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Abstract—Precise event sampling is a profiling feature in com-
modity processors that can sample hardware events and accurately
locate the instructions that trigger the events. This feature has
been used in a large number of tools to detect application per-
formance issues. Although precise event sampling is readily sup-
ported in modern multicore architectures, vendor supports exhibit
great differences that affect their accuracy, stability, overhead,
and functionality. This work presents the most comprehensive
study to date on benchmarking the event sampling features of
Intel PEBS and AMD IBS and performs in-depth analysis on key
differences through series of microbenchmarks. Our qualitative
and quantitative analysis shows that PEBS allows finer-grained
and more accurate sampling of hardware events, while IBS offers
richer set of information at each sample though it suffers from
lower accuracy and stability. Moreover, OS signal delivery, which
is a common method used by the profiling software, introduces
significant time overhead to the original overhead incurred by the
hardware mechanisms in both PEBS and IBS. We also found that
both PEBS and IBS have bias in sampling events across multiple
different locations in a code. Lastly, we demonstrate how our
findings on microbenchmarks under different thread counts hold
for a full-fledged profiling tool that runs on the state-of-the-art Intel
and AMD machines. Overall our detailed comparisons serve as a
great reference and provide invaluable information for hardware
designers and profiling tool developers.

Index Terms—Precise event sampling, PMUs, profiling.

I. INTRODUCTION

PRECISE event sampling (PES) is a powerful profil-
ing feature supported by Performance Monitoring Units

(PMUs) in modern CPUs. It has been incorporated in a num-
ber of profiling tools that identify performance bottlenecks
in shared-memory parallel applications. Some bottlenecks in
multithreaded code that these tools can detect are inter-thread
coherence traffic [1], [2], [3], false sharing [3], [4], [5], [6], [7],
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[8], [9], [10], long latency remote memory accesses in NUMA
multicore systems [11], [12], [13], data locality problems [14],
[15], performance degrading bandwidth consumption[10], and
conflict cache misses [16]. In addition to identifying the bottle-
necks, PES can help pinpoint the source code lines and data
objects causing the bottlenecks through its ability to sample
instruction pointers and effective addresses of the operations.
Compared to alternatives such as cycle-accurate hardware sim-
ulators [17], [18] and binary instrumentation [19], [20], tech-
niques that leverage PES incur much lower time and memory
overheads as they employ existing hardware features to capture
real hardware events without introducing additional software
layer.

Intel supports precise event sampling through Processor Event
Based Sampling (PEBS) [21] that is available since Intel Ne-
halem. Many researchers have developed tools for PEBS [1],
[2], [3], [8], [9], [11], [15], [16], [22], [23]. Similarly, AMD
processors come with Instruction-Based Sampling (IBS) [24]
that is supported in AMD Opteron (microarchitecture family
10h) and its successors. A number of tools have also been
developed using IBS [7], [11], [12], [13], [22], [25], [26],
[27], [28]. The event sampling in IBM PowerPC architecture
is provided through Marked Event Sampling (MRK) [29] that is
available since IBM POWER5. This capability is also recently
supported in ARM through Statistical Profiling Extension (SPE)
introduced in Armv8.2 [30].

Despite the fact that event sampling is commonly used for
developing profiling tools, there exists no rigorous study that
benchmarks this capability in the microarchitecture. In this
paper, we analyze and compare the precise event sampling
facilities of two major vendors namely, Intel and AMD, in
depth through extensive benchmarks. Intel PEBS and AMD
IBS adopt drastically different designs that affect the accuracy,
stability, overhead and functionality of the sampling facility.
While the outcomes of this work can be used by the profiling
tool developers and performance analysts to better understand
the behaviours of the tools that they develop or use, hardware
designers can leverage the findings to design better PMUs not
only for x86-based systems but also for ARM [30], [31] and
emerging RISC-V processors [32], [33].

We firstly present qualitative differences between Intel and
AMD in terms of usable counters, type of precise events,
sampled data, and execution mode. Based on the observations
on the qualitative characteristics, we developed a number of
microbenchmarks that can assess the effects of the observed
qualitative characteristics. The benchmarks were carefully
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designed to eliminate any artifacts and have ground truths for
the evaluated behaviors. Through these benchmarks, we then
quantitatively compare the two facilities in terms of accuracy,
time and memory overheads in sampling individual and multiple
events, across different thread counts and different sampling
intervals. We also evaluate the stability and sampling bias of
both facilities, and analyze the ability in attributing samples
to the instructions that trigger the samples and the execution
modes of those instructions, i.e. kernel mode or user mode.
Lastly, to demonstrate how these microarchitectural character-
istics impact tools that profile multithreaded applications, we
study a full-fledged open-source tool, namely ComDetective [3],
[34], that employs precise event sampling to detect inter-thread
communication.

A. Findings, Insights and Contributions

Our findings based on the quantitative and qualitative study
are as follows. (1) Intel PEBS offers a large set of specific
hardware events such as branches, memory loads, etc to select
from, while AMD IBS has only two flavors of sampling: instruc-
tion fetch and micro-operation execution. One impact of this
difference is that PEBS is more accurate than IBS in capturing
proportional number of samples from specific events, such as
loads or branches. This accuracy problem in IBS is especially
worse at low thread counts. (2) Though IBS supports fewer
sampling choices than PEBS, it offers richer information in each
sample, which shows, for example, the origin of accessed data
in memory hierarchy. As a consequence, PEBS would have to
monitor multiple events simultaneously in order to generate the
similar level of information as in one IBS run. (3) Intel PEBS
shares the same counters with other non-PEBS PMU events,
while AMD IBS has its own internal counters. As a result,
the number of different events that PEBS can monitor without
multiplexing is limited to the number of available PMU counters
per logical core. Multiplexing in PEBS suffers from sample loss,
leading to reduced accuracy. (4) Across multiple runs, PEBS
displays lower variation in capturing sample counts thus PEBS
is more stable than IBS in this regard. (5) AMD Zen3 and Intel
Skylake introduce similar time overheads but AMD Zen 2 and
Intel Cascade Lake introduces higher overhead than the other
two. Thus, the time overhead depends on the specific microar-
chitecture in use. (6) In both PEBS and IBS, OS signal delivery
to user space introduces significant time overhead, which affects
the overhead felt by the end-user. Moreover, the time overhead of
IBS is sensitive to thread counts as its signal delivery overhead is
drastically higher at high thread counts. (7) Both PEBS and IBS
exhibit similar and negligible memory overheads on a single
thread. However, when running on multiple threads, memory
overheads increase as thread count increases except for Cascade
Lake. (8) IBS is very sensitive to sampling interval and its
accuracy significantly drops at high sampling frequency. PEBS
has high accuracy regardless of sampling rate. (9) Both PEBS
and IBS are equally biased in sampling an event from multiple
different instructions. (10) Lastly, PEBS can be programmed to
sample events that execute only in user mode, only in kernel

mode, or in any of the two modes, while IBS samples any fetch
or micro-operation without discriminating its execution mode.

In summary, our contributions are as follows
� Presenting the most comprehensive study to date on pre-

cise event sampling supported by two major vendors. See
comparison in Table IV.

� Detailed qualitative and quantitative comparisons of mi-
croarchitectural characteristics between Intel PEBS and
AMD IBS and demonstrating their accuracy, stability, bias,
functionality and overheads

� A suite of synthetic benchmarks that can be used for
extending this study to other vendors and multicore ar-
chitectures

� Providing invaluable information both to the hardware
designers and tool developers through our findings that
would help understand and improve their designs.

All our codes and data are available to public at: https://github.
com/ParCoreLab/pes-artifact.

II. BACKGROUND

PMU is a special on-chip hardware that can be used to monitor
hardware events, such as loads, stores, retired instructions, or
software events like page faults, context switches. This section
describes the mechanism of PES, a subset of PMUs that is the
subject of this work, in Intel and AMD.

A. Precise Event Sampling Support in Intel

On Intel, PES can utilize any programmable counters avail-
able in PMUs [35], which consist of a number of registers
and counters. For example, global control registers are used
to globally enable or disable event counters or PES ability of
each counter. Status registers contain info about the capabilities
supported by the PMUs or the overflow status of each event
counter. Event select registers are used to choose the hardware
or software event, such as retired instruction, load instruction, or
page fault, to be monitored. A PMC (Performance Monitoring
Counter) counts the occurrences of a monitored event.

To enable PES, a programmable counter is enabled along
with its PEBS capability by global control registers [35]. This
counter is then configured to monitor a targeted hardware event
by programming its event select register with the mask and
number of the targeted event. The counter is also configured
to have a counter overflow in every elapsing of a specified
number of events, which is the sampling interval. When a
counter overflows, PEBS is armed to trap the next occurrence of
the monitored event. When the next monitored event occurs, a
mechanism called PEBS assist will copy the machine state to a
PEBS buffer in a process we refer to as sampling. The machine
state and other data such as effective address and load latency
collected by the PEBS assist are grouped into a data structure
called a PEBS record in the PEBS buffer. When the number
of PEBS records in the PEBS buffer has reached a predefined
threshold, a hardware interrupt is triggered and handled by an
interrupt handler that is a part of the OS. The interrupt handler
reads the PEBS records in the PEBS buffer, clears the buffer, and
sends an OS signal to a user process or thread that will collect the
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Fig. 1. One possible execution scenario of Intel PEBS: (1) Global control
register IA32_PERF_GLOBAL_CTRL enables PMC0 and PMC1 by setting
its bits corresponding to both counters to one. (2) Global control register
IA32_PEBS_ENABLE enables PEBS in PMC0 and PMC1 by setting the
bits corresponding to both counters to one. (3) The event select registers
IA32_PERFEVTSEL0 and IA32_PERFEVTSEL1 are programmed to make
PMC0 and PMC1 count retired loads and retired stores, respectively. (4) The
configured PMCs are preloaded with the sampling interval, -N, so that they
overflow on elapsing N events. (5) The profiled program executes for a while;
PMC1’s counter overflows after N stores occur. PEBS is armed to trap the next
store. PMC 1 is preloaded with -N again. (6) Another store occurs after the
counter overflow. The armed PEBS hardware traps the access and a microcode
records the machine state in a PEBS record in PEBS buffer. (7) If the number of
records has reached a specified threshold (1 in this case), an interrupt is triggered,
and an interrupt handler transfers the PEBS records to user space.

sampled data. On receiving the signal, the user process/thread
retrieves the sampled data and uses it for profiling. Fig. 1 shows
an example execution of PEBS when profiling retired load and
store micro-operations.

PEBS has been used to sample a variety of events to capture
performance bottlenecks in multithreaded programs. In [11],
PEBS and PEBS with load latency (PEBS-LL) are used to
sample retired instructions and long-latency memory loads to
approximate NUMA latency per instruction by dividing the total
latency of the sampled loads with the number of instruction
samples. A work in [8] samples memory loads and stores in
each CPU core and has each core monitor effective addresses
sampled by other cores using debug registers to detect false
sharing. Another work in [16] samples loads that miss in L1
data caches to capture cache access patterns and identify cache
conflict misses.

B. Precise Event Sampling Support in AMD

Different from Intel, PES in AMD, i.e. IBS, employs a
hardware-based facility that is separate from the PMUs that
are commonly used to count or imprecisely sample specific
hardware or software events. This mechanism is based on the
instruction sampling technique proposed in [36]. The IBS facil-
ity in each CPU core consists of a couple of components: two
control registers, two internal counters, and a number of MSRs
(Model Specific Registers) for sampled data [37].

This facility allows only two flavors of sampling: instruction
fetch sampling (IBS fetch) and micro-operation sampling (IBS
op) [24], [37]. Either one of the two control registers is pro-
grammed to control the IBS hardware depending on the sampling
flavor of interest. If instruction fetch sampling is selected, the
fetch control register is programmed. Otherwise, the execution
control register is programmed. After the control register is
programmed, the internal counter that belongs to the selected
sampling flavor (the fetch counter or the op counter) will count
the monitored event in the CPU core. When an event sampling

Fig. 2. One execution scenario of AMD IBS: (1) IBS execution control register
in CPU is programmed to make the IBS hardware count and sample executed
micro-operations. The sampling interval is also written as a field in the control
register. The op counter is set to a pseudorandom 7-bit value in the range of
1 to 127. (2) After the profiled thread executes for a while, the value in the op
counter equals the sampling interval. As it happens, the next micro-operation will
be tagged for sampling. (3) The tagged micro-operation retires. The execution
info of the micro-operation is recorded in a number of MSRs. After that, an
interrupt is triggered, and the interrupt handler copies the recorded data in the
MSRs to a memory buffer in kernel space. (4) Upon copying sampled data, the
interrupt handler configures the control register again to re-enable IBS, and the
op counter is preloaded with another pseudorandom 7-bit value.

occurs, information related to the event is recorded in the MSRs
of sampled data that belong to the sampling flavor of interest.
Another work in

The counter for micro-operation sampling, i.e. op counter,
can be programmed to count either clock cycles or dispatched
micro-operations. The latter is the default configuration of the
IBS driver in [38]. If it is programmed to count clock cycles, it
increments for each clock cycle, and when the counter reaches
the specified sampling interval, a micro-operation is selected
for sampling from the next dispatch line. If the counter is pro-
grammed to count dispatched micro-operations, it increments
for every dispatched micro-operation, and when the counter
reaches the sampling interval, a micro-operation is selected to
be sampled in the next cycle. In this work we only consider the
op counter to be programmed for counting dispatched micro-
operations because it generates predictable number of samples
given a known number of micro-operations in an application,
which suits our accuracy verification method.

Fig. 2 shows an execution scenario of IBS when counting and
sampling micro-operations.

There have been a number of profiling techniques that lever-
age AMD IBS to identify performance bottlenecks in multi-
threaded applications. A work in [15] runs IBS op and filters
in only samples from high-latency memory accesses to identify
data structures that incur high latency to be accessed. Another
work in [24] demonstrates that IBS fetch can be used to detect
regions of code that have a large number of killed instruction
fetches due to speculative prefetch.

C. Precise Event Sampling Support in ARM

The PES facility in ARM, i.e. Statistical Profiling Extension
(SPE), has the same sampling approach as IBS. Its counter
counts dispatched micro-operations, and therefore, facilitates
sampling from this event [31].

Our work can be extended to cover ARM SPE however our
preliminary study on a high-end state-of-the art ARM processor
showed that its precise event sampling support is immature
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TABLE I
QUALITATIVE COMPARISON OF INTEL PEBS AND AMD IBS

and cannot be directly comparable against PEBS or IBS. For
example, as quoted in known issues in ARM forge user guide,
SPE might observe unexpectedly high sample counts for branch
target instructions and unexpectedly low sample counts for some
instructions closely following a branch target [39]. As a result,
we opt not to include ARM in this study. We plan, in future work,
to extend this work to ARM once hardware becomes available
that corrects these documented errata.

III. QUALITATIVE COMPARISON

This section presents qualitative differences between the two
precise event sampling schemes, Intel PEBS and AMD IBS.
Table I highlights these key differences and the section explains
them in detail.

A. Usable Counters

Observation 1. PEBS can use up to 4 counters and monitor up
to 4 events without multiplexing in microarchitectures. Starting
Ice Lake, PEBS can monitor up to 7, while IBS has two dedicated
counters, one for each sampling flavor.

Observation 2. PEBS counters are disabled before interrupt
delivery, while IBS counters are disabled by software in the
interrupt handler.

Observation 3. If the op counter of IBS is programmed to
count dispatched micro-operations, it is always preloaded with a
pseudorandom 7-bit value after its sampling interrupt is handled.

PEBS shares the PMCs that are also used by other non-precise
PMU events. Microarchitectures before Ice Lake (launched in
2019) allow PEBS to use any of the four general-purpose per-
formance counters in each logical core [35]. In Ice Lake, PEBS
can use three additional fixed-function performance counters.
When the number of events monitored is higher than the num-
ber of counters, OS kernel context-switches the events on the
counters. When this multiplexing happens, the approximated
counter values are inaccurate, and might cause the events to lose
some counter overflows.

Different from PEBS, IBS counts instruction fetches and
micro-operations using its own internal counters that are sep-
arate from other PMCs in each AMD CPU core [37]. It has
two internal counters, one for each sampling flavor. Since these
counters are not multiplexed, IBS does not miss an overflow.

Another difference is that Intel PMUs have the capability
to disable counters when counter overflow occurs[35]. These

counters are disabled before an interrupt is delivered. On the
other hand, IBS counters do not have this capability, and thus,
they have to be disabled by the OS/driver in the interrupt han-
dler. Furthermore, the IBS counters are randomized after each
sampling interrupt is handled. The purpose of this randomiza-
tion is to minimize any correlation between the timing of the
interrupts and the locations of instructions in the code. For the
fetch counter, randomization is optional, and it is enabled when
certain bit in the control register is set to 1. However, the op
counter is always randomized with a pseudorandom 7-bit value
when programmed to count dispatched micro-operations. This
randomization and the fact that IBS counters are not disabled
before an interrupt is delivered might cause the number of events
detected by IBS to vary across different runs.

B. Type of Precise Events

Observation 4. PEBS has many choices of precise events to
monitor, while IBS has two sampling flavors to choose from.
As a result, a PEBS counter can be programmed to count only
specific hardware event and trigger sampling only of that event,
while an IBS counter can only count instruction fetches or micro-
operations indiscriminately and trigger sampling of any event
that may or may not be of interest.

PEBS has the ability to monitor hardware events at a finer
grain than IBS. For example, in Cascade Lake, in total, there
are 62 possible hardware sub-events, each of which is identified
by a combination of an event number and a unit mask, that can
be monitored using PEBS. When monitoring certain sub-event
such as memory load, the used hardware counter will increment
only for each occurrence of memory load, and it will trigger
sampling of only memory load.

In contrast to PEBS, IBS has only two possible sampling
choices: instruction fetch sampling and micro-operation execu-
tion sampling. In instruction fetch sampling, IBS counts instruc-
tion fetches and samples from them, while in micro-operation
execution sampling, IBS counts dispatched micro-operations
and samples from retired ones. Consequently, an IBS counter
can overflow on any instruction fetch or micro-operation, and
the sampled fetch or micro-operation does not have to be the
event that is targeted by a profiling code. For instance, a profiling
code that aims to profile memory accesses might encounter
non-memory access samples during profiling.

C. Sampled Data

Observation 5. IBS generates a rich set of attributes for
each sampled fetch or micro-operation that record the hardware
events during the execution in CPU pipeline. These events might
correspond to multiple different precise events in PEBS. Thus,
PEBS might have to monitor multiple events simultaneously in
order to get the same level of information as IBS.

Though IBS has only two sampling flavors, each sample has
a number of attributes. It generates 16 and 44 attributes in each
sampled data for instruction fetch and executed micro-operation,
respectively. These attributes can help identify the events that are
triggered by each sampled instruction fetch or micro-operation
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(e.g., whether a sampled micro-operation triggers a load, an L1
cache miss, or an L1 DTLB miss).

In each sample, PEBS generates a PEBS record that contains
information related to the sampled event, such as the instruction
pointer, the architectural state of the logical core after the event
is retired, and the effective address in case the sampled event is
a memory access. In addition to this general information, PEBS
also offers more detailed information on the origin of accessed
data in memory hierarchy if load latency sampling facility is
enabled.

There is some common information in the data sampled by
both PEBS and IBS, such as memory access latency and data
misses in L1 or L2 cache. However, there are some attributes that
are included in IBS’ sampled data but not in PEBS, and vice
versa. One example is the width of accessed memory region,
which is an attribute in IBS but not in PEBS. To make up for
this, a profiler that uses PEBS will have to use a supplementary
library such as Intel XED [40]. Moreover, PEBS has to monitor
multiple events simultaneously in order to get the same amount
of information offered by one sample of IBS. For instance,
to profile loads, stores, and branch instructions, PEBS has to
monitor these three events separately, while IBS can profile them
in a single micro-operation sampling.

D. Execution Mode

Observation 6. While Intel PMUs can be programmed to
count events that execute only in user mode, only in kernel mode,
or in any mode indiscriminately, IBS counters can only count
instruction fetches and micro-operations without regarding their
execution mode.

In each event select register (IA32_PERFEVTSELx) of In-
tel, there are bits that determine whether the controlled counter
should count events that execute in user mode or kernel mode.
Hence, it is possible to program PEBS to sample events that
execute only in user, only in kernel, or any of the two modes. In
contrast, IBS does not have this ability supported at hardware
level. Consequently, IBS always triggers an interrupt regardless
of the execution mode of the event that it samples, and the
identification of the execution mode has to be done by the
interrupt handler by checking the user_mode(regs) macro
provided by the Linux kernel. This approach might be less
accurate than the method of PEBS, which can dedicate a counter
to count events that execute only in certain mode. The inaccuracy
can affect events that occur very close to mode switches between
user and kernel modes. For example, a tagged event that executes
in user mode can be counted as an event from kernel space if it
occurs just before the mode switches from user to kernel.

IV. QUANTITATIVE COMPARISON

This section quantifies the accuracy of PEBS and IBS under
different scenarios: (i) accuracy in monitoring a single event,
(ii) accuracy in monitoring multiple events, (iii) accuracy under
different sampling intervals, and (iv) the stability of the accuracy
across multiple runs. We also study the sampling bias and the
functionality of both PEBS and IBS to attribute samples to their
instructions and evaluate the time/memory overheads. Lastly,

we study the capability of PEBS and IBS in detecting samples
from kernel/user mode execution.

Table II shows the specifications of the machines used in the
experiments. The default sampling interval in all experiments is
set to 100 K. The results are averaged over 5 runs. We disabled
Turbo Boost in the Intel machines, Turbo Core in the AMD
machines, and hyperthreading in all of the four machines.

We developed the microbenchmarks with great care to elimi-
nate any unintended noise and took a number of measures for a
fair study. First, the microbenchmarks were written using asm
statement [41] as assembly instructions in C in order to fully
control the number of hardware events that occur during program
execution. Second, unless otherwise stated, they were compiled
using gcc-10.3.0 with -O0 flag in order to prevent com-
piler from modifying any part of the code. Third, to minimize
overheads at user space, we configure the interrupt handler that
handles sampling interrupts not to send any OS signal to user
processes or threads by default.

We programmed PEBS using perf_event_open system
call, and programmed IBS using the IBS driver available in [38].
We chose perf_event_open to interface with PEBS as it
is the most widely used method that is utilized by the Linux
perf tool [42], [43] and a number of other profiling tools [7],
[8], [22], [44], [45]. We used the IBS driver in [38] to program
IBS because it is the only possible way to interface with IBS
in our AMD machine as perf_event_open requires certain
versions of BIOS that are not commonly available as default in
commodity AMD machines [46], [47].

A. Accuracy

This experiment aims to evaluate the accuracy of Intel PEBS
and AMD IBS in capturing samples from a benchmark with
known number of monitored events. We define accuracy as the
closeness of the number of samples captured by PEBS or IBS to
the number of expected samples given a sampling interval and
a known number of events in the benchmark.

1) Hypothesis: Based on Observations 2, 3, and 4, we expect
Intel PEBS to have better accuracy than both sampling flavors
of AMD IBS in capturing samples from any hardware event.

2) Methodology: To evaluate the accuracy of both sampling
facilities, firstly, we compared the number of retired instruction
samples captured by PEBS, the number of executed micro-
operations sampled by IBS op, and the number of instruction
fetches sampled by IBS fetch against their ground truths. The
ground truth for PEBS’ retired instruction sampling and IBS op
is the number of instructions in the microbenchmark divided by
the sampling interval, while the ground truth for IBS fetch is the
number of instruction fetches that hit in L1 ITLB as counted by
perf divided by the sampling interval. The reason for choosing
hit count in L1 ITLB is because there is no PMU event in AMD
that specifically counts instruction fetches and the number of
unique instructions in the microbenchmarks are small enough
to fit in L1 ITLB. PEBS’ retired instruction sampling and IBS
op share the same ground truth because each instruction in the
microbenchmark translates to exactly one micro-operation.
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TABLE II
SPECIFICATIONS OF AMD AND INTEL MACHINES USED IN EVALUATION

To evaluate the accuracy of PEBS and IBS, we ran both
sampling facilities on a microbenchmark with known number
of data cache load misses and known number of instructions,
which will serve as the ground truths. We programmed PEBS
to sample the precise event version of retired instruction, i.e.
INST_RETIRED:PREC_DIST, and retired data cache load
miss, i.e. MEM_LOAD_RETIRED.L1_MISS, in separate runs.
We configured IBS to run micro-operation execution sampling,
i.e. IBS op, and instruction fetch sampling, i.e. IBS fetch,
also in separate runs.

After evaluating the accuracy in monitoring the most gen-
eral events, i.e. instructions, instruction fetches, and micro-
operations, we evaluated their accuracy in sampling a subset
event, which is data cache load misses in our case. This is
an event of interest for performance analysis tools that aim to
detect data locality problems. For this evaluation, the numbers
of load miss samples detected by PEBS’ data cache load miss
monitoring and IBS op are compared against the expected load
miss count of the microbenchmark. IBS op is used for this
comparison because it can capture data cache misses among
its sampled micro-operations. In addition to evaluating the
accuracy of PEBS and IBS under a single thread, we also
evaluate the sensitivity of their accuracy under different thread
counts.

For this experiment we devised a microbenchmark that can be
configured to have different ratios of load instructions that miss
in L1 data cache with respect to all instructions. The code for
the Accuracy-Bench benchmark is shown in Listing 1. In each
iteration of loop0 there is exactly one load that misses in L1
data cache, i.e. movl (%rbx), %ebx, out of all instructions
in the loop. Before %loop0 is entered, the %rbx register is
always assigned with the offset address of an array pointed by
the %rcx register. To ensure that a miss in L1 data cache always
occurs whenever the address in the %rbx register is accessed
within %loop0, the array pointed by %rcx has the following
description.
� Size of the array is 128K bytes, which is larger than the

size of the L1 data cache (32K bytes).
� There is a 128 byte gap between any adjacent array ele-

ments to ensure that none of the array elements share a
cache line.

� All array elements are initialized with their own indices.
� The array is shuffled randomly before %loop1 is entered

to generate a pointer-chasing memory access pattern when
the array is accessed in %loop0.

By creating pointer-chasing effect whenever (%rbx) is ac-
cessed and by adding non-memory access instructions, i.e.addq
$1, %%r8, inside loop0 as needed, the ratio of L1 load miss
to any instruction in the configured benchmark is controllable.

By knowing the number of load misses and instructions in the
benchmark, given the sampling interval we can easily calculate
the number of expected load misses and instruction samples.
For example, in the 1/20 Load Miss case, there is one L1 load
miss out of 20 instructions in each iteration, and the inner loop
iterates 1000 times while the outer loop iterates 1M times. Thus,
in total, there are 1 billion load misses and 20 billions and 4
millions instructions in a single run of the benchmark. As we
set up PEBS to monitor load misses in data cache and retired
instruction with sampling interval 100K, we can expect 200M
and 400 instruction samples to be generated, and among these,
the number of load miss samples should be 10K.

Listing 1: Code for Accuracy-Bench benchmark.

3) Results: Fig. 3 compares the accuracy of Intel PEBS when
monitoring retired instruction against both sampling flavors of
AMD IBS. In the figure, PEBS, IBS op, and IBS fetch display
high accuracy, though IBS op and IBS fetch still show slightly
lower accuracy than PEBS. One major reason for the lower
accuracy of IBS is that there is a time gap between when the
interrupt occurs and when the interrupt handler disables the
counter. On the other hand, the counters of PEBS freeze before
interrupt delivery, and therefore, they do not suffer from this time
gap problem. IBS op displays even lower accuracy than IBS
fetch due to its randomization of counter after each sampling
interrupt. We also observe an improvement in accuracy for both
IBS op and IBS fetch from Zen 2 to Zen 3 microarchitectures.
Fig. 4 shows the accuracy of PEBS and IBS when capturing
load miss samples from the microbenchmark. The plotted results
are produced by PEBS that monitors retired data cache load
miss and IBS op. From the figure, it can be seen that PEBS
achieves higher accuracy as its sample counts are very close to
the expected counts, while IBS deviates more from the ground
truth. Unlike the results in Fig. 3, IBS displays lower accuracy
in Fig. 4. It shows that, though IBS can capture micro-operation
and instruction fetch samples accurately, its detection of subset
event, e.g. how many of the detected micro-operation samples
are load miss samples, is less accurate.

Next, Fig. 5 presents the accuracy of PEBS and IBS in
sampling load misses under different thread counts. The figure
shows the results from the Skylake machine only up to 4 threads
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Fig. 3. Comparison of accuracy of PEBS monitoring retired instruction, IBS
monitoring micro-operation execution (IBS op), and IBS monitoring instruction
fetch (IBS fetch) on the Accuracy-Bench benchmark

Fig. 4. Accuracy of Intel PEBS and AMD IBS in capturing retired L1 data
cache load miss samples from the Accuracy-Bench benchmark

Fig. 5. Accuracy of Intel PEBS and AMD IBS in capturing retired L1 data
cache load miss samples from the Accuracy-Bench benchmark under different
thread counts

as it has only 4 physical cores. As displayed in Fig. 5, the
accuracy of PEBS is consistently high across different thread
counts, while the accuracy of IBS is lower at low thread counts
and becomes better at high thread counts, i.e. 16 and 32 threads.
This apparent increase in accuracy results from the summation
of the sample counts captured by the multiple threads. The
undercounted sample counts in some threads are compensated
by the overcounted sample counts in other threads, which results
in a total count that is close to the expected.

4) Findings: Intel PEBS always shows high accuracy in sam-
pling any event, while AMD IBS displays lower accuracy. One
possible solution to improve the accuracy of IBS is by freezing
its counter before a sampling interrupt is triggered similar to
how it is implemented in PEBS.

Fig. 6. Accuracy of PEBS and IBS in sampling L1 data cache load misses
from the Accuracy-Bench benchmark under different sampling intervals.

B. Sensitivity to Sampling Rate and Stability

Next, we evaluate the accuracy under different sampling
intervals and the stability of both schemes. Stability here refers
to variation of accuracy across multiple runs.

1) Hypothesis: Due to Observations 2, 3, and 4, we expect
PEBS to have higher accuracy than IBS under any sampling
interval. Based on those observations, we also expect PEBS to be
more stable, i.e. having more consistent accuracy, when profiling
the same benchmark across different runs.

2) Methodology: To evaluate the accuracy in different sam-
pling intervals, we again use the Accuracy-Bench benchmark.
We also evaluate the stability of PEBS and IBS by measuring
the standard deviation of sample counts detected across multiple
runs in these benchmarks.

3) Results: Fig. 6 shows the accuracy of PEBS and IBS when
sampling load misses from the Accuracy-Bench under different
sampling intervals. While PEBS maintains high accuracy across
intervals, the accuracy of IBS on Zen 3 is slightly lower than
PEBS at high sampling intervals. On Zen 2, the accuracy de-
grades dramatically at 10K. As the IBS profiler stalls or does
not properly work when the sampling interval is <= 1K on
the Accuracy-Bench , no results from these cases are shown for
Zens.

Figs. 3, 4, 5, and 6 present the measured standard deviations
as error bars. PEBS displays high stability, i.e. low variation
of accuracy, regardless of the event and the number of events
that it monitors. In contrast, Figs. 4, 5, and 6 show higher
variation of accuracy for IBS in detecting sub-events of executed
micro-operations, e.g. the number of load miss samples among
detected samples. The maximum standard deviation of IBS op
is 2.51% in Fig. 4, 5.96% in Fig. 5, and 4.15% in Fig. 6 at
1M sampling interval, while the maximum standard deviation
of PEBS is nearly zero.

However, IBS is quite stable in capturing the cumulative
counts of micro-operation when their sub-event types are not
considered as shown in Fig. 3.

4) Findings: In capturing samples of a subset event, such as
load miss, PEBS has high accuracy under different sampling in-
tervals, while IBS exhibits high accuracy only at large sampling
intervals, and it either suffers from lower accuracy or encounters
errors when the sampling interval becomes short. PEBS displays
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high stability across multiple program executions, and IBS is rel-
atively stable in capturing cumulative count of micro-operation
samples. However, its stability is much lower in capturing counts
of subset event samples.

C. Bias and Instruction Attribution

In this experiment, we evaluate the bias of PEBS and IBS in
sampling the same event from multiple different locations in a
code, and the accuracy of their ability in attributing samples to
the instructions that trigger them.

1) Hypothesis: We expect PEBS and IBS to have no bias
in sampling from multiple different instructions that perform
the same monitored event. We also expect PEBS and IBS to
accurately attribute the sampled events to the actual instructions
that trigger those events.

2) Methodology: We evaluate the sampling bias and the in-
struction attribution of PEBS and IBS by programming them to
sample retired loads from a synthetic benchmark, bias-bench,
shown in Listing 2. If there is no sampling bias, the portion
of samples attributed to each load instruction should be 25%.
Furthermore, if all samples can be associated with their trig-
gering instructions accurately, there should not be any sample
associated with non-load instructions, i.e. subq, cmpq, and jne.
We attribute the sampled instruction pointers to the source code
lines by comparing the sampled instruction pointers with the
instruction addresses of the labels in the benchmark code.

Listing 2: Code for the sampling bias and instruction attribution.

3) Results: Fig. 7 presents the percentage of samples at-
tributed to each instruction in bias-bench. As PEBS and IBS do
not associate any load samples with the non-load instructions,
we can infer that both PEBS and IBS accurately attribute the
load samples to the instructions that actually trigger them.

Concerning the sampling bias, PEBS detects load samples
more unequally across the load instructions than IBS. Most
samples detected by PEBS are associated with the load 2 and
load 3 instructions. For IBS op, there is still inequality in sample
distribution across the load instructions. However, the variation
is not as large as in PEBS.

4) Findings: Both PEBS and IBS are equally accurate in
attributing samples to their triggering instructions. However,
PEBS is more biased than IBS in sampling an event from multi-
ple different instructions. From the benchmark, PEBS captures
at least 30% of the samples from only 1 out of 4 instructions that
execute in a loop.

Fig. 7. Expected percentage (25%) vs percentage of samples attributed to each
instruction in the bias-bench benchmark for PEBS and IBS. No load sample is
attributed to non-load instructions.

Fig. 8. Comparison of time overheads on Accuracy-Bench benchmark with
and without signal delivery.

D. Time Overhead

We evaluate the time overheads of PEBS and IBS by running
them on simple and more complex benchmarks.

1) Hypothesis: Based on Observation 4, we expect PEBS
that monitors a specific hardware event, e.g., L1 data cache load
miss, to incur lower overhead than IBS as it will most likely
encounter fewer sampling interrupts than IBS. However, if PEBS
monitors retired instructions, we expect PEBS to incur similar
overhead to IBS because it will encounter approximately the
same number of sampling interrupts as IBS.

2) Methodology: We programmed PEBS and IBS to sample
from the Accuracy-Bench benchmark and the Rodinia bench-
mark suite [48] as representative real workloads. We configured
PEBS to monitor retired L1 data cache load miss and retired
instruction in separate runs. In the AMD machines, we pro-
grammed IBS to run IBS op and IBS fetch also in separate runs.
We ran each Rodinia benchmark on a single thread to avoid
microarchitectural factors such as cache line contention that
might become a confounding variable that affects time overhead.
To evaluate the sensitivity of time overhead to thread counts, we
also ran the Accuracy-Bench benchmark under different thread
counts while being monitored by PEBS and IBS. Furthermore,
we ran each benchmark with OS signal delivery to user thread
enabled and disabled in separate runs in order to evaluate the
extra overhead introduced by the OS signal delivery mechanism
in kernel space. Enabling the signal delivery gives us the actual
overhead felt by an end-user.

3) Results: Fig. 8 presents the time overheads of PEBS and
IBS for all chosen events and sampling flavors when monitoring
the Accuracy-Bench benchmark, while Fig. 9 shows the time



1602 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 5, MAY 2023

Fig. 9. Comparison of time overheads on Rodinia benchmarks with and
without signal delivery.

overheads on more complex workloads when monitoring se-
lected Rodinia benchmarks. We present the time overheads with
and without OS signal delivery enabled. One common pattern
that we can observe in Figs. 8 and 9 is that the time overhead is
more than doubled when OS signal delivery is enabled. Another
pattern is that PEBS’ monitoring of L1 data cache load miss
and IBS fetch always incur the lowest overheads because they
only sample load misses in L1 data cache or instruction fetches
and the number of theses events are always lower than the
numbers of retired instructions or micro-operations. IBS fetch
has lower time overhead than both retired instruction monitoring
by PEBS and IBS op. The reason for this is that an instruction
fetch actually fetches multiple instructions that lie in the same
fetch block from an L1 instruction cache. Therefore, the number
of instruction fetches is always fewer than both the numbers
of executed instructions and micro-operations. These observed
patterns match our hypothesis.

Without signal delivery, the time overheads of PEBS retired
instruction and IBS op in the Cascade Lake and Zen 2 machines
are higher than the time overheads of PEBS retired instruction
and IBS op in the Skylake and Zen 3 machines in nearly all cases
except for the Accuracy-Bench with ratio 1/20. This observation
implies that the hardware and microcode mechanisms of PEBS
retired instruction and IBS op in the Cascade Lake and Zen 2
machines are less efficient than the mechanisms in the Skylake
and Zen 3 machines. Furthermore, the difference in time over-
heads between PEBS retired instruction and IBS op in all cases
with and without signal delivery contradict the expectation in
our hypothesis, which we expected to be similar.

Fig. 10 displays the time overhead of PEBS and IBS on
Accuracy-Bench with L1 load miss event ratio of 1/100 un-
der different thread counts. Without signal delivery, the time
overheads of all of the monitored PEBS events and IBS flavors
are below 11% without any significant increase across different
thread counts. However, when signal delivery is involved, the
overheads of PEBS retired instruction, IBS op, and IBS fetch
increase along with the increase in thread counts. The overhead
of IBS op is more drastic and much higher than the rest when
the thread count is 16 and 32.

4) Findings: Both schemes have a significantly higher time
overhead when OS signal delivery is enabled, which in turn af-
fects the observed time overhead of a profiling tool that leverages

Fig. 10. Comparison of time overheads on Accuracy-Bench under different
thread counts with and without signal delivery.

precise event sampling. PEBS and IBS in the Cascade Lake and
Zen 2 machines incur higher time overheads than PEBS and
IBS in the Skylake and Zen 3 machines for the microbenchmark
and the complex benchmarks in nearly all cases when OS signal
delivery is not enabled. The lower time overhead of PEBS and
IBS in the Skyake and Zen 3 machines can be attributed to its
hardware mechanism and the microcode that record sampled
data that work more efficiently than the sampling mechanism of
PEBS and IBS in the Cascade Lake and Zen 2 machines.

E. Memory Overhead

In this experiment, we evaluate the memory overheads of
PEBS and IBS. Measured memory overhead is the maximum
resident set size of a process in main memory during the process’
lifetime while being monitored by PEBS or IBS.

1) Hypothesis: As we do not process sampled data in any
signal handler, we expect low overheads in terms of maximum
resident set size in memory from both PEBS and IBS thus their
memory overheads should be approximately the same.

2) Methodology: We evaluate the memory overheads by hav-
ing PEBS and IBS monitor the Accuracy-Bench and Rodinia
benchmarks in all of the four machines. Using PEBS, we mon-
itored retired L1 data cache load miss and retired instruction in
separate runs, and we also ran IBS op and IBS fetch separately.
We also evaluate the memory overheads of IBS and PEBS under
different thread counts by having them monitor the Accuracy-
Bench benchmark running on different numbers of threads.

3) Results: The measured memory overheads of PEBS and
IBS for the single-threaded cases are less than 4% for the
Accuracy-Bench benchmark and less than 0.9% for the Rodinia
benchmarks (figure is omitted for brevity). There is less overhead
in the Rodinia benchmarks as these benchmarks are larger and
more complex than Accuracy-Bench , and therefore, the memory
footprint of sample handling of PEBS and IBS is much smaller
in ratio. There is also no huge gap in terms of memory overhead
between PEBS and IBS on all of the single-threaded cases for
Accuracy-Bench and Rodinia benchmarks. The results show
that memory overhead of PEBS and IBS in terms of maximum
resident set size in main memory is not a function of sample
count or signal delivery.
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Fig. 11. Comparison of memory overheads on Accuracy-Bench under different
thread counts with and without signal delivery.

Fig. 12. Comparison of PEBS accuracy in monitoring different numbers of
events against IBS op. PEBS monitors multiple events simultaneously except
for 1 event case, where it monitors each event in a separate run. IBS can capture
all events at once in its microoperation sampling.

Fig. 11 presents the memory overhead of PEBS and IBS on
Accuracy-Bench with L1 load miss event ratio of 1/100 under
different thread counts. The results show that, except for the
Cascade Lake machine, memory overhead is a function of thread
count – it becomes higher as thread count increases. At 2 and
4 threads, the memory overhead of PEBS in Skylake is much
higher than the memory overhead of PEBS in the Cascade Lake.
This pattern shows that there is significant improvement in terms
of memory overhead from Skylake to Cascade Lake.

4) Findings: On single-threaded cases, PEBS and IBS incur
nearly the same amount of memory overhead. However, when
multiple threads are used, the memory overhead becomes higher
as thread count increases for the Skylake, Zen 2, and Zen 3
machines. PEBS in the Skylake machine incurs much higher
memory overhead than IBS in the Zen 2 and Zen 3 machines,
while PEBS in the Cascade Lake machine incurs the lowest
memory overhead. This result contradicts the expectation in our
hypothesis.

F. Multiple Event Monitoring

Next, we compare the accuracy and overhead of PEBS that
monitors multiple events against IBS. The accuracy here refers
to how close the detected sample counts to the expected.

1) Hypothesis: Based on Observations 1, 2, 3, and 4, we
expect PEBS to have better accuracy than IBS as long as the
number of monitored events is less than or equal to the number
of general-purpose counters. In case the number of monitored
events is higher than the number of counters, PEBS will lose
samples, thus its accuracy would drop. As a consequence of

Observation 5, PEBS might have to monitor multiple events
simultaneously to capture the same amount of information that
can be captured by IBS in one run.

2) Methodology: To compare the accuracy of PEBS moni-
toring multiple events against IBS, we developed a microbench-
mark, shown in Listing 3, that has known numbers of load, store,
branch, taken branch, return, and locked load instructions. We
chose these events as they can be sampled and identified by both
PEBS and IBS. Furthermore, these events are also independent
of machine configurations such as cache sizes and cache replace-
ment policies, and therefore, their ground truths can be derived
only from their instruction counts. We programmed PEBS to
monitor one, four, five and six of these events in separate runs
to observe the effect of monitoring more events than the number
of available general-purpose counters on accuracy. In addition
to evaluating accuracy, we also used PEBS to monitor different
individual events and different numbers of events on a larger
benchmark to see how multiple event monitoring affects the
profiling time and memory overheads.

Listing 3: Code for multiple event monitoring benchmark.

3) Results: Fig. 12 shows the accuracy of PEBS in the Cas-
cade Lake machine when monitoring multiple events simul-
taneously on our microbenchmark. We compare the accuracy
of PEBS when monitoring 1 event (each event is monitored
alone), 4 events (only load, store, branch, and taken branch are
monitored together), 5 events (all of them except return), and 6
events (all of them) against the accuracy of the micro-operation
sampling of IBS in the Zen 2 and Zen 3 machines. For brevity, we
only display the results from these three machines as the results
from the Skylake and Cascade Lake machines show similar
patterns. Because there are only 4 general-purpose counters that
can be used by PEBS in each logical core, it is shown that PEBS
loses higher percentage of samples and undercounts when the
number of events that it monitors is higher than the number of
available counters, i.e. when there are 5 or 6 events monitored.
These results confirm our hypothesis.

We also evaluate the effect of multiple event monitoring on
time overheads. Table III compares overheads of PEBS across
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TABLE III
TIME OVERHEADS OF PEBS MONITORING MULTIPLE EVENTS AND IBS OP ON

THE HEARTWALL BENCHMARK FROM RODINIA SUITE. SKY: SKYLAKE, CAS:
CASCADE LAKE

different individual events and different event counts when mon-
itoring the heartwall benchmark from Rodinia in the Skylake
and Cascade Lake machines. To evaluate the time overheads
when monitoring different event counts, we programmed PEBS
to monitor 4 different sets of events in addition to monitoring
individual events, i.e. retired instruction, retired L1 load miss,
and retired load, across different runs. As a comparison, we also
report the overhead of IBS op when profiling heartwall on the
Zen 2 and Zen 3 machines.

When no OS signal delivery is involved, IBS op and PEBS
retired instruction in the Zen 2 and Cascade Lake machines
display the highest time overhead (first and second rows in
the table), which is consistent with the result in Fig. 9. When
signal delivery is involved, PEBS exhibits significant additional
overhead, except when monitoring L1 load miss. The reason
for the low overhead when sampling L1 load miss is that this
event occurs very rarely in heartwall that the total latency of
signal deliveries caused by the interrupts does not significantly
impact the execution time. Beyond 4 events, the time overhead of
PEBS stagnates as there is no increase in the number of sampling
interrupts due to event multiplexing in using the limited number
of counters.

4) Findings: If the number of events that are simultaneously
monitored is higher than the general purpose counters in PEBS,
accuracy of PEBS drops. However, its time overhead with OS
signal delivery is affected more by the number of sampling
interrupts triggered than the number of events monitored because
of event multiplexing.

G. Kernel Mode Versus User Mode Identification

In this experiment, we evaluate the methods utilized by PEBS
and IBS to identify the execution mode of the sampled events.

1) Hypothesis: Based on Observation 6, we expect the exe-
cution mode of the sample detected by Intel PEBS to be more
accurate than by AMD IBS.

2) Methodology: To evaluate the accuracy of execution mode
detection methods in PEBS and IBS, we developed a mi-
crobenchmark and a simple Linux kernel module that run to-
gether to cause repetitive execution mode switching during the
execution of the microbenchmark. The code of the microbench-
mark and the relevant piece of code in the kernel module are
shown in Listings 4 and 5. To repeatedly switch from user
mode to kernel mode, the microbenchmark calls the ioctl(fd,
TEST_CMD) function call in every loop iteration. In the assem-
bly code in Listing 4, the system call number of ioctl, which
is 0x10, is passed as a parameter for the syscall instruction in
the %eax register, the value of fd is already stored in the %edi
register earlier before the shown code, and TEST_CMD, which
is a macro for 0x67, is placed in the %esi register as the third
parameter for syscall. Upon handling the ioctl function call, the
piece of code in Listing 5 executes in the kernel mode. Using this
pair of microbenchmark and the kernel module, we can expect
that 1 billion locked load operations occur in kernel space and
no such operation in user space.

Listing 4: Code in user space.

Listing 5: Code in kernel space.

We ran this experiment by installing the kernel module and
running the microbenchmark while being monitored by PEBS
and IBS. If the user mode detection method is accurate, we
expect no locked load sample to be detected in user space.

3) Results and Findings: Based on the 5 runs of the bench-
mark, the output from PEBS always shows no detection of
locked load sample in user mode, while the output from IBS
shows 41 samples in Zen 2 and 84 samples in Zen 3 on average
out of 10K expected locked load samples in the user space. These
results show that PEBS can detect execution mode precisely,
while misattribution of execution mode is possible to occur to
IBS samples though with low probability.
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Fig. 13. Total communication counts with sharing faction of 70% for different
number of threads in the Intel (Left) and AMD (Right) machines.

V. FULL-FLEDGED PROFILING TOOL

To compare the precise event sampling capabilities of Intel
and AMD for a full-fledged profiling tool, we use an open-source
tool, ComDetective [3], which captures the inter-thread commu-
nication within an application. The main idea of ComDetective
is to use PMU samples and debug register traps to detect cache
line transfers between threads. We performed experiments to
compare the accuracy, overheads, and stability of ComDetective
under PEBS and IBS running on the Intel Cascade Lake and
the AMD Zen 2 machines. The sampling interval that we use in
each experiment is 500K, which is the default sampling interval
in the experiments reported in [3].

Accuracy. To compare the accuracy, we ran ComDetective on
the Write-Volume benchmark developed by the original authors
of the tool. In this benchmark, all threads perform an atomic
write operation to either a shared or a private variable in a loop
that iterates 100 M times. The number of accesses to the shared
variable by each thread is controlled by sharing fraction. For
example, if the sharing fraction is 0.7, each thread writes to
the shared variable approximately 70M times. The ground truth
for total communication count is the number of L2 data cache
misses counted by perf since each thread is mapped to have its
own L2 cache, and the number of cache line transfers because
of atomic writes should be very close to the total number of L2
data cache misses. Fig. 13 shows the total communication counts
detected by ComDetective and the ground truths under different
thread counts. Consistent with our results in Section IV-A,
ComDetective exhibits higher accuracy with PEBS than AMD
as the gaps between the total communication counts and the
ground truths are closer in Intel than in AMD.

Time and Memory Overheads. To evaluate the overheads of
ComDetective when working with PEBS and IBS, we ran it on
10 Rodinia benchmarks. Each benchmark ran with 32 threads,
and all threads were bound to cores with compact mapping.
Fig. 14 compares the time overheads of ComDetective incurred
in both machines. Consistent with the results of our experiment
on the Accuracy-Bench benchmark presented in Table III and
Fig. 5, ComDetective incurs lower time overheads on nearly all
benchmarks when running with PEBS on 32 threads that moni-
tors only retired load and retired store. The only exceptions are
bfs and hotspot, which generate more memory access samples in
Intel than AMD. Since both benchmarks produce more memory
access samples in Intel, ComDetective performs more operations
that are intended to detect inter-thread communications such as

Fig. 14. Time overheads of ComDetective when running with PEBS and IBS
on 10 Rodinia benchmarks.

reading/updating a global data structure and arming debug regis-
ters, which incur extra overheads. While running on the Rodinia
benchmarks, ComDetective incurs similar memory overheads
in the Intel and AMD machines, which is 7.8% on average in
both machines. The results confirm our results from the memory
overhead study that report low memory overhead of PEBS and
IBS when profiling large benchmarks.

Stability. Though not very visible in the figure, Fig. 13 also
shows the standard deviation error bars indicating the stability
when running with PEBS and IBS. Lower stability, i.e. high
standard deviation, is observed when ComDetective runs on
2 threads. As thread count increases, the stability also gets
better. While IBS’s stability improves from 20% to 3%, Intel’s
changes from 13% to 1%. Aligning with our findings in the
microbenchmarks, in general IBS exhibits lower stability than
PEBS when running ComDetective.

VI. RELATED WORK

Our work differs from the previous work first by bench-
marking several behavioral aspects of PES through carefully
designed microbenchmarks. Second, we evaluate the accuracy
and overheads under more complex situations such as multiple
event monitoring and monitoring in different modes. Third,
we quantify the stability of sample counts generated by PES.
Last but not least, to the best of our knowledge, there is no
in-depth study on IBS and most studies focus solely on PEBS.
Table IV summarizes the comparison between our work with
related work.

Larysch [49] evaluated the accuracy and overhead of PEBS in
measuring memory bandwidth and used low sampling intervals,
which are between 10 and 1000. Through the experiments, the
author discovered that PEBS suffers from higher sample losses
as sampling interval is decreased.

Nonell et al. [50] evaluated PEBS’ accuracy and overhead on
applications running on a large numbers of CPUs, ranging from
2048 to 128K cores. By using the PEBS driver that they devel-
oped in a lightweight kernel, they could reach low overhead in
capturing memory access patterns. Their driver could maintain
high accuracy in capturing memory access patterns even under
low sampling interval, which is up to 64.

Yi et al. [51] analyzed the accuracy of PEBS, and discovered
that PEBS is prone to bias in event sampling due to shadowing.
To eliminate the bias, they propose insertion of nop instructions
after each monitored event. Gottschall et al. [52] proposed
an Oracle profiler as a golden reference for time-proportional
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TABLE IV
COMPARISON OF OUR WORK WITH RELATED WORK ON PRECISE-EVENT SAMPLING (PES)

attribution of event sampling. They found that existing PES
facilities such as PEBS, IBS, and SPE are not time proportional
in sampling instructions i.e. the number of samples taken from
an instruction is not proportional to the number of CPU cycles
incurred by that instruction.

Weaver and McKee [55] evaluated the variation (or stability)
of event counting by PMUs in nine x86 architectures and discov-
ered that inter-machine variations could happen because of the
double counting of instructions on certain microarchitectures,
virtual memory layout of profiled programs or OS activities
such as page faults. Weaver et al. [56] also evaluated PMUs
in 11 different implementations of x86_64 architecture and
discovered sources of variation in their counted events. They
explored possible ways to work around these limitations in the
machines to produce more deterministic counts.

Akiyama and Hirofuchi [53] analyzed the overhead of PEBS,
and demonstrated how the quantified overhead can be used to
predict the actual overhead of applications. They also evaluated
the effect of sampling rate and PEBS buffer size on cache
pollution and the performance of profiled applications. Xu et
al. [54] identified the inaccuracies of sampling in PEBS and
developed a mathematical model to rectify inaccuracies.

VII. CONCLUSION

In this work, we extensively analyze two precise event sam-
pling facilities from Intel and AMD architectures. In our qual-
itative analysis, we present their differences in terms of usable
counters, types of events that can be sampled, types of data
available in each sample, and their abilities to identify the exe-
cution mode of each sample. Then, we quantitatively analyze the
accuracy, stability, sampling bias, overheads, and functionalities
of each sampling facility. We also relate how the qualitative
differences that we identified affect some of those aspects that
we quantitatively study.

We envision our findings can greatly help tool developers
and performance analysts understand the behaviour of their
profiling tools and guide hardware designers to better design
precise event sampling facility of future CPUs. Several specific
usage scenarios are as follows: i) Tool developers could run our

benchmarks to verify the accuracy, stability, bias, and overhead
of the precise event sampling facility that they are going to use
before developing their profiling code. ii) Hardware designers
could use our benchmarks to validate the accuracy and to check
if there is any sampling bias in the precise event sampling facility
that they develop. iii) From the insights that we obtained in our
research, hardware designers could also learn the strengths and
weaknesses of the dispatch-tagging heuristic used in IBS [24]
vs the Next-Committing Instruction (NCI) heuristic used in
PEBS[21] and choose which sampling heuristic that they should
adopt in their developed micro-architectures.

For future work, this research could be extended in two
directions. One direction is to perform exhaustive accuracy
comparison of all events supported by both PEBS and IBS such
as L2 load miss, L3 load miss, and branch misprediction, and
not only L1 load miss. Another direction is to carry out this
qualitative and quantitative study on the precise event sampling
facilities of other architectures, such as MRK of PowerPC [29]
and SPE of ARM [30].
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