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Abstract: (1) Land surface models require inputs of temperature and moisture variables to generate
predictions of gross primary production (GPP). Differences between leaf and air temperature vary
temporally and spatially and may be especially pronounced under conditions of low soil moisture
availability. The Sentinel-3 satellite mission offers estimates of the land surface temperature (LST),
which for vegetated pixels can be adopted as the canopy temperature. Could remotely sensed
estimates of LST offer a parsimonious input to models by combining information on leaf temperature
and hydration? (2) Using a light use efficiency model that requires only a handful of input variables,
we generated GPP simulations for comparison with eddy-covariance inferred estimates available
from flux sites within the Integrated Carbon Observation System. Remotely sensed LST and greenness
data were input from Sentinel-3. Gridded air temperature data were obtained from the European
Centre for Medium-Range Weather Forecasts. We chose the years 2018–2019 to exploit the natural
experiment of a pronounced European drought. (3) Simulated GPP showed good agreement with
flux-derived estimates. During dry conditions, simulations forced with LST performed better than
those with air temperature for shrubland, grassland and savanna sites. (4) This study advances the
prospect for a global GPP monitoring system that will rely primarily on remotely sensed inputs.

Keywords: land surface temperature; drought; remote sensing; GPP; ICOS; eddy covariance

1. Introduction

Terrestrial gross primary production (GPP) is the largest flux in the global carbon
cycle [1]. Anthropogenic disturbances to natural cycles include CO2 emission to the atmo-
sphere, but terrestrial vegetation provides a sink for a part of the emitted CO2—driven
primarily by the fact that the CO2 concentration is nonetheless rising [2]. Currently our
best, in situ estimates of GPP are provided by the eddy-covariance method that measures
high-frequency net carbon fluxes between the canopy and the atmosphere [3]. Those
measurements of net ecosystem exchange (NEE) can be partitioned into GPP and ecosys-
tem respiration allowing empirical evaluation of model simulations of GPP. There are
now hundreds of flux-tower sites [4] and collectively they provide the foundation and
benchmark for global terrestrial vegetation monitoring. The technique has its difficulties,
however—including how best to partition NEE into the component fluxes [5], the need for
a reasonably flat and homogenous footprint [6] and under-representation of certain biomes
(notably tropical biomes). These problems, together with the desire to provide spatially
continuous estimates, have encouraged the development of remote-sensing models where
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global fields of key drivers are provided by satellite-derived products. The overall goal
of such research is to develop a global GPP monitoring system, based on a reliable model,
driven by remotely sensed data and evaluated against flux-tower data.

The instantaneous controls of leaf-level photosynthesis are described by the FvCB
model of C3 photosynthesis [7] in which instantaneous carbon assimilation is limited either
by Rubisco activity (carboxylation) or by light (electron transport). Both rates are influenced
by the leaf-internal partial pressure of CO2 (Ci). Empirical equations are commonly used to
determine Ci, which depends on stomatal behaviour. Current eco-physiological theory, and
most biophysical land-surface schemes for climate modelling, make use of the FvCB model.

The instantaneous photosynthetic response to light, as observed experimentally and
represented in the FvCB model, is a non-linear (saturating) function. A different relationship
with light emerges, however, at longer timescales [8,9]. Based on measurements of crop growth,
Monteith [10,11] proposed the light-use efficiency (LUE) model (GPP = LUE × IPAR × fAPAR)
where IPAR is the incident photosynthetically active radiation and fAPAR the fraction
absorbed by green vegetation. There are now many LUE models in the literature [12], but
no consensus on which is best. There has also been a marked tendency for these models to
become more complex and to require more parameters, but without necessarily increasing
in accuracy [13].

The P model [14] is a LUE model based on optimality principles that coordinate
capacities for CO2 fixation, water- and electron-transport to simulate GPP consistent with
the FvCB framework. The model can be applied universally to C3 plants with no need for
biome-specific parameters. The P model as deployed here is the ‘BRC’ version presented
by Stocker et al. [15] with a modification [16] to describe C4 photosynthesis. This version
differs from the original model of Wang et al. principally by representing the temperature-
dependence of the intrinsic quantum efficiency of photosynthesis, which was described
by Bernacchi et al. [17], but is neglected in many current models [18]. Stocker et al. (2020)
also introduced a single global calibration parameter to optimize agreement between
P model simulations and flux data. In a departure from the approach of Stocker et al., we
have here assigned the maximum quantum efficiency its theoretical upper bound of 0.125
(eight quanta per CO2 reduced), eliminating the need for calibration.

GPP is expected to be influenced by temperature because of the various temperature-
dependent quantities that affect photosynthetic rates [17,19]. The instantaneous temper-
ature response of leaf-level photosynthesis is unimodal with photosynthesis inhibited at
low and high temperatures, reaching an optimum somewhere in between [20]. But the
optimum acclimates to growth conditions [21], and it is challenging to determine whether
foliage is operating above or below the current optimum. There can also be differences
between the temperature of the leaf and that of the ambient air [22]; those differences (or
deltas) are influenced by radiation, transpiration and boundary-layer conductance [23,24].
It would be desirable to replace measures of air temperature with remotely sensed land
surface temperature (LST): theoretically, because LST is expected to be closer to the actual
temperature of leaf tissue relevant for physiological processes; and practically, because
remotely sensed LST is retrieved at a high spatial resolution relative to weather-station or
meteorological analysis data.

Stomata are the conduits both for CO2 into the leaf, and for the loss of water vapour
via transpiration. Stomata respond to an increase in vapour pressure deficit (VPD) by
progressively closing to limit transpiration and this entrains a reduction in photosynthe-
sis [25,26]. Drought events, such as those experienced in central Europe in 2018 [27], can
have further profound effects on vegetation and its productivity by causing earlier stomatal
closure in response to VPD. Ciais et al. [28] estimated that the 2003 heatwave instigated a
30% reduction in GPP across Europe, upsetting the continental carbon balance and, in the
short-term, converting the region from a sink to a source of CO2. This effect of drought can
interact with elevated temperatures to create a positive feedback loop—soil water depletion
reducing evaporative cooling. In common with many LUE models, the P model does
not take account of soil moisture effects, except as manifested through changes in fAPAR.
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Existing remotely sensed measures of soil moisture [29] are unable to give information
about the moisture content of deeper soil layers that can be essential for plant function.

The incremental predictive power of soil moisture estimates for GPP, when VPD values
are available, is open to question [30]. Indeed, in the field and on relatively moist soils, soil
moisture content has little or no effect on LUE. Analysis of flux-based GPP measurements
at the sites considered by Wang et al. [14], including a number of sites with pronounced
dry seasons, confirmed that there is no universal decline of LUE with decreasing soil
moisture, the implication being that any drought-induced reduction of GPP is already
largely accounted for through the response of fAPAR. Changes in vegetation function,
however, may not always be accompanied by changes in the state or extent of the foliage.
A number of studies have reported the inability of remote sensing products to accurately
capture drought effects on productivity. Vicca et al. [31] compared the performance of a
suite of 11 satellite-based products (including fAPAR and prevalent greenness indices)
in predicting GPP for a decadal timeseries (ca. 2000–2012) at four European sites (a mix
of forests and grassland) and reported contrasting results—no single product proved
capable of capturing each drought event at each site. Independent of leaf cover, some
ecosystems (for example, tropical savannas and Mediterranean-type forests) regularly
show reduced LUE during part or all of the dry season [32]. Moreover, extreme droughts to
which ecosystems are not well adapted are expected to suppress LUE via a combination of
reduced Ci and (under the most severe drying) reduced carboxylation capacity, as has been
observed in drying-down experiments [33]. Therefore, in common with other operational
products, the P model, when driven by air temperature, is likely to overestimate dry-season
GPP in some ecosystems, and to underestimate the negative effect of extreme droughts on
GPP [34]. When, however, air temperature is replaced with LST as a driver, the P model
should implicitly take some account of the effect of drought-induced stomatal closure on
transpiration and on GPP.

Exploiting the natural experiment provided by the European drought of 2018, this study
aimed to evaluate the performance of the P model in simulating spatial and seasonal variability
of GPP for a variety of ecosystems. We hypothesised that agreement with flux-derived GPP
estimates would be stronger for simulations forced with LST versus gridded meteorological
air temperature and superior performance would be most evident in dry summers.

2. Materials and Methods
2.1. Validation Data

The validation dataset was drawn from the Integrated Carbon Observation System
(ICOS) measurement sites situated across Europe. ICOS eddy-covariance flux data are
processed and audited consistent with the pipeline methodology developed within the
FLUXNET network [4]. For this study, in order to match compatible satellite-derived
data available only post 2016 (Sentinel3), we elected to focus on the years 2018 and 2019
employing the ‘Warm Winter 2020’ dataset, first release. A total of 69 sites were considered.
Data exploration steps (e.g., screening for gaps of greater than two months) reduced the final
dataset to 64 sites (Table A1, Figure A1, Appendix A). Vegetation categories follow the IGBP
land cover classification: evergreen needleleaf forest (ENF), deciduous broadleaf forest
(DBF), mixed forest (MF), closed shrublands (CSH), open shrublands (OSH), savannahs
(SAV), grasslands (GRA), permanent wetlands (WET) and croplands (CRO).

Daily GPP data (gC m−2 d−1) were based on the day-time flux decomposition method
and the filtering based on a variable friction velocity threshold (GPP_DT_VUT_USTAR50).
We retained only those days for which less than 20% of the underlying half-hourly meteo-
rological and flux data were gap-filled. Our analysis is based on ten-day averages. This
was the preferred timescale as voted in a user survey and mirrors the commonly adopted
timestep for remote sensing products such as the Copernicus Land Monitoring Service.
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2.2. Drought Index

In order to identify those periods when sites were experiencing drought conditions,
we employed the Standardized Evapotranspiration–Precipitation Index (SPEI), a com-
monly used indicator of drought [35,36]. SPEI values were generated for each site using
a three-decade time series (1989–2021 inclusive) of climatic water balance (precipitation
minus potential evapotranspiration, European Centre for Medium-range Weather Forecasts
(ECMWF)) via the R package ‘SPEI’ [37]. Unusually dry conditions, for a given site, were
characterised as those time points with SPEI less than −1.5 [31].

2.3. Driving Variables for the P Model Simulations

GPP simulations were generated using the P-model and implemented via the R pack-
age ‘rpmodel’ [15,38]. Here, we used a formulation of the P-model that does not account
for soil moisture stress, but with an updated formulation for the temperature sensitivity of
quantum yield in C4 plants (see below).

Solar radiation and vapour pressure data were obtained from the ECMWF high-
resolution forecast model. These data (available in 0.25◦ grid cells) are operational forecasts
for the next 24 h obtained via the MeteoGroup operational forecast system: (https://www.
ecmwf.int/en/forecasts/datasets/set-i, accessed on 11 May 2021). IPAR data were derived
from global radiation and converted to PPFD using the conversion factor 2.04 µmol J−1 [39].
The vapour pressure deficit was calculated from vapour pressure and air temperature
following Allen et al. [40].

Daily temperature data were obtained from (a) gridded ECMWF meteorological data
as described above (Tair, ◦C); and (b) from remotely sensed LST using daily level 3C
Sentinel-3A SLSTR [41] obtained via the ESA project Land Surface Temperature Climate
Change Initiative (https://climate.esa.int/en/projects/land-surface-temperature/about/,
accessed on 7 July 2021). Pre-processing of these LST data involved cloud/confidence
masking, separating day- and night-time overpasses, and interpolation using a cubic
smoothing spline (function smooth.spline () with parameter spar = 0.01 in R) to provide
ten-day averages based on the daytime overpass (typically mid-morning ca 10:00).

fAPAR data were obtained from the operational Sentinel-3 ESA Full Resolution OLCI
product (OL_2_LFR, https://sentinel.esa.int/web/sentinel/user-guides/sentinel-3-olci/
product-types/level-2-land, accessed on 12 May 2021). The OGVI (OLCI Global Vegeta-
tion Index) and “OGVI_err” band contain respectively the instantaneous green fAPAR
and associated product uncertainties. Pre-processing implemented the associated LQSF
layer (classification, quality, and science flags) to remove clouds and cloud shadows.
The remaining data were further smoothed, and gap-filled, with a Gaussian process re-
gression (https://scikit-learn.org/stable/modules/gaussian_process.html, accessed on
13 May 2021) algorithm, that allows the propagation of the initial data uncertainties to the
gap-filled time series. The resulting output series were mapped to a 10-day interval.

Annual values of the CO2 mole fraction were obtained from the monitoring station at
Mauna Loa, Hawaii (Scripps Institution CO2 monitoring network: http://scrippsco2.ucsd.
edu/data/atmospheric_co2/mlo, accessed on 1 September 2021) and converted to partial
pressure units for input to the P model.

2.4. C3 versus C4 Photosynthesis

The FvCB model relates to the predominant C3 photosynthetic pathway. C4 plants,
including important crop species present in our dataset, employ a CO2-concentrating
mechanism that calls for different formulations. The approach adopted here for modelling
C4 photosynthesis follows Cai and Prentice [16] by removing the CO2 limitation term and
applying a modified (lower) intrinsic quantum yield. Individual sites were classified as C3
or C4 dominated based on the predominant vegetation type as described in the available
ICOS metadata. This included cases, for a number of sites, where crops with different
photosynthetic pathways were grown in 2018 versus 2019 (Table A1).

https://www.ecmwf.int/en/forecasts/datasets/set-i
https://www.ecmwf.int/en/forecasts/datasets/set-i
https://climate.esa.int/en/projects/land-surface-temperature/about/
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-3-olci/product-types/level-2-land
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-3-olci/product-types/level-2-land
https://scikit-learn.org/stable/modules/gaussian_process.html
http://scrippsco2.ucsd.edu/data/atmospheric_co2/mlo
http://scrippsco2.ucsd.edu/data/atmospheric_co2/mlo
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3. Results

We found a strong, overall correlation between the Tair and LST estimates (r = 0.81),
but there was marked variation among the different vegetation classes (Figure 1). There
was a general tendency for air temperature to underestimate remotely sensed LST and this
was especially pronounced for non-forest sites.
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Figure 1. Scatterplots comparing ECMWF gridded air temperatures with Sentinel3 daytime LST
estimates; organised by vegetation class: evergreen needleleaf forest (ENF), deciduous broadleaf
forest (DBF), mixed forest (MF), closed shrublands (CSH), open shrublands (OSH), savannahs (SAV),
grasslands (GRA), permanent wetlands (WET) and croplands (CRO). The dashed red line shows the
ideal fit. Each point is a ten-day average.

Overall, the P-model simulations of GPP showed good agreement with the eddy-
covariance values (Figure 2). There was, however, a general finding (indicated by the bias
and slope metrics in Figure 2) that the simulations tended to underestimate the GPP data.
Simulations forced with remotely sensed LST did not consistently perform better than the
Tair predictions.
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Figure 2. Goodness of fit: GPP simulations versus eddy-covariance estimates. Left panel—forcing
temperature is Sentinel3 LST; Right panel—forcing temperature is ECMWF gridded air temperature.
The intensity of the colours (heat-map) is designed to indicate the density of points. Each point is a
ten-day average. The dashed-grey line shows the ideal fit.

A more nuanced pattern emerged, however, when relative performance was compared
across vegetation categories (Figure 3). For ENF sites, the largest category in the dataset
(Table A1), the two simulations were virtually indistinguishable even under drought
conditions. However, for certain classes (e.g., DBF) the LST simulations performed better
than Tair; and that advantage was enhanced in dry periods. Model performance was
somewhat weaker (higher RMSE) during periods of drought.
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Figure 3. Error estimation (GPP simulations versus eddy-covariance) by vegetation class with the
number of participating sites indicated. Those periods identified as unusually dry (SPEI < −1.5) are
shown in red and contrasted with the full timeseries (all, in blue). Bars relate to simulations driven
by S3_LST and dots to ECMWF gridded Tair.
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Time-series plots allowed us to investigate seasonal variation in model performance
for individual sites; Figure 4 provides examples for contrasting vegetation classes includ-
ing: Norunda in Sweden, a region where the effects of the 2018 drought were especially
marked [27]; and Hesse in France, the primary site analysed in the Vicca et al. [31] study
of the 2003 European drought. The P-model simulations reproduced the eddy-covariance
patterns realistically, but at certain sites (e.g., Hesse in France, Figure 4) the predictions
over-estimated productivity in spring. The pronounced drought of the summer of 2018
was not evident at all sites (e.g., Font-Blanche in southern France, Figure 4) and there
was little evidence that productivity was markedly lower in 2018 compared to 2019. In
aggregate, our analysis suggests that simulations forced with LST performed better than
Tair equivalents for certain sites and vegetation categories—especially sparsely vegetated
categories (e.g., shrublands and savannas, Figure 3). However, the predictions, even forced
with LST, do not fully capture the observed effects of drought on productivity—notice the
gap between eddy covariance estimates and simulations at Font-Blanche during summer
2019 (Figure 4).
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Figure 4. Seasonal variation in GPP estimates for selected sites. Inferred (eddy-covariance) values are
shown as points: those periods with a site-specific SPEI < −1.5 are indicated in red. GPP simulations
are shown as lines: forced with ECMWF gridded air temperature (purple) and forced with Sentinel3
daytime LST (cyan). Notice that the ranges on the y-axes vary between the plots.



Remote Sens. 2023, 15, 1693 8 of 15

4. Discussion

We found partial (site- and vegetation-dependent) support for our hypothesis that
remotely sensed LST would allow better simulations of GPP than adopting equivalent
measures of Tair. For certain categories, notably ENF, there was little to choose—even in
high latitude sites where indicators of the 2018 drought were most pronounced [27]. The
model performance presented here (Figure 2) compares favourably with GPP predictions
reported in recent remote sensing evaluations. Using a validation dataset that partially
overlaps with our own, Pablo-Moreno et al. [42] used Sentinel-2 data to predict daily GPP
and achieved best results (r2 = 0.71) with an iterative machine learning technique that
selected a model with 11 variables made up of spectral bands, red-edge and near-infrared
vegetation indices. In a study of seven US sites, each representing a separate biome, Zhang
et al. [43] exploited the greater temporal resolution and smoother spatial distribution
offered by the Ocean and Land Colour Instrument aboard Sentinel-3 to generate GPP
simulations for comparison with flux tower estimates: r2 coefficients ranged from 0.76 for a
deciduous broadleaf forest to 0.45 for a grassland.

4.1. LST versus Tair

Even though there was evidence within our dataset that ten-day averages of daytime
LST > Tair for most sites and PFTs, the implications for the GPP simulations were muted.
This is perhaps not surprising because temperature is not the sole, or even principal, driver
of variation in LUE. VPD influences LUE because of the universal response of stomata [44]—
which progressively close to restrict transpiration, and hence photosynthesis, as VPD
increases. As a consequence, VPD imposes important limitations on GPP [45]. Inductive
multivariate modelling (avoiding a priori assumptions) applied to a daytime dataset for a
forest in Germany [46] found the most important non-radiative drivers of variation in NEE
to be VPD, Tair and wind direction—soil water content ranked in the lowest category for
explanatory power. That same ranking of effects (VPD > Temperature > Soil moisture) has
found support in recent modelling experiments [47].

Just as light conditions at the crown are not representative of conditions lower down
the canopy, so with temperature. Temperature deltas are influenced by height [48]. If
we are right to assume that remotely sensed LST can mimic the temperature of the leaf
canopy, then we might expect the advantages of adopting LST rather than Tair to be most
pronounced where the leaf area index is low (but not less than 1, see below). Our findings
lend support to that expectation.

Daytime overpasses, typically mid-morning for these European sites, may not accu-
rately reflect average conditions over the course of the daylight hours. On the other hand,
many studies have reported a midday depression of photosynthetic activity [45] and so an
overpass in mid-morning may often coincide with optimal conditions for photosynthesis.
Might model performance be improved if we adopted a daytime average of LST rather
than a single snapshot (as here)? Currently, Sentinel3 provides two overpasses in the
diurnal cycle: day and night. An averaging methodology is required that will account for
daylight hours as influenced by season and latitude. Early attempts (not presented here)
proved unsatisfactory and must be developed further. Utilising a suite of different sensors
including the Advanced Very High-Resolution Radiometer (offering increased temporal
resolution and shorter revisit intervals) could help to resolve the diurnal cycle.

4.2. Possible Data Imprecisions

How can we explain the finding, at certain sites, of early season bias (GPP simulations
> eddy-covariance values)? Time lags may occur between changes in greenness detected
by spectral vegetation indices and photosynthetic activity [49]. For temperate deciduous
species this decoupling might arise early or late in the growing season. An observed lag
in GPP behind LAI during leaf emergence can be attributed to sustained investment in
photosynthetic capacity beyond foliation [50]. It is also possible that these deltas arose,
in part at least, from fAPAR values inflated by neighbouring vegetation not incorporated
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in the flux-tower’s footprint. In a study of 21 FLUXNET sites, Balzarolo et al. [51] found
that the strength of the correlation between in situ and remotely sensed values of a preva-
lent vegetation index decreased with decreasing spatial resolution (i.e., correlations were
stronger for single than for multi-pixel aggregations). The footprint of the tower (on a given
day) may not correspond accurately to the pixel(s) used to generate the remotely sensed
forcing variables (here, greenness and temperature) [6]. A review of high-resolution images
(GoogleEarth), 1 km2 centred on the flux-tower, suggested that around 20 of our sites might
be classified as ‘heterogeneous’ (e.g., the sites are in close proximity to agriculture or human
habitation, Table A1). A model validation exercise limited to that subset of sites classified
as ‘homogeneous’ did not, however, provide marked improvement over the full dataset
(r = 0.84 homogeneous sites, Figure A2; r = 0.83 all sites, Figure 2).

4.3. The 2018 Drought

Our measure of drought, SPEI, by focusing on climatic water balance largely ignores
soil conditions. Our P-model simulations, likewise, have no explicit soil moisture term.
How important might that omission be for our results? For a Mediterranean evergreen
broadleaf forest, Liu et al. [52] found consistent anomalies when comparing eddy covariance
GPP estimates with simulations generated by a remote sensing product (MODIS17A); those
discrepancies were most pronounced during summer months of the ten-year study. The
authors found that relative water content, a measure of soil water limitation, could explain
ca. 75% of the GPP anomalies. Soil moisture and VPD effects can, however, be challenging to
separate because low soil moisture is often accompanied by high VPD [53]. After controlling
for covariation in greenness, VPD and other factors Stocker et al. (2019) concluded that soil
moisture deficits were a globally important constraint on GPP inducing a global reduction
of ca. 15% and amplifying the effects of extreme weather events. By contrast, Fu et al. [30],
also studying the European drought of 2018, found that when soils are wet, moderate
drying could have a positive effect on GPP; and that the relative importance, for GPP, of
VPD and soil moisture depends on the prevailing soil water conditions, with soil moisture
dominating in the driest soils.

It therefore seems likely that even if canopy temperatures are based on LST (or alter-
natively, for climate modelling applications, calculated using the canopy energy balance), it
will be necessary to formulate responses of stomatal behaviour and photosynthetic capacity
to low levels of soil moisture.

4.4. Next Steps for the Application of LST

Sparsely vegetated pixels present particular challenges for remote-sensing approaches
to estimating leaf temperature because the LST values may represent a combination of
bare ground as well as foliage. Sims et al. [54] evaluated a GPP model driven only by
the MODIS Enhanced Vegetation Index and LST at 11 flux sites in North America and
found strong correlations between eddy-covariance and modelled 16-day estimates of GPP
for selected forest sites, but not for a drought-prone, shrubland site. Work is underway,
supported by the spatial detail offered by high resolution satellites [55], to assess whether
the Sentinel-3 LST pixel values can be usefully disaggregated to distinguish vegetation and
bare ground components.

5. Conclusions

For this European dataset, incorporating a major drought event, we found good agree-
ment between estimates of GPP inferred from eddy-covariance measurements and simulations
generated using the P-model. We found that model error was higher under drought conditions
as characterised by a standardised climatic index. For sparsely vegetated sites, simulations
forced with land surface temperature did perform better than those forced with air temper-
ature during periods of drought. However, our simulations, even driven by available LST
estimates, do not yet reproduce the observed effects of drought on productivity.
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The P-model is under continual development. There are proposals for improved
formulations of the effects of temperature and soil moisture, and consideration of the role
of the diffuse radiation fraction. However, the guiding principle remains seeking simplicity
and generality, rather than adding complexity. Assessed against global GPP data and
evaluated in terms of functional relationships of GPP to key environmental drivers, the
model already performs well in comparison to considerably more complex models [47],
thus offering the initial basis for a well-founded, parameter-sparse global monitoring
system for GPP.
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Appendix A

Table A1. Site details: longitude (negative values are west of the prime meridian); latitude (north as
positive); site elevation (m above sea level); vegetation categories follow the IGBP land cover classifi-
cation: evergreen needleleaf forest (ENF), deciduous broadleaf forest (DBF), mixed forest (MF), closed
shrublands (CSH), open shrublands (OSH), savannahs (SAV), grasslands (GRA), permanent wetlands
(WET) and croplands (CRO). spatial heterogeneity assessment (homogeneous versus heterogeneous).

Code Sitename Lat Lon Elevation
(masl) IGBP Code Metabolism Homogeneity

BE-Bra Brasschaat 51.308 4.520 30 MF C3 Homo

BE-Dor Dorinne 50.312 4.968 248 GRA C3 Hetero

BE-Lon Lonzee 50.552 4.746 169 CRO C3 Homo

BE-Maa Maasmechelen 50.980 5.632 86 CSH C3 Homo

BE-Vie Vielsalm 50.305 5.998 495 MF C3 Homo

CH-Aws Alp Weissenstein 46.583 9.790 1969 GRA C3 Hetero

CH-Cha Chamau 47.210 8.410 391 GRA C3 Hetero

CH-Dav Davos 46.815 9.856 1652 ENF C3 Hetero

CH-Fru Früebüel 47.116 8.538 980 GRA C3 Hetero

CH-Lae Laegern 47.478 8.364 685 MF C3 Homo

CH-Oe2 Oensingen crop 47.286 7.734 452 CRO C3 Hetero

CZ-BK1 Bily Kriz forest 49.502 18.537 876 ENF C3 Homo

CZ-Lnz Lanzhot 48.682 16.946 181 MF C3 Homo

CZ-RAJ Rajec 49.444 16.697 653 ENF C3 Homo
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Table A1. Cont.

Code Sitename Lat Lon Elevation
(masl) IGBP Code Metabolism Homogeneity

CZ-Stn Stitna 49.036 17.970 580 DBF C3 Homo

CZ-wet Trebon (CZECHWET) 49.025 14.770 426 WET C3 Hetero

DE-Akm Anklam 53.866 13.683 - WET C3 Hetero

DE-Geb Gebesee 51.100 10.915 161 CRO C3 Homo

DE-Gri Grillenburg 50.950 13.513 377 GRA C3 Hetero

DE-Hai Hainich 51.079 10.453 467 DBF C3 Homo

DE-HoH Hohes Holz 52.085 11.219 220 DBF C3 Hetero

DE-Hte Huetelmoor 54.210 12.176 2 WET C3 Homo

DE-Hzd Hetzdorf 50.964 13.490 385 DBF C3 Hetero

DE-Kli Klingenberg 50.893 13.522 481 CRO Rotation: C3
2018, C4 2019 Homo

DE-Obe Oberbärenburg 50.787 13.721 755 ENF C3 Homo

DE-RuR Rollesbroich 50.622 6.304 515 GRA C3 Hetero

DE-RuS Selhausen Juelich 50.866 6.447 103 CRO C3 Homo

DE-RuW Wustebach 50.505 6.331 624 ENF C3 Homo

DE-Tha Tharandt 50.963 13.565 403 ENF C3 Homo

DK-Sor Soroe 55.486 11.645 52 DBF C3 Hetero

ES-Abr Albuera 38.702 −6.786 280 SAV C3 Homo

ES-Agu Aguamarga 36.940 −2.033 203 OSH C3 Hetero

ES-LM1 Majadas del
Tietar North 39.943 −5.779 264 SAV C3 Homo

ES-LM2 Majadas del
Tietar South 39.935 −5.776 269 SAV C3 Homo

FI-Hyy Hyytiala 61.847 24.295 190 ENF C3 Homo

FI-Let Lettosuo 60.642 23.960 124 ENF C3 Homo

FI-Sii Siikaneva 61.833 24.193 166 WET C3 Hetero

FI-Var Varrio 67.755 29.610 395 ENF C3 Homo

FR-Aur Aurade 43.550 1.106 244 CRO C3 Homo

FR-Bil Bilos 44.494 −0.956 39 ENF C3 Hetero

FR-EM2 Estrees-Mons A28 49.872 3.021 85 CRO C3 Homo

FR-FBn Font-Blanche 43.241 5.679 434 MF C3 Homo

FR-Fon Fontainebleau-
Barbeau 48.476 2.780 112 DBF C3 Homo

FR-Gri Grignon 48.844 1.952 123 CRO C4 Homo

FR-Hes Hesse 48.674 7.065 323 DBF C3 Homo

FR-Lam Lamasquere 43.496 1.238 179 CRO Rotation: C3
2018, C4 2019 Hetero

FR-LGt La Guette 47.323 2.284 157 WET C3 Hetero

FR-Mej Mejusseaume 48.118 −1.796 39 GRA C4 Homo

IT-BFt Bosco Fontana 45.198 10.742 42 DBF C3 Homo

IT-BCi Borgo Cioffi 40.524 14.957 9 CRO C4 Hetero
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Table A1. Cont.

Code Sitename Lat Lon Elevation
(masl) IGBP Code Metabolism Homogeneity

IT-Lav Lavarone 45.956 11.281 1371 ENF C3 Homo

IT-Lsn Lison 45.740 12.750 - OSH C3 Hetero

IT-MBo Monte Bondone 46.015 11.046 1557 GRA C3 Homo

IT-SR2 San Rossore 2 43.732 10.291 10 ENF C3 Homo

IT-Tor Torgnon 45.844 7.578 2158 GRA C3 Hetero

NL-Loo Loobos 52.167 5.744 37 ENF C3 Homo

RU-Fy2 Fyodorovskoye, dry
spruce stand 56.448 32.902 275 ENF C3 Homo

RU-Fyo Fyodorovskoye 56.462 32.922 278 ENF C3 Homo

SE-Deg Degero 64.182 19.557 266 WET C3 Homo

SE-Htm Hyltemossa 56.098 13.419 123 ENF C3 Homo

SE-Lnn Lanna 58.341 13.102 71 CRO C3 Homo

SE-Nor Norunda 60.086 17.480 89 ENF C3 Homo

SE-Ros Rosinedal-3 64.173 19.738 168 ENF C3 Homo

SE-Svb Svartberget 64.256 19.775 277 ENF C3 Homo
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