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Abstract

This work presents theoretical and numerical models for the backscattering of two-dimensional

Rayleigh waves by an elastic inclusion, with the host material being isotropic and the inclusion having

an arbitrary shape and crystallographic symmetry. The theoretical model is developed based on the

reciprocity theorem using the far-field Green’s function and the Born approximation, assuming a small

acoustic impedance difference between the host and inclusion materials. The numerical finite element

(FE) model is established to deliver a relatively accurate simulation of the scattering problem and to

evaluate the approximations of the theoretical model. Quantitative agreement is observed between

the theoretical model and the FE results for arbitrarily-shaped surface/subsurface inclusions with

isotropic/anisotropic properties. The agreement is excellent when the wavelength of the Rayleigh

wave is larger than, or comparable to, the size of the inclusion, but it deteriorates as the wavelength

gets smaller. Also, the agreement decreases with the anisotropy index for inclusions of anisotropic

symmetry. The results lay the foundation for using Rayleigh waves for quantitative characterization of

surface/subsurface inclusions, while also demonstrating its limitations.
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1 Introduction

Rayleigh waves have been utilized extensively for the quantitative evaluation of sub-wavelength or surface

flaws in aerospace1, aviation2,3, and other field applications4,5. The waves scattered by a flaw, such as a
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void, crack or inclusion, usually carry information about the geometric and elastic properties of the flaw

itself. Therefore, a thorough understanding of flaw-induced Rayleigh wave scattering is critical for the

characterization of the flaw’s geometry and other physical characteristics.

Theoretical modeling has been a major method for understanding Rayleigh wave scattering, with most

of them based on the reciprocity theorem6,7. To make a simplification for the calculations, most theoretical

studies are based on the Kirchhoff and Born approximations. The Kirchhoff approximation is mainly used

for scatterers of void or crack type because it treats a scatterer as body sources8–13, while the Born

approximation uses the incident field to replace the field inside an inclusion14,15 and is therefore suitable

for elastic inclusions. The Born approximation has been extensively used for bulk wave scattering16,17

and demonstrated to be effective and accurate when the wavelength is larger, or comparable to, the

scatterer size. The Born approximation has also seen applications in studying Rayleigh wave scattering,

and example early works include those of Auld18 and Snieder19. Apart from the Kirchhoff and Born

approximations, there have been other theoretical efforts on investigating Rayleigh wave scattering. These

include the first-order perturbation theory for weak subsurface inclusions20, the reciprocity theorem for

nonlinear Rayleigh waves21, and the second-order approximation for multiple shallow cavities22. However,

most theoretical studies so far have focused on a specific type of inclusion/flaw, while some studies involve

difficult-to-solve equations7,20.

The subject of Rayleigh wave scattering has also received considerable numerical studies. Various

numerical schemes have been used, and most common ones are the boundary element method and the finite

element (FE) method. The boundary element method was mainly used for scatterers that are surface voids

(cavities)22–24. By comparison, the FE method is capable of dealing with all sorts of scatterers and related

examples include its uses in simulating wave propagation25 and scattering26 in complex polycrystalline

media. For this reason, the FE method has been used to analyze the interaction of Rayleigh waves with

surface cracks21,27–29, and most recently, it was successfully applied to predicting the attenuation and

velocity dispersion of Rayleigh waves in polycrystalline materials30,31. These studies have demonstrated

the power of the numerical methods (particularly, the FE method) in realistically simulating Rayleigh

wave scattering.

In comparison to the existing studies, this work sets out to study a more general case of Rayleigh

wave scattering, with the scatterer being a surface/subsurface elastic inclusion with an arbitrary shape

and isotropic/anisotropic property. To achieve this aim, this work contributes to two aspects. First, this

work develops a theoretical model based on the reciprocity theorem, utilising the Green’s function and
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the Born approximation, to calculate the backscattering of Rayleigh waves from an arbitrarily-shaped

surface/subsurface elastic inclusion with an arbitrary symmetry. Our model is valid for a general elastic

inclusion and is not limited to buried scatterers as reported by a similar prior work19. Second, this work

also makes use of the proven capability of the FE method to realistically simulate the same scattering

problem. This allows for relatively accurate results to be obtained, enabling the validation of our general

theoretical model.

The work is organised as follows. Secs. 2 and 3 describe respectively the theoretical and FE models for

the backscattering of Rayleigh waves by an elastic inclusion. Sec. 4 compares the results of the theoretical

and FE models for a variety of surface and subsurface inclusions of different shapes and elastic anisotropies.

Sec. 5 concludes this work.

2 Theoretical model

We consider an isotropic solid with density ρ0 and elastic tensor c0pjkl in the two-dimensional (2D) half-

space defined by the x− z coordinates. As shown in Fig. 1, an arbitrarily-shaped inclusion is present on

the surface or subsurface of the host material. The inclusion is defined in the region V surrounded by the

boundary S. The inclusion has density ρ1 (xs) and isotropic/anisotropic property described by the elastic

tensor c1pjkl (xs). A Rayleigh wave propagating in the host material will be scattered as it encounters

the inclusion. Two types of scattering arise, one from the incident Rayleigh wave into the same mode

and another from the Rayleigh wave into bulk waves. Here we only consider the Rayleigh-to-Rayleigh

scattering as it is more prominent than the other type, as proved by prior work9 and supported by our

simulation results in Sec. 3.

Now we develop a theoretical model to describe the Rayleigh-to-Rayleigh scattering, and we start from

the reciprocity theorem that gives the scattered Rayleigh wave by7,15

usc
n (x, ω) =

∫
S
[c0pjklnl (xs)u

+
k (xs, ω)Gnj,p (x,xs, ω)

− c0pjklnp (xs)Gnj (x,xs, ω)u
+
k,l (xs, ω)] dS,

(1)

where the Einstein summation convention over repeated indices (p, j, k, l) from 1 to 3 (or x to z) is

assumed. x is the point of interest at which we evaluate the scattered wave, while xs is a point in the

inclusion V . ul(xs) is the l-th displacement component of the Rayleigh wave. Gnj(x,xs) is the dyadic

representation of the Green’s function. nk(xs) is the k-th component of the outward unit normal to the
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Figure 1: Schematic of (a) theoretical and (b) finite element models. The yellow dots in (b) are the source

line for generating the Rayleigh wave. The originally generated signal is monitored at the transmitting

node T and the backscattered signal from the surface/subsurface inclusion A is monitored at the receiving

node R. Structured mesh with uniform square elements is used. Z0 is the distance between the upper

surface and inclusion. The absorbing boundary is applied on the left, right and bottom of the surface.

inclusion surface. The comma derivative notation is used and the derivative is over the scattered coordinate

throughout this work; e.g. uk,l = ∂uk/∂xsl with xsl being the l-th component of xs. The plus and minus

superscripts are used to indicate quantities that are evaluated on the host or inclusion side of the surface

S, respectively. From the continuity of displacement and traction across S, we have

u+k (xs, ω) = u−k (xs, ω) , npc
0
pjklu

+
k,l (xs, ω) = npc

1
pjklu

−
k,l (xs, ω) , (2)

so Eq. (1) becomes

usc
n (x, ω) =

∫
S
[c0pjklnl (xs)u

−
k (xs, ω) ∂Gnj,p (x,xs, ω)

− c1pjkl (xs)np (xs)Gnj (x,xs, ω)u
−
k,l (xs, ω)] dS.

(3)

Applying the divergence theorem
∫
V vi,kdV =

∫
S vinkdS to the right side of Eq. (3) leads to

usc
n (x, ω) =

∫
V
{
[
c0pjkluk (xs, ω)Gnj,p (x,xs, ω)

]
,l

−
[
c1pjklGnj (x,xs, ω)uk,l (xs, ω)

]
,p} dV ,

(4)
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where we have dropped the minus superscript since the integration points are all within the inclusion V .

Now substituting the equation of motion15

[
c0pjklGnj,p (x,xs, ω)

]
,k + ρ0ω

2Gnl (x,xs, ω) = −δnlδ (xs − x) ,[
c1pjkl (xs, ω)uk,l (xs, ω)

]
,p = −ρ1ω

2uj (xs, ω) ,
(5)

into Eq. (4) and using the sampling properties of the delta function, we have

usc
n (x, ω) =

∫
V

[
ω2∆ρGnl (x,xs, ω)ul (xs, ω)

−∆cpjkl(xs)Gnj,p (x,xs, ω)uk,l (xs, ω)] dV ,
(6)

with

∆ρ = ρ1(xs)− ρ0 and ∆cpjkl(xs)= c1pjkl(xs)− c0pjkl. (7)

Eqation 6 provides an exact solution for the scattering amplitude, but the solution is intractable.

We address this difficulty by invoking the Born approximation with assuming a small property difference

between the inclusion and host materials. Here we do not attempt to define how small the property

difference needs to be for obtaining a reasonably accurate solution, but as we shall see in Sec. 4, it

depends on various factors such as frequency, inclusion size and material anisotropy. As a result of the

Born approximation, the incident wave is only slightly perturbed by the inclusion, and therefore the

displacement and its derivative in Eq. 6 can be obtained from their values due to the incident wave

only15, i.e.

ul(xs) ≈ uin
l (xs) and uk,l(xs) ≈ uin

k,l(xs). (8)

The formulation so far is valid for both two-dimensional or three-dimensional cases. Since the 3D

dyadic Green’s function is not known yet, here we only address the 2D case. Now, we assume that the

incident Rayleigh wave is a time-harmonic plane wave propagating along the surface in the x-direction,

as shown in Fig. 1(a). In this case, the unit displacement components and their derivatives can be given

by14,32,33

uin
k (xs) = din

k (zs) exp
(
ikRein · xs

)
, uin

k,l(xs) =
[
din
k,l(zs) + idin

k (zs)kRe
in
l

]
exp

(
ikRein · xs

)
, (9)
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with

din
k = [UR(zs), 0, iWR(zs)] ,

UR(zs) =
kR
p

(2c2T − c2R)

2c2T
exp(−pzs)−

q

kR
exp(−qzs),

WR(zs) =
(2c2T − c2R)

2c2T
exp(−pzs)− exp(−qzs),

(10)

where p = kR

√
1− c2R/c

2
L and q = kR

√
1− c2R/c

2
T . ein = [1, 0, 0] is the propagation direction of the

incident Rayleigh wave. kR and cR are the wave number and phase velocity of the incident Rayleigh wave.

The phase velocity cR can be calculated by

(2− c2R/c
2
T )

2 − 4(1− c2R/c
2
L)

1/2(1− c2R/c
2
T )

1/2 = 0, (11)

where cL and cT are the velocities of the longitudinal and shear waves in the host material.

For the 2D case considered here, the dyadic Green’s function is given by19,34

Gnl (x,xs, ω) = A0
exp(ikRr2)√

r2
[dsc

l (zs)]
∗psc

n (z) , (12)

with

A0 =
1

4PRcRkR
,

psc
n (z) = [UR (z) , 0, iWR (z)] , dsc

l (zs) = [−UR(zs), 0, iWR(zs)] ,

PR =
1

2
ρ0cg

∫ ∞

o

[
UR (z)2 +WR (z)2

]
dz,

(13)

where PR represents a normalized power per unit width in the travelling wave mode. cg is the group

velocity of the Rayleigh wave. The asterisk superscript denotes the complex conjugate. In the far field,

the distance r2 between the evaluation point x and a point xs on the inclusion can be approximated as7,15

r2 = x− xs ≈ r − esc · xs (14)

where a fixed point on the inclusion is taken as the origin of the (x, z) coordinates. esc is the 2D unit vector

in the (x, z) plane from the origin O to point x, representing the propagation direction of the scattered

Rayleigh wave. r is the distance between O and x, i.e., r =
√
x2 + z2.

6



The Green’s function in Eq. (12) applies to any scattering direction. For simplicity, we only consider

the scattering in the backward direction of the incident wave, namely esc = [−1, 0, 0]. Then, the Green’s

function and its derivative can be written as

Gnl (x,xs, ω) = A0[d
sc
l (zs)]

∗ exp(−ikResc · xs)
exp(ikRr)√

r
psc
n (z) ,

Gnj,p (x,xs, ω) =A0

{
[dsc

j,p (zs)]
∗ − ikResc

p [d
sc
j (zs)]

∗} exp (−ikResc · xs)
exp(ikRr)√

r
psc
n (z) .

(15)

Substituting Eq. (15) into Eq. (6) and rearranging the result, we have

usc
n (x, ω) = Asc (ω)

exp(ikRr)√
r

psc
n (z) , (16)

where Asc (ω) is the far-field amplitude of the backscattered Rayleigh wave, given by

Asc (ω) = A0

∫
V

{
∆ρω2din

l (xs) [d
sc
l (xs)]

∗ −∆cpjkl(xs)N(xs)M(xs)
}

× exp
[
ikR

(
ein − esc) · xs

]
dV ,

(17)

with

N(xs) = din
k,l (zs) + ikRein

l d
in
k (zs) and M(xs) = [dsc

j,p (zs)]
∗ − ikResc

p [d
sc
j (zs)]

∗. (18)

Eq. (17) can be further evaluated and the resulting final expression is provided in Appendix A. Note that

Einstein summation convention over repeated indices (p, j, k, l) is only for 1 and 3 (or x to z) in the 2D

case.

Although Eq. (17) is derived for isotropic inclusions, it can be modified to accommodate anisotropic

inclusions if the root-mean-square (RMS) of the backscattering response from a lot of randomly-oriented

inclusions is concerned. Let us consider a case that the host material is the Voigt average of the anisotropic

inclusion, with the elastic constants given by

c011 = ⟨c11⟩ =
3(c11 + c22 + c33) + 2(c23 + c13 + c12) + 4(c44 + c55 + c66)

15

c044 = ⟨c44⟩ =
(c11 + c22 + c33)− (c23 + c13 + c12) + 3(c44 + c55 + c66)

15
,

(19)

The fourth-rank elastic tensor cpjkl is written as cij using the Voigt index notation where the pairs of indices

are contracted to the following single values: 11 → 1, 22 → 2, 33 → 3, 23 or 32 → 4, 13 or 31 → 5 and

12 or 21 → 6. The host material has the same density as the inclusion, namely ρ0 = ρ1. In this case, the
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RMS of the backscattering amplitude from an infinite number of inclusions with random crystallographic

orientations can be calculated by

Asc
rms (ω) =

√〈
Asc

pjkl (ω)A
sc
αβγδ (ω)

〉
=

√√√√〈
1,3∑
pjkl

Asc
pjkl (ω)

1,3∑
αβγδ

Asc
αβγδ (ω)

〉
. (20)

The developed theoretical model calculates the far-field amplitude of the backscattered Rayleigh wave

from an arbitrarily-shaped inclusion in 2D. From Eq. (17), the geometry of the inclusion (size, shape and

depth), and its properties contrast to the host material (density and elastic constants) are all incorporated

in the integral, influencing the scattering behavior of Rayleigh waves. In addition, we want to clarify

that the Born approximation starts to fail when the phase perturbation of the propagating wave caused

by the inclusion is large. Phase change would be simultaneously affected by the wavenumber difference

between the host and inclusion materials and the geometry of the inclusion35,36. This could happen in

two equivalent scenarios: (1) when the inclusion size becomes larger, the reflected (namely backscattered)

wave from one edge of the inclusion would have a larger phase difference to that from the other edge of the

inclusion; (2) when the background and inclusion materials have a larger acoustic impedance difference,

the wavenumber difference would increase; thus, the traditional Kirchhoff approximation is preferable

when the scatterer is void or crack.

For the inclusions considered in this work, the integral is evaluated by numerical integration for both

regularly and irregularly shaped inclusions. A major advantage of the model is that it is capable of dealing

with arbitrarily-shaped surface/subsurface inclusions of isotropic or general anisotropic properties. We will

use numerical simulations to evaluate how the Born approximation affects the accuracy of the obtained

solution.

3 Finite element model

The FE method has been demonstrated recently to be powerful and accurate for simulating the propagation

and scattering of bulk26,37–42 and surface31,43 waves in complex solids. Here we report our use of the

method for simulating the same physical problem as addressed by the above theoretical model, which is

the backscattering of a Rayleigh wave by a surface/subsurface inclusion. Note that we are concerned with

the wave phenomena in the middle of a wide wavefront of a propagating Rayleigh wave, and the symmetry

means that this can be simplified and well simulated by a 2D FE model.
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Table 1: Models used in the simulation. Center frequency of FE modelling fc (MHz), dimensions dx × dz

(mm × mm), mesh size h (mm), degree of freedom (d.o.f); copper sulfate pentahydrate is abbreviated as

CSP.

Material fc (MHz) dx × dz (mm × mm) h (mm) d.o.f

Aluminum
0.5 560 × 56 96 × 10−3 6.8 × 106

1 280 × 28 48 × 10−3 6.8 × 106

Aluminum 2 140 × 14 24 × 10−3 6.8 × 106

Inconel, Lithium 2 160 × 16 24 × 10−3 8.9 × 106

CSP 2 120 × 12 18 × 10−3 8.9 × 106

Aluminum 4 70 × 7 12 × 10−3 6.8 × 106

Inconel, Lithium 4 80 × 8 12 × 10−3 8.9 × 106

CSP 4 60 × 6 9 × 10−3 8.9 × 106

Aluminum 8 35 × 3.5 6 × 10−3 6.8 × 106

Inconel, Lithium 8 40 × 4 6 × 10−3 8.9 × 106

CSP 8 30 × 3 4.5 × 10−3 8.9 × 106

Aluminum

16 17.5 × 1.75 3 × 10−3 6.8 × 106

20 14 × 1.4 2.5 × 10−3 6.8 × 106

32 8.75 × 0.875 1.5 × 10−3 6.8 × 106

As schematically shown in Fig. 1, the 2D FE model is based in the x− z plane. The dimension of the

model depends on the modelling frequency and inclusion type, and detailed parameters are given in Table

1 for the modeled cases. The model space is discretized with uniform linear square elements, with an edge

size h of about one-sixtieth of the center-frequency wavelength of the Rayleigh wave in the host material

to minimize numerical error to ∼ 0.1%37,38,42. The inclusion is modelled by an aggregate of elements that

are assigned with the density ρ1 and elastic tensor c1pjkl of the inclusion material. The remaining elements

in the middle of the model are defined as the host material with density ρ0 and elastic tensor c0pjkl. The

inclusions considered in this work are summarized in Table 2. For isotropic inclusions, the host material

is defined as aluminum with Young’s modulus E0 = 70 GPa, Poisson’s ratio ν0 = 0.35 and density ρ0 =

2700 kg/m3, and the inclusion has 4% impedance contrast to the host material caused by density or/and

Young’s modulus differences. For anisotropic inclusions, the host material has the same density as the

inclusion (i.e., ρ0 = ρ1), and its isotropic elastic tensor c0pjkl is the Voigt average of c1pjkl calculated by Eq.

(19). The anisotropic inclusion materials considered in this work are listed in Table 3.

The elements on the bottom, left, and right sides of the model are used to define absorbing boundary
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Table 2: Inclusion shape and size used in the simulations. A regularly shaped inclusion has depth D

(mm) and width L (mm), and an irregular inclusion has an equivalent radius, d =
√

s/π, with s being

the area of the inclusion. Z0 is the distance between the upper surface and inclusion. λ is the wavelength

of Rayleigh waves.

Inclusion D (mm) L (mm) d (mm) Z0/λ

Regular

Half-circle

0.19

D -

0
half-ellipse 4D -

Square D -

Rectangle 2D -

Circle 0.38 D - 0 ∼ 2

Irregular Inclusion M - - 0.35 0

Table 3: Properties of anisotropic inclusion materials. Density ρ (kg/m3), equivalent anisotropy index44,45

Aeq, elastic constants cij (GPa), and Voigt averages c011 and c044 (GPa).

Material ρ Aeq c11 c12 c44 c011 c044

Cubic

Aluminum 2700 1.24 106.7 60.4 28.3 110.8 26.2

Inconel 8260 2.83 234.6 145.4 126.2 299.9 96.6

Lithium 534 9.14 13.4 11.3 9.6 20.4 6.18

Material ρ Aeq c11 c12 c13 c14 c15 c16 c22 c23 c24 c25 c26

Triclinic CSP

2286 2.37 56.5 26.5 32.1 -3.3 -0.8 -3.9 43.3 34.7 -0.7 -2.1 2.0

c33 c34 c35 c36 c44 c45 c46 c55 c56 c66 c011 c044

56.9 -4.4 -2.1 -1.6 17.3 0.9 0.3 12.2 -2.6 10.0 54.3 12.2

conditions. The thickness of each absorbing boundary region in the boundary normal direction is chosen to

be at least three times the wavelength of the Rayleigh wave in the host material. The absorbing boundary

elements in the vicinity of the host material have material properties close to those of the host material

but their material damping increases gradually towards the model edge. This gradual increase of damping

helps absorb the propagating wave so as to minimise unwanted reflections from the boundaries46.

The desired Rayleigh wave is generated by applying two sinusoidal time-domain signal of 90◦ phase

shift to multiple source nodes located on the top surface of the model (yellow points in Fig. (1). The

size of the source is set to be equal to three center-frequency wavelengths of the simulated Rayleigh wave,

and each source node is assigned a unique amplitude following Eq. (17) in Sarris et al.43. The simulation

is solved using the GPU-accelerated Pogo program47 with an explicit time-stepping scheme. A relatively
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large time step of ∆t = 0.9h/cL, satisfying the Courant-Friedrichs-Lewy condition48, is used to minimise

numerical error42.

Over the course of the FE solution, the z - displacement of the generated incident wave is monitored

at a transmitting node (point T in Fig. 1), while that of the backscattered wave is recorded at a receiving

node (point R). We emphasize that the transmitting and receiving nodes are placed respectively far away

from the source nodes and the inclusion, in order for the former to monitor the well-formed incident wave

and for the latter to record solely the scattered Rayleigh wave in the far field. In addition, a reference

signal is obtained at the receiving point using an identical but inclusion-free FE model, and the reference

signal is subtracted from the relatively small raw signal to minimise the influence of numerical error. The

signal UT (t) at the transmitting node and the corrected signal UR(t) at the receiving node are Fourier

transformed into the frequency domain to obtain the spectra UT (f) and UR(f). The frequency-dependent

amplitude of the backscattered Rayleigh wave is then calculated by

UR(f) = UT (f)A
sc(f), (21)

which will be used to evaluate the theoretical model result, Asc(ω), in Sec. 4. It should be noted that

this equation is only applicable when the attenuation of the host material and the diffraction losses of the

Rayleigh wave are not considered7.

Now we present an example to illustrate the simulated wave field and Rayleigh wave signals. The

host material is the aforementioned isotropic aluminum, and the half-circle inclusion (Table 2) has a 4%

impedance contrast to the host material. The wave field in the model is shown in Fig. 2(a1) shortly after

exciting the source nodes with a signal of 2 MHz center frequency. The wave field shows the coexistence

of multiple wave modes in the model, led by faster skimming longitudinal, bulk longitudinal and head

waves, and followed by slower bulk shear and Rayleigh waves29. However, as the waves propagate further

to the transmitting point, the relatively slow Rayleigh wave gets separated from other wave modes and a

rather pure Rayleigh wave is formed, as can be seen in Fig. 2(a2). Similarly, the inclusion causes multiple

backscattered wave modes, but as illustrated in Fig. 2(a3), a relatively pure Rayleigh wave is obtained as

the waves reach the receiving point. In this specific case, the scattered Rayleigh wave is about 100 times

stronger than the scattered longitudinal wave, confirming our choice of focusing on the scattered Rayleigh

wave only in this work. The Rayleigh wave signals recorded at the transmitting and receiving nodes are

plotted in Fig. 2(b), and the respective frequency-domain amplitude spectra are displayed in Fig. 2(c).
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The calculated backscattering amplitude will be reported in Sec. 4.

Figure 2: Example FE modelling of Rayleigh wave scattering by a surface half-circle inclusion. (a) The

FE model setup and the simulated wave fields at (a1) the point P at an early time of t = 10µs, (a2) the

point close to the inclusion before the incident wave is scattered by the inclusion at t = 35µs, and (a3)

the point far away from the inclusion after the wave scattered by the inclusion at t = 69µs. (b) The z−

displacements of the incident Rayleigh wave and the backscattered Rayleigh wave in the time domain. (c)

shows the respective amplitude spectra in the frequency domain.
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4 Results and discussions

4.1 Simple inclusion with different material properties

It is demonstrated by the theoretical model in Eq. (17) that both the density difference ∆ρ and elastic

tensor contrast ∆cpjkl between the inclusion and host materials contribute to Rayleigh wave backscattering.

As an essential first step, here we investigate their individual contributions. For this purpose, we consider

a simple case of a half-circle inclusion (see Table 2) on the surface of an aluminum host material. The

host material has Young’s modulus E0 = 70 GPa, Poisson’s ratio ν0 = 0.35 and density ρ0 = 2700 kg/m3.

The inclusion is defined in three distinctive cases that differ from the host material in (1) density with ρ1

= 2500 kg/m3, (2) Young’s modulus with E1 = 65 GPa, and (3) both density and Young’s modulus with

ρ1 = 2600 kg/m3 and E1 = 67 GPa. These three cases have the same acoustic impedance mismatch of

4% to the host material.

For these three inclusion cases, the amplitudes of the backscattered Rayleigh waves are plotted in Fig.

3 against the normalized frequency kRD (D is the radius of the inclusion). The theoretical curves in the

figure are calculated from Eq. (17), while the FE points are simulated using the models in Table 1. We

emphasize that we have achieved a high degree of accuracy for the FE results. Prominent evidence is

the overlapping of the points between the neighboring models having different model parameters (thus

different numerical errors)42. Therefore, the FE results are well suited to evaluate the approximations of

the theoretical model.

The backscattering results for the three inclusion cases in Fig. 3 demonstrate an oscillating, cyclic

behavior. For each case, the peaks of individual cycles increase gradually with kRD, but their cycles

are seemingly constant across different cycles. The overall backscattering amplitude for the first case of

∆ρ ̸= 0 is about twice for the second case of ∆cpjkl ̸= 0, while the third case resides in the middle.

Similarly, the average cycle of the first case is slightly larger than that of the second, again with the third

case lying in between. Considering the differences between the three cases, we can infer two main results

from the theoretical model in Eq. 17.

First, ∆ρ and ∆cpjkl are scaling factors affecting only the magnitude of backscattering. This is further

corroborated by the same cyclic behavior but different amplitudes of the two theoretical curves in each of

Fig. 3(a) and (b); the extra theoretical curve in each plot is obtained using a smaller impedance mismatch

of 2% by varying ∆ρ or ∆cpjkl.

Second, the remaining integral terms in the equation affect not only the magnitude but also the cyclic
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Figure 3: Rayleigh wave backscattering by a simple half-circle inclusion that differs from the host alu-

minum in (a) density, (b) Young’s modulus and (c) both density and Young’s modulus. The resulting

backscattering amplitude A is plotted versus normalised frequency kRD (D is the radius of the inclusion).

The theoretical curves calculated from Eq. 17 are compared with the FE points obtained from the models

in Table 1 with center frequencies of 0.5, 1, 2, 4, 8 and 16 MHz. The inclusion and host materials have a 4%

impedance mismatch for the solid theoretical lines and FE points, and a 2% mismatch for the dash-dotted

theoretical lines. Note that the y-axis range in (b) is half of those in (a) and (c).

period of the backscattering. We can observe from the two cases in Fig. 3(a) and (b) that, for a given

host material and inclusion, the two integral terms associated with ∆ρ and ∆cpjkl exhibit different cycles.

This is also the reason for the small shift of around 2% between the two theoretical curves in Fig. 3(c). In

addition, we shall see in the subsection below that the cyclic behavior of the term associated with ∆cpjkl

(presumably for the term associated with ∆ρ as well) is much more significantly affected by the geometry

of the inclusion.

For the first two inclusion cases in Fig. 3(a) and (b), the theoretical model predictions exhibit very

good agreement with the FE results at small kRD. As kRD increases, the theoretical curve in Fig. 3(a)

tends to have a noticeably shorter cycle (as if compressed) than the FE results, while this trend is reversed

14



for the case in Fig. 3(b) with the theoretical curve being seemingly expanded. As a result, the agreement

between the theoretical and FE results deteriorates as kRD increases. This is particularly evident as we

observe their kRD differences at individual peaks: the difference increases from 0.1% at the first peak to

3.7% at the fifth peak for the first case, and it grows from 0.1% to 3.5% at the same peaks for the second

case. Interestingly, for the third case with both ∆ρ ̸= 0 and ∆cpjkl ̸= 0, the theoretical model agrees well

with the FE results even at a very large kRD, with their difference observable only after kRD ≈ 11.

Such differences can be understood by investigating the phase change caused by each inclusion in

comparison to the case where the inclusion is absent. The Born approximation tends to have a larger

deviation from the true value when the inclusion-induced phase change gets bigger35,36. In our cases, the

analytically estimated phase changes are −0.22π, 0.20π and 0.02π for Fig. 3(a), (b) and (c) at kRD =

9, which are clear evidence supporting the observed large (and similar) theoretical-FE differences in the

first two cases and the good agreement in the third one. Apparently, the inclusion-induced phase change

increases with frequency, which leads to the increased theoretical-FE difference as observed in each figure

panel.

We should emphasize that the three inclusions considered have a smaller density and/or Young’s

modulus than the host material. We also study the three opposite cases (results not shown) with the

density and/or Young’s modulus of the inclusion being larger than those of the host. In comparison to

Fig. 3, their FE results are different but their theoretical predictions remain the same (obvious from Eq.

17); specifically, the theoretical curves are scaled (compressed/expanded over kRD) with respect to the

FE results in an opposite way to those in Fig. 3.

Furthermore, we consider the same above-mentioned host material and inclusion shape. The inclusion

material properties are defined in four cases in different combinations of the densities and Young’s modulus

with (1) ρ1 = 2680 kg/m3 and E1 = 69 GPa, (2) ρ1 = 2620 kg/m3 and E1 = 65 GPa, (3) ρ1 = 2600 kg/m3

and E1 = 58 GPa, and (4) ρ1 = 2400 kg/m3 and E1 = 50 GPa. These cases give four acoustic impedance

mismatches of 1%, 5%, 10%, and 20%, respectively. For these four inclusion cases, the amplitudes of the

backscattered Rayleigh waves are plotted in Fig. 4 versus the normalized frequency kRD.

From Fig. 4(a), the theoretical model works well even when the difference of acoustic impedance is

extremely small. We also compare more cases with smaller acoustic difference mismatches (0.5% and

0.2%). The theoretical models show a similar tendency and amplitude with FE results. Meanwhile, it

is obvious that the agreement between the theoretical and FE results decreases with the increase of the

acoustic impedance mismatch. This is particularly clear as we observe the ‘starting point’ (exhibited
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as blue dots in Figs. 4(b-d)) where the theory starts to give an obvious deviation from the FE results,

which is approximately 8.6 for 5% impedance mismatch, 3.6 for 10% impedance mismatch and 1.6 for 20%

impedance mismatch. Meanwhile, the case with a 20% impedance mismatch also demonstrates that the

Born approximation will still be applied even with a strong acoustic impedance mismatch if with a smaller

inclusion size.

From Figs. 3 and 4, we want to emphasize that two parameters (inclusion size and impedance dif-

ference) influencing the backscattering amplitude have been investigated separately with the simulation

and compared with the theoretical model. In fact, the effects of inclusion size and impedance difference

are intertwined which makes it difficult to quantify how small should the inclusion size or the impedance

difference be for the theoretical model to be valid. The qualitative discussion related to how these two

parameters affect the Born approximation has been made in Sec. 2.

Figure 4: Rayleigh wave backscattering by a simple half-circle inclusion that differs from the host alu-

minum in both density and Young’s modulus, (a) 1% impedance mismatch, (b) 5% impedance mismatch,

(c) 10% impedance mismatch and (d) 20% impedance mismatch.

For simplicity, we shall consider only the second case of ∆cpjkl ̸= 0 in the next two subsections. This

is because this particular case involves a considerable approximation in the theoretical solution and is

thus beneficial for us to thoroughly evaluate the theoretical model. In this case, the inclusion and host

materials will have the same density but different elastic constants.
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4.2 Isotropic surface inclusion with different shapes

Now we compare the backscattering amplitudes from the four regularly shaped inclusions in Table 2. The

host material is aluminum (isotropic and with the above-mentioned material properties) and the inclusion

has a 4% impedance difference to the host caused by ∆cpjkl ̸= 0. The FE results (points) and theoretical

predictions (lines) are displayed in Figs. 5(a1)-(a4), plotted against kRD. Note that Figure 5(a1) is the

same as Fig. 3(b). All four cases show a good agreement between the theoretical and numerical results

when kRD is small, which is excellent proof of the validity of the theoretical model.

When comparing Fig. 5(a1) and (a2) (or (a3) and (a4)), we observe that the results exhibit different

cyclic behaviors depending on the lateral dimension of the inclusion. Especially, the cyclic number is similar

when the lateral-to-depth dimension ratio L/D is the same even for different shaped inclusions compared

with Fig. 5(a1) and (a3)(or (a2) and (a4). This is further demonstrated in Figures 5(b1) and (b2), which

reveals that the dimension ratio L/D affects the cycle of the backscattering amplitude curve and a larger

L/D ratio corresponds to an apparently smaller average cycle for both half-ellipse and rectangle inclusions.

This can be explained by that the z− displacement of Rayleigh waves is non-uniform, and the energy of

the Rayleigh waves is becoming smaller with the increase of depth. Meanwhile, by comparing Fig. 3 with

Fig. 5, it can be seen that the geometry of inclusion has a more obvious effect on the cyclic behavior.

Then, we investigate the backscattering amplitude from an irregular inclusion (depicted in Fig. 6(a)

and listed in Table 2). The theoretical prediction and the FE results are compared in Fig. 6(b), which

show very good agreement between each other, demonstrating that the theoretical solution is accurate to

describe the backscattered wave of arbitrarily-shaped inclusions. As expected from the applicability of the

Born approximation, the agreement is becoming worse with the increase of kRD.

4.3 Isotropic subsurface inclusion

Furthermore, we conduct research to study the backscattering amplitude of a subsurface inclusion. As

shown in Fig. 7(a), we utilize a circular inclusion (parameters in Table 2) with a depth Z0 = 1.45 mm to

the surface of the host material. We set it with ∆ρ = 0, Young’s modulus E1 = 65 GPa and keep other

material properties unchanged with respect to the host material.

The analytical result obtained by Eq. 17 is compared with the FE solution in Fig. 7(b). The results

are plotted against the normalized frequency kRD. In the studied frequency range, the ratio of the depth

Z0 to the wavelength λr covers a range of 0 ∼ 2 λr, which is displayed in Figure 7(c). Combining Fig.

7(b) and (c), we can see that the analytical results match well with the FE results when Z0/λr <1,
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Figure 5: Rayleigh wave backscattering by a (a1) half-circle (L/D = 2) , (a2) half-ellipse (L/D = 8) ,

(a3) rectangle (L/D = 2) and (a4) rectangle (L/D = 8) inclusion. The theoretical results (curves) are

compared with the FE results (points) with center frequencies of 0.5, 1, 2, 4, 8, and 16 MHz. The inclusion

is defined to be slightly different from the host material aluminum only in Young’s modulus (E1 = 65). (b)

represents the relationship between the size of inclusion L/D and the cycle of the backscattering amplitude

curve for a (b1) half-ellipse and (b2) rectangle inclusion.

demonstrating a good accuracy of the theoretical model in describing shallow subsurface inclusions. The

analytical solution begins to divert from the FE result at around Z0 ≈ λr. Their difference increases with

Z0/λr, with the theoretical result being 10 times smaller than the FE results at Z0/λr ≈ 2, revealing the

limitation of the Born approximation for deeper inclusions. Given that the energy of Rayleigh surface

waves is generally concentrated in the near-surface region within a depth of about one wavelength49, the

limitation can be understandable.

4.4 Anisotropic inclusion

Here we also evaluate the applicability of our theoretical model to an anisotropic inclusion. This is to

identify if the model can be developed further to describe Rayleigh wave scattering in a polycrystalline

material in the future. Therefore, for the evaluation, we define the inclusion (half-circle in this case,
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Figure 6: (a) Irregularly-shaped inclusions modeled with uniform square elements; (b) comparison of

backscattering amplitude by the irregular inclusion between the FE solution and the theoretical prediction.

The host material and inclusion material properties are the same as those of the above regularly shaped

inclusion simulations.

Table 2) as a single crystal. Similarly to the polycrystalline material case, we are interested in the

average backscattering response from the inclusion when its crystallographic axis is differently oriented,

which is exactly what Eq. 20 predicts. In the FE modeling, we randomly rotate the inclusion 100 times

(realizations) and perform FE simulation for each rotated inclusion, and then take the RMS of the 100

backscattering results as the final result. The host material has the same density as the inclusion, and its

elastic properties are the Voigt averages of the single inclusion. The single-crystal elastic constants and

their Voigt averages are provided in Table 3 for the materials considered.

We begin with the case of the inclusion being aluminum, which has a cubic single-crystal symmetry

and an anisotropy index of 1.24. The theoretically predicted RMS backscattering amplitudes Arms are

plotted as the grey curve in Fig. 8(a). The respective FE results are plotted as points in the figure,

which are the RMS over 100 realizations with the inclusion being randomly rotated in each realization.

The error bars show the 95% confidence interval50 for the FE points, demonstrating the variation across

the realizations with different crystallographic orientations. It is important to note that the use of 100

realizations is sufficient for obtaining statistically converged FE results. This is evidenced by the two

convergence curves at kRD ≈ 0.5 and 5.6 (marked as stars in Fig. 8(a)) in Figs. 8(a1) and (a2) that show

gradually stabilizing RMS value as the number of realizations increases. A general finding from Fig. 8(a)

is that the theoretical and FE results display a good agreement.

This good agreement is not surprising for an inclusion material (aluminum) of small anisotropy. To

observe how the agreement changes with anisotropy, we compare the results of three cubic inclusion
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Figure 7: Rayleigh wave scattering by a subsurface inclusion: (a) illustration of the inclusion; (b) plot of

theoretical and FE results versus normalized frequency kRD on a log scale; (c) the relationship between

Z0/λr and frequency. The host material and inclusion material properties are the same as those of the

above regularly shaped inclusion simulations.

materials, namely aluminum, Inconel and lithium, that have anisotropy indices of 1.24, 2.83 and 9.14.

Their theoretical and FE results are depicted in Figs. 9(a1)-(a3). It is clearly demonstrated that the

agreement between the theoretical and FE results decreases as the anisotropy index increases. This

is particularly evident as we observe the ‘starting point’ (exhibited as blue dots in Fig. 9), which is

approximately 5.6 for aluminum, 1.3 for Inconel and 1.0 for lithium. Such results are reasonable because

the Born approximation is expected to gradually fail with the increase of scattering intensity.

The inclusion materials addressed above are of the highest cubic symmetry. Here we also consider the

lowest triclinic symmetry to investigate the influence of single-crystal symmetry. The triclinic material

is copper sulfate pentahydrate (CSP) and it has an anisotropy index of 2.37, which is close to that of

Inconel. Comparing its results in Fig. 9 (a4) with those of Inconel in Fig. 9 (a3), we can see that the two

materials have roughly the same level of theoretical-FE agreement, and their ‘starting points’ are similar.
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Figure 8: Rayleigh wave scattering by a half-circle inclusion that is cubic aluminum with an anisotropy

index Aeq of 1.24. (a) displays the theoretically predicted RMS backscattering amplitude (line) and the

FE calculated RMS backscattering amplitude (points) of 100 realizations. The error bar show the 95%

confidence interval50. (a1) and (a2) show the convergences of the FE RMS value with the number of

realizations at kRD ≈ 0.5 and 5.6.

It illustrates that the anisotropy factor has a larger effect on the backscattering amplitude compared with

the symmetry of the material.

An extra observation from Figs. 9(a1)-(a4) is that the cycle of the backscattering amplitude curve

only varies subtly among the four materials, as further illustrated in Fig. 9(b). This supports our earlier

finding of the cyclic behavior being mainly determined by the size and shape (rather than the material

properties) of the inclusion.

All the above results show that the theoretical model can be used to evaluate the backscattering of

Rayleigh waves and to establish a direct relation between Rayleigh backscattering and the material and

geometrical properties of the inclusion.
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Figure 9: Rayleigh wave scattering by a simple half-circle inclusion defined as cubic materials of (a1)

aluminum (Aeq = 1.24), (a2) Inconel (Aeq = 2.83) and (a3) lithium (Aeq = 9.14), and triclinic material of

CSP (Aeq = 2.37). The yellow points are the ‘starting points’ where the theoretical and FE results start

to deviate. (b) Comparison of the theoretical curves of the four materials.

5 Conclusion

In this work, we developed a 2D theoretical model for Rayleigh-to-Rayleigh backscattering by an inclusion.

The model is formulated in the frequency domain based on the reciprocity theorem using the far-field

Green’s function, and the Born approximation is invoked to derive the final result. The model is widely

valid for a surface or subsurface inclusion with a regular or irregular geometry, and prominently, the

inclusion can be isotropic or anisotropic. A FE model is established to provide relatively accurate reference

data for evaluating the approximations of the theoretical model. The comparison of the theoretical and

FE results across a range of scattering problems led to various conclusions, mainly including:

1. The theory exhibits very good agreement with the FE results for isotropic inclusions with differently-

defined material properties (∆ρ or/and ∆cpjkl) and different shapes (half-circle, ellipse and rectangle, and

even irregular) at small kRD. As a result of the use of the Born approximation, the theory starts to break
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down gradually with the increase of kRD due to an increasing phase shift caused by the inclusion. In

addition, the sign of the phase shift determines how the theoretical curve scales (compresses or expands

over kRD) with respect to the FE results.

2. The theoretical model agrees well with the FE results for the backscattering by a subsurface inclusion

when the depth of the inclusion is smaller than the wavelength, and it gradually loses its accuracy as the

depth exceeds a wavelength.

3. The theory can predict the RMS backscattering amplitude of Rayleigh waves by an anisotropic

inclusion (studied cases include three cubic and one triclinic materials). The results revealed the good

applicability of the theory to inclusions of weak anisotropy and also uncovered the larger effect of the

anisotropy, rather than the symmetry, of the inclusion on backscattering.

4. The backscattering curve demonstrates an oscillating, cyclic behavior. The cycle period is mainly

determined by the geometry of the inclusion, and it becomes smaller with the increase of the lateral-to-

depth dimension ratio L/D of the inclusion. The material properties of the inclusion and their differences

to the host material properties only have a very small influence on the cycle period.

Generally speaking, we have demonstrated the applicability of our theoretical model to a wide spectrum

of inclusion types. The finite element simulations in this paper serve as perfectly controlled experiments

where the material properties and configurations are user-defined and accurate. Meanwhile, we want to

point out that FE results might exhibit comparatively reduced accuracy, potentially caused by slightly

higher numerical error of the FE method itself, in the case where the difference in acoustic impedance

is extremely small (< 0.1%). Therefore, verification for the theoretical model with an extremely small

acoustic impedance difference is not within the scope of this paper. Future studies will be focused on

experimental verification such that this mathematical model can be used for flaw characterization in the

practice. Besides, the model would have great potential for further applications in the area of nondestruct-

ive evaluation, for example, to develop a Rayleigh wave scattering model for polycrystals to characterize

their grain statistics, and to cultivate a model for flaw measurement systems.
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Appendices

A Detailed backscattering equations

The expression of Asc (ω) in Eq. (17) can be further evaluated, leading to

Asc (ω) =

1,3∑
p,j,k,l

Asc
pjkl (ω) =

1,3∑
l

Aasc
l −

1,3∑
p,j,k,l

Abscpjkl (ω) , (A.1)

with

Aasc
1 (ω) = −A0

∫
V
∆ρω2U2

R (xs) exp(2ikRxs) dV , (A.2a)

Aasc
3 (ω) = A0

∫
V
∆ρω2W 2

R (xs) exp(2ikRxs) dV , (A.2b)

Absc1111 (ω) = A0∆c1111 (xs)

∫
V

[
k2RUR(zs)

2
]
exp (2ikRxs) dV , (A.2c)

Absc1113 (ω) = A0∆c1113 (xs)

∫
V

[
ik2RUR(zs)WR(zs))

]
exp (2ikRxs) dV , (A.2d)

Absc1131 (ω) = A0∆c1131 (xs)

∫
V

[
−ikRUR(zs)

∂UR (zs)

∂zs

]
exp (2ikRxs) dV , (A.2e)

Absc1133 (ω) = A0∆c1133 (xs)

∫
V

[
kRUR(zs)

∂WR (zs)

∂zs

]
exp (2ikRxs) dV , (A.2f)

Absc1313 (ω) = A0∆c1313 (xs)

∫
V

[
−k2RWR(zs)WR(zs)

]
exp (2ikRxs) dV , (A.2g)

Absc1331 (ω) = A0∆c1331 (xs)

∫
V

[
kRWR(zs)

∂UR (zs)

∂zs

]
exp (2ikRxs) dV , (A.2h)

Absc1333 (ω) = A0∆c1333 (xs)

∫
V

[
ikRWR(zs)

∂WR (zs)

∂zs

]
exp (2ikRxs) dV , (A.2i)

Absc3131 (ω) = A0∆c1331 (xs)

∫
V

[
−∂UR (zs)

∂zs

∂UR (zs)

∂zs

]
exp (2ikRxs) dV , (A.2j)

Absc3133 (ω) = A0∆c1333 (xs)

∫
V

[
−i

∂UR (zs)

∂zs

∂WR (zs)

∂zs

]
exp (2ikRxs) dV , (A.2k)

Absc3333 (ω) = A0∆c3333 (xs)

∫
V

[
∂WR (zs)

∂zs

∂WR (zs)

∂zs

]
exp (2ikRxs) dV , (A.2l)

Absc1311 (ω) = Absc1113 (ω) , Absc3111 (ω) = Absc1131 (ω) , Ab
sc
3113 (ω) = Absc1331 (ω) ,

Absc3311 (ω) = Absc1133 (ω) , Absc3313 (ω) = Absc1333 (ω) , Ab
sc
3331 (ω) = Absc3133 (ω) ,

(A.2m)

The detailed expression of the RMS of the backscattering amplitude Asc
rms (ω) in Eq. (20) can be
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written as

Asc
rms (ω) =

√〈
Asc

pjkl (ω)A
sc
αβγδ (ω)

〉
=

√√√√〈
1,3∑
pjkl

Abscpjkl (ω)

1,3∑
αβγδ

Abscαβγδ (ω)

〉

=
√
⟨Absc1111Absc1111⟩+ ⟨Absc1111Absc1113⟩+ ⟨Absc1111Absc1131⟩+ ...+ ⟨Absc3333Absc3333⟩,

(A.3)

where the individual terms in the square root are obtained by multiplying and averaging the respective A

terms in Eq. A.2. Here, we give an example expression for one of the terms by

⟨Absc1111Absc1111⟩ = A2
0 ⟨∆c1111∆c1111⟩

×
∫
V

∫
V
k4RUR(z)

2UR(zs)
2 exp (2ikR(x+ xs)) dV dV .

(A.4)

The elastic covariance ⟨∆cpjkl∆cαβγδ⟩ involved in Eq. A.3 is given by

⟨∆cpjkl∆cαβγδ⟩ = ⟨cpjklcαβγδ⟩ − ⟨cpjkl⟩ ⟨cαβγδ⟩

= (⟨ajaapbakcaldaαmaβnaγoaδq⟩ − ⟨ajaapbakcald⟩ ⟨aαmaβnaγoaδq⟩) cabcdcmnoq

(A.5)

for materials of any symmetry. a(θ, ϕ, ξ) is the rotation matrix defined using the Euler angles51. The final
expressions are provided in the supplementary material.
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