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Abstract—The droop controllers of inverter-based resources
(IBRs) can be adjustable by grid operators to facilitate regulation
services. Considering the increasing integration of IBRs at power
distribution level systems like microgrids, cyber security is
becoming a major concern. This paper investigates the data-
driven destabilizing attack and robust defense strategy based on
adversarial deep reinforcement learning for inverter-based mi-
crogrids. Firstly, the full-order high-fidelity model and reduced-
order small-signal model of typical inverter-based microgrids
are recapitulated. Then the destabilizing attack on the droop
control gains is analyzed, which reveals its impact on system
small-signal stability. Finally, the attack and defense problems are
formulated as Markov decision process (MDP) and adversarial
MDP (AMDP). The problems are solved by twin delayed deep
deterministic policy gradient (TD3) algorithm to find the least
effort attack path of the system and obtain the corresponding
robust defense strategy. The simulation studies are conducted
in an inverter-based microgrid system with 4 IBRs and IEEE
123-bus system with 10 IBRs to evaluate the proposed method.

Index Terms—Destabilizing attack, microgrids, inverter-based
resources, deep reinforcement learning, adversarial training.

I. INTRODUCTION

The power system is facing the uphill challenge of high-
level penetration of renewable generation, in order to meet
the net-zero carbon target in the energy sector [1], [2]. In
distribution-level microgrid systems, a large-scale of inverter-
based resources (IBRs) is being connected to the power
network in a distributed way. Different from bulk power
systems dominated by synchronous generators, the dynam-
ics of these inverter-based systems are determined by the
control modes of power electronic interfaces. Besides, the
power electronic devices present a much faster response than
synchronous generators, which means the time scale of the
network dynamics is comparable and cannot be ignored in
stability analysis. To facilitate the regulation services in a
time-varying system environment, certain control parameters
of IBRs become adjustable or dispatchable. Like a double-
edged sword, the flexibility brought by the user-defined control
systems of power converters will also increase the attack
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surface. Therefore, the vulnerability and cyber-security for
inverter-integrated power systems are emerging but important
problems to be investigated.

The cyber-security of bulk power systems with multi-
machines has raised concerns for a long time. Cyber-security
of different processes in power systems has been studied, such
as state estimation [3], power dispatch [4], and automatic
generation control [5]. In addition, a few works consider
cyber-attacks for destabilizing dynamic power systems. In
the early stage, the author in [6] introduces the destabilizing
attack of power systems through the state-feedback controller.
The synchronous generators are divided into control group
manipulated by malicious attackers, and target group to be
destabilized. The attack aims to shift certain sensitive eigen-
values from the left into the right plane. This method is
later applied to mixed-source microgrids [7]. In recent works,
dynamic load-altering attacks are studied, as the wide adoption
of demand response schemes increases the attack surface. In
[8], the attack on the dynamic loads aims to destabilize the
power systems, where the victim loads are changed based on
the feedback of system frequency. A non-convex optimization
problem is formulated to determine the minimum amount of
load to be protected at each bus. In [9], the latency attack
on the automatic generation control of the power system
and its impact on system stability is studied. A parameter
tuning method based on an exhaustive and heuristic search is
proposed to maximize the stability region under such attack.

In the meantime, the cyber-security problem has also raised
much attention in power electronics-enriched systems like
microgrids. The wide integration of IBRs increases system
flexibility while decreasing system security. A large amount of
work has been conducted on the secondary control systems for
microgrids, as its attack surface is enlarged with the utilization
of the communication systems [10]. The impact of typical
attacks such as false data injection (FDI) and denial-of-service
(DoS) are investigated [11], [12]. Methodologies have been
provided for cyber attack prevention, detection, isolation, and
mitigation for network-controlled microgrids. The resilient
control and detection indexes are designed considering the
specific consensus algorithms in the secondary control of
microgrids. It is noted that the FDI and DoS attacks mainly
influence the system operational points targeting to make the
system violate the security boundary [13].

It can be found that prior works on destabilizing attacks
focused on synchronous generator dominated power systems
[6], [8], [9]. There is minimal work on the cyber-attacks target
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to small-signal stability and its defense mechanism of inverter-
based systems like microgrids. It motivates us to further
study this problem. Specifically, the least effort attack with
minimal droop parameter change to destabilize the inverter-
based microgrids is studied. It will help to understand the
system’s vulnerable parameters and manifestation under desta-
bilizing attacks. In addition, it also contributes to developing
corresponding defensive mechanisms to mitigate its impact.

These kinds of attack and defense problems can be for-
mulated as dynamic programming or optimal control prob-
lems. However, these problems usually involve non-linear
dynamics of system models and non-convexity in solving
system eigenvalues. It innovates us to apply the data-driven
method based on deep reinforcement learning (DRL) to find
online approximate solutions to such problems. The DRL
approaches have been widely used for power engineering
problems, such as voltage control [14], frequency control
[15], energy management [16], etc. A literature review of
DRL application in power systems is provided in [17]. By
interacting with the dynamic environment, the DRL algorithms
can train the deep neural networks (DNNs) based agents to
find an optimal control policy. Based on the policy, DRL
methods can be divided into deterministic policy, e.g. deep
deterministic policy gradient (DDPG), and stochastic policy,
e.g. proximal policy optimization (PPO) and soft actor-critic
(SAC). The candidates of DRL have been applied to address
cyber-security problems of microgrids and power systems in
some recent works [18]–[20]. In [18], a multi-agent deep Q
network approach is proposed to detect the vulnerable spots in
the index-based detection schemes for the secondary control
in islanded DC microgrids. In [19], DRL based method is
proposed for providing optimal defense strategy for microgrids
subject to FDI on the load demand. In [20], an asynchronous
advantage actor-critic (A3C) based multi-agent DRL is pro-
posed to provide resilient control for the secondary control of
microgrids to alleviate the impact of DoS attacks. In addition,
the method of adversarial reinforcement learning has been
proposed to find robust control solutions for voltage var control
problems in power distribution networks with uncertainty in
the environment [21]. The adversarial training of DRL agents
has been proposed for robust continuous control with attackers
in cyber-physical power systems [22]. This approach demon-
strates its potential for addressing the destabilizing attack and
robust defense problem in inverter-based systems.

In this paper, the cyber-attack and defense strategy in
inverter-based microgrids is studied systematically. Specifi-
cally, the impacts of destabilizing attacks on droop control
gains to the system stability are analyzed. The attack functions
to shift the system shrinking the small-signal stability region
by manipulating droop gains. The analysis reveals that such
attacks can be defended by changing sensitive droop gains
of the system. Then the least effort attack (LEA) and its
defense problems are introduced correspondingly. The attack
and defense problems are formulated as Markov decision pro-
cess (MDP) and adversarial MDP (AMDP). The twin delayed
deep deterministic policy gradient (TD3), as a deterministic
policy DRL method, is proposed to identify the dynamic LEA
for inverter-based systems. Compared to stochastic policy,

the agent with deterministic policy by TD3 can provide a
deterministic action to adjust the droop gains in the dy-
namic system. Besides, an adversarial reinforcement learning
framework is adopted to find the dynamic and robust defense
strategy under LEA. The distinct contributions of this paper
compared to existing works are:

• Considering the small-signal stability in inverter-based
systems, the destabilizing attack is modelled and ana-
lyzed for the first time.

• The attack and defense problems are formulated as
finding the optimal combination of droop gains within
attack and defense sets in inverter-based systems.

• The TD3 algorithm is adopted for training the attack
agents, while the robust defense strategy is generated by
adversarial training between attack and defense agents.

II. SYSTEM MODELLING

To investigate the destabilizing attack on the system sta-
bility, the dynamic model of multi-inverter microgrid systems
is presented. Based on the full-order high-fidelity model, the
reduced-order small-signal model can be derived [23]–[25].
They are used to calculate the system trajectory as well as the
trace of eigenvalues under cyber-attack. The system model
consists of the dynamics of inverters, network and loads,
and the transformation between local and common frames.
The network dynamics are taken into account in the system
as the IBRs respond quite fast as compared to synchronous
generators.

Notation: 1N stands for N -dimensional identity matrix. 0N

stands for N -dimensional zero matrix. For vector x ∈ RN ,
x = col{x1, . . . , xN}. X = diag{x1, x2, ..., xN} denotes
a N -dimensional diagonal matrix with x1, . . . , xN on its
diagonal elements.

A. Modelling of Inverter-based Microgrids

A typical inverter-based microgrid with multiple IBRs gov-
erned by grid-forming and droop control is considered in
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Fig. 1. A inverter-based microgrid with 4 IBRs and its power electronic
interface.
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this paper, as demonstrated in Fig. 1. The power network of
the system can be represented by a complex-weighted graph
G = (V, E), where the nodes V represent the buses, and the
edges E represent the line connections. The loads and inverters
are connected sparsely at each bus.

For generality, it is considered that the DC-side voltage is
well maintained at the primary side. The inverter dynamics
can be modelled with a continuous average model as its high
switching frequency. The modelling is conducted in dq frame
which can be converted to abc frame by Park Transformation.
The local dq frame can be transferred into a common reference
DQ frame as follows [23]:

xDQ(t) = T (δ(t))xdq(t) (1)

where xDQ = [xD, xQ]
T , xdq = [xd, xq]

T , T (δ(t)) =[
cos δ(t) − sin δ(t)

sin δ(t) cos δ(t)

]
.

The angle of ith inverter is calculated by:

δ̇i(t) = ωi(t)− ωcom(t) (2)

where ωcom is the common reference frequency.
1) Inverter Modelling:. The droop control for power inverter

of IBRs is designed with the philosophy of emulating the
behavior of synchronous generators to share the load demand
based on frequency deviation. Similarly, the reactive power
can be shared by droop control with the voltage magnitude.
Considering a first-order filter in the power calculation process,
they can be represented as [25]:

τ ω̇i = −ωi + ωn −miPi (3)

τ V̇i = −Vi + Vn − niQi (4)

where ωi, Vi are frequency and voltage references for inner
control loops, ωn, Vn are nominal value of frequency and
voltage, Pi, Qi are measured real and reactive power, mi,
ni are corresponding droop gains. τ = 1

ωc
is the low-pass

filter time constant for the power measurement, ωc is the cut-
off frequency. It is noted that the output voltage magnitude
is aligned to the local d-axis of the inverter reference frame
(Vi = v∗di), while the q-axis reference is zero (v∗qi = 0).
The droop gains are typically selected based on allowable
frequency and voltage range, as follows [23]:

mi ≤
ωi − ωi

Pi − Pi

(5)

ni ≤
Vi − Vi

Qi −Qi

(6)

where ωi, ωi, Pi, and Pi, Vi, Vi, Qi, Qi, are upper and lower
boundaries of frequency, real power, voltage, reactive power
of ith inverter.

The inverter output voltage vdi, vqi are regulated to the refer-
ence voltage value v∗di, v

∗
qi determined by the droop controller.

The voltage control loop is as follows:

ϕ̇di = v∗di − vdi (7)

ϕ̇qi = v∗qi − vqi (8)

i∗ldi = KPV i(v
∗
di − vdi) +KIV iϕdi (9)

i∗lqi = KPV i(v
∗
qi − vqi) +KIV iϕqi (10)

The current control loop is as follows:

γ̇di = i∗ldi − ildi (11)
γ̇qi = i∗lqi − ilqi (12)

vidi = KPCi(i
∗
ldi − ildi) +KICiγd,i − ωiLfiilqi (13)

viqi = KPCi(i
∗
lqi − ilqi) +KICiγq,i + ωiLfiildi (14)

where ϕdi, ϕqi, γdi, and γqi are state variables of voltage
and current control loops. KPV i, KIV i, KPCi, and KICi are
proportional and integral gains of voltage and current control
loops. i∗ldi, i

∗
lqi are the reference generated by voltage control,

which will be tracked by current control. ildi, viqi are the
current and voltage measurement before the LC filter.

The differential equations for the output LC filter are as
follows:

Lfii̇ldi = −Rfiildi + Lfiωiilqi + vidi − vdi (15)

Lfii̇lqi = −Rfiilqi − Lfiωiildi + viqi − vqi (16)
Cfiv̇di = Cfiωivqi + ildi − idi (17)
Cfiv̇qi = −Cfiωivdi + ilqi − iqi (18)

where Rfi, Lfi are the resistance and inductance of ith
inverter.

2) Network and Loads: For a multi-inverter system, the
interconnected variables of each inverter with the network and
loads should be transferred between local dq frame and the
common DQ frame. Specifically, the output voltage of the
inverter is transferred to DQ frame by VDQ = T (δ)vdq . For
the distribution line between bus i and bus k, the dynamic of
the line current in DQ frame is represented as:

Lik İDik = −RikIDik + ω0LikIQik + VDi − VDk (19)

Lik İQik = −RikIQik − ω0LikIDik + VQi − VQk (20)

where Rik, Lik are the resistance and inductance between bus
i and k. ω0 is a constant synchronous frequency.

An equivalent resistance-inductance (RL) load is considered
at each bus in the systems. The dynamic of RL load connected
at bus i in DQ frame can be expressed as:

LLiİLDi = −RLiILDi + ω0LLiILQi + VDi (21)

LLiİLQi = −RLiILQi − ω0LLiILDi + VQi (22)

where RLi, LLi indicate equivalent resistance and inductance
of RL load in bus i. As the current is balanced at each bus,
thus the current injection by each inverter are IDi = IDik +
ILDi, IQi = IQik + ILQi. Then the current of the inverter can
be transferred back to local dq frame by idq = T (δ)−1IDQ.
Based on the power calculation in local dq frame, it can be
obtained that:

Pi = 1.5(idivdi + iqivqi) (23)
Qi = 1.5(idivqi − iqivdi) (24)

Then the calculated power Pi and Qi are applied in the droop
control in (3) and (4).
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B. Small-Signal Model

The small-signal model is widely used to analyze the stabil-
ity of inverter-based microgrids. The 5-order system by sim-
plifying the inner control loops and LC filter dynamics in (7)-
(18) is considered. The reduced order system still offers high
accuracy for calculating the eigenvalues and evaluating the
system stability [25]. By linearizing the above system around
the operational or equilibrium point using Taylor expansion,
the small-signal model can be obtained. The equilibrium point
can be obtained by solving the differential equations of the
full-order high-fidelity model. Therefore, by integrating the
state equation of inverters, network, and loads, the small-signal
model of the multi-inverter system can be obtained as:

∆ẋsys = Asys∆xsys (25)

where ∆xsys = [∆δ,∆ω,∆V,∆ĨD,∆ĨQ]
T is the state vari-

able of the system. ∆ĨD = [∆ILine,D,∆ILoad,Q]
T , ∆ĨQ =

[∆ILine,Q,∆ILoad,Q]
T . ILine,D, ILine,Q, ILoad,D, ILoad,Q

are vectors of line current and load current. An incidence
matrix ∇T of the power network is introduced, where
∇T

ij = 1 if current of jth line is injected to ith bus,
∇T

ij = −1 represents the current of jth line leaves ith bus.
xs ∈ {δs, ωs, V s, ĨsD, Ĩ

s
Q} is the equilibrium points of the

system, Asys is detailed coefficient matrix of the system,
which is given as follows

Asys=


0 1 0 0 0

Θ21 −ωc1 Θ23 Θ24 Θ25

Θ31 0 Θ33 Θ34 Θ35

Θ41 0 Θ43 −ω0RX
−1 ω01

Θ51 0 Θ53 −ω01 −ω0RX
−1


and

Θ21 = −1.5ωcM[−V s
D sin(δs)IsD + V s

D cos(δs)IsQ],

Θ23 = −1.5ωcM[cos(δs)IsD + sin(δs)IsQ],

Θ24 = −1.5ωcMV s
D∇T ,

Θ25 = −1.5ωcMV s
Q∇T ,

Θ31 = −1.5ωcN [V s
D cos(δs)IsD + V s

D sin(δs)IsD],

Θ33 = −ωc1+ 1.5ωcN [sin(δs)IsD − cos(δs)IsQ],

Θ34 = −1.5ωcNV s
Q∇T ,

Θ35 = 1.5ωcNV s
D∇T ,

Θ41 = −ω0X
−1∇V s

D sin(δs),

Θ43 = ω0X
−1∇ cos(δs),

Θ51 = ω0X
−1∇V s

D cos(δs),

Θ53 = ω0X
−1∇ sin(δs).

where V s
D, V s

Q, IsD, IsQ, δs are equilibrium points in diagonal
matrix form, which can be obtained from the time-domain
simulation of the non-linear model presented in Section II.A.
M = diag{m1,m2, ...,mN}, N = diag{n1, n2, ..., nN}
are a diagonal matrix of droop control gains. R and X are
resistance and inductance matrices with network and loads. It

is noted that this model is scalable according to the invert-
ers, buses, and loads in the system. The derivation process
of this model is omitted for brevity. The system contains
3NInv + 2NLoad + 2NLine of states. NInv, NLoad, NLine

are the number of inverters, loads, and distribution lines.

III. ANALYSIS OF DESTABILIZING ATTACK AND DEFENSE
ON INVERTER-BASED MICROGRIDS

In the studied multi-inverter systems, the droop control
gains of each IBR are adjustable. It can be changed to adapt
to grid conditions, or dispatched by the system operator via
communication systems [7]. In the meantime, the parameters
of inner control loops are particularly designed for each
inverter by the manufacturer, which is usually non-changeable.
The attack surface of the multi-inverter systems are considered
as these flexible parameters, such as droop control gains and
their power set-points. The droop control gains will influence
the stability of the system, while the power set points influence
the equilibrium points. In this study, we mainly focus on
destabilizing attacks by adjusting the droop control gains and
their influence on the small-signal stability of the system.

A. Attack and Defense on Droop Gains

First, all the droop gains of IBRs in the inverter-based
microgrids are separated into two sets. The attack set Vatt

contains droop gains which can be manipulated by attackers
to destabilize the system. The defense set Vdef contains droop
gains which can be controlled by defenders to stabilize the
system. Based on the attack and defense sets, the IBRs in
the system can be separated into victim IBRs and defense
IBRs. Therefore, the system under attack and defense can be
formulated as

x(t+ 1) = f(x(t), uatt(t), udef (t), t), (26)
uatt(t) = h(x(t), t), (27)
udef (t) = g(x(t), t), (28)

where uatt is the cyber-attack strategy target to the stability of
the system. udef is the defense strategy to maintain stability
of the system. uatt = 0 or udef = 0 means there is no
cyber attack or defense control. The small-signal model of
inverter-based microgrids with attack and defense on droop
gains becomes

∆ẋsys = (Asys +Aatt +Adef )∆xsys (29)

where Aatt is a matrix denoting the droop control gain change
in victim IBRs. Specifically, the original droop gains mi, ni
within the attack set Vatt will be manipulated by matt,i, natt,i.
That is to say all terms in M and N within the attack set will
be changed as compared to the original system matrix Asys.
It will finally influence the small-signal stability of the multi-
inverter system. To defend such attack, the system operators
can design certain strategies to change the droop gains of
defense IBRs. Adef is a matrix denoting the droop control
gain change in defense IBRs. Specifically, the original droop
gains mi, ni within the defense set Vdef will be changed by
mdef,i, ndef,i.
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TABLE I
PARAMETERS OF A MICROGRID SYSTEM WITH 4 IBRS

Parameters Values

IBR (No.) 1 2 3 4
mi (rad/W) 1 × 10−4 1 × 10−4 0.5 × 10−4 0.5 × 10−4

ni (V/Var) 1 × 10−4 1 × 10−4 0.5 × 10−4 0.5 × 10−4

[Pi, Pi] (kW) [0, 20] [0, 20] [0, 20] [0, 20]
[Qi, Qi] (kVar) [-20, 20] [-20, 20] [-20, 20] [-20, 20]

Load (Bus No.) 1 2 3 4
R (Ω) 5.6 14.1 11.2 8.3
L (mH) 8.9 45 17.8 8.8

Line (No.) 1-2 2-3 3-4
R (Ω) 0.16 0.32 0.24
L (mH) 1.1 2.2 1.7

LC filter (No. 1-4) Cf = 50µF Lf = 5mH Rf = 0.1Ω
Inner control KPV =50 KIV =250 KPC=50 KIC=500

Reference ω∗=100πrad V∗=220
√
2V τ = 27 ms

Recall the definition of the eigenvalue and its eigenvectors:

Aϕi = λiϕi, (30)

ψT
i A = ψT

i λi. (31)

where ϕi and ψi are the right and left eigenvectors of λi. The
eigenvalue of A can be obtained by solving the determinant
det(A − λiI) = 0. The negative value for the real part of λi
indicates stable modes, while the zero value for marginally
stable modes and the positive value for unstable modes.

The spectral abscissa of the system matrix A is the maxi-
mum real part of its eigenvalues, which can be presented as
[26]:

Λ(A) = max{Re{λi} : det(A− λiI) = 0}, (32)

Here we further define Λ̃(A) as the spectral abscissa with non-
zero imaginary part Im{λi} ≠ 0, considering the fact that the
eigenvalues will not shift to the right plane when they are on
the real axis.

The damping ratio ζi is defined as

ζi =
−αi√
α2
i + β2

i

(33)

where αi and βi are the real and imaginary parts of λi.
It describes the attenuation of the system oscillations. In
addition, the sensitivity of eigenvalue λi with respect to a
parameter κ can be calculated by

λi
∂κ

= ψT
i

∂A

∂κ
ϕi (34)

It is noted that the calculation of eigenvalue involves non-
convexity, as well as its associated factors including spectral
abscissa, damping ratio, and sensitivity of eigenvalue regarding
system parameters, which brings difficulty into related opti-
mization problems [8], [27].

B. Analysis with a Microgrid Example

The destabilizing attack on droop gains aims to shift the
eigenvalues of the original system Asys into the unstable ones.
A microgrid system with 4 IBRs is used as an example to show
how droop gain change will influence the system’s stability.
The detailed parameters of the microgrid with 4 IBRs are

shown in Table I. The system stability region of the small-
signal model regarding frequency and voltage droop gains is
shown in Fig. 2. The eigenloci under the change of mi in the
small-signal model is shown in Fig. 3. As shown in Fig. 2 (a),
there are two dimensions in the stability region to be changed,
i,e, frequency and voltage droop gains mi, ni. As shown in
Fig. 2 (b), the changing of m3 in IBR-3 will shift the stability
region of IBR-4. It indicates the defender can change the droop
gains of certain IBRs in order to stabilize the system under
the attack of other IBRs. As shown in Fig. 3, by changing
the mi from 5 × 10−5 to 1 × 10−3 respectively, the mode
of λ15 and λ16 will be moved towards to right plane. With a
sufficient amount of manipulation of droop gains, the system
will become unstable. The defender has the opposite goal,
which aims to allocate all eigenvalue to the left plane. Besides,
it can be found from Fig. 2 (a) that IBR-3 has the smallest
stability region. It indicates the IBR-3 is the most vulnerable
part under destabilizing attack, which should be well protected.
In addition, in order to defend against an attack on certain
droop gains, the defender should have more resources than
the attacker, so that the eigenvalue can be shifted to desired
regions.

Considering the attack and defense sets of IBRs, there are
three general cases:
(a) The attack and defense sets have no intersection, i.e.
Vatt ∩ Vdef = ∅. There are two sub-conditions: i) The
IBRs under attack and defense are different. In this condition,
the defender can change mi of other IBRs to make the
destabilizing attack not successful, as shown in Fig. 2(b). ii)
The attacker can only manipulate either frequency droop gain
mi or voltage droop gain ni. This condition can be found when
frequency/voltage droop gains have different communication
channels and are dispatched separately. It can be illustrated by
Fig. 2 (a), where the attacker can only change mi or ni. If
the attacker manipulates mi of certain IBR, the defender can
adjust ni to make the system operation point in the stability
region. Similarly, if the attacker manipulates ni of certain IBR,
the defender can reduce mi below a certain value.
(b) The attack and defense sets are equal, i.e. Vatt = Vdef . It
happens when certain inverters are subject to attack, but the
defender does not lose control ability of them. If the defender
can adapt to the changes of the attackers, then the attack can
be defended.
(c) The attack and defense sets have a partial intersection, i.e
Vatt∩Vdef ̸= ∅. This is a more general condition as compared
to cases (a) and (b), a mixed strategy can be taken by the
defenders. Therefore, a proper method should be developed to
find the combination of droop gains in the defense set.

C. Least Effort Attack

From victim IBRs, one can find the least effort attack with
minimal changes of droop control gains. Thus, the least effort
attack is defined as the attack which has minimal changes
of matt,i and natt,i within attack set Vatt. The LEA can be
represented as the problem below:

min
matt,i,natt,i

∑
i∈Vatt

(|matt,i|+ |natt,i|) (35)
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s.t.det(Asys +Aatt − λiI) = 0 (36)
Λ(Asys +Aatt) > 0 (37)
mi < mi +matt,i < mi (38)
ni < ni + natt,i < ni (39)

This problem is to find the argument of matt,i and natt,i
that minimizes the above problem. (36) is the determinant for
calculation of the system eigenvalues. (37) represents that the
system spectral abscissa should be larger than zero, which
leads to system unstable. (37) can be replaced by Λ̃(Asys +
Aatt) = Λ∗

att, if the attack aims to place the spectral abscissa
into a specific value. Besides, λi or ζi can also be replaced into
the constraints if the attack targets to specific eigenvalues and
modes. Inequalities (38)–(39) impose upper and lower bounds
on total droop gains of each IBR. They are the preset limits
of the IBR which can not be violated.

The above formulation is for the static LEA, which does
not consider the system change. Considering this problem in
a dynamic environment, it is equivalent to find the optimal
attack strategy u∗att,t considering dynamic system in (26). As
the small-signal model can describe the system stability at
each time interval. Therefore, by considering time interval t
into the above LEA problem, the sequential or dynamic LEA
can be formulated. Both LEA problems contain the calculation
of the eigenvalues and spectral abscissa of the system under
attack. As the eigenvalue sensitivity in (34) of the studied
system is highly non-linear, it is hard to estimate the final value

based on the original condition. Besides, in real operation
conditions, there will be parameter variations in the inverter-
based microgrids.

D. Defense Strategy

To defend dynamic LEA on droop gains in inverter-based
microgrids, a defense strategy can be designed to change the
droop gain by mdef,i and ndef,i within defense set Vdef .
Therefore, the defense problem can be represented as

min
mdef,i,ndef,i

∑
t∈T

∑
i∈Vdef

(|mdef,i,t|+ |ndef,i,t|) (40)

s.t.det(Asys,t +Aatt,t +Adef,t − λiI) = 0 (41)
Λ(Asys,t +Aatt,t +Adef,t) < 0 (42)
mi < mi,t +matt,i,t +mdef,i,t < mi (43)
ni < ni,t +matt,i,t +mdef,i,t < ni (44)

This defense problem is similar to the above dynamic LEA
problem. It aims to stabilize the system by adjusting the droop
gains. (42) can be replaced by Λ̃(Asys,t +Aatt,t +Adef,t) =
Λ∗
def , if the defender aims to place the spectral abscissa into

a specific value.
Again, it involves the calculation of eigenvalues and system

non-linear dynamics, which makes the problem hard to be
dealt with. In the next section, we propose to use deep
reinforcement learning to obtain the online optimal solution
for these attack and defense problems.

IV. ATTACK AND DEFENSE BY ADVERSARIAL DEEP
REINFORCEMENT LEARNING

In this section, the dynamic LEA and its defense are
presented in detail. Firstly, the dynamic LEA is formulated
into a MDP. Then robust defense problem under such an attack
is formulated as an AMDP. The training and implementation
framework is demonstrated in Fig. 4. As shown in Fig. 4, the
reduced order small-signal model will calculate the eigenvalue
of the system at each time interval during the offline training
stage. The system equilibrium points are obtained from the
high-fidelity model. In the online implementation stage, both
the small-signal model and high-fidelity model can be applied,
which function to simulate the system trajectory and calculate
the system eigenvalue. The system eigenvalue is obtained by
the attack agent and defense agent to train the optimal policy.
The attack agent and defense agent have opposite objectives,
i.e. destabilize and stabilize the system. Then the droop gains
in the attack and defense sets will be updated in the next
time interval. Next, we need to transfer the attack and defense
problems into MDP and AMDP forms, so that they can be
handled by DRL methods. In this paper, TD3 is adopted to
train DNN to learn the optimal attack and defense policy,
which aims to find the optimal combination of droop gain
change within the attack set and defense set. The deterministic
policy can give a smoother output than stochastic policy in
the studied problem. The TD3 as an extension method of
DDPG, addresses the sub-optimal policies generated by the
value function overestimation of DDPG. More details of TD3
can be found in its fundamental work [28].
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Fig. 4. The training and implementation framework of the proposed
framework. The TD3 is used to accomplish the attack and defense task in
inverter-based systems.

A. Dynamic LEA by Deep Reinforcement Learning

In this paper, the attack problem is formulated as the MDP
defined by the tuple (S,A,P,R), where S presents a set of
states from the environment, A is a set of actions, P is a
set of transition probability function, R is a set of immediate
rewards. The attack agent will learn an optimal control policy
through interaction with the environment. It is noted that only
the concerning states in the environment are received by the
attack agent.

At each time step t, the attack agent will receive a state
st ∈ S from the current state of the environment. Then the
agent will generate an action at ∈ A, which controls the
environment into a new state st+1. The action is generated
by a policy π : S 7→ A such that at = π(st). In each time
step, the agent will also receive a reward rt ∈ R, which is
a function of the state and the action, i.e., r : S × A 7→ R.
The transition between the environment states can be modelled
by the transition probability function P (st, at, σ), where σ
represents the uncertainty in the environment.

The goal of the attack agent is to learn an optimal policy π∗

that maximizes the accumulated expected discounted reward
J(π) = E(

∑T
t=0 γ

trt). Here T is the episode length and
γ ∈ [0, 1] is a discount factor. To estimate the expected
discounted reward by taking action at following policy π in
state st, the Q value function is defined i.e. Qπ(st, at) =

Eπ [J(π) | s0 = st, a0 = at.]. In the actor and critic structure
based DRL methods such as TD3, the Q value function is
estimated by one or two DNNs as Qk(θc,k|st, at). Besides,
the actor is also based on DNN to generate the deterministic
policy at = π(θa|st). θc,k and θa are the parameters of DNNs
for critics and actor. In this paper, TD3 is used for training
the DNN to solve the formulated MDP.

1) State: In the studied dynamic LEA problem, the agent
will receive certain states from the environment. At time step
t, the measured state is represented by:

st = {Λ̃(Asys,t +Aatt,t), ϵatt} ∈ S, (45)

where ϵatt = |Λ̃(Asys +Aatt)− Λ∗
att| is the error to attacker

targeted spectral abscissa, which can be calculated from the
small-signal model.

2) Action: In this paper, the actions generated by the agent
is defined as droop gains in the attack set. It aims to find the
least effort attack path for system instability. Therefore, the
action set of attack agent is defined as:

at = {matt,i,t, natt,i,t} ∈ A (46)

where matt,i,t, natt,i,t refer to droop gains to be changed in
the attack set. The total droop gains should be within the limits
[mi,mi], and [ni, ni], as defined in (38), (39).

3) State Transition: The system state transition is governed
by st+1 = P (st, at, σt), which is determined jointly by
current state st, agent action at and environment uncertainty
σt. σt refers to the system uncertainty e.g. parameters of droop
gains and RL value of loads. The agent will gradually learn
the characteristics from the data sources of the environment.

4) Reward: The reward function rt is used to evaluate the
performance of action at at state st. The reward function is
defined that the attack problem in (35)-(39) can be solved
considering the stochastic environment. Thus the reward can
be defined as:

rt = r1,t + r2,t, (47)

r2,t = −
∑

i∈Vatt

(|matt,i,t|+ |natt,i,t|). (48)

r1,t = −|Λ̃(Asys,t +Aatt,t)− Λ∗
att|, (49)

The reward function contains two parts r1,t and r2,t. The
first part aims to find the minimal sum of matt,i and natt,i
in the attacks set, as defined in (35) The second part is to
shift the spectral abscissa with non-zero imaginary part Λ̃ to
a desired positive value Λ∗

att, as defined in (37).

B. Robust Defense by Adversarial Reinforcement Learning

Given an agent with attack policy π, we wish to learn a
policy π′ to defend such an attack. This can be achieved by
solving the AMDP problem (S ′,A′,P ′,R′). Similar to the
attack problem as MDP, S ′ is the set of system states including
the attack agent. A′ is the set of all available defense actions.
P ′ : S×A×A′ is the transition probability under attack policy
π and defense policy π′. R′ is the reward function of defense
agent, which can be chosen as the opposite reward of the
attack agent. The defense agent seeks to minimize the expected
reward with the attack agent as minπ′ maxπ J

′(π′, π). As
the iterative training of attack policy π and defend policy π′

converges slowly and does not provide greater robustness [29].
Here we adopt the alternative way which is to fix the attack
policy π when training the defense policy a′t = π′(θ′a|s′t).

1) State: The defense agent receives similar states from the
environment. At time step t, the measured state is represented
by:

s′t = {Λ̃(Asys,t +Aatt,t +Adef,t), ϵdef} ∈ S ′, (50)

where ϵdef = |Λ̃(Asys,t+Aatt,t+Adef,t)−Λ∗
def | is the error

to defender targeted spectral abscissa.
2) Action: In this paper, the actions generated by the defense

agent are defined as droop gains in the defense set. It aims
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to find a policy that stabilizes the system. The action set of
defense agent is defined as:

a′t = {mdef,i,t, ndef,i,t} ∈ A′ (51)

where mdef,i,t, ndef,i,t refer to droop gains to be changed
in the defense set. The total droop gain should be within the
limits [mi,mi], and [ni, ni], as given in (43), (44).

3) State Transition: The system state transition is governed
s′t+1 = P ′ (s′t, at, a

′
t, σt), which is determined jointly by

current state s′t, attacker agent action at, defender agent action
a′t and environment uncertainty σt.

4) Reward: The reward function r′t is used to evaluate the
performance of action a′t at state s′t. The reward function is
defined that the defense problem in (40)-(44) can be solved.
Thus the reward of defense agent can be defined as:

r′t = r′1,t + r′2,t, (52)

r′2,t = −
∑

i∈Vdef

(|mdef,i,t|+ |ndef,i,t|). (53)

r′1,t = −|Λ̃(Asys,t +Aatt,t +Adef,t)− Λ∗
def |, (54)

The reward function contains two parts r′1,t and r′2,t. It is to
find the minimal change of mdef,i and ndef,i in the defense
set to shift the Λ̃ to a desired negative value Λ∗

def , as given in
(40) and (42). Based on the TD3 algorithm, the above AMDP
can be solved. It is achieved by adversarial training of the
attack agent with the defense agent. The process of adversarial
training is summarized in Algorithm 1.

Algorithm 1 Adversarial Training
1: Import trained attack agent with policy π∼θa.
2: Initialize defense agent with randomized actor network
π′ ∼ θ′a and critic networks Q′

1 ∼ θ′c,1,Q′
2 ∼ θ′c,2. The target

networks are of the same size.
3: Set training hyperparameters of TD3 as in Table II
4: for episode = 1 to M do
5: Initialize state s′1 and droop gains mi, ni within a range.
6: for t = 1 to T do
7: Determine action a′t by policy π′(θ′a|s′t)
8; Take action a′t, get reward r′t and observe the next state
s′t+1

9: Store the transition s′t, a
′
t, r

′
t into the replay buffer R.

10: end for
11: A mini-batch of m instances is randomly sampled from
R.
12: Update the actor and critic networks parameters with
policy gradient by TD3.
13: end for

V. RESULTS

A. Test Setup

1) Test systems: To evaluate the performance of the proposed
method, two test systems, including 4-IBR microgrids and
IEEE 123 bus system with 10 IBRs, are considered. The
structure of the 4-IBR microgrid is shown in Fig. 1. In this
system, 4 IBRs are connected to the microgrid via inverters,
and 4 RL loads are connected at each bus. The parameters

TABLE II
HYPERPARAMETERS OF TD3 ALGORITHM

Hyperparameters Values

Experience buffer length 1 × 106

Minibatch size 256
Discount factor 0.99
Actor learning rate 1 × 10−4

Critics learning rate 1 × 10−3

Optimizer Adam
Policy updating frequency 2
Target smooth factor 1 × 10−3

Noise standard deviation 0.1
Noise standard deviation decay rate 1 × 10−4

of the system are given in Table I. Besides, the performance
of the proposed method is also evaluated under a large-scale
system by using IEEE 123-bus systems.

2) Training Setup: The TD3 algorithm is used to solve the
MDP and AMDP as well as train the attack and defense agents.
The hyperparameters of TD3 used for attack and defense
agents training are presented in Table II. The time interval
between two consecutive steps ∆t = 0.1 s. The training is
performed on a laptop with 3.00GHz Intel i7-1185g7 CPU
and 16GB RAM. DNNs are initialized with random weights
and biases, which include an actor network and double critic
networks. All actor and critic networks have two hidden layers
with 100 and 50 units. The number of neurons at input and
output layers vary according to the specific problems. The
ReLU activation function is used for all hidden layers of
actor and critic networks. The Tanh activation function is
subsequently applied to the output of the actor network.

3) Hyperparameter Selection: In this paper, typical values
are selected as in Table II to ensure modest training perfor-
mance. Some suggestions for hyperparameter selection are
as follows. The experience buffer stores past transitions for
training. A large value can store more diverse transitions,
but also requires more memory. The batch size determines
the number of transitions to be used in each iteration of the
training process. A large batch size means that more transitions
are used in each iteration. It can increase the accuracy of the
gradients computed during training, but also requires more
computational resources. The discount factor determines the
importance of future rewards in the calculation of the expected
return. A large discount factor can lead to a focus on long-
term rewards, while a small discount factor can lead to a
focus on short-term rewards. The learning rate determines
how quickly the model updates its weights. A large learning
rate may lead to instability, while a small learning rate may
result in slow convergence. The exploration noise is added
to the actions produced by the actor network to encourage
the agent to explore new actions and states. The scale of the
exploration noise can affect the balance between exploration
and exploitation.

B. Case 1: Least Effort Attack

First, the basic case that 4-IBR microgrids subjected to
dynamic LEA is studied. It is considered that IBR-2 and
IBR-4 is under attack, and the attack set contains matt,2,
natt,2, matt,4 and natt,4. In the training stage, the droop
gains of each inverter are randomly initialized among ranges
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Fig. 5. The average reward and episode reward during the training stage of
the attack agent.
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Fig. 6. The droop gains of IBR-2 and IBR-4 and spectral abscissa of the
microgrids.

(mi, ni ∈ [1.5×10−4, 3×10−4]) in each episode, which makes
the agent robust to parameter uncertainty. In Fig.5, the episode
reward and average reward of 20 steps during the training
are presented, and DDPG and TD3 methods are compared.
The TD3 has better convergence and accumulated reward than
DDPG for the studied problem as shown in Fig.5. Therefore,
in the rest of this paper, TD3 is adopted by both attack and
defense agents in the training. As the training progresses, the
average and episode rewards increase and gradually become
converged. The training shows asymptotic convergence within
500 episodes.

After the training is completed, the actor network can be
extracted and used to find the dynamic LEA in a real-time
environment. It is considered that the system operated at mi =
2.5×10−4 and ni = 2.5×10−4 when the simulation start. The
droop gains of IBR-2 and IBR-4 and spectral abscissa of the
system are shown in Fig. 6 (a)-(d). Fig. 6 (a) shows that the
attack agent adjusts the droop gains into m2 = 4.43 × 10−4,
n2 = 2.64× 10−4, m4 = 2.81× 10−4 and n4 = 2.61× 10−4.
As result, the spectral abscissa of the system is changed from
-5.5 to 1 in Fig. 6 (b). Besides, we also set Λ∗

att = 2, where
another group of droop gains can be found, as shown in Fig.6
(c) and (d). Fig. 6 (c) shows that the attack agent adjusts the
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Fig. 7. The system frequency and voltage trajectories with and without attack
agent and the attacker targeted spectral abscissa is 1.

droop gains into m2 = 4.72×10−4, n2 = 2.67×10−4, m4 =
2.52×10−4 and n4 = 3.16×10−4. The system frequency and
voltage trajectories with and without attack agents are shown
in Fig. 7. As shown in Fig.7 (a) and (b), the system under
initial droop gains will operate stably. However, the inclusion
of attack agent on the system will lead to the system instability
in Fig.7 (c) and (d). The time-domain simulation with high-
fidelity system validates that the attack targeted to maximum
eigenvalue eventually destabilizes the system.

C. Case 2: Robust Defense Strategy

In the second case, the defense agent is added into the
system of the basic case. The defense agent can change droop
gains of IBR-2 and IBR-3, where the defense set contains
mdef,2, ndef,2, mdef,3 and ndef,3 and has intersection with
attack set. After adversarial training with attack agent, the
actor network of defense agent can be deployed to defend
such attack. The actions of droop gain changes from attack
and defense agents, as well as spectral abscissa of the system,
are shown in Fig. 8. In Fig. 8 (a) and (b), it can be found that
certain droop gains change (e.g. droop gains of IBR-4) faster
than others, and the defense droop changes slower than the
attack droop. The underlying reason should be the defense
droop are more sensitive to system eigenvalue or spectral
abscissa than attack droop. Therefore, the defense agent can
change them slowly to deal with the rapid change of droop by
the attack agent. Besides, the attack agent and defense agent
will gradually reach an equilibrium. The attack agent will also
change its output as compared to Case-1. After the adversarial
training against the attack agent, the defense agent is capable
to bring the system spectral abscissa to -2 to make the system
stable.

The system eigenvalue before attack, after attacks, and with
defense are demonstrated in Fig. 9. It can be found that the
system critical eigenvalue shifts to the right plane after attack.
The imaginary part changed from -5.4 to 2. After the defense
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Fig. 9. The system eigenvalue of before attack, after attacks, and with both
attack and defense.

agent involves, the imaginary part can shift back to -2. In
the shifting process, the proposed method will keep minimal
change of droop gains.

D. Case 3: Scalability Test in IEEE 123-bus System

In the third case, the scalability of the proposed attack
and defense framework is tested in a modified IEEE 123-
bus system, where details can be found in [25]. The system
topology is shown in Fig. 10. The IBRs are located at bus
{95, 149, 79, 5, 102, 112, 81, 91, 89, 47}. The IBR at bus
{95, 149, 79, 5} is under attack, while the IBRs at bus {95,
149, 102, 112} is under defense. The droop gain changes by
attack and defense agents in p.u are shown in Fig. 11 (a)
and (b). As droop gains in defense set are more sensitive
to system stability than in attack set. Therefore, the defense
agent can find a dynamic combination of droop gains to ensure
the system’s small-signal stability. Besides, as shown in Fig.
11 (c), the defense agent is capable to maintain the system
spectral abscissa to -2.

The trace of eigenvalues during the simulation is shown in
the 2D-plot of Fig. 12, while the trace of critical eigenvalues

Fig. 10. The IEEE 123-bus system used for scalability test.
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Fig. 11. The droop gain changes by attack and defense agents as well as
spectral abscissa of the microgrid.

is shown in the 3D-plot of Fig. 13. As shown in Fig. 12, it
can be found that the eigenvalues with the largest real part
are shifted from the red star point to the green star point. The
system special abscissa is changed from -5.38274 to -2.06296.
It aligns with the time domain results shown in Fig. 11 (c). The
system critical eigenvalues are considered as eigenvalues with
the largest real part. As shown in Fig. 13, λ19, λ20 are the
system critical eigenvalues (blue circle) during 0s-1.9s. λ33,
λ34 are the system critical eigenvalues (red asterisk) during
2s-20s. This result also aligns with previous findings.

VI. CONCLUSIONS

In this paper, the problem of destabilizing attacks on droop
gains in inverter-based microgrids is studied, and the data-
driven destabilizing attack and robust defense strategy are
proposed. Firstly, the full-order model and linearized reduced-
order small-signal model of typical multi-inverter systems are
derived. Then the destabilizing attack on the droop gains and
its defense strategy is analyzed. Finally, a deep reinforcement
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Fig. 12. The trace of system eigenvalues during the simulation in Case 3.
The system special abscissa is changed from -5.38274 to -2.06296.

Fig. 13. The trace of system critical eigenvalues during the simulation in
Case 3. The blue circle is for λ33, λ34. The red asterisk is for λ19, λ20.

learning approach TD3 is proposed to find the least effort
attack path of this system and obtain the robust defense
strategy. The simulation test results validate the effectiveness
of the proposed method. It is found that the proposed method
can determine the optimal combination of droop gains with
attack and defense sets. The system spectral abscissa will
be shifted to the targeted position by using the proposed
method. The defense strategy obtained by adversarial training
has robustness against the destabilizing attack. The test on
IEEE 123 bus system validates the scalability of the proposed
approach.
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