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A B S T R A C T   

The next generation of Eurocode 2 (FprEN 1992) adopts a closed form version of the Critical Shear Crack Theory 
(CSCT) for punching shear design. The code accounts for loading eccentricity by multiplying the design shear 
force by a coefficient β. The paper describes the derivation of the expression adopted in FprEN 1992 for β at 
corner columns of flat slabs. The proposed formula is validated for normal size columns, with maximum side 
length less than 3d, where d is the slab mean effective depth, and non-square columns with long side greater than 
3d. Due to the absence of experimental data on punching resistance at non-square corner columns, the derived 
formula is validated for such columns using NLFEA with 3-D solid elements. Comparisons are also made with 
punching resistances determined using the classic CSCT in which punching resistance is explicitly related to slab 
rotation relative to the support. The closed form CSCT is shown to predict punching shear resistance well, when 
used in conjunction with the proposed β factor.   

1. Introduction 

The next generation of Eurocode 2 [1] is due to be released in 2023. 
The technical content of the revised code [1] has now been finalised 
following public enquiry. An area of the code with significant changes is 
design for punching shear. The revised design rules (FprEN1992 [1]) are 
based on the Critical Shear Crack Theory [2], which relates punching 
resistance to slab rotation. In its original “classic” form punching resis
tance is found from the intersection of the load-rotation and load- 
resistance curves. This presentation, which is implemented in fib 
Model Code 2010 [3], was deemed too radical for inclusion in the 
revised code. Consequently Muttoni et al. [4] developed a closed form 
solution for the equations of the CSCT which is implemented in 
FprEN1992 [1]. In this approach, the influence of loading eccentricity is 
accounted for by increasing the design shear force by a multiple β as 
done in EC2 (2004) [5]. The paper describes the derivation and vali
dation of the expression adopted for βat corner columns in FprEN1992. 
The expression is derived using shear field analysis [6,7] of represen
tative full scale flat slab to corner column connections and then vali
dated using test data from the literature and NLFEA of corner column 
punching specimens with non-square columns which have not been 
tested experimentally. The NLFEA is carried out using ATENA [8] with 

3-D solid elements and for comparison the classic CSCT in which rota
tions are calculated using NLFEA. The CSCT failure load is determined 
both through post processing as in fib Model Code 2010 Level of 
Approximation IV (LoA IV) [3] and in a Joint Shell Punching Model 
(JSPM) [9]. 

Pertinent experimental studies, which are relatively few, are those of 
Hammill and Ghali [10], Ingvarsson [11], Stamenkovic and Chapman 
[12], Sudarsana [13], Vocke [14], Walker and Regan [15], Zaghlool 
[16] and Zaghlool et al. [17]. All the tested specimens had square col
umns. The specimens of [10–12,15,16] were isolated statically deter
minate specimens with fixed loading eccentricities of typically equal 
magnitude along each slab edge. Those of [17] were single panel table- 
top specimens with columns provided just below the slab. Walker and 
Regan [15] tested both single panel table-top specimens and single panel 
slabs with relatively large corner columns extending above and below 
the slab. Sudarsana [13] individually tested to failure the corner column 
connections of a four bay continuous flat slab. Details of all these 
specimens are summarised in Table 1 in which isolated and continuous 
slabs are denoted I and C respectively. 
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1.1. Critical shear crack theory 

In the classic CSCT [2], punching failure occurs at the intersection of 
the load-rotation and resistance-rotation curves. MC2010 provides four 
levels of approximation (LoAs) for calculating punching shear resis
tance. In LoA IV, which is the most accurate, rotations are determined 
with nonlinear finite element analysis (NLFEA). Fig. 1 shows the basic 
control perimeter b0,5 adopted in the CSCT for punching at corner col
umns. As shown, the control perimeter is positioned at half the slab 
shear effective depth (dv) from the column face. For the specimens 
investigated in this paper, dv equals the slab effective depth (d). The 
maximum length of the straight sides of the perimeter is limited to 3dv as 
shown in Fig. 1b. 

To account for the effect of loading eccentricity, the length of the 
shear resisting control perimeter is calculated in the classic CSCT using 
equation (1) in which b0,5 is defined in Fig. 1: 

b0,MC2010 = keb0,5 (1)  

In floors where the difference in adjacent spans is no more than 25 % in 
length, ke may be taken as 0.9, 0.7 and 0.65 for interior, edge and corner 
columns respectively. Otherwise, ke may be calculated using equation 
(2) below: 

ke =
1

(1 + eu
bu
)

(2)  

in which: 

eu =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
e2

x + e2
y

√
(3)  

ex and ey are the eccentricities of the line of action of the support forces 
with respect to the centroid of the control perimeter and bu is the 
diameter of a circle with the same enclosed area as the control perim
eter. The full control perimeter is used for the calculation of terms in ke 
without the reduction in length for column sides longer than 3dv shown 
in Fig. 1b. For calculation of ex and ey, the control perimeter is 
approximated with square corners. 

MC2010 also permits shear field analysis to be used to determine the 
shear resisting perimeter as follows: 

b0,MC2010 =
VEd

vperp,d,max
(4)  

where vperp,d,max is the maximum shear force per unit length perpendic
ular to the control perimeter. vperp,d,max can be found from elastic finite 
element analysis. 

This paper adopts the mean strength failure criterion of Muttoni [2] 
in the calculation of punching resistance using the CSCT. 

1.2. Closed form formulation of CSCT 

In FprEN1992, the equations of the closed form CSCT (Muttoni et al. 
[4]) are expressed as follows. 

τEd = β
VEd

b0,5dv
(5)  

in which τEd is the design shear stress, β, which is the main concern of 
this paper, accounts for eccentric shear, VEd is the design shear force, b0,5 

is the punching control perimeter (see Fig. 1) and dv is the shear resisting 
effective depth. 

Table 1 
Database of tests with corner slab-column connections.  

Author Slab reference/ type c h d f c
′ f y ρ Vtest Mtest in x Mtest in y   

mm mm mm MPa MPa % kN kNm kNm 

Zaghlool [16] Z-I (1) I  178.0  152.4  120.6  32.7  379.2  1.23  74.3  19.2  19.2  
Z-II (1) I  266.7  152.4  120.6  33.0  388.9  1.23  137.9  38.5  38.5  
Z-II (2) I  266.7  152.4  120.6  33.4  405.4  1.65  177.2  53.4  53.4  
Z-II (3) I  266.7  152.4  120.6  27.7  450.9  2.23  177.9  58.0  58.0  
Z-II (5) I  266.7  152.4  120.6  34.8  381.3  1.23  148.6  0.00  0.00  
Z-II (5d) I  266.7  152.4  120.6  34.3  381.3  1.23  138.0  0.00  0.00  
Z-II (6) I  266.7  152.4  120.6  33.6  381.3  1.23  82.3  38.9  38.9  
Z-III (1) I  355.6  152.4  120.6  33.6  379.2  1.23  179.7  52.7  52.7 

Stamenkovic and Chapman [12] C/C/1 I  127.0  76.2  55.6  30.4  448.0  1.17  24.9  6.24  0.00  
C/C/2 I  127.0  76.2  55.6  28.3  448.0  1.17  15.9  6.38  0.00 

Hammill and Ghali [10] NH1 I  250.0  150.0  114.0  41.5  440.0  1.76  146.9  43.0  43.0  
NH2 I  250.0  150.0  114.0  42.2  440.0  1.76  139.1  40.2  40.2 

Zaghlool et al. [17] I C  139.7  139.7  114.3  24.1  379.2  1.47  107.6  10.4  8.76  
III C  165.0  139.7  114.3  20.7  379.2  1.47  101.5  16.0  16.0  
IV C  165.0  139.7  114.3  35.8  379.2  1.47  122.5  15.7  22.0 

Walker and Regan [15] SC1 C  300.0  125.0  100.0  43.3  450.0  0.65  81.5  25.2  25.2  
SC2 C  300.0  125.0  100.0  47.9  450.0  0.41  74.8  24.0  24.0  
SC3 C  300.0  125.0  100.0  37.4  450.0  0.83  74.2  31.6  31.6  
SC4 C  220.0  125.0  100.0  40.8  450.0  0.65  63.8  16.7  16.7  
SC5 C  220.0  125.0  100.0  46.5  450.0  0.93  82.2  18.8  18.8  
SC7 C  220.0  125.0  100.0  43.8  450.0  0.93  82.2  27.6  27.6  
SC8 C  160.0  80.0  64.0  37.4  595.0  0.28  33.0  4.70  4.70  
SC9 C  160.0  80.0  64.0  34.3  595.0  0.56  33.0  5.90  5.90  
SC11 C  160.0  80.0  62.0  27.2  595.0  0.96  33.0  4.60  2.20  
SC12 C  300.0  80.0  62.0  40.7  595.0  0.79  36.8  12.7  8.90 

Ingvarsson [11] I1 I  180.0  120.0  95.0  25.8  454.0  2.17  108.0  21.2  21.2  
I2 I  180.0  120.0  95.0  33.3  454.0  1.10  76.0  16.3  16.3  
I4 I  180.0  120.0  95.0  32.0  454.0  1.10  101.0  17.7  17.7  
I5 I  180.0  120.0  95.0  29.2  454.0  1.77  110.0  22.6  22.6 

Sudarsana [13] C6 C  305.0  140.0  105.0  44.4  420.0  0.98  108.6  34.9  34.9  
C7 C  305.0  140.0  105.0  44.4  420.0  0.98  93.7  33.0  33.0  
C8 C  305.0  140.0  105.0  44.4  420.0  0.98  98.1  27.5  27.5 

Vocke [14] E1 I  300.0  230.0  189.0  23.6  540.0  1.07  305.0  61.4  61.4  
E3 I  300.0  230.0  189.0  31.8  540.0  1.28  351.0  65.1  65.1 

Note: c = column side dimension, h = slab depth, d = effective depth, fc’= concrete cylinder strength, ρ = flexural reinforcement ratio, Mtest = moment about column 
centreline. 
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FprEN1992 allows β to be taken as 1.5 at corner columns if the slab is 
uniformly loaded and:  

• The lateral stability does not depend on frame action;  
• Adjacent spans don’t differ by more than 25 %;  
• The moment transferred to the column about the x and/or y axes (see 

Fig. 2) does not exceed Mt,max = 0.25bed2fcd where be is defined for 
both column sides in contact with the slab as shown in Fig. 2 and fcd is 
the design concrete compressive strength. 

The limiting column transfer moment Mt,max is taken from Annex I of 
EC2 (2004) [5], which is informative. 

FprEN1992 also gives refined expressions for punching shear at in
ternal, edge and corner columns. The development of the refined 
expression for β at corner columns is the subject of this paper. 

The design shear stress τEd should not exceed the design shear 
resistance which is given by: 

τRd,c =
0.6
γv

kpb

(

100ρfck
ddg

dv

)1/3

≤
0.5
γv

̅̅̅̅̅
fck

√
(6)  

where kpb, in which b0 is defined in Fig. 1, is determined as follows: 

1 ≤ kpb ≤ 3.6

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
b0

b0,5

√

≤ 2.5 (7)  

and ρ =
̅̅̅̅̅̅̅̅̅ρxρy

√ is the flexural tension reinforcement ratio in which ρx =

Asx/bsxdx, ρy = Asy/bsydy in which bsx and bsy are defined at corner 
columns as shown in Fig. 3. The coefficient γv is the partial factor for 
shear which is 1.4 for design and 1.0 in the strength assessments of this 
paper. The coefficient ddg is the reference value for the critical shear 
crack roughness calculated as: 

ddg = dg0 + dg.min

((
60
fck

)2

, 1

)

≤ 40mm (8)  

in which fck is the characteristic concrete uniaxial compressive strength, 
dg0= 16 mm for normal concrete and dg is the maximum aggregate size. 
For distances ap smaller than 8 dv, the value of dv used in equation (6) 
may be replaced by: 

apd =

̅̅̅̅̅̅̅̅̅
ap

8
dv

√

(9)  

where ap =
̅̅̅̅̅̅̅̅̅̅̅̅̅apxapy

√
≥ dv in which apx and apy are measured from the 

centroid of the control perimeter to the positions where the bending 
moments mEd,x and mEd,y are zero along the x-and y-axis respectively. 
According to FprEN1992, for corner columns of flat slabs where the 
lateral stability does not depend on frame action between the slabs and 
the columns, ap may be approximated as ap = 0.22L where L is the 
largest span length of the adjacent bays in either the x- or y direction. 

1.2.1. Derivation of β in FprEN1992 
The authors derived the expression for β at corner columns in 

FprEN1992 using a similar procedure to that they adopted for punching 
at edge columns [18]. For consistency with the format adopted for ke in 
MC010 (see equation (2), β was initially defined as: 

β =
1
ke

= 1+
eu

bu
(10) 

Equation (10) for β was subsequently simplified, for ease of use, in 
FprEN 1992 as follows: 

β = 1+ 1.1
eb

bb
≥ 1.05 (11)  

in which bb is the geometric mean of the maximum and minimum overall 
side lengths of the control perimeter at 0.5dv approximated with square 
corners. The full side lengths of the control perimeter are used in the 
calculation of bb without reduction in length for column sides greater in 
length than 3dv. For consistency with their [18] treatment of biaxially 
loaded edge columns as presented in FprEN1992, the authors defined eb 

Fig. 1. MC2010 and FprEN1992 basic control perimeter b0,5 for a) c1 and c2 < 3dv (b1) and b) c1 > 3dv and c2 < 3dv.  

Fig. 2. Definition of be.  
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for corner columns as eb = k(|ex| +
⃒
⃒ey
⃒
⃒) where ex and ey are defined 

below equation (3). Calibration of Equation (11) involves determining k. 
The proposed expression for β was derived using shear field analysis, 

as allowed by FprEN1992, and then validated using test data and NLFEA 
of virtual specimens with geometries not represented in the experi
mental database. Clause 8.4.2(7) of FprEN1992 allows the design shear 
force around the punching control perimeter to be obtained with elastic 
finite element analysis. Furthermore, the clause allows the shear force to 
be averaged over a maximum distance of 2dv to either side of the peak 
provided equilibrium is maintained. This approach is consistent with 
that of Setiawan et al. [6,7] who showed that for elongated internal 
columns the critical design shear stress to be used in the CSCT can be 
taken as the average elastic stress around the most highly stressed 
quadrant of the control perimeter. The approach of [6,7] was found by 
Abu-Salma et al. [18] to give good predictions of β at edge columns so is 
also adopted in this paper for the derivation of β at corner columns. 

Initially, a parametric study was carried out of a full-scale floor plate 
of a flat slab building in ETABS [19]. The layout of the building was 
similar to that used in [18] for derivation of β at edge columns. The 
column cross section and slab span lengths were varied in the study. 
Thick shell elements were used to model the slab which was connected 
to the columns via rigid links. For each bay size, the slab thickness was 
derived from charts provided in Economic Concrete Frame Elements to 
Eurocode 2 [20]. The floor-to-floor height was taken as 3 m. The 
investigated column sizes were 300 x 300, 300 x 600, 300 x 750 and 
300 x 1000 mm2. Bay sizes in metres of 4 x 4, 6 x 6, 8 x 4, 8 x 6, 8 x 8 and 
9x 4 were considered. The slab thickness varied between 200 mm and 
300 mm. A cladding load of 10 kN/m was applied to the slab edge. The 
design characteristic superimposed dead and live loads were taken as 
1.5 kN/m2 and 3.0 kN/m2 respectively. The ratio of column side length 
to average slab effective depth ranged between 1.1 and 6.1. 

Design shear force enhancement factors βSF were calculated for the 
specimens considered in the parametric study as the ratio of the average 
shear force around the control perimeter b0,red shown in Fig. 4 to that 
around the basic control perimeter b0,5 shown in Fig. 1. The resulting βSF 

values are plotted against 1.1
(
|ex| +

⃒
⃒ey
⃒
⃒
)/

bb in Fig. 5a which shows that 
the slope of the line of best fit with intercept equal to 1 is k = 0.27. 
Consequently, eb in equation (11) is given by: 

eb = 0.27
(
|ex| +

⃒
⃒ey
⃒
⃒
)

(12)  

where ex and ey are the eccentricities of the line of action of the support 
forces with respect to the centroid of the control perimeter. For this 
purpose, the control perimeter was simplified by replacing parts of cir
cles by corners and not limiting the straight segments to 3dv as done for 
calculation of resistance. In this paper, β calculated with equations (11) 
and (12) is referred to as β refined. 

Fig. 5b shows that βSF/βrefined is sensibly independent of the loading 
angle (atan(ex/ey)) for the data considered in Fig. 5a. This is significant 
since the loading angle is 45◦ for the majority of specimens in the 

Fig. 3. Definition of bs.  

Fig. 4. Segment of control perimeter (b0,red) around which shear stress is 
averaged in shear field analysis for corner columns. 
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experimental database. The loading angle departs from 45◦ for many of 
the slabs in Fig. 5 due to the adoption of non-square bays and non-square 
column cross sections. 

In order to comply with FprEN1992, the influence on moment 
equilibrium of averaging the through thickness shear force (in kN/m) 
acting on b0,red (see Fig. 4) was investigated. This was done by finding 
the resultant moment about the centroid of the control perimeter of the 
shear force acting on b0,red for i) the elastic shear force and ii) the average 
shear force. The percentage error on moment equilibrium of averaging 
the shear force around b0,red was found to be minimal, thereby justifying 
the averaging of shear force in the shear field analysis. Analysis shows βsf 
to be sensitive to the modelling assumptions and shear stiffness of the 
adopted shell element. Consequently, it is not recommended that shear 
field analysis is used for routine design. 

The next step in the derivation of β was to validate Equation (12) for 
the experimental data in Table 1. If the closed form formulation of the 

CSCT were exact, the coefficient β would be given by Vcalc/Vtest where 
Vcalc is the strength calculated using the closed form CSCT neglecting 
eccentricity (i.e. with β = 1) and Vtest is the measured strength. In this 
assessment, fck was taken as the measured concrete strength from 
Table 1 and γc = 1.0. Consequently, k can be estimated by plotting Vcalc/ 

Vtest against 1.1(|ex|+|ey|)
bb

. This is done in Fig. 6 which shows that taking k =

0.27 as in Equation (12) from FprEN1992 provides a reasonable fit to the 
test data. 

Table 2 and Fig. 7 compare the measured punching resistances of the 
slabs in Table 1 with the predictions of FprEN1992 with dv in equation 
(6) replaced by apd unless noted otherwise. Fig. 7a to 7c evaluate the 
refined β (see equations (11) and (12)). Fig. 7a shows Vtest/Vcalc calcu
lated using the experimental eccentricities at punching failure, while 
Fig. 7b shows the effect of not replacing dv with apd in equation (6). 
Comparison of the two figures shows that not replacing dv with apd in 

Fig. 5. Influence of a) 1.1(|ex |+|ey |)/bb and b) loading angle on βSF/βrefined for corner columns.  
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equation (6) provides additional safety for continuous slabs with low 
loading eccentricities where apd can be significantly less than dv. 
Consequently, due to the relative lack of experimental data on punching 
at corner columns, the authors recommend conservatively taking apd =

dv in equation (6) if using the refined β. In design, the loading eccen
tricity eb is calculated using elastic analysis. Therefore, Fig. 7c shows 
Vtest/Vcalc calculated using elastic eccentricities for the continuous slabs 
and measured eccentricities for isolated slabs. To obtain the elastic ec
centricities, a linear elastic analysis was conducted with ETABS [19] 
assuming the column ends were pinned. Fig. 7d shows that punching 
resistances are significantly underestimated if β is calculated with 

equation (10) in accordance with MC2010 taking eu =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
e2

x + e2
y

√
using 

measured eccentricities ex and ey. Finally, Fig. 7e and 7f evaluate Vtest/ 
Vcalculated using β = 1.5 without and with the limit on the maximum 
moment transfer to the column. The figures suggest that it is prudent to 
limit the column transfer moment to Mtmax when using β = 1.5 to avoid 
having unsafe results at high eccentricities. 

Vtest/Vcalculated was also calculated with EC2 (2004) for the speci
mens in Table 1 using the reduced basic control perimeter u1* defined in 
the code. Additionally, the column transfer moment was limited to 
Mt,max = 0.25bed2fcd with be defined as in Fig. 2. This approach is 
equivalent to defining a limiting value of β based on a maximum 

Fig. 6. Derivation of β using regression analysis conducted on experimental slabs.  

Table 2 
Vtest/Vcalc for corner slab-column connections.  

Author Slab reference/type FprEN1992  EC2 2004 with Mn,max    

β ¼ 1.5 with Mn,max β refined β ¼ 1/ke MC2010      
(M/V)test (M/V)elastic (M/V)test  

Zaghlool [16] Z-I (1) I  0.89  0.84  0.84  1.13  0.90  
Z-II (1) I  1.38  1.20  1.20  1.51  1.43  
Z-II (2) I  1.60  1.43  1.43  1.84  1.66  
Z-II (3) I  1.55  1.43  1.43  1.88  1.60  
Z-II (5) I  1.46  1.17  1.17  1.39  1.52  
Z-II (5d) I  1.36  1.09  1.09  1.29  1.41  
Z-II (6) I  0.82  0.90  0.90  1.30  0.85  
Z-III (1) I  1.55  1.27  1.27  1.53  1.63 

Stamenkovic & Chapman [12] C/C/1 I  1.39  1.06  1.06  1.56  1.25  
C/C/2 I  1.53  0.83  0.83  1.42  0.82 

Hammill and Ghali [10] NH1 I  1.42  1.29  1.29  1.68  1.41  
NH2 I  1.34  1.21  1.21  1.57  1.32 

Zaghlool et al. [17] I C  1.24  0.86  0.89  0.90  1.59  
III C  1.23  0.98  1.00  1.16  1.51  
IV C  1.24  0.98  1.01  1.17  1.52 

Walker and Regan [15] SC1 C  1.07  0.95  1.03  1.21  1.21  
SC2 C  1.10  0.99  1.06  1.28  1.25  
SC3 C  0.94  0.96  0.90  1.33  1.07  
SC4 C  0.97  0.89  1.00  1.15  1.12  
SC5 C  1.06  0.92  1.09  1.15  1.22  
SC7 C  1.08  1.10  1.11  1.53  1.24  
SC8 C  1.36  1.13  1.36  1.38  1.82  
SC9 C  1.11  1.00  1.10  1.29  1.48  
SC11 C  0.90  0.67  0.74  0.81  1.40  
SC12 C  1.01  0.91  0.84  1.18  1.36 

Ingvarsson [11] I1 I  1.36  1.18  1.18  1.49  1.73  
I2 I  1.10  0.99  0.99  1.28  1.40  
I4 I  1.49  1.23  1.23  1.51  1.88  
I5 I  1.42  1.26  1.26  1.60  1.80 

Sudarsana [13] C6 C  1.27  1.13  1.13  1.45  1.29  
C7 C  1.09  1.01  1.01  1.33  1.11  
C8 C  1.14  0.97  0.97  1.20  1.16 

Vocke [14] E1 I  1.80  1.30  1.30  1.41  1.71  
E3 I  1.77  1.25  1.25  1.33  1.68  
Mean   1.27  1.07  1.09  1.36  1.39  
Standard deviation   0.25  0.18  0.18  0.23  0.27  
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allowable eccentricity corresponding to Mt,max. The results are presented 
in Table 2 which shows EC2 (2004) to be relatively conservative 
compared with FprEN1992. 

2. NLFEA of punching failure at corner columns 

Owing to the relative scarcity of experimental data on punching at 
corner columns, this paper uses NLFEA with 3-D solid elements to 
extend the available database to specimens with columns of varying 
cross section aspect ratio. The results of the NLFEA with 3-D solid ele
ments are compared with the predictions of the classic CSCT, the au
thors’ JSPME [24] and the closed form formulation of the CSCT in 
FprEN1992. The NLFEA was initially validated using selected test data 
from Table 1. Subsequently, the validated NLFEA was used to analyse 
virtual corner column punching specimens with non-square columns. 
The resulting punching resistances are shown to compare favourably 
with the strength predictions of FprEN1992 thereby further justifying 
the refined β given by equations (11) and (12). 

2.1. NLFEA with 3-D solid elements 

ATENA [8] was employed to carry out the NLFEA using 3-D solid 
elements. The adopted modelling procedure was the same as previously 
adopted by Setiawan et al. [9], who modelled 16 interior slab-column 
connections, and Abu-Salma et al. [24] who modelled 4 interior col
umn punching tests and 12 edge column punching tests. The mean and 
standard deviation of Vtest/Vpredicted are μ = 0.96 and σ = 0.075 in [9] 
and μ = 1.02 and σ = 0.08 in [24]. 

The fracture-plastic model CC3DNonLinCementitious2 was used for 
modelling concrete. In this model, the Rankine [8] tensile failure cri
terion was utilised with exponential softening. Plasticity for concrete in 
compression is controlled by the Menetrey-Willam [21] failure surface. 
The hardening part of the compressive response is related to strain, 
while the softening part is related to displacement for reasons of mesh 
objectivity. The compressive softening response is based on Van Mier 

Fig. 7. Evaluation of a) refined β using measured ultimate eccentricities from 
the test, b) refined β using measured ultimate eccentricities from the test and 
apd = d, c) refined β using elastic eccentricities, d) MC2010 expression for eu 

using measured ultimate eccentricities from the test, e) β = 1.5 without limit on 
Mtmax and f) β = 1.5 with limit on Mtmax. 

Table 3 
Modelling parameters adopted in ATENA [6,24].  

No. Parameter Value/Reference  

Concrete constitutive model  
A1 Concrete elastic modulus Model Code 2010 [3] 

Model Code 2010 [3] 
Model Code 2010 [3] 

A2 Fracture energy 
A3 Concrete tensile strength 
A4 Smeared crack model Fully-rotating crack 
A5 Critical compressive displacement wd 0.5 mm 
A6 Limit of compressive strength reduction due 

to cracking rlim
c f

′

c 

0.8 f ′

c 

A7 Eccentricity (defining the shape of the failure 
surface) 

0.52 

A8 Volume dilatation plastic factor 0  
Reinforcement bar model  

B1 Stress–strain relationship Bilinear with strain 
hardening modulus of 0.2 
MPa 

B2 Bond-slip model Perfect bond  
Loading procedure and convergence 
criteria  

C1 Loading procedure Static (force-controlled) 
C2 Solution procedure Arc-length method 
C3 Convergence criteria for displacement, 

residual force, and absolute residual force 
error 

1 % 

C4 Convergence criterion for energy error 0.01 %  
Mesh properties  

D1 Mesh size (finest) m × m × m mm (10 
elements along height) 

D2 Mesh element for concrete slab 8-noded hexahedral (linear) 
D3 Mesh element for loading apparatus 4-noded tetrahedral (linear) 
D4 Mesh element for reinforcement bar 2-noded truss element 

(embedded)  
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[22]. The parameter wd in Table 3 is the limiting displacement at which 
concrete entirely loses its compressive strength. After concrete cracks, 
the compressive strength in the direction parallel to the cracks is 
reduced similarly to the MCFT [23]. The compressive strength reduction 
parallel to the crack direction is limited to, rlim

c f
′

c. In this paper, based on 
parametric studies by Setiawan et al. [9], wd was taken as 0.5 mm and 
rlim
c f

′

c as 0.8 f
′

c. Table 3 summarises the material parameters and 
modelling procedure adopted in ATENA. Reinforcement is modelled 
with a bilinear stress–strain relationship assuming perfect bond. Force- 
control in conjunction with the arc-length method was used along 
with the displacement, residual force, absolute residual force and energy 
error convergence criteria listed in Table 3. As in [9,24], a gradated 
mesh was used for the slab with the finer mesh used around the column 
up to a distance of twice the slab effective depth (d) away from the 
column face in each direction. Linear order hexahedra elements were 
used for concrete and linear order tetrahedra elements for steel loading 
plates. 

If the load-rotation response of ATENA [8] did not show a clear peak 
and subsequent softening, the strain-based failure criterion of [6] was 
adopted. In this approach, punching shear failure is assumed to occur 
when the radial strain in the slab soffit measured at a distance of 0.5d 
away from the column face first reduces to zero. This approach is 
derived from the experimental observations of Ferreira et al. [25] and is 
similar to the punching failure criterion in the analytical model of Broms 
[26]. 

2.2. Corner joint shell punching model 

This paper extends the JSPME [18,24] to include corner columns. 
The JSPM is implemented in the software ADAPTIC [27,28] and has 
previously been shown to give excellent predictions of punching resis
tance for internal columns [9] and edge columns [18,24]. In the JSPME, 
nonlinear joint elements are used to model punching shear failure. The 
joints are placed around the MC2010 punching control perimeter and 
connect the shell elements to either side of the control perimeter. Prior 
to punching shear failure, the joint out-of-plane shear stiffness is 
assumed to be rigid. Subsequently, the joint shear force is equated to the 
punching shear resistance which is calculated for each joint using the 
mean strength CSCT failure criterion of Muttoni [2] as follows: 

Vji = lsi

3/4
̅̅̅̅

f ′

c

√

d

1 + 15 ψsi .d
16+dg

(13)  

in which lsi is the joint spacing, f ′

c (MPa) is the concrete cylinder 
strength, dg (mm) is the maximum aggregate size, d (mm) is the slab 

average effective depth and ψsi (radians) is the relative slab-column 
sector rotation for joint i which is extracted along the line of radial 
contraflexure. More details are given in [9,18,24]. 

A rigid plastic response is used to describe the torsional response of 
each joint. The joint torsional resistance, depicted Tcri, is determined 
[18,24] using the approach of Hsu [29] as implemented by Liu et al. 
[30,31]: 

Tcri = 0.217lsi
(
h2 + 6450

)
.

̅̅̅̅̅

fc
’3

√

(Nmm) (14)  

in which lsi and h (in mm) are the joint spacing and slab thickness 
respectively and fc’ (MPa) is the concrete compressive strength. 

In the JSPME, the slab is modelled with 2-D nonlinear shell elements 
[32] incorporating the Reissner-Mindlin hypothesis. The punching shear 
joints are modelled with jel 3 [27,28] elements. Each jel 3 element is 
defined using 4 nodes as shown in Fig. 8 for a typical corner slab-column 
connection. Nodes 1 and 2, which are initially coincident, are located on 
the critical punching shear perimeter. Node 3 is located in the same 
sector as nodes 1 and 2 at the point of maximum slab-column rotation 
(near the line of radial contraflexure). Node 4 is located on the column 
chord (immediately above the slab) and is used to define the plane in 
which the y-axis is placed [6]. The relative radial slab-column rotation 
ψsi in equation (13) is found from the difference between the rotations at 
nodes 3 and 4. The rotations are calculated individually for each joint 
and are updated at each loading step. In cases where the corner column 
side length exceeds 3d, the punching shear joints are positioned around 
a reduced control perimeter (see Fig. 1b). Dummy joints with minimal 
shear resistance are positioned along the neglected parts of the control 
perimeter. Similarly to edge columns [24], punching failure is assumed 
to result from failure of the most critically loaded of the punching shear 
joints positioned at i) the least of 0.5c1 and 1.5d from the inner column 
face along c1 and ii) the least of 0.5c2 and 1.5d from the inner column 
face along c2. 

3. Validation of NLFEA modelling procedures against test results 

This section demonstrates the ability of ATENA and the JSPME to 
capture the failure load of corner column punching test specimens from 
the literature. Results are presented for selected slabs tested by Walker 
and Regan [15], Zaghlool [16] and Hammill and Ghali [10]. 

Walker and Regan [15] tested 12 single panel slabs supported on 
corner columns. The first seven slabs (SC1 to SC7) were 3.05 m square 
and 125 mm thick. The corner columns measured either 300 mm square 
or 220 mm square and extended 1.25 m above and below the slab. The 
column ends were restrained laterally by pin-ended members located at 
a distance of 1.24 m above and below the central plane of the slab. 

Fig. 8. JSPME for corner column-slab connections.  
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Uniform slab loading was simulated with 12 equal point loads. The 
remaining 5 slabs were 80 mm thick and either square (SC8-SC10) with 
side length of 2 m or rectangular (SC11-SC12) with side lengths 2 m ×
1.4 m. The corner columns in slabs SC8-SC12 only extended below the 
slabs. In these specimens, uniform slab loading was simulated with 
either 12 (SC11-SC12) or 16 (SC8-SC10) point loads. Further details of 
these tests are given in [15] and Table 1. Fig. 9a and 9b which are 
representative show the finite element meshes adopted in ATENA and 
the JSPME respectively for slab SC8. 

Fig. 10 compares the experimental load deflection responses of slabs 
SC1 to SC3, SC8 and SC9 with the responses obtained with ATENA and 
the JSPME. The ADAPTIC load–deflection response with 2-D shell ele
ments but no jel 3 elements is also included in Fig. 10a and 10b for 
comparison with the JSPME response. The introduction of joint elements 
in the JSPME is seen to have no influence on the load deflection response 
of these slabs. Overall, the JSPME load deflection response compares 
most favourably with the experimentally observed response, but ATENA 
gives the best estimate of failure load. Fig. 10a and 10b show that the 
ATENA load displacement responses for SC8 and SC9 have respectively a 
softening branch and well defined horizontal plateau at peak load. 
Fig. 10a and 10b also show that the strain-based failure criterion of [6] 
gives virtually the same peak load as ATENA, thereby justifying use of 
the criterion. The strain criterion, which has previously been validated 
for internal [6] and edge columns [18,24] assumes punching failure to 
occur when the radial compressive strain measured at 0.5d away from 

Fig. 9. Mesh configuration and boundary conditions for slab SC8 of Walker and 
Regan [15] in a) ATENA and b) the JSPME in ADAPTIC. 

Fig. 10. Comparison of measured and predicted load vs mid slab deflection 
response for slabs a) SC8, b) SC9, c) SC1, d) SC2 and e) SC3 of Walker and 
Regan [15]. 
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the column face in the slab soffit first drops to zero. This approach is 
needed for specimens like SC2 and SC3 where no distinct softening 
branch or horizontal plateau develops in the load displacement response 
at punching failure. 

Table 4 compares measured and calculated punching shear re
sistances for selected slabs from Table 1. The calculated punching re
sistances were obtained with ATENA, the JSPME and the classic CSCT 
using the mean failure criterion of Muttoni [2]. The shear resisting 
perimeter in the classic CSCT was derived using ke (see Equation (2) 
from MC2010. CSCT predictions are given for both the measured ec
centricity at punching failure and the elastic eccentricity which is 
typically used in design. Table 4 also gives the measured, JSPME and 
elastic loading eccentricities, relative to the column centreline, along the 
slab edges at failure. The eccentricities were equal along each slab edge. 

Table 4 shows that the ATENA strength predictions are consistently 
good, whilst the CSCT predictions are more variable partly due to their 
sensitivity to the adopted load rotation curve which is software depen
dent. The relative slab column rotation is not reported for the test 
specimens, so it is not possible to determine whether the variability of 
accuracy of the CSCT predictions is due to inaccuracies in estimating the 
rotation or the failure criterion itself. The relatively large difference 
between the JSPME and MC2010 failure loads in Table 4 for the isolated 
specimens is due to different rotations being used for each. If the 
ADAPTIC rotations, which are overly stiff at low eccentricities, are used 
instead of ATENA rotations, the MC2010 predictions for Z1(1), ZII (1) 
and ZII (6) become 0.77, 0.91 and 0.94 compared with 0.76, 0.83 and 
1.00 from the JSPME. 

3.1. Modelling of virtual corner slab-column connections with non-square 
columns 

NLFEA was used to simulate punching failure at non-square corner 
columns which have not been tested experimentally. The results of the 
analyses are used to further validate the punching provisions in 
FprEN1992. The geometry of the slab considered in the parametric 
studies is derived from specimens NH1, NH2 and NH4 of Hammill and 
Ghali [10]. These slabs measured 1075mm long, 1075mm wide and 
150 mm thick as shown in Fig. 11 with an average effective depth of 
114mm. The corner column measured 250x250mm2. Slab edges opposite 
to the column were simply supported. Combined vertical and horizontal 
loads were applied through the column. The study investigated the ef
fect of varying the loading eccentricity and column size. This was ach
ieved by extending the slab and column backwards by a distance x to 
form the longer column dimension and sideways by 50 mm (see Fig. 11) 
to form column sizes of 600 x 300, 750 x 300 and 1000 x 300 mm2. The 
tensile reinforcement ratio was slightly increased from that in specimen 
NH4 to prevent flexural failure. The variables of the parametric studies 

are listed in Table 5 below. A practical range of eccentricities was 
determined for each column size based on the analysis of a series of full- 
scale floor plates in ETABS [19]. Equal eccentricities (depicted ecol,x and 
ecol,y) relative to the column centreline were adopted along each slab 
edge which is onerous for the rectangular columns at large eccentric
ities. The concrete compressive strength was taken as 36.9 MPa as in 
specimen NH4. 

The shear resistance of the specimens summarised in Table 5 was 
determined using:  

• ATENA [8]  
• JSPME  
• Classic CSCT (MC2010 LoA IV with mean CSCT failure criterion of 

[2]) with ke calculated using MC2010 (see equation (2)) [3].  
• FprEN1992 with β from equations (11) and (12) (refined) and β = 1.5 

with Mtmax limit.  
• EC2 [5] with Mtmax limit 

Results of the simulations are given in Table 6 and Fig. 12 which 
show the effect of loading eccentricity on the predicted shear resistance 
for each method. Comparison with Fig. 5a suggests that the results for 
1.1(|ex |+|ey |)/bb greater than 2.5 are extreme cases which are unlikely 
to arise in practice. Based on the analysis of test specimens in Table 5, 
the ATENA strength predictions in Table 5 are considered to be most 
accurate. All three of the code predictions in Table 5 are close to the 
ATENA predictions for these specimens but this is largely due to Mtmax 
governing at larger eccentricities for EC2 (2004) and FprEN 1992 with β 
= 1.5. Without the limitation of Mtmax, all the EC2 (2004) predictions 
become unsafe relative to ATENA at the maximum considered eccen
tricity. This is concerning since the Mtmax limit only appears in Annex I of 
EC2 (2004) which is informative. The Mtmax limit is unnecessary when 
using the refined β (see equations (11) and (12) in FprEN 1992 but 
necessary for β = 1.5. However, the authors consider application of the 
Mtmax limit to be good practice in all cases. The MC2010 LoA IV failure 
loads are given by the intersection of the CSCT resistance curve and the 
load-rotation curve, which was determined using both ATENA [8] and 
ADAPTIC [27,28]. Table 6 shows that the resulting strength predictions 
with ATENA rotations tend to be slightly less than obtained with 
ADAPTIC rotations. The JSPME strength predictions are on average 
closest to those obtained with CSCT LoA IV using ATENA rotations. The 
classic CSCT and JSPME punching resistances are significantly less than 
the other predictions, including EC2 (2004), for the 300 × 1000 mm2 

column. The FprEN 1992 results are considered acceptable in this case 
given their closeness to the predictions of ATENA and EC2 (2004) but 
experimental confirmation is recommended. 

The reason for the differences between the LoA IV resistances ob
tained with rotations from ATENA and ADAPTIC is illustrated in 
Fig. 13a. The figure compares load rotation responses obtained with 

Table 4 
Comparison of measured and NLFEA strengths of selected slabs from Table 1.  

Slab notation etest eelastic eJSPME VTest (KN) VTest/VATENA VTest/VJSPME VTest/VMC2010  

(mm) (mm) (mm)             
eelastic etest 

Z1 (1) [16]** 258 258 258 74.3  1.004  0.762  0.929  0.929 
ZII (1) [16]** 279 279 279 137.9  1.379  0.831  1.365  1.365 
ZII (6) [16]** 473 473 473 82.3  1.004  1.001  1.016  1.016 
SC1 [15]* 309 378 372 81.5  0.933  0.891  0.776  0.731 
SC2 [15]* 321 378 327 74.8  0.950  0.796  0.733  0.700 
SC3 [15]* 426 378 389 74.2  0.913  0.907  0.765  0.789 
SC8 [15]* 142 223 158 33.0  0.979  0.951  0.917  0.786 
SC9 [15]* 179 223 180 33.0  0.885  1.031  0.971  0.887 
NH1 [10]** 293 293 293 146.9  1.023  0.816  1.224  1.224 
NH2 [10]** 289 289 289 139.1  1.008  0.740  1.149  1.149     

Mean  1.008  0.873  0.985  0.958     
Standard deviation  0.138  0.100  0.209  0.226 

** The load-rotation response from ATENA was used to obtain VMC2010. * The load-rotation response from ADAPTIC was used to obtain VMC2010. 
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each software for specimen NH4 with column size 300 x 600 mm2 and 
eccentricities, relative to the column centreline, of 600 mm and 800 mm. 
Also shown in Fig. 13a are the CSCT resistance curves for each loading 
eccentricity. In these, the influence of loading eccentricity on the 
resistance is accounted for through the multiplier ke from Equation (2). 
The CSCT failure load is given by the intersection of the load-rotation 
and load-resistance curves. Initially, the ATENA and ADAPTIC load- 
rotation responses are similar but towards failure the ATENA response 

is softer resulting in a lower failure load. 
As shown in Fig. 13a, the rotation increases with loading eccentric

ity. Consequently, even for fixed ke (see equation (1) the predicted 
failure load reduces with loading eccentricity. The effect of reducing ke 
is to reduce the failure load. However, as evident in Fig. 13a the 
reduction in failure load is less than proportional to ke. This is the case 
since the reduction in failure load due to reducing ke is accompanied by 
a reduction in rotation which is associated with an increase in resistance. 
This lack of proportionality between ke and punching resistance in the 
classic CSCT explains why β in the closed form CSCT does not equal 1/ke. 

An advantage of the JSPME over the classic CSCT is that the JSPME 
models shear redistribution around the control perimeter of the type 
identified by Sagaseta et al. [33]. Furthermore, the JSPME circumvents 
the need to make use of ke in the calculation of the shear resisting 
perimeter as done in MC2010 LoA IV. The influence of shear redistri
bution is illustrated in Fig. 13b for slab NH4 (300 x 600 mm2) with 
ecol,x = ecol,y = 600mm. For this specimen the failure loads given by 
ATENA and the JSPME are very similar. The figure shows the shear force 
distributions around the control perimeter from i) ATENA at VATENA, ii) 
the JSPME at VJSPME and iii) elastic analysis with ADAPTIC at VATENA. 
All three curves are similar but the peak shear forces are less in the 
nonlinear analyses due to shear redistribution. Shear redistribution oc
curs in the JSPME due to nonlinear shell element behaviour as well as 
redistribution of shear forces from failing to non-failing joint elements. 
Consideration of Fig. 13b shows that it is over conservative to assume 

Fig. 11. Elevation (left) and plan (right) of slab NH4 [10] and extended virtual slab (All dimensions in mm).  

Table 5 
Details of investigated virtual corner slab-column connections.  

Slab 
notation 

Column 
dimensions 
(mmxmm) 

Loading eccentricities (ecol,x) 
and (ecol,y) along each slab 
edge (mm) 

%ρ around the 
column region 

NH4 
250 ×
250 

250 × 250 300, 400 & 500  2.00 

NH4 
300 ×
600 

300 × 600 600, 700 & 800  2.00 

NH4 
300 ×
750 

300 × 750 600, 700 & 1000  2.10 

NH4 
300 ×
1000 

300 × 1000 800, 900 & 1100  2.20  

Table 6 
Punching shear predictions for virtual corner slab-column connections.  

Slab ecol,x¼ ecol,y (mm) VATENA/ VJSPME VATENA/ VMC2010 VATENA/VFprEN1992 VATENA/VEC2 (2004)    

ADAPTIC rotation ATENA rotation β refined β ¼ 1.5  

NH4 250x250 300  0.97  1.27  1.23  1.29  1.40  1.39 
400  1.15  1.16  1.17  1.16  1.11  1.10 
500  1.32  1.01  1.11  1.02  1.00  0.98 

NH4 300x600 600  1.04  0.96  1.03  1.09  1.05  1.03 
700  1.26  1.16  1.17  1.18  1.17  1.14 
800  1.31  1.25  1.23  1.11  1.17  1.14 

NH4 300x750 600  1.03  0.99  1.11  1.16  1.16  1.15 
700  1.14  0.94  1.04  1.06  0.99  0.98 
1000  1.14  1.11  1.23  0.83  0.91  0.90 

NH4 300x1000 800  1.37  1.25  1.44  1.20  1.12  1.11 
900  1.32  1.29  1.46  1.10  1.05  1.03 
1100  1.34  1.33  1.47  0.95  1.00  0.98 

Mean 1.20  1.14  1.22  1.10  1.09  1.08 
Standard deviation 0.14  0.14  0.16  0.12  0.13  0.13  
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that punching failure occurs when the peak elastic shear force per unit 
length around the control perimeter equals the design shear resistance as 
assumed in MC2010. Instead, some averaging of shear force to either 
side of the peak value is permissible as proposed by Sagaseta et al [33] 
and allowed in FprEN1992. 

As a reality check, design punching resistances, without shear rein
forcement, were calculated for the full scale flat slab specimens 
considered in the derivation of βSF (see Fig. 5) with i) EC2 (2004) and ii) 
FprEN1992 using the refined β (see equations (11) and (12)). The EC2 
(2004) resistances were calculated with the reduced control perimeter 
u1* of the code and the Mtmax limit. In FrEN1992, apd was conservatively 
taken as dv in equation (5). The code recommended partial factors of γc 
= 1.5 and γv = 1.4 were adopted in EC2 (2004) and FprEN1992 
respectively. VFprEN1992/VEC2 is plotted against the normalised loading 
eccentricity in Fig. 14a which shows that both codes give similar 
punching resistances. Furthermore, Fig. 14b shows that VFprEN1992/VEC2 
is sensibly independent of the loading angle. 

4. Conclusions 

This paper describes the derivation of the shear enhancement factor 
β for punching shear at corner columns in the next generation of EC2 
(FprEN 1992) which adopts a closed form formulation of the CSCT for 
punching shear. In this method, the effect of loading eccentricity on 
punching resistance is accounted for by increasing the design shear force 
by a multiple β. Initially, a formula is derived for β using shear field 
analysis of representative flat slab buildings. The adopted procedure is 
the same as that previously adopted by the authors for determination of 
β at edge columns in FprEN1992. The resulting formulae for β have the 
same form at edge and corner columns (i.e. β = 1 + 1.1 eb

bb
) but the ec

centricity eb is defined differently in each case owing to differences in 
the shear force distribution around the control perimeter at edge and 

Fig. 12. Punching shear resistance for virtual corner column punching speci
mens with column size a) 250 x 250 mm2, b )300 x 600 mm2, c) 300 x 750 mm2 

and d) 300 x 1000 mm2. 

Fig. 13. Response of virtual specimen NH4 with column size 300 x 600 mm2 a) 
ATENA and JSPME load-rotation responses for eccentricities ecol,x = ecol,y of i) 
600mm and ii) 800mm and b) shear force/length distribution around the control 
perimeter for ecol,x = ecol,y = 600 mm. 
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corner columns. 
The expression for β resulting from shear field analysis is validated 

using experimental data from the literature as well as virtual specimens, 
with elongated columns, modelled with NLFEA using both 3-D solid 
elements and the classic CSCT. Even though used to derive the refined 
expression for β, shear field analysis is not recommended for routine 
design due to the sensitivity of the results to modelling assumptions and 
software used. Finally, FprEN1992 is shown to give similar punching 
resistances to EC2 (2004) at corner columns of representative flat slabs 
without shear reinforcement. Significantly, the refined formula for β (see 
equations (11) and (12)) gives significantly lower values than the 
reciprocal of the expression for ke used in MC2010 to reduce the control 
perimeter for eccentric shear. 

When used in conjunction with the refined expression for β, 
FprEN1992 is shown to give good estimates of punching resistance at 
corner columns for both the considered test data and the virtual slabs 
modelled with 3-D solid elements in ATENA. Due to the relative lack of 
experimental data on punching at corner columns, the authors recom
mend conservatively taking apd = dv in equation (6) if using the refined 
β. 
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