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Abstract
Skin-friction drag is a major engineering concern, with wide-ranging consequences across 
many industries. Active flow-control techniques targeted at minimising skin friction have 
the potential to significantly enhance aerodynamic efficiency, reduce operating costs, and 
assist in meeting emission targets. However, they are difficult to design and optimise. Fur-
thermore, any performance benefits must be balanced against the input power required to 
drive the control. Bayesian optimisation is a technique that is ideally suited to problems 
with a moderate number of input dimensions and where the objective function is expen-
sive to evaluate, such as with high-fidelity computational fluid dynamics simulations. In 
light of this, this work investigates the potential of low-intensity wall-normal blowing as 
a skin-friction drag reduction strategy for turbulent boundary layers by combining a high-
order flow solver (Incompact3d) with a Bayesian optimisation framework. The optimi-
sation campaign focuses on streamwise-varying wall-normal blowing, parameterised by a 
cubic spline. The inputs to be optimised are the amplitudes of the spline control points, 
whereas the objective function is the net-energy saving (NES), which accounts for both 
the skin-friction drag reduction and the input power required to drive the control (with 
the input power estimated from real-world data). The results of the optimisation campaign 
are mixed, with significant drag reduction reported but no improvement over the canonical 
case in terms of NES. Selected cases are chosen for further analysis and the drag reduc-
tion mechanisms and flow physics are highlighted. The results demonstrate that low-inten-
sity wall-normal blowing is an effective strategy for skin-friction drag reduction and that 
Bayesian optimisation is an effective tool for optimising such strategies. Furthermore, the 
results show that even a minor improvement in the blowing efficiency of the device used in 
the present work will lead to meaningful NES.
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1  Introduction

Skin-friction drag is a major engineering concern, with direct consequences for several 
different industries and applications. In the aviation industry, for example, skin-friction 
drag is estimated to account for approximately half of the overall drag (Abbas et al. 2017). 
Comparable figures are also observed across the transport sector, and can be even higher 
in maritime applications (Fu et al. 2017), where the proportion of skin-friction drag can 
be up to  90% for submarines (Gad-El-Hak 1994). It is clear that flow control strategies 
that specifically target skin-friction drag reduction have the potential to offer substantial 
improvements in aerodynamic/hydrodynamic efficiency, reduce operating costs, and help 
meet emission targets. However, despite many decades of extensive research, a performant, 
practical and affordable method for skin-friction drag reduction is yet to find widespread 
adoption in real-world applications.

Over the years there have been a variety of flow-control strategies put forward, with 
the aim of reducing skin-friction drag. This includes passive techniques, such as polymer 
additives (White and Mungal 2008), riblets (Choi et al. 1993; García-Mayoral and Jiménez 
2011), and large-eddy breakup devices (Kim et al. 2017), to name a few. The main advan-
tage of passive strategies is that they do not require a power source, and so any drag reduc-
tion obtained is translated directly into energy savings. However, passive approaches often 
suffer from parasitic drag effects and are typically designed for a specific flow condition. 
This inflexibility means that passive devices are prone to losses in efficiency over the full 
range of operating conditions when deployed in real-world applications. On the other hand, 
active flow-control strategies—such as surface jets (Kametani and Fukagata 2011; Kam-
etani et al. 2015; Kornilov and Boiko 2012; Stroh et al. 2016), wall motion (Quadrio et al. 
2009; Marusic et al. 2021), and plasma actuators (Wang et al. 2013; Mahfoze and Laizet 
2017)—are among the most promising approaches to tackle skin-friction drag, due to their 
increased performance, robustness, and flexibility. However, designing optimal active con-
trol policies is a challenge, owing to the nonlinear, high-dimensional, and chaotic nature of 
fluid dynamics. Furthermore, active control strategies require a power supply. Therefore, 
any performance benefits must be weighed against the power required to drive the control.

Of the available active flow-control strategies, mass-flow injection (e.g. surface jets) is 
one of the most extensively studied, owing to its practicality and performance. Several stud-
ies, both experimental and numerical, have demonstrated impressive reductions in skin-
friction drag for a turbulent boundary layer (TBL) with low intensity wall-normal blow-
ing (up to 1% of the free-stream velocity). For example, Kametani and Fukagata (2011) 
performed direct numerical simulations (DNS) of a zero-pressure gradient TBL with both 
uniform blowing and suction. Their findings showed that blowing leads to a reduction in 
skin-friction drag, whereas the reverse is true for suction. Their results also demonstrated a 
globally-averaged drag reduction of 75% with a blowing intensity of 1% of the freestream 
velocity. A later study by Kametani et al. (2015) showed similar findings using large-eddy 
simulations (LES) and investigated the effect of both the position and length of the control 
region. Their results showed that longer control regions placed further upstream are more 
beneficial for skin-friction drag reduction. The experimental study of Kornilov and Boiko 
(2012) used wall-normal blowing through a micro-perforated plate to demonstrate a local 
drag reduction of approximately 70% with a blowing velocity of 0.287% of the freestream 
velocity. Stroh et  al. (2016) used DNS to study the effect of two different types of con-
trol, numerical body force damping and wall-normal blowing, on a TBL. While the body 
force damping was shown to provide a greater drag reduction in the vicinity of the control 
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region, the long-lasting downstream effect of the wall-normal blowing led to improved 
globally-averaged drag reductions, when integrated over the downstream length of the 
domain. More recently, Atzori et al. (2020) used LES to investigate the effect of both uni-
form blowing and suction on the pressure and suction sides of a NACA4412 aerofoil. Their 
results support the aforementioned studies by showing that blowing leads to a reduction in 
skin-friction drag, whereas suction leads to an increase. However, their results also demon-
strate that skin-friction drag reduction does not automatically lead to improved efficiencies 
when accounting for other forms of drag and performance metrics.

It is important to highlight that the reported drag reduction values in all of the above-
mentioned studies are highly dependent on the flow conditions (e.g. Reynolds number), as 
well as the approach for measuring the drag reduction (e.g. local or globally-averaged over 
a defined streamwise length). Therefore, care must be taken when making comparisons 
between different studies. It is also worth highlighting that while many studies provide esti-
mates for the overall net-energy saving (NES) by estimating the input power required to 
drive the control (Kametani and Fukagata 2011; Kornilov and Boiko 2012, 2014; Kametani 
et al. 2015, 2016; Mahfoze et al. 2019), these are typically based on idealised assumptions 
and neglect losses associated with real-world devices (e.g. mechanical losses). To acceler-
ate the translation of active flow-control strategies to real-world applications, it is noted 
that more rigorous estimates of the input power are required.

One of the strengths of mass-flow injection is its flexibility, with a vast range of choices 
in terms of design, from placement and number of jets, temporal actuation and blowing 
intensity. However, this flexibility has meant that it is still not clear what the optimal con-
figuration for such a control strategy and particular flow condition is. This has led to a 
trend towards adopting optimisation techniques. Mathematical optimisation is a mature 
field and there is a vast range of different techniques available, such as gradient descent 
(Ruder 2016), genetic algorithms (Katoch et  al. 2021), and particle swarm optimisation 
(Freitas et al. 2020), to name a few. As a result, selecting the most suitable optimisation 
approach for a particular task is a challenge and depends heavily on the characteristics 
of the underlying problem. For the purpose of designing control strategies for turbulent 
flows, the optimisation scheme should be suitable for problems with a moderate number 
of input dimensions (e.g. amplitude, blowing frequency) and where the objective function 
(e.g. drag reduction, NES) is non-convex and expensive to evaluate (e.g. LES and DNS). 
These characteristics make the aforementioned approaches (e.g. gradient descent, evolu-
tionary algorithms) unsuitable, due to the large number of function evaluations required 
to estimate gradients or iterate over enough generations. Instead, a more sample-efficient 
approach is required.

Bayesian optimisation is a global optimisation approach that has recently gained signifi-
cant popularity for hyperparameter tuning of machine learning models (Snoek et al. 2012; 
Shahriari et  al. 2016). The basic approach in Bayesian optimisation is to build a surro-
gate model of the objective function through repeated evaluations over the input space. 
New sample points are then chosen by optimising an acquisition function, which balances 
both exploration and exploitation, applied over the surrogate model. The sample efficiency 
of Bayesian optimisation comes from the fact it considers both exploration and exploita-
tion in the sampling strategy, making it well suited to problems with expensive-to-evaluate 
objective functions. Thanks to its success in machine learning, Bayesian optimisation has 
also started to find applications in engineering optimisation, such as turbulent drag reduc-
tion. Mahfoze et al. (2019) recently applied Bayesian optimisation to optimise the control 
parameters of a wall-normal blowing configuration within a TBL. Rather than targeting 
skin-friction drag reduction, they optimised for NES by taking into account both the power 
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saved due to drag reduction and the input power required to drive the control, which was 
estimated via both an idealised approximation and real-world experimental data. Their 
approach was able to find combinations of control parameters leading to between 1.2 and 
5% NES, depending on the approach used to estimate the power input. More recently, 
Morita et  al. (2022) applied Bayesian optimisation to a wide variety of fluid dynamics 
problems, showing that it was capable of finding globally optimal solutions with relatively 
few evaluations of the objective function (e.g. approximately 90 evaluations required for up 
to 8 inputs). Finally, Larroque et al. (2022) provided a detailed analysis of the performance 
characteristics of Bayesian optimisation by using it to optimise an active flow-control strat-
egy for the flow around a cylinder. Their results showed that, in this instance, Bayesian 
optimisation significantly outperformed a variety of other derivative-free optimisation 
techniques, such as particle swarm optimisation and the explorative gradient method, in 
terms of both overall drag reduction and the number of function evaluations required.

Several previous studies have shown that low-intensity wall-normal blowing can have a 
long-lasting downstream effect on the skin-friction drag (Kornilov and Boiko 2014; Stroh 
et  al. 2016; Kametani et  al. 2016; Mahfoze et  al. 2019). These works show a subtle but 
sustained drag reduction that persists well beyond the control region. This ‘inertia’ in the 
skin friction recovery is a key contributor to the overall NES (Mahfoze et al. 2019) and 
suggests a potential pathway to improving NES via a streamwise-varying blowing configu-
ration (e.g. via intermittent blowing or a continuous profile with streamwise modulation). 
In light of this, the purpose of this work is to investigate the potential of a time-independ-
ent streamwise-varying blowing strategy, parameterised by a cubic spline, to achieve skin-
friction drag reduction and NES in a TBL. In this endeavour, the high-order flow solver 
Incompact3d is combined with a newly designed Bayesian optimisation framework to 
optimise the three control parameters that define the wall-normal blowing profile. The key 
performance metric is the NES, which takes into account both the power saving due to 
drag reduction and the power required to drive the actuation. The input power requirements 
are estimated via real-world experimental to provide a realistic estimate of the NES. Note 
that this work follows on from Mahfoze et al. (2019). Therefore, both studies share some 
similarities, such as the same flow problem, solver and power estimation method. How-
ever, the key novelties of this work are: (1) investigation of a novel blowing strategy; (2) 
the validation and use of implicit LES data, instead of DNS data, to extract the NES val-
ues; (3) a detailed analysis of the flow physics for selected cases, including a comparison 
between effective and ineffective configurations; (4) the use of a state-of-the-art in-house 
Bayesian optimisation framework (Diessner et al. 2022). In the following sections the case 
setup is introduced, followed by a description of the flow solver and Bayesian optimisation 
framework. The results are then presented by first summarising the optimisation campaign. 
Selected cases are then chosen for further analysis to highlight the drag reduction mech-
anisms and flow physics. Finally, the main findings are summarised and suggestions for 
future work are proposed.

2 � Case Description

2.1 � Simulation Setup

The case setup is based on the work of Mahfoze et al. (2019), which represents a canonical 
zero-pressure gradient TBL flow with low-intensity wall-normal blowing. Figure 1 shows 
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a schematic of the computational domain, with the control region highlighted by the blue 
shaded area. The streamwise, wall-normal, and spanwise directions are denoted by x, y, and 
z, respectively. Equivalently, u, v, and w denote the instantaneous velocity components in 
the three spatial directions, each of which can be decomposed into a time-averaged ( u ) and 
fluctuating component ( u′ ), such that u = u + u� . A laminar Blasius solution is prescribed at 
the inlet, with a boundary layer height of �0 and freestream velocity of u∞ . Note that in the 
following sections all quantities are non-dimensionalised with respect to �0 and u∞ (outer-
scaling). However, where it is more convenient to use inner-scaled quantities (denoted by 
the plus superscript notation), these are non-dimensionalised with respect to the canonical 
friction velocity at the start of the blowing region (unless otherwise stated). The remaining 
boundary conditions are composed of a convective condition at the outlet, a homogenous 
Neumann condition in the far-field, and periodic conditions in the spanwise direction. The 
domain dimensions are Lx × Ly × Lz = 750 × 80 × 30 . Compared to Mahfoze et al. (2019), 
the spanwise (periodic) extent of the domain is doubled as it was found to provide better 
agreement with benchmark data during validation, with only a modest increase in com-
pute time (owing to an acceleration in the convergence of the statistics, which are averaged 
in the spanwise direction). The Reynolds number at the inlet is Re�0 = u∞�0∕� = 1250 , 
based on the boundary layer thickness at the inlet, where � is the kinematic viscosity. This 
is equivalent to a momentum Reynolds number of Re�0 = u∞�0∕� ≈ 169 , where �0 is the 
momentum thickness at the inlet. Under these conditions, the momentum Reynolds number 
increases to approximately Re� ≈ 2025 at the outlet for the canonical case.

The mesh size is chosen to be nx × ny × nz = 1537 × 257 × 128 , with a uniform spac-
ing in the streamwise and spanwise directions and non-uniform spacing in the wall-nor-
mal direction to properly resolve the near-wall effects. This results in a mesh resolution of 
Δx+ = 31 , 0.54 ≤ Δy+ ≤ 705 , and Δz+ = 15 in viscous (inner) units. The time step is cho-
sen to be Δt = 0.0064 , which corresponds to approximately Δt+ ≈ 0.02 . The flow is initial-
ised to a laminar Blasius solution through the entire domain and allowed to develop until 
t = 1500 ( t+ ≈ 4755 ) before the recording of the statistics begins. The spanwise-averaged 
skin friction profile along most of the streamwise extent of the domain (x = 35–650) is 
monitored at each time step and the mean squared difference between successive time steps 
is used as a stopping criterion. To accelerate the transition to turbulence, a random volume 

Fig. 1   Schematic of the simulation setup. The blue and orange shaded regions indicate the blowing and 
tripping regions, respectively
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forcing approach (Schlatter and Örlü 2010), located at x = 3.5 , is used to trip the boundary 
layer (orange shaded region in Fig. 1).

2.2 � Blowing Configuration

The wall-normal blowing is implemented as a velocity boundary condition and extends 
from x = 68–145 in the streamwise direction, resulting in a length of LB = 77 . This cor-
responds to a Reynolds number range of Re� ≈ 479–703 for the canonical case. The blow-
ing configuration consists of a streamwise-varying profile, parameterised by a cubic spline 
with five control points (knots), as shown in Fig. 2. The streamwise locations of the control 
points are equally spaced from the start to the end of the blowing region and are fixed 
throughout the entire optimisation campaign. Furthermore, the amplitudes of the first and 
last control points are set to zero to ensure a smooth transition from the non-blowing to 
blowing region (and vice-versa). Therefore, the amplitudes of the three inner control points 
( A1 , A2 , and A3 ) are controllable and comprise the only inputs to the Bayesian optimisation 
campaign. The permitted ranges for each input during the optimisation campaign are cho-
sen to be 0%–1% of the freestream velocity. This range was selected based on preliminary 
work, as well as the work performed in Mahfoze et al. (2019), which indicated that there is 
an optimum in the NES within this range for the uniform blowing configuration. Once val-
ues for the input amplitudes are suggested by the Bayesian optimisation algorithm, bound-
ary conditions for the outer control points are all that is required to completely define the 
cubic spline profile and close the system. In the present work, zero-gradient boundary con-
ditions are applied to ensure a smooth transition in the blowing velocity at the edges of the 
control region. Note that in the present work, the control amplitudes are independent of 
time, so that the resulting blowing profile is static. Furthermore, compared to the work of 
Mahfoze et al. (2019), which focussed on an intermittent blowing configuration, the pre-
sent work adopts a streamwise-varying profile of wall-normal blowing. While intermittent 
blowing is known to perform well in terms of NES, the present setup provides more flex-
ibility in terms of the shape of the blowing profile.

While the amplitudes of the control points are enforced to always be positive (corre-
sponding to blowing), it is still possible that for certain inputs the spline will become neg-
ative in regions between the control points (corresponding to suction). This is a feature 
of the cubic spline interpolation and arises due to the fact it generates curves that are C2 
smooth. Although this smoothness is beneficial from a numerical perspective, suction is 
known to increase skin-friction drag in a zero-pressure gradient TBL (Kametani and Fuka-
gata 2011). Nevertheless, no action was taken to prevent this behaviour as it only occurs 
under certain combinations of inputs and therefore its effect is expected to be minimal. 
Furthermore, implementing such a constraint would add unnecessary complexity since if 

Fig. 2   Illustration of the wall-
normal blowing profile and 
parameterisation. The locations 
of the control points (spline 
knots) are fixed, whereas their 
amplitudes are controllable
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such behaviour is truly of no benefit then the Bayesian optimisation algorithm will auto-
matically learn to avoid these regions of the parameter space. Another option would be to 
replace the standard cubic spline interpolation with a monotonicity-preserving approach, 
such as the monotonic cubic interpolation proposed by Fritsch and Carlson (1980). How-
ever, these methods generally sacrifice continuity in the second derivative to prevent the 
overshoot. Therefore, the effect of this reduction in smoothness on the numerical stability 
of the flow solver is left for future work.

2.3 � Performance Metrics

While skin-friction drag reduction is of benefit in many applications, the key metric for 
the present work is NES, which takes into account both the drag reduction and the input 
power required to drive the control device. Therefore, a global scalar measure of the NES 
is required to pass to the Bayesian optimisation algorithm as an objective function. The 
dimensionless skin-friction coefficient is given by:

where �w(x) is the local wall shear stress and � is the mass density. Note that spanwise 
(periodic) averaging is implicitly assumed. Based on Eq.  (1), the local skin-friction drag 
reduction (LDR) is defined as:

where the zero subscript refers to the canonical case (i.e. the baseline case with no blow-
ing). The blowing control has a long-lasting downstream effect on the skin-friction drag 
that is not just restricted to the control region. To capture this effect, a global skin-friction 
drag reduction (GDR) is obtained by integrating the skin-friction coefficient along most of 
the streamwise extent of the domain, from x = 35–650:

where the hat notation denotes a globally-averaged quantity and LGDR = 615 is the length 
over which the GDR is calculated, which covers  82% of the streamwise length of the 
domain and corresponds to approximately Re�,0 ≈ 387–1919 for the canonical case. The 
GDR is thus given by:

To calculate the NES, an estimate for the input power required to drive the control device 
is necessary. In numerical studies, the control is often applied as a simple boundary condi-
tion, with no possibility to directly evaluate the power required. Therefore, an alternative 
approach to estimating the input power is necessary. Several previous studies have esti-
mated this using first principles, where the input power is related to the cube of the blowing 
velocity and the pressure difference across the blowing surface (Kametani and Fukagata 

(1)Cf (x) =
�w(x)

1

2
�u2

∞

(2)LDR(x) =
Cf ,0(x) − Cf (x)

Cf ,0(x)

(3)Ĉf =
1

LGDR ∫
x=650

x=35

Cf (x)dx

(4)GDR =
Ĉf ,0 − Ĉf

Ĉf ,0
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2011; Kametani et al. 2015, 2016; Mahfoze et al. 2019). However, this is an idealised esti-
mate as it does not take into account the losses associated with a real-world device (e.g. 
mechanical losses). Therefore, the present work follows Mahfoze et al. (2019) by estimat-
ing the input power from experimental data of a real-world blowing device. The device in 
question uses miniature electromagnetic speakers to blow air through a micro-perforated 
plate. Figure 3 shows experimental measurements of the time-averaged input power for the 
blowing device, as a function of the time-averaged blowing velocity, at different operat-
ing frequencies (Mahfoze et al. 2019). For this work, the lower uncertainty limits of the 
425 Hz curve is selected and a third-order polynomial is fitted to provide a relationship 
between the wall-normal velocity and input power per unit area. To retain consistency with 
Mahfoze et al. (2019), a reference velocity of uref = 21m/s is chosen to provide the scal-
ing between physical and non-dimensional units. For more details the reader is referred to 
Mahfoze et al. (2019).

The local power per unit area ( P∕A ) can be calculated from the cubic spline veloc-
ity profile and the third-order polynomial fitted to the experimental data of Mahfoze 
et al. (2019). This can then be integrated over the control region to obtain the total input 
power:

which in dimensionless form is:

Note that the normalisation here is with respect to LGDR , as opposed to LB , to be consistent 
with Eq. (3). Finally, the NES is defined as:

which is the objective function that is to be maximised by the Bayesian optimisation 
algorithm.

(5)P = Lz ∫
x=145

x=68

P∕A(x)dx

(6)Ĉw =
P

1

2
𝜌LGDRLzu

3
∞

(7)NES =
Ĉf ,0 −

(

Ĉf + Ĉw

)

Ĉf ,0

Fig. 3   Time-averaged power per 
unit area with respect to the time-
averaged wall-normal velocity 
for the present blowing device, 
operating over 400–500 Hz. 
Reproduced from Mahfoze et al. 
(2019)
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3 � Methods

3.1 � Flow Solver

The numerical simulations presented in this work are performed with the high-order com-
pact finite-difference flow solver Incompact3d1 (Laizet and Lamballais 2009), which 
is part of the open-source framework of flow solvers Xcompact3d (Bartholomew et al. 
2020). The implicit large-eddy simulation (ILES) approach adopted in this work introduces 
targeted numerical dissipation at the small scales through the discretisation of the second 
derivatives of the viscous term and does not involve the convective term (e.g. through 
upwinding). The governing equations are the unsteady three-dimensional incompressible 
Navier–Stokes equations, given in non-dimensional form as:

where i = 1, 2, 3 corresponds to the x, y, and z directions, respectively, ui is the velocity vec-
tor, p is pressure, and Fi accounts for any additional forcing (e.g. random volume forcing 
for the tripping). Since Eqs. (8) and (9) do not make any reference to a particular explicit 
filter, both ui and p can be interpreted as mesh-resolved quantities. The sub-grid scales are 
modelled via the hyper-viscous momentum diffusion term, D , which is defined as:

where the star notation denotes a convolution and Qc is a hyper-viscous kernel used to con-
struct an ILES operator via the convolution. For brevity, further details are not provided 
here. However, the reader is referred to Dairay et al. (2017), Deskos et al. (2019), Frantz 
et  al. (2021), Mahfoze and Laizet (2021) for more information about the present ILES 
strategy.

The degree of numerical dissipation is controlled by a single parameter ( �0∕� ), which 
corresponds to the added dissipation at the cutoff wavenumber, and the range of scales over 
which the numerical dissipation is added is controlled by the parameter c1 (see Dairay et al. 
(2017) for more details). The present work follows the recommendation of Mahfoze and 
Laizet (2021), who determined suitable ranges for these parameters for wall-bounded tur-
bulent flows. Therefore, for this work �0∕� = 20 and c1 = 0.1755 (low Reynolds numbers)

–0.351 (high Reynolds numbers).
Sixth-order compact finite-difference stencils are used in this work to discretise the gov-

erning equations. Furthermore, an explicit third-order Adams-Bashforth scheme is adopted 
for time integration, which is combined with an implicit Crank-Nicolson scheme for the dif-
fusive terms in the wall-normal direction to circumvent the stability constraints imposed by 
the non-uniform mesh resolution used to properly resolve the near-wall effects. The governing 

(8)
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�xi
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= −
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1  See https://​www.​incom​pact3d.​com and https://​github.​com/​xcomp​act3d/​Incom​pact3d.

https://www.incompact3d.com
https://github.com/xcompact3d/Incompact3d
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equations are solved in skew-symmetric form for increased stability and to reduce aliasing 
errors (Kravchenko and Moin 1997). The pressure Poisson equation (PPE), which enforces 
incompressibility, is solved entirely in spectral space via the use of relevant three-dimensional 
fast Fourier transforms (FFTs). Through the use of a modified wavenumber (Lele 1992), the 
divergence-free condition is ensured up to machine accuracy. To avoid the spurious pres-
sure oscillations observed in fully-collocated approaches (Laizet and Lamballais 2009), the 
pressure field is defined offset (by half a mesh width) with respect to the velocity field. The 
simplicity of the structured mesh allows easy implementation of a two-dimensional domain 
decomposition strategy, based on pencils, using the message passing interface (MPI) (Laizet 
and Li 2011). The computational domain is split into several subdomains (pencils), each of 
which are assigned to an MPI process. The derivatives and interpolations in the x, y, and z 
direction are performed from within the X, Y, and Z pencils, respectively. The three-dimen-
sional FFTs required by the PPE solver are performed as a series of one-dimensional FFTs, 
computed in one direction at a time. Global transpositions to switch from one pencil to 
another are performed via the MPI command MPI_ALLTOALL(V). Incompact3d has 
been extensively validated on a variety of turbulent flows (Diaz-Daniel et al. 2017; Mahfoze 
and Laizet 2017; Deskos et al. 2019) and shown to scale well on up to hundreds of thousands 
cores on CPU-based supercomputers (Laizet and Li 2011; Bartholomew et al. 2020).

3.2 � Bayesian Optimisation

The present work adopts the Bayesian optimisation framework described in Diessner et  al. 
(2022), a brief description of which is given here. Bayesian optimisation is an optimisation 
technique that relies on inexpensive surrogate models to locate the global optimum of black-
box functions that are expensive to evaluate (Mockus 1994; Jones et al. 1998; Jones 2001; 
Brochu et  al. 2010; Shahriari et  al. 2016). Black-box functions are characterised by a non-
existent or unknown mathematical expression. Therefore, the only possible way of gathering 
information about the underlying function is to provide a set of parameter inputs and observe 
their output (Gramacy 2020). This renders conventional optimisation methods that rely on 
gradient information (e.g. gradient descent) impractical, due to the large number of function 
evaluations typically required to estimate multidimensional gradients. Similarly, evolution-
ary algorithms that use a large number of function evaluations, such as differential evolution 
(Storn and Price 1997), cannot be used, due to the cost of each evaluation. Bayesian optimisa-
tion, on the other hand, does not require any information about the underlying objective func-
tion (e.g. gradients) and is designed to be sample efficient (i.e. it aims to find an approximate 
solution in as few function evaluations as possible).

Bayesian optimisation takes a sequential approach to optimisation, where the algorithm 
is run for many iterations, with each iteration suggesting the next point to evaluate from the 
objective function. Each iteration (optimisation step) consists of two parts. Firstly, a surrogate 
model, usually a Gaussian process (GP), is fitted to some observations to represent the objec-
tive function. A GP is a non-parametric model that is defined by a prior mean function �0(xi) 
and a covariance kernel k(xi, xj) , where xi and xj are individual data points. Using a set of n 
initial observation pairs Dn = {(xi, yi)}

n
i=1

 as training data, the posterior mean �n(⋅) and vari-
ance �2

n
(⋅) can be computed for a new point x as:

(11)�
n
(x) = �0(x) + k(x)T (K + �2I)−1(y −m)
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where K = k(x1∶n, x1∶n) , k(x) = k(x, x1∶n) , m = �0(x1∶n) , and �2 is the observational noise. 
These can be used to compute both the prediction and the corresponding uncertainty for 
each point x of the parameter space (Mockus 1994; Brochu et  al. 2010; Shahriari et  al. 
2016). The parameters in the mean function and the covariance kernel (e.g. constant mean 
value, one or multiple length-scales, signal variance) can be estimated from the training 
data Dn via maximum likelihood estimation, maximum a posteriori estimation, or a fully 
Bayesian approach. The exact parameters depend on the choice of prior mean function and 
covariance kernel. For a more detailed discussion on GPs the reader is referred to Rasmus-
sen and Williams (2005); Gramacy (2020).

The second part of the optimisation step is to select the next point to evaluate from 
the objective function by optimising a user-defined acquisition function. There are several 
available acquisition functions to choose from, each with different properties, and all of 
them rely on the predictions and/or corresponding uncertainties of the surrogate model. 
One popular acquisition function is Upper Confidence Bound (UCB) (Srinivas et al. 2010), 
given by:

Equation  (13) shows how both the posterior mean �n(x) and variance �n(x) are used to 
compute the acquisition of point x . UCB assumes that the uncertainty associated with the 
prediction of the GP is true and selects the maximum value as the next point to evaluate 
from the objective function (Brochu et al. 2010; Shahriari et al. 2016). An important prop-
erty of most acquisition functions is the exploitation-exploration trade-off. By balancing 
these two aspects, the Bayesian optimisation algorithm not only selects points where the 
prediction is high (exploitation), but also points where the uncertainty is high (explora-
tion) (Jones et  al. 1998). If the focus relies too heavily on exploitation the algorithm is 
more likely to get stuck in a local optimum, whereas if the focus is on exploration the 
algorithm is less likely to focus on promising areas, making it less likely to find optimal 
solutions. To control the balance between exploitation and exploration, UCB includes a 
tunable hyperparameter ( � ), where high values favour more exploration and low values 
favour more exploitation.

It is worth noting that the optimisation setup in this work follows the Monte Carlo 
approach discussed in Snoek et al. (2012) and Wilson et al. (2018). Instead of directly com-
puting the acquisition function in Equation  (13), samples are drawn from the predictive 
multivariate normal distribution N(�n(x), �

2
n
(x)) and are used to compute the acquisition. 

This allows for the selection of multiple points at each iteration, for which the analytical 
acquisition functions would be intractable. In particular, a greedy optimisation strategy is 
implemented that computes a batch of points by sequentially selecting them. Points in the 
batch that have already been selected are assumed to be fixed by including them in the 
predictive distribution. Batches of points can then be evaluated in parallel through mul-
tiple simultaneous simulations. In summary, with respect to the present work, the Bayes-
ian optimisation algorithm suggests different blowing configurations to run. These are then 
executed by Incompact3d and the resulting NES for each configuration is calculated. 
Finally, these new samples are used to update the Bayesian optimisation algorithm and the 
next set of blowing configurations is suggested.

Figure 4 shows four iterations of the Bayesian optimisation algorithm on a simple test 
function, given by f (x) = −x sin(x) . In this example, the GP is initialised with a constant 

(12)�2

n
(x) = k(x, x) − k(x)T (K + �2I)−1k(x)

(13)�UCB(x;Dn) = �n(x) +
√

��n(x)
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mean function and a Matérn  5/2 kernel. The trade-off parameter ( � ) is chosen to cor-
respond to the upper range of the  95% confidence interval, depicted with the blue area 
around the predicted mean of the GP. The prediction of the GP approaches the true objec-
tive function with each Bayesian optimisation iteration and locates a solution close to the 
optimum after three iterations.

Figure 5 shows the results of Bayesian optimisation applied to the more complex Hart-
mann function. This function accepts six inputs and has six local minima, in addition to 

Fig. 4   Four iterations of the Bayesian optimisation algorithm on a simple 1D test function

Fig. 5   Ensemble-averaged value 
for the objective function at each 
Bayesian optimisation iteration 
on the 6D Hartmann function. 
For the UCB data, the solid line 
represent the mean across 30 
separate Bayesian optimisation 
runs, whereas the shaded region 
indicates the 95% confidence 
interval. The baseline (LHS) is 
also shown for comparison
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one global minimum at x∗ with a value of f (x∗) = −3.32237 . To ensure robust results, the 
experiment is repeated 30 times, each with an evaluation budget of 100. As a baseline, the 
mean of 30 maximin Latin hypercube designs, which aim to cover the most space with 
the available evaluations, is also shown. All of the 30 Bayesian optimisation runs allocate 
18 evaluations of the budget as training data, which are also sampled by a Latin hyper-
cube, and use the remaining budget to perform 82 iterations of the Bayesian optimisation 
algorithm. Figure 5 shows that Bayesian optimisation performs significantly better than the 
baseline. Furthermore, while the variability between runs is initially quite large immedi-
ately following the training data, it decreases with the number of evaluations. This suggests 
that in all 30 Bayesian optimisation runs a close-to-optimal solution is found. For more 
details on the Bayesian optimisation framework and its validation, the reader is referred to 
Diessner et al. (2022).

4 � Validation

The purpose of this section is to validate the present ILES scheme against the existing 
DNS scheme within Incompact3d and benchmark DNS data from Stroh et al. (2016). 
The case setup is exactly the same as described in Sect. 2.1, except the control is modi-
fied to a uniform blowing profile with an amplitude of 0.5% of the freestream velocity. For 
the DNS, the mesh resolution is doubled so that nx × ny × nz = 3073 × 513 × 256 and the 
time step is halved to Δt = 0.0032 . All of the simulations in this section, and the following 
sections, were performed on the ARCHER2 UK national supercomputer, which has 5860 
nodes housing two AMD EPYC  7742 CPUs ( 2 × 64 total cores @ 2.25GHz) in a non-
uniform memory access arrangement. Network communication is via the HPE Slingshot 
interconnect, which provides 2 × 100Gbit/s of bidirectional bandwidth. On this system, the 
ILES simulations took between 8 and 14 hours on 24 nodes (3072 cores), depending on 
how long the statistics took to converge, whereas the DNS simulations took between 47 
and 48 hours on 128 nodes (16384 cores). This clearly demonstrates the performance ben-
efits of the present ILES approach over DNS.

Figure  6 shows the skin-friction coefficient with respect to the canonical momentum 
Reynolds number for both the canonical and blowing cases and ILES and DNS schemes. 
The red-shaded area indicates the blowing region. The agreement between the ILES, DNS, 
and Stroh et al. (2016) data is good, despite the use of different numerical methods, with 

Fig. 6   Spanwise-averaged skin 
friction coefficient with respect 
to the canonical momentum 
Reynolds number for both the 
canonical and uniform blowing 
cases using both ILES and 
DNS. The DNS data of Stroh 
et al. (2016) is also shown for 
comparison. The red shaded area 
indicates the blowing region
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both the behaviour over the control region and its lasting downstream effect properly cap-
tured. For the blowing cases, there is a sharp decrease in the skin-friction drag at the start 
of the control, followed by a small recovery about 25% along the blowing region, before a 
further decrease towards the global minimum just before the end of the control. Following 
the blowing region, there is a rapid recovery of the skin-friction drag. However, this is only 
a partial recovery, with a subtle but sustained long-lasting downstream effect that persists 
across the length of the domain. Both the ILES and DNS results display a slight drift in 
the skin friction coefficient towards the end of the domain when compared with Stroh et al. 
(2016). However, overall the agreement is good and demonstrates the validity of the pre-
sent ILES scheme.

Figure 7 shows the mean and fluctuating streamwise velocity and the Reynolds stress 
with respect to the wall-normal coordinate at various streamwise locations (expressed in 
terms of the canonical momentum Reynolds number) for both the canonical and blowing 

Fig. 7   Spanwise-averaged wall-normal profiles of selected velocity moments at selected canonical momen-
tum Reynolds numbers for both the canonical (left) and uniform blowing (right) cases using both ILES and 
DNS. Note that for this figure the inner scaling is with respect to the friction velocity of the canonical case, 
calculated via each method, at the given momentum Reynolds number
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cases and ILES and DNS schemes. Note that for this figure, the inner scaling for each 
method (ILES, DNS) is with respect to the friction velocity of the canonical case, at the 
given momentum Reynolds number, as calculated using the respective method. The agree-
ment is excellent and further demonstrates the validity of the present ILES approach, with 
both the main and secondary peaks properly captured for both the canonical and blow-
ing cases. The effect of the control is especially evident at Re�,0 = 600 , which is approxi-
mately in the centre of the blowing region, where both the magnitude of the peak in Reyn-
olds stress, and its wall-normal location, is significantly modified. Of particular note is the 
reduction in mean streamwise velocity close to the wall, which must be properly captured 
to ensure the computed skin-friction coefficient is accurate. In conclusion, these results 
demonstrate the validity of the present ILES approach and justify its use over the more 
expensive DNS in the following Bayesian optimisation campaign.

5 � Results

This section presents the results from the optimisation campaign, followed by a detailed 
analysis of selected cases to investigate the key drag reduction mechanisms and flow phys-
ics. For the Bayesian optimisation algorithm, the GP is configured with a zero mean func-
tion and a Matérn  5/2 kernel. The Matérn  5/2 kernel was chosen over the very popular 
squared exponential kernel as it is able to represent functions that are less smooth and is 
therefore better suited to real-world problems (Snoek et  al. 2012). The signal variance 
and the length-scales of the kernel are estimated via maximum likelihood estimation. The 
acquisition function for this work is chosen to be UCB, with a trade-off parameter � = 1 , as 
it was found to perform well on a variety of different test problems (Diessner et al. 2022). 
The parallel strategy briefly described in Sect. 3.2 is adopted to accelerate the overall opti-
misation time, with four candidate points sampled at each iteration. To seed the optimisa-
tion campaign, 12 initial training points are selected using maximin Latin hypercube sam-
pling. All simulations are performed with the present ILES approach. In all cases the flow 
is initialised to a laminar Blasius solution through the entire domain and the blowing veloc-
ity is ramped up from t = 0–100 to prevent any numerical instabilities. Once the recordings 
of the statistics begin (at t = 1500 ), the spanwise-averaged skin friction profile along the 
GDR region (x = 35–650) is monitored at each time step and the mean squared difference 
between successive time steps is used as a stopping criterion for each individual case. The 
time for collecting statistics is therefore different for each case, but all cases fall within the 
range tstat ≈ 2100–4500 ( t+

stat
≈ 6660–14260), resulting in a compute time of 8–14 hours on 

24 nodes (3072 cores).

5.1 � Optimisation Campaign

Table 1 summarises the results of the Bayesian optimisation campaign. Each row repre-
sents an individual simulation and displays the associated iteration number, input ampli-
tudes, maximum LDR (MLDR), GDR and NES. Note that all quantities are given as a 
percentage, with the input amplitudes given as a percentage of the freestream velocity and 
constrained to be within 0–1% (as discussed in Sect. 2.2). The grey shaded area denotes the 
initial training (seed) data obtained via Latin hypercube sampling.

The objective function for the optimisation campaign is the NES, which is to be max-
imised. Focussing on this column first, it can be seen that, while many cases come close to 
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achieving a positive NES, there are no cases that improve on the trivial (canonical) case. 
This is in spite of the fact that many cases exhibit significant GDR compared to the canoni-
cal case (up to nearly 80% for the MLDR). Reassuringly, by examining the GDR and NES 
columns together, it can be seen that even a minor improvement in the efficiency of the 
blowing device would lead to positive NES. However, this would also modify the shape of 
the objective function, and so would likely change the trajectory of the optimisation cam-
paign. It should be noted that reducing the reference velocity used to estimate the power 
input for the blowing device would also improve the NES estimates. However, as discussed 
in Sect. 2.3, for the purpose of retaining consistency with Mahfoze et al. (2019), this is not 
done. The main conclusion from Table 1 is that it is certainly possible to obtain meaning-
ful NES just by improving the efficiency of the blowing device. For example, improving 
the efficiency by approximately 10% would lead to NES values of approximately 1% for 
certain cases in Table 1.

Overall, the best performing cases are 16,  43, and 46, which are all characterised by 
zero blowing across the entire control region and are therefore equivalent to the trivial 
(canonical) case. Note that Bayesian optimisation algorithms are often designed to work 
with stochastic objective functions, and so are often permitted to sample the same input 
point multiple times. For the present work, where the objective function is deterministic, 
this results in the exact same output and is therefore unnecessary. However, rather than 

Table 1   Summary of the Bayesian optimisation campaign showing the iteration ID, input amplitudes, 
MLDR, GDR, and NES

ID A1 A2 A3 MLDR GDR NES

1 0.25 0.12 0.66 57.85 6.69 – 0.16
2 0.55 0.50 0.92 70.52 12.01 – 0.28
3 0.05 0.37 0.18 40.18 3.97 – 0.32
4 0.34 0.94 0.83 72.51 12.20 – 0.96
5 0.87 0.24 0.72 68.23 11.10 – 0.29
6 0.48 0.30 0.05 50.40 5.29 – 0.31
7 0.13 0.47 0.84 65.21 8.85 – 0.23
8 0.76 0.65 0.16 66.05 9.64 – 0.16
9 0.99 0.91 0.49 73.22 13.85 – 1.06
10 0.73 0.03 0.39 62.59 7.22 – 0.28
11 0.65 0.69 0.57 61.83 11.24 – 0.50
12 0.23 0.82 0.26 62.30 7.64 – 0.68
13 1.00 0.54 0.00 72.06 8.90 – 0.95

16 0.00 0.00 0.00 0.00 0.00 0.00

14 0.00 0.00 1.00 72.88 5.62 – 1.87
15 0.40 0.56 0.00 52.65 6.27 – 0.38

17 0.38 0.32 0.50 49.35 7.44 – 0.54
18 0.00 0.00 0.30 34.92 2.05 – 0.52
19 0.50 0.00 0.00 50.11 2.99 – 1.01
20 0.00 0.38 0.53 50.77 5.77 – 0.36
21 0.00 0.22 0.00 26.04 1.44 – 0.60
22 1.00 0.00 1.00 73.88 11.51 – 0.92
23 1.00 0.41 1.00 74.57 14.00 – 0.84
24 1.00 0.00 0.56 71.48 9.34 – 0.58

ID A1 A2 A3 MLDR GDR NES

28 0.00 1.00 0.00 71.81 5.72

36 1.00 1.00 1.00 79.52 16.72

43 0.00 0.00 0.00 0.00 0.00 0.00

46 0.00 0.00 0.00 0.00 0.00 0.00
47 0.69 0.19 0.61 61.40 9.56

25 0.52 0.34 0.44 53.01 8.34 – 0.23
26 0.00 0.58 0.00 55.60 3.53 – 1.33
27 0.00 0.54 0.54 55.91 6.50 – 0.72

– 2.24
29 0.14 0.00 0.00 19.11 0.98 – 0.34
30 0.63 0.06 1.00 72.51 10.08 – 0.59
31 0.68 0.43 0.00 61.67 6.77 – 0.45
32 0.62 1.00 0.00 70.43 9.49 – 1.32
33 0.54 0.48 0.22 55.50 7.70 – 0.38
34 0.84 0.40 0.31 67.23 9.28 – 0.55
35 0.48 0.30 0.77 63.47 9.26 – 0.63

– 2.09
37 0.45 0.53 0.42 51.39 8.76 – 0.23
38 0.00 0.70 1.00 72.32 9.93 – 1.08
39 0.26 0.19 0.33 35.53 5.12 – 0.45
40 0.53 0.00 0.54 53.83 6.68 – 0.41
41 0.39 0.52 0.54 53.65 9.09 – 0.20
42 0.55 0.57 0.32 57.10 8.83 – 0.34

44 1.00 0.00 0.00 71.35 5.72 – 1.77
45 0.34 0.51 0.68 59.98 9.34 – 0.37

– 0.05
48 0.00 0.00 0.14 18.37 0.79 – 0.48

Note that all quantities are given as a percentage, with the input amplitudes given as a percentage of the 
freestream velocity. The grey shaded area denotes the initial training (seed) data whereas the blue, orange 
and green rows highlight the best NES (after neglecting the trivial cases), best GDR and worst NES/GDR 
cases, respectively
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implementing some additional logic to skip repeated samples, they are presented here as 
an indicator of the convergence of the Bayesian optimisation algorithm. The first time the 
optimisation algorithm suggests the trivial case it continues to explore the parameter space. 
However, towards the end of the campaign it suggests the same point twice in quick suc-
cession. This indicates a shift from exploration to exploitation, which itself suggests a rela-
tively low degree of uncertainty in the underlying GP model. While the stopping criterion 
for the present study was ultimately determined by the computational budget, this observa-
tion can be used as an indicator (but not a guarantee) of at least some degree of conver-
gence. After neglecting the trivial cases, the next best NES case (47) is selected for further 
analysis in Sect. 5.2, as is the best GDR case (36) and the worst NES/GDR case (28), all of 
which are highlighted in Table 1.

Fig. 8   Scatter plot matrix showing each input, MLDR, GDR, and NES for each iteration. The colour bar 
indicates the iteration number in the scatter plots, with the training data given in black
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To aid with the analysis of Table 1, Fig. 8 displays a scatter plot matrix showing the pair-
wise relationship between each input and output of interest. Histograms of each quantity 
are also shown along the diagonal. The colour scale in the scatter plots indicates the itera-
tion number, with the training data given in black. Examining the histograms first, it can be 
seen that the NES distribution, although negative, is skewed towards positive values. This 
is expected since the goal of the Bayesian optimisation campaign is to maximise the NES. 
On the other hand, examination of the input amplitudes shows a slight clustering towards 
smaller values. This is most likely a result of the nonlinear relationship between the blow-
ing amplitude and the NES, which is a function of both the GDR and input power (which 
are themselves nonlinear functions of the blowing velocity). The scatter plots show a strong 
correlation between the MLDR and GDR, as well as a moderate correlation between both 
the MLDR and GDR and the input amplitudes. This is also expected since previous works 
on uniform blowing have shown a direct (almost linear) relationship between the blowing 
velocity and the drag reduction at low intensities (Kametani and Fukagata 2011). To quan-
tify this relationship, Fig. 9 shows the pairwise correlation coefficients for each input and 
output. These results confirm there is a strong correlation between the MLDR and GDR, 
and that both the MLDR and GDR are moderately correlated with the input amplitudes. On 
the other hand, there does not seem to be any relationship between the NES and any of the 
other quantities. This is perhaps not surprising, given the nonlinear relationship between 
the blowing amplitudes and blowing profile, as well as the nonlinear relationships relating 
the blowing profile to the power input and GDR (on which the NES depends).

5.2 � Flow Physics and Analysis

In this section, selected cases are chosen for further analysis. From Table 1, these are the 
best NES (after neglecting the trivial cases), best GDR and worst NES/GDR cases and are 
highlighted in blue, orange, and green respectively. Figure 10 shows the blowing veloc-
ity profile and associated power profile for each of these cases. The maximum NES case 
is characterised by moderate intensity blowing at the edges ( A1 and A3 ) with a large dip 

Fig. 9   Correlation matrix illustrating the Pearson correlation coefficient for each input, MLDR, GDR, and 
NES
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in the centre of the blowing region at A2 . The maximum GDR case, on the other hand, 
is characterised by maximum intensity blowing for all amplitudes and is resemblant of a 
uniform blowing profile. Finally, the worst NES/GDR case is characterised by maximum 
intensity blowing in the centre of the blowing region, with zero blowing at A1 and A3 . Note 
that for this combination of inputs the blowing profile is negative (corresponding to suc-
tion) towards the edges of the blowing region. The power profiles are mostly similar to the 
velocity profiles, apart from some distortion, due to the nonlinear relationship between the 
blowing velocity and blowing power, and the change in sign when the blowing profile is 
negative (reflecting the fact that both blowing and suction require power).

Figure 11 shows the skin friction coefficient with respect to the canonical momentum 
Reynolds number for both the canonical and selected blowing configurations. The red-
shaded area indicates the blowing region. Starting with the maximum NES case, there is a 
sharp reduction in skin friction towards the start of the blowing region, which is associated 
with the moderate value for A1 . The is followed by a partial recovery of the skin friction in 
the centre of the blowing region, owing to the dip in blowing velocity at A2 . Finally, there 
is a sharp reduction in skin friction again at A3 . The effect of the control persists far down-
stream from the blowing region, which is important for its performance in terms of NES. 
For the maximum GDR case, there is a strong and sustained reduction in the skin friction 
over the entire length of the blowing region. Furthermore, the downstream effect is much 

Fig. 10   Blowing velocity profile (left) and the associated power profile (right) for selected cases

Fig. 11   Spanwise-averaged skin 
friction coefficient with respect 
to the canonical momentum 
Reynolds number for selected 
cases. The canonical case is also 
shown for comparison. The red 
shaded area indicates the blow-
ing region
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more prominent compared to the best NES case. However, even with significant GDR, this 
case does not perform well in terms of NES, owing to the large input power required to 
operate the blowing device at the maximum permitted intensity. Finally, for the worst NES/
GDR case, the suction at the edges of the blowing region leads to a minor increase in the 
local skin friction, while still requiring power to drive the control. Although this case still 
exhibits a positive GDR, owing to the A2 amplitude in the middle of the control region, the 
suction regions are ultimately the main factor that leads to the poor performance, both in 
terms of GDR and NES, for this case.

Figure 12 shows the velocity moments and the Reynolds stress with respect to the wall-
normal coordinate at a canonical momentum Reynolds number of Re�,0 = 600 (approxi-
mately in the centre of the blowing region) for both the canonical and selected blowing 
configurations. Note that, for this figure, the inner scaling is with respect to the local fric-
tion velocity of the canonical case at Re�,0 = 600 . There is a wide variation in behaviour 

Fig. 12   Spanwise-averaged wall-normal profiles of velocity moments for selected cases at a canonical 
Reynolds number of Re�,0 = 600 (approximately in the centre of the blowing region). Note that for this 
figure the inner scaling is with respect to the friction velocity of the canonical case at the given momentum 
Reynolds number ( Re�,0 = 600)
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across each case. However, there are some commonalities that can be extracted. For exam-
ple, close to the wall ( y+ < 10 ) there is a reduction in the mean and fluctuating compo-
nents of the streamwise velocity compared to the canonical case. For the mean streamwise 
velocity, this reduction is sustained across the entire height of the boundary layer, whereas 
in the case of the fluctuating component the behaviour reverses at approximately y+ ≈ 10 . 
For the other velocity moments, the effect of the control is to increase their intensity across 
the entire height of the boundary layer, particularly the intensity of the peaks at around 
50 < y+ < 100 . This increase in turbulent activity is associated with the injection of kinetic 
energy into the boundary layer and has been reported in previous works (Kametani and 
Fukagata 2011; Kametani et al. 2015).

Figures 13, 14, and 15 show slices of the instantaneous streamwise velocity at y+ = 1 
(Fig. 13), y+ = 10 (Fig. 14), and y+ = 100 (Fig. 15) over the first half of the streamwise 

Fig. 13   Slices of instantaneous streamwise velocity at y+ = 1 . From top to bottom the cases are the canoni-
cal case, maximum NES case, maximum GDR case, and minimum NES/GDR case

Fig. 14   Slices of instantaneous streamwise velocity at y+ = 10 . From top to bottom the cases are the canon-
ical case, maximum NES case, maximum GDR case, and minimum NES/GDR case
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extent of the domain, for both the canonical and selected blowing configurations. From 
top to bottom the cases are the canonical case, best NES case, best GDR case, and worst 
NES/GDR case. As can be seen in Fig. 13, the effect of the control is clear, with a sig-
nificant reduction in the streamwise velocity in regions where the blowing velocity is 
relatively high. The signature of the blowing profile is also imprinted on the velocity 
contours, with the best NES case displaying a slight increase in velocity in the centre 
of the blowing region (where the blowing velocity is reduced) and the worst NES/GDR 
case showing a short reduced-velocity region, with a slight increase in velocity at the 
start/end points of the blowing region (where the control corresponds to suction). While 
the streamwise velocity mostly recovers quite soon after the end of the blowing region, 
a subtle but lasting effect can be observed much further downstream, particularly for the 
maximum GDR case, where low momentum regions are more prevalent.

Looking at Fig. 14, the shape of the blowing profile is still evident. Furthermore, the 
lasting downstream effect is more obvious, particularly for the best GDR case, where 
the appearance of low-momentum streaks is more prominent. Finally, focusing on 
Fig. 15 the effect of the control is still clear, although the overall shape of the blowing 
profile is harder to discern. Furthermore, the effect of the control is shifted downstream 
with respect to the blowing region. This is most likely due to convection, leading to the 
effects of the control not appearing in higher regions of the boundary layer until fur-
ther downstream. For the best GDR case, where the convective effect is very prominent, 
this could explain why the skin friction coefficient exhibits a very different downstream 
behaviour with respect to the other two cases (see Fig. 11).

To investigate the quantitative effect of different contributions to the drag reduction, 
the local skin friction coefficient is decomposed into four separate components using the 
so-called Fukagata-Iwamoto-Kasagi (FIK) identity (Fukagata et al. 2002). For a TBL, 
the FIK identity is defined as in Stroh et al. (2015):

Fig. 15   Slices of instantaneous streamwise velocity at y+ = 100 . From top to bottom the cases are the 
canonical case, maximum NES case, maximum GDR case, and minimum NES/GDR case
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where all quantities are non-dimensionalised with respect to the local boundary layer 
thickness ( � ) and the freestream velocity ( u∞ ), and �∗ is the local displacement thickness. 
The terms C�

f
 , CT

f
 , CC

f
 , and CD

f
 refer to the contributions arising from the boundary layer 

thickness, Reynolds shear stress (turbulence), mean convection, and spatial development, 
respectively.

Figure  16 shows the decomposition of the local skin friction coefficient, using the 
FIK identity, with respect to the canonical momentum Reynolds number for both the 
canonical and selected blowing configurations. For comparison, the skin friction coef-
ficient calculated directly, via Eq.  (1), is also shown and matches the sum of the FIK 
components. The results show a large negative contribution from the mean convective 
term over the control region. This is also accompanied by a large positive contribu-
tion from the spatial development term. However, the mean convection term is more 
dominant and is ultimately the key factor in the skin friction drag reduction over the 

(14)
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Fig. 16   FIK identity with respect to the canonical momentum Reynolds number for the canonical case (top 
left), maximum NES case (top right), maximum GDR case (bottom left), and minimum NES/GDR case 
(bottom right)
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control region. This same behaviour has been reported in previous works (Kametani and 
Fukagata 2011; Mahfoze et al. 2019) and is expected, since −u v < 0 . Interestingly, this 
behaviour is reversed downstream of the control for the best GDR case, where the spa-
tial development term becomes negative and dominates the drag reduction, which is also 
reported in Mahfoze et al. (2019). For the best NES and worst NES/GDR cases, there 
is an initial reversal between the convective and spatial development terms towards the 
end of the control region. However, this reversal is short-lived and subsequently the 
convective term returns to a drag-reducing effect whereas the converse is true for the 
spatial development term.

Figure  17 shows the results of a quadrant analysis at two probe locations. The 
first probe is located in the middle of the blowing region ( x = 106.5 , Re�,0 ≈ 591 ) at 
y+ = 10 , whereas the second probe location is at the end of the control region ( x = 145 , 
Re�,0 ≈ 703 ) at y+ = 100 . Quadrant analysis is a data-processing technique that catego-
rises each time-resolved measurement into a particular quadrant, according to the rela-
tive signs of the fluctuating streamwise and wall-normal velocities. The quadrants are 
labelled according to: Q1 ( u′ > 0 , v′ > 0 ), Q2 ( u′ < 0 , v′ > 0 ), Q3 ( u′ < 0 , v′ < 0 ), and 
Q4 ( u′ > 0 , v′ < 0 ). Both the frequency of occurrence of each quadrant, as well as its 
total contribution to the time-averaged Reynolds stress ( −u�v� ), is shown. The Q2 and 
Q4 quadrants are related to the drag-inducing ejection and sweep events, and work to 
increase the time-averaged Reynolds stress, whereas the Q1 and Q3 quadrants have the 
opposite effect and work to decrease the time-averaged Reynolds stress. The best GDR 
case shows the greatest difference with respect to the canonical case, with an increase in 

Fig. 17   Quadrant analysis at two probe locations for selected cases. The first probe (top) is located in the 
middle of the blowing region ( x = 106.5 ) at y+ = 10 , whereas the second probe (bottom) is located at the 
end of the control region ( x = 145 ) at y+ = 100 . Both the frequency of occurrence (left) and overall contri-
bution to the time-averaged Reynolds stress ( −u�v� ) (right) is shown



Flow, Turbulence and Combustion	

1 3

both the frequency and overall contribution of the Q1 and Q3 events. This is accompa-
nied by a decrease in the frequency of the Q2 and Q4 events. However, the overall con-
tribution to the time-averaged Reynolds stress from Q4 is increased significantly com-
pared to the canonical case. While such behaviour would typically be associated with an 
increase in skin-friction drag, the effect of the increase in contribution from the Q1 and 
Q3 quadrants works to counter this effect and ultimately leads to the reduced drag for 
this case.

Close to the wall ( y+ < 15 ), Q4 is known to have the largest contribution to the Reyn-
olds stress, whereas Q2 typically dominates further from the wall (Wallace 2016). Fig-
ure 17 confirms this behaviour close to the wall, where Q4 dominates for all cases. How-
ever, while Q2 becomes dominant for the canonical, best NES, and worst NES/GDR 
cases away from the wall, Q4 remains dominant for the best GDR case. To investigate this 
behaviour further, Fig.  18 shows the joint and marginal probability distributions for the 
streamwise and wall-normal fluctuating velocities at the second probe location ( x = 145 , 
y+ = 100 ). In all cases, the principal component of the distribution is aligned diagonally 
along the Q2 and Q4 quadrants. Furthermore, all cases display a slight dilation of the dis-
tribution when compared with the canonical case. This is especially true for the best GDR 
case and is evidence of the increase in turbulent kinetic energy associated with the control. 

Fig. 18   Joint and marginal probability distributions at the second probe location ( x = 145 , y+ = 100 ) for 
the streamwise and wall-normal fluctuating velocities for selected cases. The contours are spaced at inter-
vals of 0.1 in the range (0, 1)
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For the best GDR case, the joint distribution is skewed more heavily towards Q4, which 
is directly related to the fact it remains the dominant contributor to the Reynolds stress at 
y+ = 100.

6 � Summary and Conclusions

To investigate the potential of a continuous streamwise-varying profile of wall-normal 
blowing as a control strategy for turbulent skin-friction drag reduction, this work pre-
sents the results from a Bayesian optimisation campaign aimed at maximising the NES of 
a blowing configuration parameterised by a cubic spline. In this endeavour, a high-order 
ILES solver (Incompact3d) is combined with a newly designed Bayesian optimisation 
framework to find optimal combinations of control parameters that balance the drag reduc-
tion with the power required to drive the actuation. Furthermore, to provide realistic esti-
mates of NES, the input power for the control is estimated from real-world experimental 
data, rather than an idealised first principle-based approximation.

The results show that while significant GDR is relatively straightforward to achieve, 
NES is more difficult and in fact no improvement over the trivial (canonical) case was 
observed. After neglecting the trivial (non-blowing) cases, the next best NES was observed 
to be − 0.05%. This configuration was characterised by moderate-intensity blowing at the 
start and end points of the control region, with a reduction in blowing intensity in the mid-
dle of the control region (resemblant of an intermittent blowing strategy). The GDR for 
this case was found to be 9.56%, indicating the potential for significant NES gains with 
more efficient blowing devices. The overall best GDR case was characterised by maximum 
intensity blowing across the entire control region, which is resemblant of uniform blowing 
for this configuration. While a GDR of 16.72% was reported for this case, the NES was 
found to be relatively poor, at − 2.09%, which is a result of the input power required to 
sustain maximum intensity blowing across the entire control region. Although the present 
work was not able to demonstrate positive NES for this blowing configuration, the results 
show that even a small improvement in the efficiency of the present blowing device would 
lead to meaningful NES.

Compared to the work of Mahfoze et  al. (2019), which demonstrated a NES of 1.2% 
using a uniform blowing profile, it seems that the present control strategy is not as effec-
tive at achieving NES. Having said that, the present study is limited by the computational 
budget available for the optimisation campaign. Furthermore, the input space was restricted 
by focussing on one specific spline type with a fixed number of knots, each of which with a 
fixed location. Moreover, this work focusses on just one specific flow condition. Therefore, 
this study is not sufficient to discount streamwise-varying blowing as an effective strat-
egy for achieving NES in a turbulent boundary layer. This is especially true since such an 
approach is well placed to exploit the well-documented ‘inertia’ in the skin-friction recov-
ery that occurs in the vicinity of the control region.

There are a number of possible avenues for future work. Firstly, resource limitations pre-
vented further iterations of the Bayesian optimisation algorithm. It is possible that positive 
NES could still be achieved with this configuration with a longer optimisation campaign. 
Secondly, it would be interesting to repeat this study with a more efficient blowing device. 
While the results demonstrate that even a small improvement in efficiency would lead to 
positive NES, introducing a different blowing device would also change the shape of the 
objective function and would therefore likely change the optimal configuration. Thirdly, 
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to translate this technology into real-world applications it is necessary to reproduce this 
work experimentally. In the experimental setting it will also be possible to perform a larger 
number of optimisation iterations compared with the numerical simulations. Finally, more 
optimisation campaigns should be conducted to investigate the effects of Reynolds number, 
non-zero pressure gradients, and different blowing strategies (e.g. travelling waves of wall-
normal blowing), to name a few.
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