demonstrated that particle entity is enforced in a formalism-specific way. In
Doi–Peliti field theories, particle entity is built into its foundation, namely in the commutation
relation of the ladder operators, equation (1). In the response field theory derived from Dean’s
equation, particle entity is a perturbative feature that relies on the precise form of the interac-
tion vertex, equation (38). This ‘Dean vertex’ originates from the Itô-multiplicative noise term
in the original Langevin equation (19). It compensates for some overcounting that occurs in
the bilinear part of the field theory equation (28), a mechanism that was already identified in an
earlier work on the statistics of the non-interacting Brownian gas [20]. As a result, one is faced
with more complicated branching diagrams in the response field formalism equipped with
particle entity via Dean’s equation compared to the Doi–Peliti formalism, cf equations (40)
and (46) or equations (55) and (56).

To test for particle entity, we introduced the condition equation (63), that we rewrote
in terms of particle number moments, equation (64), and, on the basis of the identity
equation (65), in terms of connected moments, equation (67).

In section 4, we were able to show in a few lines that particle entity according to
equation (64) generally holds in Doi–Peliti field theories, equation (77). This finding is inde-
pendent of the specifics of the action. To demonstrate particle entity for non-interacting, dif-
fusive field theories on the basis of Dean’s equation, we used in section 5 our key result on
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the connected particle number moments, equation (88), before constructing the main result
equation (106) on the basis of the full moments, with some of the more cumbersome calcula-
tions relegated to appendix A.

It is interesting to speculate whether our derivation simplifies further by exploiting the well-
known identity [9] relating the Legendre transform of the generating function of the connected
moments and the effective action, which only depends on the one-particle irreducible (1PI) dia-
grams. Since 1PIs represent a relatively small subset of all connected diagrams, a particle entity
signature of this type might be more easily applicable to theories involving pair interactions,
which are beyond the scope of the present analysis.
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Appendix A. Induction over connected diagrams

We want to prove that the connected moments of the particle number density in the response
field theory derived from Dean’s equation obey equation (80) to all orders of n, restated here
for convenience:

⟨ρ(k1, t) . . .ρ(kn, t)⟩c = n0θ(t− t0)e
ı̊k1+...kn·x0

n∑
m=1

(−1)m−1(m− 1)

×
∑

{P1,...,Pm}∈P({1,...,n},m)

e−D(t−t0)
∑m

i=1K(Pi)2 . (A1)

For this we have to consider all diagrams with a single incoming leg and an arbitrary number
n of outgoing legs, the first four orders of which are depicted in equations (A2)–(A5)
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The shading of the circular vertices above is meant as a visual reminder that we are now
dealing with connected moments of the local number density, which depend on an unordered
set of n external momenta k1, . . . ,kn, as opposed to connected moments of the integrated num-
ber density in a patch Ω (cf equations (80) and (84)). The shaded diagrams are by construction
invariant under permutations of the momenta k1, . . . ,kn.

We proceed by determining some of the shaded diagrams. The trivial case, n= 1 shown
in equation (A2), is given by the propagator equation (36) and the perturbative contribution
from the source equation (24) with coupling n0. Through direct computation in the mixed
momentum-time representation, see equation (79), we find for the n= 2 case equation (A3):

= n0 e
ı̊k1+k2·x0

[
e−D(t−t0)(k1+k2)2 −e−D(t−t0)(k21+k22)

]
, (A7)

where the integral over t arises from representing the Dean vertex equation (38) in k-t-space.
Each Dean vertex comes with a symmetry factor of 2. A factor of (−2k1 ·k2)−1 that arises
in the t integration precisely cancels with the vertex prefactor −2Dk1 ·k2, which simplifies
the result equation (A7) considerably. A similar calculation for the n= 3 case equation (A4)
yields

The left-hand side of equation (A8) contains the sum over all distinct ways to assign the
external momenta to the outgoing legs, as shown in equation (A4). The whole sum of the
terms is necessary for the coefficients of the Dean vertices to cancel with the k-dependent
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factor coming down from the t-integrations. We will see that this mechanism is instrumental
in performing the induction later on.

Based on equations (A7) and (A8) we conjecture and indeed show below that a general
connected moment has the form equation (80),

with P ({1, . . . ,n},m) the set of all partitions of the set {1, . . . ,n} into m non-empty, distinct
subsets Pi with i = 1,2, . . . ,m so that∪m

i=1Pi = {1,2, . . . ,n}, as introduced after equation (80).
The second sum

∑
{P1,...,Pm}∈P({1,...,n},m) in equation (A9) thus runs over all distinct partitions

of {1,2, . . . ,n} into m subsets P1, . . . ,Pm. There is no order to the subsets, so that the partition
{{1},{2}} of {1,2} is identical to {{2},{1}} and thus considered the same in P ({1,2},2).
We use K(P) to denote sums over momenta given by the indices in set P, equation (81),
K(P) =

∑
p∈Pkp. Equation (A9) is a function of the set of momenta {k1, . . . ,kn}, or simply

the indices {1, . . . ,n} alone, and invariant under their permutation.
Equation (A9) will be our induction hypothesis, with the induction to be taken in n, the

number of outgoing legs. The base cases n= 1, n= 2 and n= 3 are immediately verified,
as P ({1},1) = {{{1}}} reduces equation (A9) trivially to equation (36), P ({1,2},1) =
{{{1,2}}} and P ({1,2},2) = {{{1},{2}}} to equation (A7) and P ({1,2,3},1) =
{{{1,2,3}}}, P ({1,2,3},2) = {{{1},{2,3}},{{2},{3,1}},{{3},{1,2}}} and
P ({1,2,3},3) = {{{{1},{2},{3}}}} to equation (A8).

We want to show that if equation (A9) holds for all strictly positive n≤ m− 1 then it also
holds for n=m. To this endwe consider two distinct subsets of indicesA andBwith cardinality
|A|> 0 and |B|> 0 respectively, so thatA∩B= ∅,A∪B= {1, . . . ,n} and thus |A|+ |B|= n.
Each of these sets enters as the argument of diagrams

that have |A| and |B| external legs respectively, each parameterised by the momenta given by
the subsets, {kq|q ∈ A} and {kq|q ∈ B} respectively. These diagrams can be ‘stitched together’
via the Dean vertex, equation (38), so that

×

 |A|∑
a=1

(−1)a−1(a− 1)!
∑

{P1,...,Pa}∈P(A,a)

e−D(t−t ′)
∑a

i=1 K(Pi)2


×

 |B|∑
b=1

(−1)b−1(b− 1)!
∑

{Q1,...,Qb}∈P(B,b)

e−D(t−t ′)
∑b

j=1 K(Qj)
2


= n0θ(t− t0)e

ı̊k1+...+kn·x0
|A|∑
a=1

|B|∑
b=1

(−1)a+b(a− 1)!(b− 1)!(−2DK(A) ·K(B))
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×
∑

{P1,...}∈P(A,a)

∑
{Q1,...}∈P(B,b)

eD(k1+···+kn)2t0 e−Dt
∑a

i=1 K(Pi)2 e−Dt
∑b

j=1 K(Qj)
2

×
ˆ t

t0

dt ′ exp

Dt ′
 a∑

i=1

K(Pi)2 +
b∑
j=1

K(Qj)
2 − (k1 + · · ·+ kn)

2

 . (A10)

On the left is a diagram with |A|+ |B| legs and on the right we use equation (A9) for diagrams
with fewer legs, because neither A nor B can be empty. If we can show that the sum of all
diagrams on the left obeys equation (A9), then the induction step is completed.

Since ∪a
i=1Pi = A, we have from equation (81) that

∑a
i=1K(Pi) =K(A) and similarly∑b

j=1K(Qj) =K(B) and further K(A)+K(B) =K({1, . . . ,n}) = k1 + . . .kn, so that the

exponent in square brackets appearing within the t
′
integral in the last line of equation (A10)

can be rearranged as follows:

a∑
i=1

K(Pi)2 +
b∑
j=1

K(Qj)
2 − (k1 + · · ·+kn)2

=−2

K(A) ·K(B)+
a∑
i=1

a∑
e=i+1

K(Pi) ·K(Pe)+
b∑
j=1

b∑
f=j+1

K(Qj) ·K(Qf)

 , (A11)

with the nested double summations generating all cross-terms once. In fact, the bracket on the
right hand side of equation (A11) is the sum of the vector products of all ab+ a(a− 1)/2+
b(b− 1)/2= (a+ b)(a+ b− 1)/2 distinct pairs of vectors generated with equation (81) from
the a+ b sets {P1, . . . ,Pa,Q1, . . . ,Qb}. With equation (A11) we arrive at

The main obstacle to simplify equation (A12) further at this point is the fraction of scalar
products of K(·)’s. Similar to the three-point case, equation (A8), this will simplify only
once we consider the sum over all diagrams with non-equivalent permutations of the external
momenta. Since the expressions inserted for sub-diagrams already take care of permutations
within each subdiagram we need to consider only different partitionings of the indices 1, . . . ,n
into subsets A and B. Diagrammatically, for n⩾ 2,

where A and B are again the sets of indices of the momenta associated with each part of the
partition. The external fields of the sub-diagram labelled |A| have momenta ka with a ∈ A and
correspondingly for the other sub-diagram. The cardinality |A| of the non-empty partition A,
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ranges from 1 to n− 1. The cardinality of the non-empty partition B is then given by |B|= n−
|A|. Using equation (A12) for the diagrams summed over in equation (A13), we re-organise
the partitioning, as explained below, and rewrite it as

where F is given by

F({P1, . . . ,Pa},{Q1, . . . ,Qb})

=

n0θ(t− t0)eı̊k1+...+kn·x0(−1)a+b (a− 1)! (b− 1)!K
(

a⋃
i=1

Pi
)
·K
(

b⋃
i=1

Qi

)
K
(

a⋃
i=1

Pi
)
·K
(

b⋃
i=1

Qi

)
+

a∑
i=1

a∑
e=i+1

K(Pi) ·K(Pe)+
b∑
j=1

b∑
f=j+1

K(Qj) ·K(Qf)

×
[
e−D(t−t0)(k1+···+kn)2 − e−D(t−t0)(

∑a
i=1K(Pi)2+

∑b
j=1K(Qj)

2)
]
. (A15)

The parameters a and b are the cardinalities of the first and the second partition in the argument
of F . This function depends on two partitions of two sets, A and B, and it is invariant under
exchange of its two arguments, which are sets of sets. On the basis of the partitions and the
globally known k1, . . . ,kn, all the vectors on the right of equation (A15) can be constructed,
so that F is solely a function of the two partitions.

Both sides of equation (A14) are performing the same summation, based on the five
sums from equations (A12) and (A13). Both summations generate all possible ways of par-
titioning the n external legs into two or more subsets. In fact there is a one-to-one corres-
pondence between every term in the two sums, as we will demonstrate below. The first
sum in equation (A14a) considers all partitions P ({1, . . . ,n},2) of the full set of indices
{1, . . . ,n} into two sets, A and B. These indicate the momenta the two subdiagrams shown
in equations (A12) and (A13) depend on. To calculate these two subdiagrams all partitions of
A and B need to be summed over, which is done in the remaining four sums. The right-hand
side equation (A14b) of equation (A14) performs the same summation, but first produces all
partitions of all {1, . . . ,n} intom= 2, . . . ,n non-empty subsets {W1, . . . ,Wm}. In the rightmost
sum, these subsets are distributed among the upper and the lower subdiagram by performing
a partition into two subsets TA and TB on the indexing {1, . . . ,m} of the subsets Wt. These
selections of subsets enter into the function F , with, for example, the upper diagram being
parameterised by the collection of sets⋃

t∈TA

{Wt}=
{
Wt1 ,Wt2 , . . .

}
̸=
⋃
t∈TA

Wt for TA = {t1, t2, . . .} . (A16)

Both summations of equation (A14) generate all partitions of the indices and their divi-
sion into an upper and a lower subdiagram. Any term appearing on the left can be found
on the right and vice versa. A set of parameters {P1, . . . ,Pa} and {Q1, . . . ,Qb} on the left
is found on the right when m= a+ b and {W1, . . . ,Wm}= {P1, . . . ,Pa}∪ {Q1, . . . ,Qb} are
the same partition of {1, . . . ,n}, with exactly one of the partitions TA,TB of the elements
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of {W1, . . .} such that ∪t∈TA{Wt}= {P1, . . . ,Pa} and ∪t∈TB{Wt}= {Q1, . . . ,Qb} or equi-
valently ∪t∈TA{Wt}= {Q1, . . . ,Qb} and ∪t∈TB{Wt}= {P1, . . . ,Pa}. Similarly, the term gen-
erated by the partition ∪t∈TA{Wt},∪t∈TB{Wt} on the right, can be identified on the left, as
the one where A= ∪t∈TAWt and B= ∪t∈TBWt or vice versa, which are both sets, not parti-
tions. They need to be partitioned subsequently, for example A into {P1, . . . ,Pa}= ∪t∈TAWt

and B into {P1, . . . ,Pb}= ∪t∈TBWt or equally A into {P1, . . . ,Pa}= ∪t∈TBWt and B into
{P1, . . . ,Pb}= ∪t∈TAWt.

Writing TA = {α1,α2, . . . ,αa} and TB = {β1,β2, . . . ,βb}, the parameterisation of the right-
hand side of equation (A14) allows us to express the denominator of F , equation (A15), suc-
cinctly in terms of the new partition {W1, . . . ,Wm},

K(∪t∈TA{Wt}) ·K(∪t∈TB{Wt})+
a∑
i=1

a∑
e=i+1

K(Wαi) ·K(Wαe)

+
b∑
j=1

b∑
f=j+1

K
(
Wβj

)
·K
(
Wβf

)
=

m∑
u=1

m∑
v=u+1

K(Wu) ·K(Wv) (A17)

as this is the sum of all cross-terms in the square of
∑m

t=1K(Wt), as alluded to after
equation (A11). Further, the sum of the squares in the exponent of the right-most exponen-
tial in equation (A15) can be written as

a∑
i=1

K(Wαi)
2
+

b∑
j=1

K
(
Wβj

)2
=

m∑
u=1

K(Wu)
2 (A18)

as TA ∪TB = {1, . . . ,m}. Because the right-hand sides of equations (A17) and (A18) are inde-
pendent of the partitioning of {W1, . . . ,Wm} via TA and TB, they can be taken outside the sum
over these partitions together with (−1)|TA|+|TB| = (−1)m,

where we use the shorthands

K̄A =K

(⋃
t∈TA

{Wt}

)
=
∑
t∈TA

K(Wt) (A20a)

K̄B =K

(⋃
t∈TB

{Wt}

)
=
∑
t∈TB

K(Wt) . (A20b)

Next we want to simplify the sum in square brackets in equation (A19). Since it is over all
ways to partition {1, . . . ,m} into the two distinct sets that define K̄A and K̄B, we know that the
sum over the products K̄A · · ·K̄B will involve every cross-term K(Wu) ·K(Wv) with u ̸= v at
least once and by symmetry equally often. The sumwill therefore cancel with the denominator
up to a pre-factor. In order to determine it, we pick a particular scalar product,K(Wu) ·K(Wv)
for some fixed u ̸= v and consider those terms in the sum that contain K(Wu) ·K(Wv):
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Cu,v =K(Wu) ·K(Wv)×
∑

{TA,TB}∈P({1,...,m},2)

I
(
(u ∈ TA ∧ v ∈ TB)∨ (u ∈ TB ∧ v ∈ TA)

)
× (|TA| − 1)! (|TB| − 1)! , (A21)

where I(. . .) is an indicator function that is 1 only if indices u and v are in different subsets
and 0 otherwise, so that the square bracket in equation (A19) becomes

∑m
u=1

∑m
v=u+1Cu,v.

We may therefore simply sum over all partitions where u and v indeed are in different subsets,
for example u in TA and v in TB—there is no need to separately consider the case u ∈ TB and
v ∈ TA, as the resulting partitions are identical. The make-up of the subsets enters only in as
far as their cardinalities are concerned, which feature in the factorial. If nA = |TA|> 0 is the
cardinality of TA, that leaves nB = m− nA > 0 elements for TB. With one ‘seat’ in TA given to
u, there are nA− 1 further elements to be chosen from them− 2 elements in {1, . . . ,m} \ {u,v},

Cu,v =K(Wu) ·K(Wv)
m−1∑
nA=1

(
m− 2
nA− 1

)
(nA− 1)! (m− nA− 1)!

=K(Wu) ·K(Wv)
m−1∑
nA=1

(m− 2)! = (m− 1)!K(Wu) ·K(Wv) , (A22)

which means that the square bracket in equation (A19) cancels with the denominator in the
preceding fraction up to a factor (m− 1)!, which can be taken outside the second sum,

The first exponential in the final bracket is independent of the partition, so that the sum
degenerates into the count of the ways a set of n elements can be partitioned into m non-empty

sets, given by the Stirling number of the second kind,

{
n
m

}
. We find with the help of [28,

9.745.1]

n∑
m=2

(−1)m (m− 1)!
∑

{W1,...,Wm}∈P({1,...,n},m)

1=
n∑

m=2

(−1)m (m− 1)!

{
n
m

}
= 1 . (A24)

With that in place, we rewrite equation (A23) as

The exponential of −D(t− t0)(k1 + · · ·+kn)2 in the curly brackets is the summand of
the subsequent sum running over m⩾ 2 evaluated for m= 1, because the only partition of
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{1, . . . ,n} into m= 1 subsets is W1 = {1, . . . ,n} which produces the vector K(W1) = k1 +
· · ·+kn. It follows that

which is equation (A9).We have thus demonstrated that if equation (A9) holds for all diagrams
with fewer than n⩾ 2 legs, as they enter into equation (A10), then equation (A9) also holds
for the diagrams with n legs. This concludes the induction step and together with the base case
n= 1 proves equations (A9) and (80) for all n⩾ 1.

Appendix B. Multiple starting points

We generalise our calculation of the connected and full moments of the integrated particle
number density in Dean’s formalism, section 5, to the case where a total of n0 particles are
initialised at H⩽ n0 distinct sites. We upgrade the previous derivation by replacing in the
action equations (24) and (79) and correspondingly in equations (26) and (80)

n0 e
ik0x0 by

H∑
h=1

n0,h e
ik0x0,h (B1)

where x0,h for h= 1, . . . ,H denote the n0,h ∈ N particles’ initial positions such that

H∑
h=1

n0,h = n0 . (B2)

In section 5 and appendix A we were entirely concerned with connected diagrams, where
n0 eı̊x0·k0 only ever enters linearly. Replacing it according to equation (B1) renders each such
diagram a sum over the H distinct locations, each such sum still to be considered a single
connected diagram. This equally applies to the central result equation (88), which now reads

where IΩ,h(t− t0) denotes the transition probability from the starting point x0,h into the set Ω.
The full moments of the integrated particle number density for distinct starting points can

also be derived straightforwardly following the calculation in equations (90)–(100). Using
equation (B3) for the associated connected moments, we arrive at

=
∑

j1+···+jH=n

(
n

j1, . . . , jH

) H∏
h=1

djh

dzjh

∣∣∣∣
z=0

[1+(ez− 1)IΩ,h]
n0,h (B5)

=
∑

j1+···+jH=n

(
n

j1, . . . , jH

) H∏
h=1

n0,h∑
kh=0

(
n0,h
kh

)
(IΩ,h)

kh kh!

{
jh
kh

}
, (B6)
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where we have used the generalised product rule to go from equation (B4) to (B5) by swapping
the differential operator into the product, as well as the intermediate result equations (97)–
(102) for the last step. One can easily verify that equation (B6) reduces to equation (102)
when H= 1, i.e. when all particles are initialised at the same point.

To show particle entity we use a similar procedure as in the single source case from
equation (102) to (106),

where the second sum on the right runs over all non-negative integers j1, j2, . . . , jH which sum to
n. We now use that

∑∞
n=0

∑
j1+···+jH=n =

∑∞
j1=0 . . .

∑∞
jH=0 as the sums converge individually

and absolutely, and equation (103) to obtain

=
H∏
h=1

 ∞∑
jh=0

n0,h∑
kh=0

(
n0,h
kh

)
(1− IΩ,h)

n0,h−kh(IΩ,h)
kh (2π ı̊kh)

jh

jh!

 (B9)

=
H∏
h=1

( n0,h∑
kh=0

(
n0,h
kh

)
(1− IΩ,h)

n0,h−kh(IΩ,h)
khe2π ı̊kh

)
(B10)

=
H∏
h=1

(1) (B11)

= 1 . (B12)

This completes the derivation of particle entity according to the criterion equations (64) for
particles initialised as multiple origins, cf equation (106).

Appendix C. Integer requirements on initialisation amplitude n0

The nth full moment, in the form of the right hand side equation (102), has an instructive
physical interpretation drawing on n0 being integer. To see this, we write the nth moment of
the particle number as〈(ˆ

Ω

ddxρ(x, t)
)n〉

=

ˆ
Ω

ddx ′1d
dx ′2 . . .d

dx ′n⟨ρ(x ′
1, t)ρ(x

′
2, t) . . .ρ(x

′
n, t)⟩ (C1)

with each density ρ(x ′
i , t) considered a random variable as a function of the positions xj(t) of

n0 particles indexed by j = 1,2, . . . ,n0

ρ(x ′
i , t) =

n0∑
j=1

δ(x ′
i − xj(t)) , (C2)

generating nn0 terms of products of δ-functions in equation (C1). To calculate the right-hand
side of equation (C1) on the basis of equation (C2) using equation (87) in the form
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ˆ
Ω

ddx ′⟨δ(x ′ − xj(t)⟩= IΩ(t− t0) (C3)

requires careful bookkeeping of how often each particle coordinate xj(t) is repeated. For
example ˆ

Ω

ddx ′1d
dx ′2⟨δ(x ′

1 − x1(t))δ(x ′
2 − x2(t))⟩= I2Ω (C4a)

ˆ
Ω

ddx ′1d
dx ′2⟨δ(x ′

1 − x1(t))δ(x ′
2 − x1(t))⟩= IΩ (C4b)

as particle coordinates are independent in equation (C4a), but not in equation (C4b), where in
fact δ(x ′

1 − x1(t))δ(x ′
2 − x1(t)) = δ(x ′

1 − x1(t))δ(x ′
2 − x ′

1). To calculate the right-hand side of
equation (C1) thus is a matter of allowing for k= 1,2, . . . ,n distinct particle coordinates xj(t)
from each of the n sums equation (C2). There are n0(n0 − 1) · . . . · (n0 − k+ 1) =

(n0
k

)
k! such

choices. As each of the ρ(x ′
i , t) is a function of a different dummy variable, they have to be

distributed among the k distinct particle coordinates. There are

{
n
k

}
choices for that. The

integration produces IkΩ depending on the number k of distinct particle coordinates following
the reasoning for equation (C4). In summary, we arrive at〈(ˆ

Ω

ddxρ(x, t)
)n〉

=
n∑

k=0

(
n0
k

)
IkΩk!

{
n
k

}
, (C5)

including k= 0 in the summation to cover the special case of n= 0. Equation (C5) is subtly
different from equation (102), as the upper limit of the sum in equation (102) is n0, while it

is n in equation (C5). However,

{
n
k

}
in equation (102) vanishes if k exceeds n and

(n0
k

)
in equation (102) vanishes if integer k exceeds integer n0, i.e. in both sums the upper limit
may be replaced by min(n,n0), provided only n0 is integer. We conclude that the full moment
equation (102) has a sensible interpretation in terms of particle numbers only if n0 is integer.

The key ingredient here are the falling factorials
(n0
k

)
k! = n0(n0 − 1) · . . . · (n0 − k+ 1).

We have seen how they emerge in Dean’s theory by computing the connected moments,
equation (102) and also equation (C5), explicitly. This structure is another signature of particle
entity, in the sense that it highlights the special role played by the integer nature of the initial
particle number n0. Unsurprisingly, it similarly emerges in Doi–Peliti. In particular, the full
moments of the particle number at position x are given by

where Â denotes the time evolution operator of equation (4). We then use

(
a†(x0)

)n0
=
(
ã(x0)+ 1

)n0
=

n0∑
k=0

(
n0
k

)(
ã(x0)

)k
(C7)

together with [29]

⟨☼|(a†(x)a(x))n =
n∑
ℓ=0

{
n
ℓ

}
⟨☼|

(
a(x)

)ℓ
(C8)
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to rewrite the right-hand side of equation (C6) as

⟨☼|(a†(x)a(x))n eÂ(t−t0)(a†(x0))n0 |0⟩

=
n∑
ℓ=0

{
n
ℓ

} n0∑
k=0

(
n0
k

)
⟨☼|

(
a(x)

)ℓ
eÂ(t−t0)

(
ã(x0)

)k |0⟩ (C9)

=

n0∑
ℓ=0

{
n
ℓ

}(
n0
ℓ

)
ℓ!⟨☼|a(x)eÂ(t−t0) ã(x0) |0⟩ℓ (C10)

where we have used ⟨☼|(a(x))ℓ exp(Â(t− t0))(ã(x0))k |0⟩= δkℓℓ!⟨☼|a(x)exp(Â(t−
t0))ã(x0) |0⟩ℓ in the absence of interactions. The final expression corresponds to the one we
found via the Dean route, equation (102), with IΩ(t− t0) replaced by the Doi–Peliti propagator
⟨☼|a(x)exp Â(t− t0))ã(x0) |0⟩.
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