
1

Experimental survey of FPGA-based monolithic
switches and a novel queue balancer

Philippos Papaphilippou, Kentaro Sano, Boma A. Adhi, Wayne Luk

Abstract—This paper studies small to medium-sized monolithic switches for FPGA implementation and presents a novel switch design
that achieves high algorithmic performance and FPGA implementation efficiency. Crossbar switches based on virtual output queues
(VOQs) and variations have been rather popular for implementing switches on FPGAs, with applications in network switches, memory
interconnects, network-on-chip (NoC) routers etc. The implementation efficiency of crossbar-based switches is well-documented on
ASICs, though we show that their disadvantages can outweigh their advantages on FPGAs. One of the most important challenges in
such input-queued switches is the requirement for iterative scheduling algorithms. In contrast to ASICs, this is more harmful on FPGAs,
as the reduced operating frequency and narrower packets cannot “hide” multiple iterations of scheduling that are required to achieve a
modest scheduling performance. Our proposed design uses an output-queued switch internally for simplifying scheduling, and a queue
balancing technique to avoid queue fragmentation and reduce the need for memory-sharing VOQs. Its implementation approaches the
scheduling performance of a state-of-the-art FPGA-based switch, while requiring considerably fewer resources.

Index Terms—FPGA, switch, virtual output queues, output-queued, crossbar, scheduling algorithms, queue balancing, NoCs

✦

1 INTRODUCTION

Full-interconnection could be considered as one of the
fundamental and most challenging problems in computer
science, appearing from low-level circuits to higher-level
applications including neural networks. This is mainly be-
cause the possible paths in a fully-interconnected system are
O(P 2), where P is the number of inter-connected entities.
The scaling of this number directly impacts both software
and systems engineering, and different techniques exist for
attempting to make the best use of silicon and cycles.

Switch designs can be an integral part in FPGA designs.
They are used inside the programmable logic for accessing
different memories and peripherals from multiple workers
[1], as well as for interfacing with input/output devices,
such as for implementing network switches or stacks [2], or
communicating with other FPGAs [3]. Even with hierarchi-
cal switch designs, efficient switch architectures of a lower
radix (number of ports) are important as building blocks [4].

FPGAs are increasingly being used as accelerators in
high-performance (HPC) [5] and edge computing, and they
require implementations of high-end switches. In particu-
lar, recent advanced FPGAs have multiple high-bandwidth
memories to provide high throughput, though the coordi-
nation of their numerous ports is left to the fabric [6]. Com-
puting modules including fast Fourier transform [7] usually
access those memory ports through multiple initiator ports.
In our case, there are ongoing projects that motivated this
paper. These include Riken’s CGRA evaluation framework

• The authors Philippos Papaphilippou and Wayne Luk were with the
Department of Computing, Imperial College London, UK (E-mail:
p.papaphilippou17@alumni.imperial.ac.uk, w.luk@imperial.ac.uk). Philip-
pos is now with Huawei Technologies R&D (UK) Limited.

• The authors Kentaro Sano and Boma A. Adhi are with RIKEN Cen-
ter for Computational Science, Kobe, Japan (E-mail: {kentaro.sano,
boma.adhi}@riken.jp)

that is currently based on an FPGA cluster connected to the
supercomputer Fugaku [8]. While well-performing config-
urable switches exist in the application-specific integrated
circuit (ASIC) world [9], they are rarely combined with high-
end FPGAs, let alone with HPC-related features.

The main principle behind the research in high-
performance switching in hardware is to try to temporarily
rearrange the packets in time, to optimise the efficiency of
more primitive interconnects such as crossbars. In order to
achieve scalability for a higher number of entities, hierarchi-
cal approaches try to eliminate hardware complexity from
centralised complex switch architectures. Such approaches
also include network-on-chip (NoC) designs [10], which still
rely on switches of a lower radix (routers), with an overhead
in performance when approaching full connectivity [11].

In this paper we present an FPGA-based switch architec-
ture that exhibits high scheduling performance, while hav-
ing similar FPGA design attributes as simpler designs. Our
target specification is low to medium radix (number-of-port)
switches with high-scheduling performance, and an efficient
full-throughput (output-per-cycle) FPGA implementation.

The list of contributions of the paper is as follows:
1) A novel high-performance switch architecture that

achieves algorithmic performance similar to the opti-
mal for the studied traffic, while using a fraction of the
resources of a competing approach on FPGAs [12], [13].

2) A queue balancing technique to avoid queue fragmen-
tation for a more efficient use of the available memory
resources, with a low hardware overhead.

3) A systematic FPGA-focused comparison (experimental
survey) with existing switch architectures using simu-
lations and implementation on real hardware (sections
5 and 6). All source code is open-sourced.

This paper is an extension of the paper “Efficient Queue-
Balancing Switch for FPGAs” [14]. Additional material in-

2

cludes a more thorough simulation-based evaluation (sec-
tion 5), such as with the inclusion of four additional traffic
models, experiments on NoC adaptation, a more-detailed
design space, and a complexity analysis (section 6) elaborat-
ing on the behaviour of the FPGA-based implementations.

2 BACKGROUND

2.1 Crossbar

The crossbar is a simple and popular interconnect for both
FPGAs and ASICs. It consists of wires having crosspoints
everywhere there is an input-output port combination, re-
sulting in a crosspoint complexity of PI × PO , where PI

is the number of input ports and PO the number of output
ports. On the crosspoints there are smaller “switches” which
are logically equivalent to 2-to-1 multiplexers. On FPGAs,
crossbars can logically be implemented with a PI − to − 1
multiplexer per output port [15].

Crossbars and other primitive interconnects are consid-
ered “non-blocking”, as long as any configuration is sup-
ported without backpressure. However, this is only with
regard to all possible configurations, such as with desti-
nations being a passable permutation of the output ports.
“Passable” means the inter-connect is capable of performing
the permutation. However, when two ports send a packet
to the same port, either one input is blocked or a packet is
dropped according to the switch requirements.

The latest research on FPGA-based crossbar implemen-
tation focused on multi-stage alternatives. These are inter-
connects with similar functionality, including implementing
permutation networks, such as with butterfly networks [6],
sorting networks [16]. Another category of related research
is about the crossbar efficiency when building routers for
network-on-chip (NoCs) on FPGAs [11], [17]. Though, the
latter category often overlaps with the design of scheduling
algorithms according to the system requirements [18], as
when using the following crossbar-based switch design.

2.2 Input-Queued Crossbar

The input-queued switch uses virtual output queues
(VOQs) before the crossbar. There are PI × PO queues,
where PI is the number of inputs and PO the number of
outputs, to allow temporarily holding any incoming packets
without collisions. Each VOQ corresponds to every input-
output combination. VOQs are a popular workaround for
the head-of-line blocking, which avoids blocking from such
collisions to a certain degree, according to the traffic and
queue length.

Figure 1 shows how VOQs are used in high-level for a
switch of 4 input ports. A scheduling algorithm is respon-
sible for the dequeuing decisions. One advantage of the
input-queued crossbar is that each group of VOQs can be
represented by a single memory, because there is up to one
write and up to one read from each group per cycle.

Alternatively, input-queued switches are also found in
NoCs, where instead of VOQs there can be a specified
number of queues per input port. These queues represent
virtual channels (VC), which are used as a more flexible
abstraction than VOQs to support additional functionalities.
These include avoiding deadlocks in wormhole switching

Virtual
Output
Queues

Inputs

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3 Scheduling

Outputs

0

1

2

3

Crossbar

Fig. 1. Input-queued switch with VOQs

[10] (according to the behaviour of the routing algorithm),
and enforcing quality of service (QoS) by traffic classifi-
cation [19]. These could also be considered advantages of
the approach, although they relate mostly to the application
requirements.

The input-queued switch is one of the most popular
switch architectures on FPGA designs. There are works that
focus on the implementation efficiency of its scheduling
algorithm [20], [21], [22], as well as its memory-sharing
potential [4], [23]. The research on scheduling algorithms
for VOQs has been rather thorough outside the FPGA
domain, due to the importance of scheduling performance
and complexity, as well as the performance requirements
under different traffic types. Popular scheduling algorithms
include PIM [24], iSLIP [25], DRRM [26] and EDRRM [27].

2.3 Output-Queued Crossbar
The output-queued crossbar is considered the best perform-
ing switch algorithmically [28]. As illustrated in the example
of figure 2, there is a crossbar and only one queue per input
port, however, these operate at PI times the base operating
frequency. This speedup (or equivalent workarounds) is
necessary to be able to serve all requests one-by-one, and
essentially remove HOL blocking from the crossbar. This is
widely accepted as expensive and non-scalable [13], [29].

Inputs

0

Scheduling

Outputs

0

Crossbar Output
Queues

1 1

2 2

3 3

4x frequency

Fig. 2. Output-queued crossbar switch

There are optimisations that use a lower speedup [28].
Still, requiring a logic speedup is less desirable on FPGAs
[12], due to the restricted operating frequency when com-
pared to ASICs overall, as well as the more homogeneous

3

timing behaviour across the different FPGA resources [1],
[30]. Hipernetch [12] is a relatively recent FPGA-based so-
lution that uses a fully-pipelined structure that emulates an
output-queued crossbar, with its high resource utilisation as
its main drawback.

2.4 Output-Queued Switch (Without Memory Sharing)
A simpler variation of the latter design is the output-
queued switch, which achieves the same performance as
the output-queued crossbar in terms of average packet
latency, without any speedup. There are output queues in
the same organisation as virtual output queues, i.e. each
port de-multiplexes the packet to PO queues according to
its destination. The difference to VOQs is that the output
arbiters multiplex between queues destined directly for the
output port, rather than between queues of the same input
port. This is visualised in figure 3.

Output
Queues

Inputs

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3 Scheduling

Outputs

0

1

2

3

Fig. 3. Output-queued switch

One consideration has to do with the memory organisa-
tion of the switch, which becomes a concern for scalability,
as some configurations require PI × PO queues. Note that
in literature, an output-queued switch usually refers to also
having a memory sharing technique.

When compared to the input-queued switch, one notable
advantage of this approach is that it simplifies the schedul-
ing complexity, as the arbiter decisions are independent
of one another. This is because no crossbar is involved
for limiting to passable permutations once the packets are
stored in the queues.

On FPGAs, this is currently not a common switch archi-
tecture [4]. However, an equivalent generalised approach
is used in router designs on FPGA-based NoCs [31], also
known as the split-merge switch [32].

3 CHALLENGES

The challenges when selecting a switch architecture for
FPGA implementation often appear as trade-offs.

C1. Full-Interconnection
Ideally, a distributed/parallel system would enable all en-
tities to communicate with one another directly. However,
the number of links required, as well as the total logic

complexity grows exponentially with the number of entities.
Hence, network topologies enforce a multi-hop approach
to emulate full-interconnection at the expense of increased
latency and unfairness. In practice, this happens in all scales
of computing, from the individual gates that only have a
binary nature, to today’s internet that consists of distributed
nodes organised in a hierarchical structure [33].

In our context, the notion of full interconnection in
FPGA switches is limited to those that can forward any
input to any output simultaneously in a fixed latency of
one or a few pipelined FPGA cycles under ideal conditions
such as empty queues. As described, full interconnection is
challenging to support for a high number of ports, hence the
hierarchical approaches aiming at scalability [4]. While the
main logic of the presented monolithic switches can be seen
as combinational circuits, what happens inside the FPGA
under the specified cycle can vary from implementation
to implementation and from FPGA to FPGA due to the
differences in internal architectures and toolchain heuristics.
Thus, the effects of logic mapping are explored indirectly
through implementation.

An analogy to a challenging aspect in FPGA-based and
ASIC switches would be the hardened routers inside the
FPGA fabric and the number of metal layers in ASIC dies.
They are both used to implement wires, but exhibit restric-
tions in connectivity including the wire directions. FPGA
routers are ultimately switches [34], and are based on multi-
layer dies [35]. Still, a direct comparison of silicon-based
switches and FPGA-based switches is non-trivial, as there
are different technologies available to silicon but not on
FPGAs. Some examples include the availability of pass gates
or equivalents in silicon that simplify crossbar implementa-
tions [36], the higher operating frequencies and the fact that
multiplexers are considered expensive on FPGAs [37], even
though their fabric is based on hardened ones.

Full interconnectivity can sometimes be discounted ac-
cording to the task requirements. For instance, systolic ar-
rays only require a 2D mesh-structure for communication
between the compute units [38]. There are also techniques to
shrink network topologies and increase fairness [39], as well
as additional techniques to localise and/or approximate [40]
computation to reduce the packets and their flight time [41],
[42]. These or similar approaches can appear at different
scales, though they are outside the scope of this paper.

C2. Scheduling Performance

Different switch architectures try to temporarily rearrange
the packets, so that on each cycle the inputs to the crossbar
are in the form of passable permutations with respect to the
port destinations.

The effectiveness of switches is measured in terms of
packet latency, such as the average and worst-case latency,
and depends on the scheduling decisions and other design
choices of the switch. As the temporary reordering of the
packets is usually done using memories, another important
metric is packet loss rate, which depends on the queue size
and organisation, as well as the scheduling decisions.

For example, one fundamental limitation of input-
queued switches with virtual output queues (VOQs) is that
only one packet per VOQ group can be extracted per cycle.

4

This limitation is also reflected in our simulation results
when comparing input-queued switches with other archi-
tectures in section 5.

C3. Resource Utilisation

Especially on FPGAs, one important challenge is the im-
plementation efficiency with regard to the resource utilisa-
tion (including look-up tables (LUTs) and flip-flop registers
(FF)). One related consideration has to do with the memory
organisation of the switch, which becomes a concern for
scalability, as some configurations require PI × PO queues
(quadratic for (PI = PO)), where PI is the number of
input ports and PO the number of output ports. Section 6
elaborates on logic and space complexity.

C4. Memory Fragmentation

One challenge with switch designs is how efficiently the
memory space is used. If the memory is used inefficiently,
then this can impact the resource utilisation, as more mem-
ory will need to be available for certain performance.

This is present in both the output-queued switch and
the input-queued switch (VOQs), as there is one FIFO per
input-output combination. Thus, having only one possible
destination per packet makes the memory utilisation to
directly depend on the characteristics of the traffic. See
sections 5.2 and 5.3 for examples on the impact of memory
fragmentation using simulations.

C5. Critical Path

A long critical path can make an FPGA implementation
fail the timing requirements, or otherwise run at a low
operating frequency. For switch design this can translate
into a mandatory reduction in throughput, or a degradation
in other aspects of the design based on related trade-offs.

Certain switch designs require complex scheduling al-
gorithms for achieving a modest scheduling performance.
Such scheduling algorithms can easily contribute to the
critical path of the design, especially for a growing number
of ports. For instance, input-queued switches with virtual
output queues (or virtual channels) are left with a maximal
matching problem for a bipartite graph to be solved on-the-
fly, and the available scheduling algorithms are generally
expensive (see section 6). Such matching algorithms are usu-
ally iterative, meaning that they require multiple iterations
to perform well and approximate maximal matching. Many
of them are shown to converge after the log2(PI)th iteration
[43], where PI is the number of inputs.

On FPGAs, having a multi-cycle scheduling step [44]
is undesirable. On hardened network switches this is not
of a concern, such as with an ASIC implementation of
iSLIP that reconfigures the crossbar once every 9 cycles [45].
This is because of the much higher operating frequency
and the wider packets, which can be sent progressively
in smaller flits. An equivalent FPGA implementation [23],
although achieves a high operating frequency from splitting
scheduling across multiple cycles, it reduces the throughput
to only 1/3 + log2(PI) [12].

4 A NOVEL QUEUE BALANCING SWITCH

Our solution uses an output-queued switch to simplify
scheduling decisions (challenge C5) and improve schedul-
ing performance (C1, C2), in combination with a queue bal-
ancing mechanism for overcoming memory fragmentation
(C4) with an insignificant hardware overhead (C3).

One shortcoming of the output-queued switch is the
reduced efficiency of the queues, which can cause fragmen-
tation for certain traffic. For uniform Bernoulli arrivals this
is not a problem, because the probability of each queue
receiving a packet is equal among all queues, resulting in
uniform queue occupancy. However, under uneven traffic
such as with bursts, it is helpful to have a mechanism to
balance the queues.

The idea is to add a rotator near the input ports, to
create a round-robin effect for queue-balancing, such as
from bursts. Note that there is no balancing guarantee, as
it rotates all inputs based on a cycle counter, and alternative
designs for randomising the input packets would also be
appropriate. Figure 4 presents this approach in high-level.

Inputs

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

Barrel Shifters
as Rotators

cycle counter

select[1]select[0]

clk

Output
Queues

scheduling

Outputs

0

1

2

3

valid bits

Fig. 4. Input rotation for load balancing

If plain round-robin arbiters are controlling the queue
multiplexers, one issue would be that the order between
packets arriving from a source to a destination is partially
lost. This is because the rotation effect can land a packet
in multiple queues (as the number of inputs (PI)). Thus, a
workaround is required that allows the arbiters to prioritise
based on the arrival time.

The proposed workaround is introduced in figure 5. The
required order information can be obtained by an additional
set of PO queues, each holding packets of PI bits. Each
packet is holding bits corresponding to the enqueue signals
of each output queues, when grouped per output port
rather than per input port (as per output-queuing) that have
arrived on the same cycle. Each output arbiter holds the
head packet of its corresponding queue until it extracts all
packets that arrived together on that cycle, represented by
this head packet. On each cycle, when no packet goes to
a port, then no packet is stored in the valid bit queue of
that port. In this way, the arbiters can expect at least one
valid bit per valid bit packet, and no idle cycles or valid bit
queue space is wasted for low input rates. The queue depth

5

requirement for each valid bit queue is PI ∗depthFIFO , to be
able to handle the worst case of full utilisation with packets
arriving on different cycles.

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

Output
Queues

Outputs

0

1

2

3

4

valid bits

scheduling
0
1
1
0

0
1

1
0

Barrel Shifter
Outputs

Fig. 5. Valid bit queues for reproducing the correct order after rotation

The idea of traffic randomisation near the inputs existed
in the past [46], but it was for a more specialised use
case. The main novelty here is the consulting of the input
order by the scheduling module to reconstruct the correct
order between the arriving packets that follow the same
path, which widens its applicability on FPGAs to not only
for asynchronous transfers, such as for supporting system
interconnects. Network protocols such as TCP [47] are asyn-
chronous by nature, however packet/flit reordering is still
undesirable as the reordered packets can be more easily
considered as dropped packets. In such cases, a high latency
can yield a limited bandwidth overall as well as a hardware
or software overhead to reconstruct the packet order [48].
If the packet order is not deemed useful, the scheduler part
of the proposal can also be replaced with a simpler round-
robin scheme, for example.

5 EVALUATION

In order to evaluate our solution and the queue balancing
approach, we compare it against a selection of alternative
monolithic/ non-hierarchical switch architectures1. First, the
scheduling performance is evaluated for different traffic pat-
terns using simulations (sections 5.1 and 5.2). Then, a more
system-oriented evaluation includes simulation for use in
network-on-chips (sections 5.3). Finally, we proceed with
FPGA implementation of a subset of the studied approaches
(section 5.4), to investigate their resource requirement and
timing characteristics.

This section also serves as the experimental survey,
alongside section 6, which provides a high-level compar-
ison on the practicality of the studied switches after also
considering their theoretical complexities. This evaluation

1. Source code available: https://philippos.info/switches

also highlights the obtained improvements by using the
proposed rotator solution on the output-queued switch.
Hence, all parts of evaluation feature the output-queued
switch, and the output-queued switch with a rotator.

For the simulation experiments (sections 5.1 to 5.3), low-
level implementation details are abstracted, meaning that
there is 0 processing latency, and the packet-size, operating
frequency and other details are not used. With respect to
the memory organisation we assume PI × PO independent
queues for all switches.

For both simulation and implementation results, one
of the compared switch architectures is Hipernetch [12],
[13], which is a network switch implementation opti-
mised for FPGA use, and almost functionally equivalent to
the “output-queued crossbar”, generally featuring the best
scheduling performance amongst the alternatives. This also
requires PI × PO independent queues.

The switch simulations use the following traffic models.
Based on the input rate r ∈ [0, 1] number of input ports
PI , number of output ports PO and pi,j the probability
of input port i ∈ {0, 1, ..., PI} to send to output port
j ∈ {0, 1, ..., PO}:
(a) Uniform Bernoulli arrivals: Each input port sends a

packet to an output port with equal probability, i.e.
pi,j = r/PO

This is the most common traffic model for comparing
switches. It has a relatively desirable behaviour, as
the packets are evenly distributed across the queues.
Essentially, the proposal tries to emulate this model
for the output-queued switch, so it is not expected to
improve switching performance under this traffic.

(b) Uniform bursty traffic: Each source port follows a state
machine [12] that sends continuous bursts of a fixed
number of consecutive packets (32 by default). Each
pi,j is the same as above in the long run, as the overall
distribution remains uniform, but it is not consulted in
the decisions directly.
This model is also one of the most common traffic
models in both the evaluation and real systems, and
represents uneven traffic. It is similar to today’s in-
ternet, where it is said to work mostly in bursts (and
because frames are usually broken down into multiple
packets), as well as in system interconnects, where the
data block size is usually greater than that of the switch.
An example for the latter is when a 64-byte block is
loaded into the cache through a 128-bit main memory
interface in an x86 machine.

(c) Nonuniform – hotspot: The hotspot model [27], [49] sets
a steady probability for a packet to have the same
destination port as the source (defaulting to 0.5, i.e.
pi,j = r/2 for j = i), and equal for the remaining
output ports (i.e. pi,j = r/(2(PO − 1)) for j ̸= i,
PI = PO).
The hotspot model is also representative of a variety
of today’s systems including SoCs where a memory
node can be a communication hotspot in certain
configurations [10]. It can also be seen as a hybrid
traffic model, as it combines uniform traffic with a
(longer term) bursty traffic, which is also reminiscent
of today’s multi-tasking and multi-tenant systems.

https://philippos.info/switches

6

0.01

0.1

1

10

100

1000

10000

0 20 40 60 80 100

A
ve

ra
ge

 la
te

nc
y

(c
yc

le
s)

Input rate (%)

a) Uniform Bernoulli arrivals

0.01

0.1

1

10

100

1000

10000

0 20 40 60 80 100

A
ve

ra
ge

 la
te

nc
y

(c
yc

le
s)

Input rate (%)

b) Uniform bursty

Input-queued (DRRM 1 iter.)
Input-queued (DRRM)

Output-queued
Output-queued crossbar

0.01

0.1

1

10

100

1000

10000

0 20 40 60 80 100

A
ve

ra
ge

 la
te

nc
y

(c
yc

le
s)

Input rate (%)

c) Nonuniform: hotspot

0.01

0.1

1

10

100

1000

10000

0 20 40 60 80 100

A
ve

ra
ge

 la
te

nc
y

(c
yc

le
s)

Input rate (%)

d) Nonuniform: log-diagonal

0.01

0.1

1

10

100

1000

10000

0 20 40 60 80 100

A
ve

ra
ge

 la
te

nc
y

(c
yc

le
s)

Input rate (%)

e) Nonuniform: lin-diagonal

Fig. 6. Output-queued switches yield the lowest packet latencies

The final two nonuniform traffic patterns were intro-
duced in the literature to add additional complexity to
the hotspot model. These could be seen as less pro-
nounced hotspot variations. Their intensity variation
among each output port directly impacts the queue
utilisation pattern, which is our prime target for nor-
malisation through the proposed rotation approach.

(d) Nonuniform – log-diagonal: This nonuniform traffic
model [50], [51] scales the probabilities of consecutive
output ports j by the same amount (0.5) when receiving
from the same input port i. The resulting formula is
pi,j = r× 2PO−1−((i+j) mod PO)/(2PO − 1), where the i
value is only used to rotate the resulting logarithmic
probability matrix with respect to the sending input
port [51].

(e) Nonuniform – lin-diagonal: This is another nonuniform
traffic model [50], [51], where the probability of sending
from the same port to any two consecutive output ports
differs by a fixed amount (1/PO), i.e. pi,j = 2r × (1 +
((i + j) mod PO))/(PO(PO + 1)). Similarly with the
log-diagonal model, the i here is only used as an offset
to the probability matrix.

The selection of the competing approaches as well as
traffic models is not completely consistent throughout this
section, as the experiments have different motives. For ex-
ample, section 5.3 uses a subset of the aforementioned traffic
models that are also common for NoC evaluation.

For simulations, two variations of the input-queued
switch (with virtual output queues (VOQs)) are also in-
cluded. First, the input-queued “DRRM (1-iter)” switch rep-
resents one with a single iteration of the dual round-robin
matching scheduling algorithm (DRRM [44]). As with other
related algorithms [25], a single iteration yields generally
suboptimal scheduling performance, but it is included for
the interests of FPGA implementation efficiency. In other
words, the 1-iteration version is included to study an input-
queued switch with minimal scheduling complexity bene-
fiting implementation (best case for the critical path) rather
than scheduling behaviour.

Then, a log2(PI)-iteration version of “DRRM” is in-
cluded, representing a VOQ-based switch with typical
scheduling performance [13]. Multiple iterations are com-
monly used to approach maximal matching [43], hence
the lower performance variation between other scheduling
algorithms when log2(PI) iterations are used [12]).

For FPGA implementation (section 5.4), only the 1-
iteration version of DRRM is used out of the two, since we
target switches that can produce output-per-cycle (yielding
full-throughput). Input-queued switches with multiple iter-
ations are not considered for single-cycle implementation,
due to the critical path for scheduling (see sections 3 and 6).

5.1 Scheduling Performance (Simulation): Latency

First, we would like to measure the algorithmic performance
of the approaches independently of the implementation
details, packet size and other system effects. Thus, any
processing latency is normalised to 0, and only the time a
packet stays in the queues is considered.

The evaluation framework is partly based on the open-
source repository of Hipernetch [12]. Additional switches
and traffic patterns are developed in high-level using
python, including the output-queued with the rotator (pro-
posal) to facilitate this study. Each data point represents an
average of multiple runs, each with 25,000 cycles of injection
time (and 5,000 cycles warmup). The number of ports is set
to 16, but without loss of generality in the conclusions.

The first experiment studies the average packet latency,
i.e. the average time a packet stays in the queues in cycles.
For this experiment, the queues are conventionally consid-
ered of infinite size to focus on the scheduling performance
irrespective of the queuing effects.

As observed from figure 6, the output-queued switch
and the output-queued crossbar perform almost identi-
cally, and achieve the lowest average latency (see challenge
C2). For uniform traffic, the input-queued DRRM switch
achieves to be a relatively close second, but not for nonuni-
form traffic. DRRM’s single-iteration version is significantly

7

0 20 40 60 80 100
1

32
64
96

128
160
192
224
256

F
IF

O
s

d
ep

th

0.0001

0.001

0.01

0.1

1

10

100

Bernoulli

Input-queued (DRRM 1 iter.)

0 20 40 60 80 100
1

32
64
96

128
160
192
224
256

0.0001

0.001

0.01

0.1

1

10

100

Bernoulli

Input-queued (DRRM)

0 20 40 60 80 100
1

32
64
96

128
160
192
224
256

0.0001

0.001

0.01

0.1

1

10

100

Bernoulli

Output-queued

0 20 40 60 80 100
1

32
64
96

128
160
192
224
256

0.0001

0.001

0.01

0.1

1

10

100

Bernoulli

Output-queued with rotator

0 20 40 60 80 100
1

32
64
96

128
160
192
224
256

0.0001

0.001

0.01

0.1

1

10

100 P
ack

et lo
ss (%

)

Bernoulli

Output-queued crossbar

0 20 40 60 80 100
1

32
64
96

128
160
192
224
256

F
IF

O
s

d
ep

th

0.0001

0.001

0.01

0.1

1

10

100

Bursty

0 20 40 60 80 100
1

32
64
96

128
160
192
224
256

0.0001

0.001

0.01

0.1

1

10

100

Bursty

0 20 40 60 80 100
1

32
64
96

128
160
192
224
256

0.0001

0.001

0.01

0.1

1

10

100

Bursty

0 20 40 60 80 100
1

32
64
96

128
160
192
224
256

0.0001

0.001

0.01

0.1

1

10

100

Bursty

0 20 40 60 80 100
1

32
64
96

128
160
192
224
256

0.0001

0.001

0.01

0.1

1

10

100 P
ack

et lo
ss (%

)

Bursty

0 20 40 60 80 100
1

32
64
96

128
160
192
224
256

F
IF

O
s

d
ep

th

0.0001

0.001

0.01

0.1

1

10

100

Hotspot

0 20 40 60 80 100
1

32
64
96

128
160
192
224
256

0.0001

0.001

0.01

0.1

1

10

100

Hotspot

0 20 40 60 80 100
1

32
64
96

128
160
192
224
256

0.0001

0.001

0.01

0.1

1

10

100

Hotspot

0 20 40 60 80 100
1

32
64
96

128
160
192
224
256

0.0001

0.001

0.01

0.1

1

10

100

Hotspot

0 20 40 60 80 100
1

32
64
96

128
160
192
224
256

0.0001

0.001

0.01

0.1

1

10

100 P
ack

et lo
ss (%

)

Hotspot

0 20 40 60 80 100
1

32
64
96

128
160
192
224
256

F
IF

O
s

d
ep

th

0.0001

0.001

0.01

0.1

1

10

100

Log-diagonal

0 20 40 60 80 100
1

32
64
96

128
160
192
224
256

0.0001

0.001

0.01

0.1

1

10

100

Log-diagonal

0 20 40 60 80 100
1

32
64
96

128
160
192
224
256

0.0001

0.001

0.01

0.1

1

10

100

Log-diagonal

0 20 40 60 80 100
1

32
64
96

128
160
192
224
256

0.0001

0.001

0.01

0.1

1

10

100

Log-diagonal

0 20 40 60 80 100
1

32
64
96

128
160
192
224
256

0.0001

0.001

0.01

0.1

1

10

100 P
ack

et lo
ss (%

)

Log-diagonal

0 20 40 60 80 100

Input rate (%)

1
32
64
96

128
160
192
224
256

F
IF

O
s

d
ep

th

0.0001

0.001

0.01

0.1

1

10

100

Lin-diagonal

0 20 40 60 80 100

Input rate (%)

1
32
64
96

128
160
192
224
256

0.0001

0.001

0.01

0.1

1

10

100

Lin-diagonal

0 20 40 60 80 100

Input rate (%)

1
32
64
96

128
160
192
224
256

0.0001

0.001

0.01

0.1

1

10

100

Lin-diagonal

0 20 40 60 80 100

Input rate (%)

(proposal)

1
32
64
96

128
160
192
224
256

0.0001

0.001

0.01

0.1

1

10

100

Lin-diagonal

0 20 40 60 80 100

Input rate (%)

1
32
64
96

128
160
192
224
256

0.0001

0.001

0.01

0.1

1

10

100 P
ack

et lo
ss (%

)

Lin-diagonal

Fig. 7. Packet loss while varying the input rate and FIFO depth, for different traffic patterns. The rotator is close to the optimal (rightmost).

worse, starting from an input rate of about 40% and beyond
for all traffic patterns (see challenge C5). As a numerical
example for 100% input rate under uniform bursty traffic,
the output-queued switches yield an average latency of
772 cycles, which is 1.6 times lower than the 1251 value
of DRRM, which is in turn 2.66 times lower than 3325
from DRRM with 1 iteration. The respective numbers for
the hotspot nonuniform traffic are 89, 4989 (56.1x higher)
and 22759 (4.6x higher) cycles. The lin-diagonal nonuni-
form traffic differs more to the other models with respect
to the discrepancy of the 1-iteration DRRM, updating the
numerical comparison to 98, 723 (7.4x higher) and 6711 (9.3x
higher) cycles for output-queued, DRRM and 1-iteration
DRRM respectively.

Since this assumes infinite queues, the proposed queue-
balancing switch is omitted here, as its latency performance
is identical to the other output-queued switches. Studying
the latency with infinite queues can also be indicative for the
task completion time when the switch is blocking instead of
dropping packets, such as for memory requests. Though,
detailed simulations can be more appropriate for measuring
performance in such systems (see section 5.3).

5.2 Scheduling Performance (Simulation): Packet Loss

There are applications where packet loss is allowed, such as
in network switches. For instance, the Transmission Control
Protocol (TCP [47]), which is the prominent protocol in

today’s internet, assumes and mitigates packet losses, such
as through acknowledgements and retransmissions. In such
cases, minimising the packet loss rate is crucial for service
and application performance.

On FPGAs it is important to study the impact of packet
loss, as it relates directly to the queue size and organisation.
For example, the main argument for input-queued switches
(with VOQs) is the ability to share memories, reducing the
queue complexity from PI × PO (quadratic for PI = PO)
to PI [4]. However, according to the theoretical switching
performance, we show that it can still be worth using PI ×
PO queues, but of a fraction of the size, rather than PI longer
queues through memory sharing.

5.2.1 Input rate
The common parameter in the studied traffic models is the
input rate. The impact of the queue size (depth) on the
packet loss rate is presented in figure 7 for five different
switching approaches under the studied traffic patterns,
while varying the input rate. From left to right, the switches
are sorted according to their ascending overall performance,
starting from a DRRM-based switch with 1 iteration. The
first four use the same queue arrangement as virtual out-
put queues (VOQs), which is one queue per input-output
combination (ignoring memory-sharing complications). One
exception is with the last (output-queued crossbar), which
is emulated by Hipernetch [13] that features the same queue
organisation for consistency.

8

The main observation is the rotator effect on the output-
queued switch, which considerably improves the queue
utilisation efficiency. The exception to this is the uniform
Bernoulli arrivals (first row of figure 7), as the packets are
already evenly distributed across the input ports, which is
what the rotator tries to emulate to improve the queue utili-
sation efficiency. The output-queued switch with the rotator
yields a similar packet loss profile to the output-queued
crossbar (equivalent [13]), which is considered optimal.

Under uniform bursty traffic, the packet loss profile of
the output-queued switch (without rotator) is very similar
to the DRRM switch, being in line with the expectations set
in section 5.1. By including the rotator, under bursty traffic
with 80% input rate and a FIFO depth of 32, the output-
queued switch improves its packet loss from 11.7% to 1.5%
(7.9x reduction in packet loss). An 11.7% packet loss can also
be achieved with an output-queued switch with the rotator
with a FIFO depth of only 7 (4.6x reduction in queue space).

For nonuniform traffic, the input-queued approaches
have a more significant hit on performance than for uniform
traffic, and the rotation approach further improves on the
output-queued switch. This is because nonuniform traffic
directly impacts the queue usage unevenness in the long
term. For hotspot traffic at 100% input rate and FIFO depth
equal to 4, the packet loss reduces from 4.3 to 1.6% (2.6x
reduction), and the 4.2% is also improved when using
half the FIFO size for the rotator at 3.6%. The respective
comparison for the other nonuniform traffic models is from
4.6 to 1.5% (3.1x reduction) for log-diagonal and from 2.7 to
2.1% (1.2x reduction) for lin-diagonal traffic.

If we combine the inefficiencies of the DRRM switch with
just 1 iteration for a comparison with the proposed switch
(meaningful when it comes to implementation, as in section
5.4), the difference is more dramatic. Under bursty traffic
with input rate 80%, a FIFO depth of 32 yields 26.2% packet
loss for DRRM with 1 iteration (17.6x more than the rotator
with the same FIFOs), and it is close to an output-queued
switch with rotator with only a single register per FIFO
(32x space reduction) at 26.3% packet loss. For nonuniform
traffic, for an input traffic of 100% and a FIFO depth of 4,
DRRM with one iteration drops 36.1% of the packets, which
is more than the 8.5% of the rotator approach with a register
per queue. Lowering the memory requirements can be a
key to avoiding BRAM-based implementation using VOQs,
which can be a limiting factor for scalability [23].

As a conclusion, the proposal performs near-optimally
with respect to latency and queue utilisation for the studied
traffic models, and an efficient FPGA implementation would
further justify its appropriateness as an FPGA solution.

5.2.2 Traffic model-specific attributes
It is also relevant to understand the memory needs of a
switch with respect to the traffic features other than the
input rate. While most studied traffic models are more
strictly-defined, some can be further customised.

Figure 8 presents a similar experiment only for bursty
traffic and the output-queued switch (left), and with a rota-
tor (right). The x-axis now represents the burst size instead
of the input rate, which is now fixed to 80%. The burst size
is demonstrated to be an important factor in deciding the
memory organisation of the switch.

The rotator approach is also shown to be consistent in
improving the packet loss with varying the burst size. In
other words, the main difference between the two plots of
figure 8 is that the y-axis (FIFO depth) is mostly stretched
by a constant. This is because a single burst that would
originally go into a single FIFO is now able to be distributed
across multiple queues. For a numerical example, under
bursts of size 128, a packet loss of around 14.5% can be
achieved with either an output-queued switch with a FIFO
depth of 100 or the proposed switch with a FIFO depth of
20. This is a 5x reduction, which is similar to the reduction
reported by section 5.2.1 for a burst size of 32.

25 50 75 100 125

Burst size

20

40

60

80

100

120

F
IF

O
s

d
ep

th

0

5

10

15

20

25

30

Output-queued

25 50 75 100 125

Burst size

20

40

60

80

100

120

0

5

10

15

20

25

30

P
ack

et L
o

ss (%
)

Output-queued with rotator
(proposal)

Bursty Bursty

Fig. 8. Bursty traffic: impact of burst size on memory requirements

A similar experiment is also done for the hotspot nonuni-
form traffic, but instead of varying the burst size, the packet
loss is measured while varying the probability to send to the
same port. In this experiment the input rate is kept at 100%.
This is illustrated in figure 9, where the proposal yields
lower packet loss rates overall, though the relationship
between them is less trivial than before (non-linear). For
example, under hotspot traffic with 20% probability, the
output-queued switch requires a queue length of about 150
to achieve near zero packet loss, and with 80% this increases
to 254, while the proposal requires a FIFO depth of 66 and
38 respectively for similar packet loss behaviour.

0 25 50 75 100

Same port probability (%)

50

100

150

200

250

F
IF

O
s

d
ep

th

0.001

0.01

0.1

1

10

Output-queued

0 25 50 75 100

Same port probability (%)

50

100

150

200

250

0.001

0.01

0.1

1

10

P
ack

et L
o

ss (%
)

Output-queued with rotator
(proposal)

Hotspot Hotspot

Fig. 9. Hotspot traffic: impact of the rate of sending to the same port

As can be observed by comparing the packet loss under
bursty traffic and hotspot, as well as from the rest of the
experiments in this section, bursty traffic can be the most
demanding. This insight ignores the input-queued switch
results (DRRM variations) where the crossbar limitations
have a greater hit on performance for nonuniform traffic.
For this comparison, the points of interest from the bursty

9

traffic are one to two orders of magnitude higher than those
of the hotspot (also note the colour axis scale difference).
This highlights the importance of optimising for bursty
traffic, which is also representative for various systems with
more advanced communication protocols (but moving from
packet loss to additional latency).

5.3 NoC Simulation
The proposed solution can be adopted inside network-on-
chips (NoCs) to implement the router of each node. This
experiment evaluates its impact on NoCs and is based
on an in-house NoC simulator modelling an 8 × 8 NoC
totalling 64 nodes. Each node contains a placeholder for a
5 × 5 switch. The 5 ports per router switch represent each
direction (north, east, south and west) and the node itself,
as illustrated in figure 10. The selected traffic models are (a)
uniform Bernoulli arrivals and (b) uniform bursty traffic.

node
(PY-1, 0)

node
(PY-1, 1)

node
(PY-1,
PX-1)

...

node
(1, 0)

node
(1, 1)

N
C

W E
S

node
(1, PX-1)

node
(0, 0)

node
(0, 1)

node
(0, PX-1)

...

...

...

5×5
switch

Fig. 10. 5-port (5× 5) switches in a NoC

In contrast to the isolated switch simulations in the other
parts of the evaluation, no packet loss is allowed, and at the
same time the queues have an indicative fixed depth. This
means that backpressure is enabled, which also introduces
the risk for deadlock according to the routing algorithm.

The proposal conserves the deadlock-free property of
the input-queued (wormhole) and output-queued switches
as NoC routers that use existing routing algorithms for
traversal through the nodes. Deadlock-free routing algo-
rithms verified to work with all studied switches include
dimension-ordered routing (XY for travelling first through
the X axis, and YX for travelling first through the Y-axis) and
other turn restriction-based routing [52]. This is because,
in the worst-case the rotation serialises the packet options
with respect to each output port of the router. This case
is equivalent to having at least one buffer per output (or
input) port, which can be satisfied by the turn model [52]
(supporting more advanced models is part of future work).

Figure 11 introduces the results of this experiment. The
general observation is that the expected performance rank-
ing of the studied switches is inherited in NoCs built around
them. However, there are some non-trivial cases. First, in
contrast to the isolated latency experiments of section 5.1,
here each of the three output-queued switches performs dif-
ferently, including under Bernoulli arrivals. While the traffic
models are equivalent to those in the isolated evaluation,

1

10

100

1000

0 0.2 0.4 0.6 0.8

A
ve

ra
ge

 la
te

nc
y

(c
yc

le
s)

Injection rate
(packets/node/cycle)

a) uniform Bernoulli arrivals

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8

T
hr

ou
gh

pu
t

(p
ac

ke
ts

/n
od

e/
cy

cl
e)

Injection rate
(packets/node/cycle)

1

10

100

1000

0 0.2 0.4 0.6 0.8

A
ve

ra
ge

 la
te

nc
y

(c
yc

le
s)

Injection rate
(packets/node/cycle)

b) uniform bursty traffic

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8

T
hr

ou
gh

pu
t

(p
ac

ke
ts

/n
od

e/
cy

cl
e)

Injection rate
(packets/node/cycle)

Input-queued (DRRM 1-iter.)

Input-queued (DRRM)

Output-queued

Output-queued with rotator

Hipernetch

Simulation specification
Warmup: 1,000 cycles
Injection: 10,000 cycles
Averaging: ≥10 runs
Routing algorithm: YX DOR
NoC size: 8×8 = 64
Router FIFO space: 5×5×16

Fig. 11. Comparing switches as NoC routers

they concern the entire system, and the routers themselves
do not necessarily experience the same distributions. For
instance, the leftmost nodes never send packets to the west.

Similarly, the average latency metric is not representative
of performance when stand-alone (hence also the use of
infinite queues in section 5.1). Another performance metric
that is used to study NoC performance is the throughput.
The idea is that the system can “keep up” with the injection
rate as long as it is equal to the throughput (for this setup),
both of which are measured as the average number of
packets being injected (or extracted for throughput) to each
node per cycle. An example for why both metrics are useful
is for an input rate of 40% of traffic a), where all switches
yield a throughput of 100% the injection rate, even though
the average latency already differs (8.9, 16.9 and 31.5 cycles
for output-queued, DRRM and DRRM 1-iter. respectively).
Additionally, the throughput can be used to easily identify
inefficiencies at higher injection rates. For example, for 0.8
injection rate of a), the removal of the rotator from the
output-queued lowers the throughput by 6.1%. This can be
explained by the inefficient use of the buffer space in the
VOQ-like arrangement of the output-queued switch, which
can enforce backpressure more frequently.

Finally, the highest jump in performance for Bernoulli
arrivals comes from the move to output-queued switches.
Under bursty traffic however, the rotation effect of both
the proposal and Hipernech is more dramatic. The rotator-

10

0

50

100

150

200

250

300

350

400

8x8 16x16

f m
ax

(M
H

z)

Port configuration

Input-queued (DRRM 1-iter.)

Output-queued

Output-queued with rotator

Hipernetch

0 K

20 K

40 K

60 K

80 K

100 K

120 K

140 K

160 K

180 K

8x8 16x16

L
oo

k-
up

 ta
bl

es
 (

L
U

Ts
)

Port configuration

0 K

20 K

40 K

60 K

80 K

100 K

120 K

140 K

160 K

180 K

8x8 16x16

F
li

p-
fl

op
 r

eg
is

te
rs

 (
F

F
s)

Port configuration

Fig. 12. Switch resource utilisation and operating frequency as reported by Vivado 2020.1 for Xilinx Alveo U280

based switch is shown to improve the throughput by 41,
28 and 6.5% over the 1 and 3-iteration versions of input-
queued, and the output-queued for an input rate of 80% for
Bernoulli arrivals. The numerical example above is updated
to 28, 23 and 15% under bursty traffic with a 80% load.
For Hipernetch the throughput values for this example were
similar to the proposal (±1%).

5.4 FPGA-based Implementation

In order to asses the implementation efficiency of the com-
pared switches as FPGA designs, three switches are im-
plemented from scratch: (1) an input-queued switch with
DRRM (1 iteration), (2) an output-queued and (3) an output-
queued switch with the rotator optimisation. These designs
are also compared with an existing switch with a simi-
lar setup (4) Hipernetch [12], with the highest theoretical
performance. The switches are implemented for the Xilinx
Alveo U280 board using Vivado 2020.1. These implemen-
tations work as peripherals on a real FPGA for validation
purposes, but are out-of-context with respect to any I/O
devices, system memories etc.

Switches (1), (2) and (3) feature FIFOs with depth equal
to 8. The switch (1) even though is based on virtual out-
put queues, it does not exploit memory sharing, as we
test LUTRAM-based memory. Otherwise, the added logic
complexity would shift our design space towards further
optimising the critical path of memory sharing logic. The
open source Hipernetch (4) implementation [13] only has a
register per FIFO by default, being more a proof-of-concept.

5.4.1 Basic Implementation Comparison

Initially, Vivado-reported implementation metrics for utili-
sation are overviewed for the competing switches. As can be
observed from the figure 12 left, the maximal operating fre-
quency (fmax) is similar between switch implementations of
the same port configuration, except with the input-queued
switch which has a significant overhead in both 8x8 and
16x16 configurations. With respect to the FPGA resource
utilisation, the look-up table (LUT, figure 12 middle) and
flip-flop register (FF, figure 12 right) utilisation varies less
between different switch sizes, and the difference is more
consistent across different approaches. See section 6 for
additional reasoning behind those observations.

The overhead of adding the rotator to the output-queued
switch seems rather negligible, as the fmax drops from 380
to 343 MHz for 8x8, but increases from 188.5 to 202 MHz for
16x16. Such small variations are expected from heuristic-
based place-and-route tools, but the increase in frequency
can also be explained by the addition of pipeline stages from
the rotator. In terms of LUTs and FFs, there is generally
a 10 to 19% increase when adding the (pipelined) rotator.
Though, it is still considerably more resource efficient than
Hipernetch. It uses 59% more FFs and 44% more LUTs than
the rotator approach for 16 ports, also noting it only has a
register per FIFO in its original configuration.

The comparison in figure 12 used one data point per
switch implementation for brevity. Specifically, switches (3)
and (4) use a pipelined implementation, and there is a
design space concerning where the pipeline registers are
placed. (3) uses a fully-pipelined barrel shifter implemen-
tation (a register per pipeline stage), resulting in additional
log2(PI) cycles. For (4), Hipernetch has an optimisation
parameter (S) that relates to the number of registers in the
pipeline [12]. We selected a well-performing [12] configura-
tion of S = 3 and S = 4 for the 8x8 and 16x16 configurations
respectively that provide a latency of 4 FPGA cycles in
both cases. Following is a design space exploration of the
register placement inside their corresponding pipelines, and
is analogous to retiming, which can be done automatically
by the toolchain [53].

5.4.2 Latency and Throughput Design Space
The placement of registers impacts more than one perfor-
mance attribute of the resulting implementations. Thus, a
more detailed design space exploration is presented for
focusing on related performance metrics. These metrics are
the operating frequency, port bandwidth (proportional to
the frequency), and the port-to-port latency. Note that these
metrics do not cover the algorithmic performance that was
explored separately in simulation (in sections 5.1 to 5.3).

Figure 13 summarises how the obtained operating fre-
quency translates into port-to-port latency in nanoseconds
(ns) and port bandwidth in billion bits per second (Gbps),
for both 8 and 16-port switches. Since all studied approaches
can fully saturate the line rate, the frequency is multiplied
by the studied packet size (256-bit) to provide the port
throughput. At around 800 Gbps for both 8 and 16 ports,

11

100

150

200

250

300

350

400

4 16 64

30

40

50

60

70

80

90

100

f m
ax

P
ort bandw

idth (G
bps)

Port-to-port latency (ns)

Port configuration: 8×8

100

150

200

250

300

350

400

4 16 64

30

40

50

60

70

80

90

100

f m
ax

P
ort bandw

idth (G
bps)

Port-to-port latency (ns)

Input-queued (DRRM 1-iter.)

Output-queued

Output-queued with rotator

Hipernetch

Port configuration: 16×16
lower is better

hi
gh

er
 is

 b
et

te
r

lower is better

hi
gh

er
 is

 b
et

te
r

Fig. 13. Port bandwidth and port-to-port latency

the achievable throughput is similar between all switches
excluding the input-queued. The jump to 16 ports approx-
imately halves the operating frequency, hence the smaller
variation in the aggregate throughput. This means that
hierarchical approaches can still be relevant if a higher
throughput is required [4], and our solution could also be
applied as a building block.

Regarding the port-to-port latency (x-axes of figure 13),
this is obtained by multiplying the clock period to the
latency of each switch in FPGA cycles. The pipeline latency
of (1) and (2) is 1 cycle (plus one more for enqueuing a single
packet). Out of the two, (2) has the lowest resulting port-to-
port latency due to its high operating frequency, which may
be also useful in certain applications where the single-cycle
latency might be desirable, such as for easier backpressure
support (without excessive buffering needs), or in systems
where exhaustive scheduling is a requirement, including for
bursts in some systems interconnects.

The leftmost data point of (3) has a similar port-to-port
latency to the output queued switch (in both the 8 × 8 and
16 × 16 configurations), because it represents an output-
queued switch with a rotator of no additional pipeline
registers, resulting in the same pipeline latency. A related
observation is also that the design space of (3) mostly varies
the port-to-port latency (x-axis) rather than the operating
frequency (y-axis), when compared to (4). This highlights
that the rotator has a relatively low overhead and that the
most demanding logic relates to the multiplexers of the
output-queued switch as a building block of (3).

When comparing (3) to (4), the proposal (3) achieves
lowest port-to-port latency with a similar algorithmic per-
formance (as shown in section 5.1). (4) can achieve the
highest throughput, but for sometimes prohibitively high
resource utilisation (as demonstrated in section 5.4.1 for one
of the well-performing points, and with a fraction of the
queue space).

All switches here provide relatively low port-to-port
latencies, including our proposed queue-balancing switch
(3), especially when compared with hierarchical [4] and
iterative [23] alternatives which have already been shown
to be an order of magnitude higher than (4) Hipernetch [13].

6 COMPLEXITIES

This section elaborates on the theoretical complexities of
the studied architectures, in order to understand how our

approach compares to the alternatives, as well as to better
interpret the experimental results from the FPGA-based
evaluation (section 5.4).

With respect to the critical path, the scheduling com-
plexity is shown to affect the operating frequency and
subsequently the throughput. This is especially apparent
when moving from the input-queued switch with virtual
output queues (VOQs) to the output-queued switch. If we
abstract the scheduling algorithm required by the input-
queued switch as a combinational circuit, it has a high
number of inputs (fanin). This is because the input-queued
switch scheduler requires the valid bit of every queue
(totalling PI × PO), the current rotation of the priority
encoders to enforce fairness such as with round-robin pri-
ority [44] (PI × log2(PO)) and a bit per output port (PO

bits, in case port availability is required). This totals to
PI × (PO + log2(PO)) + PO, which sums to 336 inputs for
PI = PO = 16.

On the other hand, output-queued switches have sim-
pler scheduling, because each output arbiter is indepen-
dent. A simple arbitration scheme that was used in the
evaluation is to have a round-robin arbiter with a priority
encoder per output port, which totals to a maximum fanin
of PI+ log2(PI)+1 bits (the +1 is for when port availability
is concerned). In the case of the rotator, the valid bits that
need to be read by the port arbiter are stored in the form of
small packets. Note that the priority is still round-robin, but
on every arbiter offset wrap-around, the packet is dequeued
so that each valid bit is read once for every packet. Thus, the
output-queued switch with a rotator needs one more bit to
check for valid packet availability, totalling PI+log2(PI)+2
bits. This sums to 22 bits for PI = PO = 16.

Using an input switch with a multi-iteration and multi-
cycle scheduling algorithm would normally isolate the
workload in circuits with smaller fanin. Scheduling algo-
rithms for input-queued switches approximate maximal
matching without needing access to large truth tables
through long LUT chains. Sometimes, each iteration consists
of multiple phases (such as request, grant and accept in
iSLIP [25]), and each can also occupy a different cycle. In
such cases the maximum fanin reduces to that of the arbiters
[45] typically totalling max(PO+log2(PO), PI+log2(PI))+2
for round-robin in the arbiters near VOQs and near the
outputs. Though, the suboptimal scheduling capabilities
and FPGA-related complications of VOQs would still apply.

12

TABLE 1
Comparing switch architectures

Switch Total queue space (bits) Queue
fragmentation

Fastest growing
component Highest scheduling fanin Scheduling

performance

Input-queued,
memory-sharing [4], [23]

PI × depthFIFO

×widthpacket
Yes PI × PO

memory logic units PI × (PO + log2(PO)) + PO Low

Input-queued,
no memory-sharing

PI × PO × depthFIFO

×widthpacket
Yes PI × PO

packet queues PI × (PO + log2(PO)) + PO Low

Output-queued PI × PO × depthFIFO

×widthpacket
Yes PI × PO

packet queues PI + log2(PI) + 1 High

Output-queued,
with rotator

PI × PO × depthFIFO

×(widthpacket + PI)
No PI × PO

packet queues PI + log2(PI) + 2 High

Hipernetch [12], [13] PI × PO × depthFIFO

×widthpacket
No PO × PI × log2(PI)/2

rotator switches PI + log2(PI) + 1 High

The evaluation studied single-cycle implementations,
including the single-iteration version of an input-queued
switch. On FPGAs, the most significant overhead of itera-
tive (and multi-phase) approaches could be considered the
impact on throughput, due to the operating frequency lim-
itations [13]. As the crossbar is reconfigured less frequently
than the main design, there will be diminishing returns
relating to the packet size to achieve the bandwidth poten-
tially required by other entities on the system. For special
use cases, iterative and multi-phase approaches could still
be meaningful, if performance is not a priority, or for future
FPGA architectures enabling faster operation.

Table 1 summarises the findings of the paper on the stud-
ied switch architectures, as well as the complexities men-
tioned in this discussion and related work. The “scheduling
performance” reflects the results of section 5.1, and denotes
whether the switch approaches the latency of the output-
queued crossbar. The “queue fragmentation” attribute is
based on the queue balancing ability for nonuniform traffic
and is demonstrated experimentally in the results of sections
5.2 and 5.3.

The first entry of table 1 is a memory-sharing version
of the input-queued switch and is provided here only for
completeness. The memory-sharing aspect can have dif-
ferent attributes, including the need for PI × PO output
pointer queues [4], [23], and differs according to the im-
plementation. The added virtual queue-handling logic is
abstracted inside the notion of “memory logic units” that
is its fastest growing hardware component (ignoring the
potential scheduler-related logic complexity, which is seen
as variable and more purely combinatorial).

7 DISCUSSION AND FUTURE WORK

This section discusses the generality of the conclusions, as
well as potential future work to widen their applicability.
The evaluation in both simulation and implementation is
consistent with the more-theoretical complexity analysis
and the intuitions behind the proposal. The proposed switch
combines the low latency of the output-queued switch
with the queue balancing approach for a near optimal
queue utilisation. The rotator benefits all uneven or bursty
traffic. Implementation-wise, the input-queued is severely
bottlenecked by the scheduling algorithm, even though a

simplistic one is used as a baseline. The resource utilisation
remains similar for all other switches other than Hipernetch,
which follows its “fastest growing component” complexity.

While the observations in simulation sections 5.1 to 5.3
hold without loss of generality, the exact numerical results
are case specific, especially for demanding traffic. This is
because when a switch is not able to cope with the incoming
traffic then more and more packets are being accumulated in
its queues, hence the latency or queue requirements being in
the order of the magnitude of the simulated packet arrivals
for high input rates.

This survey does not cover additional functionality and
optimisation that might be desirable in certain scenarios.
For example, for this reason as well as due to the rea-
soning in the discussion on FPGA use of section 6, only
single-flit packets are considered. In the case of multi-flit
packets, the proposed approach can be modified to update
the cycle counter (see figure 4) only when all tails of in-
transfer packets are received. Such arrangement can ease the
reconstruction of packets and routing algorithms in more
hierarchical approaches, which can be explored further.

Although sometimes it is trivial to generalise the studied
techniques more, there are some aspects that are less or-
thogonal. For instance, quality of service (QoS) support and
memory sharing, although less common on FPGA switches,
they both involve more complex memory usage schemes,
including virtual channels. Thus, future work could include
a comparison of the rotator approach on such switches,
and their interaction with the different memory technologies
available on FPGAs. Additionally, the implementation effi-
ciency for specific targets can be studied extensively, such as
with regard to backpressure support, or alternative circuits
for evenly distributing the packets into the queues. The
latter could include random permutations from a butterfly
network, or more deterministic approaches [12], [54].

For NoC use, the rotator approach can enforce limita-
tions on the routing algorithm of the NoC according to the
use case. Many NoCs require the NoC routing algorithm to
have a consistent route for packets between each two nodes
[10]. This is to ensure that flits of the same packet follow the
same path, otherwise the rotation of the inputs inside the
routers could rearrange their order. This requirement is al-
ready satisfied for simpler common NoC routing algorithms
such as XY and YX DOR [55], though the wider applicability

13

of the rotator can be studied further.

8 CONCLUSIONS

In this paper, a novel switch architecture is proposed
that approaches the algorithmic and FPGA-based perfor-
mance of the state-of-the-art, but with a considerable re-
duction in resource utilisation. It is also demonstrated
that the input-queued switches are inappropriate in high-
throughput FPGA-based applications, due to the costly
scheduling algorithms and the low theoretical switching
performance. One challenge in common queueing schemes,
such as with virtual output queues, is the queue fragmen-
tation that can reduce the utilisation by an order of mag-
nitude for demanding traffic. Our proposed rotator-based
switch solves the fragmentation issue for the output-queued
switch, while having a small hardware overhead. Our study
targets monolithic high-performance designs with a low to
medium radix in mind, and for FPGA use. They can be
applied in existing hierarchical designs such as those for
implementing larger interconnects, routers for network-on-
chips (NoCs) and other switches aiming at scalability.

ACKNOWLEDGEMENT

This research was sponsored by dunnhumby. The par-
tial support of EPSRC (grant numbers EP/L016796/1,
EP/L00058X/1 and EP/N031768/1) and the Japan Society
for the Promotion of Science (JSPS) KAKENHI (grant num-
bers 20H00593 and 21H04869) is gratefully acknowledged.

REFERENCES

[1] A. Interconnect, “v2. 1 logicore ip product guide,” PG059, Xilinx,
December, vol. 20, 2017.

[2] M. Ruiz, D. Sidler, G. Sutter, G. Alonso, and S. López-Buedo,
“Limago: An fpga-based open-source 100 gbe tcp/ip stack,” in
2019 29th International Conference on Field Programmable Logic and
Applications (FPL). IEEE, 2019, pp. 286–292.

[3] M. Naylor, S. W. Moore, D. Thomas, J. R. Beaumont, S. Flem-
ing, M. Vousden, A. T. Markettos, T. Bytheway, and A. Brown,
“General hardware multicasting for fine-grained message-passing
architectures,” in 2021 29th Euromicro International Conference on
Parallel, Distributed and Network-Based Processing (PDP), 2021, pp.
126–133.

[4] Z. Dai and J. Zhu, “Saturating the transceiver bandwidth: Switch
fabric design on fpgas,” in Proceedings of the ACM/SIGDA interna-
tional symposium on Field Programmable Gate Arrays. ACM, 2012,
pp. 67–76.

[5] F. Abel, J. Weerasinghe, C. Hagleitner, B. Weiss, and S. Paredes,
“An fpga platform for hyperscalers,” in IEEE 25th Annual Sympo-
sium on High-Performance Interconnects (HOTI), 2017, pp. 29–32.

[6] Y.-k. Choi, Y. Chi, W. Qiao, N. Samardzic, and J. Cong, “Hbm
connect: High-performance hls interconnect for fpga hbm,” in The
2021 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, 2021, pp. 116–126.

[7] T. Miyajima and K. Sano, “A memory bandwidth improvement
with memory space partitioning for single-precision floating-point
fft on stratix 10 fpga,” in 2021 IEEE International Conference on
Cluster Computing (CLUSTER), 2021, pp. 787–790.

[8] B. Adhi, C. Cortes, Y. Tan, T. Kojima, A. Podobas, and K. Sano,
“The cost of flexibility: Embedded versus discrete routers in cgras
for hpc,” in 2022 IEEE International Conference on Cluster Computing
(CLUSTER), 2022, pp. 347–356.

[9] H. T. Dang, P. Bressana, H. Wang, K. S. Lee, N. Zilberman,
H. Weatherspoon, M. Canini, F. Pedone, and R. Soulé, “P4xos:
Consensus as a network service,” IEEE/ACM Transactions on Net-
working, vol. 28, no. 4, pp. 1726–1738, 2020.

[10] T. Van Chu and K. Kise, “Lef: An effective routing algorithm for
two-dimensional meshes,” IEICE TRANSACTIONS on Information
and Systems, vol. 102, no. 10, pp. 1925–1941, 2019.

[11] N. Kapre and J. Gray, “Hoplite: Building austere overlay nocs for
fpgas,” in 2015 25th International Conference on Field Programmable
Logic and Applications (FPL). IEEE, 2015, pp. 1–8.

[12] P. Papaphilippou, J. Meng, and W. Luk, “High-Performance FPGA
Network Switch Architecture,” in The 2020 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays, ser. FPGA ’20.
New York, NY, USA: Association for Computing Machinery, 2020,
pp. 76–85.

[13] P. Papaphilippou, J. Meng, N. Gebara, and W. Luk, “Hipernetch:
High-performance fpga network switch,” ACM Transactions on
Reconfigurable Technology and Systems, 2021.

[14] P. Papaphilippou, K. Sano, B. A. Adhi, and W. Luk, “Efficient
queue-balancing switch for fpgas,” in 2021 International Conference
on Field-Programmable Technology (ICFPT), Dec 2021, pp. 1–5.

[15] S. Shreejith, P. Mundhenk, A. Ettner, S. A. Fahmy, S. Steinhorst,
M. Lukasiewycz, and S. Chakraborty, “Vega: A high performance
vehicular ethernet gateway on hybrid fpga,” IEEE Transactions on
Computers, vol. 66, no. 10, pp. 1790–1803, 2017.

[16] R. Mueller, J. Teubner, and G. Alonso, “Sorting networks on
fpgas,” The VLDB Journal—The International Journal on Very Large
Data Bases, vol. 21, no. 1, pp. 1–23, 2012.

[17] B. P. Prasad, K. Parane, and B. Talawar, “An efficient fpga-based
network-on-chip simulation framework utilizing the hard blocks,”
Circuits, Systems, and Signal Processing, vol. 39, no. 10, pp. 5247–
5271, 2020.

[18] A. Bitar, J. Cassidy, N. Enright Jerger, and V. Betz, “Efficient and
programmable ethernet switching with a noc-enhanced fpga,” in
Proceedings of the tenth ACM/IEEE symposium on Architectures for
networking and communications systems. ACM, 2014, pp. 89–100.

[19] N. Rameshan, A. Biyani, M. Gaur, V. Laxmi, and M. Ahmed, “Qos
aware minimally adaptive xy routing for noc,” in 17th International
Conference on Advanced Computing and Communication (ADCOM),
Bangalore, India, 2009.

[20] J. C. Borromeo, I. Cerutti, P. Castoldi, R. Reyes, and N. Andriolli,
“Fpga-based implementation of two-step schedulers for modular
optical interconnection networks,” Journal of Optical Communica-
tions and Networking, vol. 13, no. 5, pp. 116–125, 2021.

[21] Z. Guang, Y. Lin, Z. Ming, and M. Yilan, “The improvement and
implementation of islip algorithm based on fpga,” in International
Conference on Trustworthy Computing and Services. Springer, 2014,
pp. 260–266.

[22] I. Cerutti, J. A. Corvera, S. M. Dumlao, R. Reyes, P. Castoldi,
and N. Andriolli, “Simulation and fpga-based implementation of
iterative parallel schedulers for optical interconnection networks,”
Journal of Optical Communications and Networking, vol. 9, no. 4, pp.
C76–C87, 2017.

[23] J. Meng, N. Gebara, H.-C. Ng, P. Costa, and W. Luk, “Investigating
the feasibility of fpga-based network switches,” in 2019 IEEE 30th
International Conference on Application-specific Systems, Architectures
and Processors (ASAP). IEEE, 2019.

[24] T. E. Anderson, S. S. Owicki, J. B. Saxe, and C. P. Thacker,
“High-speed switch scheduling for local-area networks,” ACM
Transactions on Computer Systems (TOCS), vol. 11, no. 4, pp. 319–
352, 1993.

[25] N. McKeown, “The islip scheduling algorithm for input-queued
switches,” IEEE/ACM transactions on networking, no. 2, pp. 188–
201, 1999.

[26] J. Chao, “Saturn: a terabit packet switch using dual round robin,”
IEEE Communications Magazine, vol. 38, no. 12, pp. 78–84, 2000.

[27] Y. Li, S. Panwar, and H. J. Chao, “The dual round robin matching
switch with exhaustive service,” in Workshop on High Performance
Switching and Routing, Merging Optical and IP Technologie. IEEE,
2002, pp. 58–63.

[28] S.-T. Chuang, A. Goel, N. McKeown, and B. Prabhakar, “Matching
output queueing with a combined input/output-queued switch,”
IEEE Journal on Selected Areas in Communications, vol. 17, no. 6, pp.
1030–1039, 1999.

[29] R. B. Magill, C. E. Rohrs, and R. L. Stevenson, “Output-queued
switch emulation by fabrics with limited memory,” IEEE J. on
Selected Areas in Communications, vol. 21, no. 4, pp. 606–615, 2003.

[30] Xilinx, “Block memory generator, v8. 4. logicore ip product guide,”
2017.

14

[31] Y. Huan and A. DeHon, “Fpga optimized packet-switched noc
using split and merge primitives,” in 2012 International Conference
on Field-Programmable Technology. IEEE, 2012, pp. 47–52.

[32] N. Kapre, N. Mehta, M. Delorimier, R. Rubin, H. Barnor, M. J. Wil-
son, M. Wrighton, and A. DeHon, “Packet switched vs. time multi-
plexed fpga overlay networks,” in 14th Sym. on Field-Programmable
Custom Computing Machines. IEEE, 2006, pp. 205–216.

[33] Z. Ge, D. R. Figueiredo, S. Jaiswal, and L. Gao, “Hierarchical
structure of the logical internet graph,” in Scalability and Traffic
Control in IP Networks, vol. 4526. SPIE, 2001, pp. 208–222.

[34] J. Rose and S. Brown, “Flexibility of interconnection structures
for field-programmable gate arrays,” IEEE Journal of Solid-State
Circuits, vol. 26, no. 3, pp. 277–282, 1991.

[35] M. B. Petersen, S. Nikolić, and M. Stojilović, “Netcracker: A peek
into the routing architecture of xilinx 7-series fpgas,” in The 2021
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, 2021, pp. 11–22.

[36] C. Chiasson and V. Betz, “Should fpgas abandon the pass-gate?”
in 2013 23rd International Conference on Field programmable Logic and
Applications. IEEE, 2013, pp. 1–8.

[37] H. Wong, V. Betz, and J. Rose, “Comparing fpga vs. custom cmos
and the impact on processor microarchitecture,” in Proceedings of
the 19th ACM/SIGDA international symposium on Field programmable
gate arrays, 2011, pp. 5–14.

[38] W. Luk, V. Lok, and I. Page, “Hardware acceleration of divide-and-
conquer paradigms: a case study,” in Proceedings IEEE Workshop on
FPGAs for Custom Computing Machines, 1993, pp. 192–201.

[39] K. T. Pham, T. T. Nguyen, H. Yamaguchi, Y. Urino, and
M. Koibuchi, “Scalable low-latency inter-fpga networks,” in 2022
IEEE International Parallel and Distributed Processing Symposium
(IPDPS), 2022, pp. 234–245.

[40] J. Barnes and P. Hut, “A hierarchical o (n log n) force-calculation
algorithm,” nature, vol. 324, no. 6096, pp. 446–449, 1986.

[41] Y. Xue and P. Bogdan, “User cooperation network coding ap-
proach for noc performance improvement,” in Proceedings of the
9th International Symposium on Networks-on-Chip. ACM, 2015.

[42] ——, “Improving noc performance under spatio-temporal vari-
ability by runtime reconfiguration: a general mathematical frame-
work,” in 2016 Tenth IEEE/ACM International Symposium on
Networks-on-Chip (NOCS), 2016, pp. 1–8.

[43] F. J. Gonzalez-Castano, C. Lopez-Bravo, R. Asorey-Cacheda, P. S.
Rodriguez-Hernandez, and J. Pousada-Carballo, “Analytical eval-
uation of phm convergence,” IEEE transactions on communications,
vol. 54, no. 9, pp. 1547–1553, 2006.

[44] Y. Li, S. Panwar, and H. J. Chao, “On the performance of a
dual round-robin switch,” in Proceedings IEEE INFOCOM 2001.
Conference on Computer Communications. Twentieth Annual Joint
Conference of the IEEE Computer and Communications Society (Cat.
No. 01CH37213), vol. 3. IEEE, 2001, pp. 1688–1697.

[45] P. Gupta and N. McKeown, “Designing and implementing a fast
crossbar scheduler,” IEEE micro, vol. 19, no. 1, pp. 20–28, 1999.

[46] M. Letheren, J. Christiansen, I. Mandjavidze, H. Verhille,
M. De Prycker, B. Pauwels, G. Petit, S. Wright, and J. Lumley,
“An asynchronous data-driven event-building scheme based on
atm switching fabrics,” IEEE transactions on nuclear science, vol. 41,
no. 1, pp. 257–266, 1994.

[47] V. Cerf and R. Kahn, “A protocol for packet network intercommu-
nication,” IEEE Transactions on communications, vol. 22, no. 5, pp.
637–648, 1974.

[48] K.-C. Leung, V. O. Li, and D. Yang, “An overview of packet
reordering in transmission control protocol (tcp): problems, solu-
tions, and challenges,” IEEE transactions on parallel and distributed
systems, vol. 18, no. 4, pp. 522–535, 2007.

[49] C. He and K. L. Yeung, “D-lqf: An efficient distributed scheduling
algorithm for input-queued switches,” in 2011 IEEE International
Conference on Communications (ICC). IEEE, 2011, pp. 1–5.

[50] Y. Shen, S. S. Panwar, and H. J. Chao, “Providing 100% throughput
in a buffered crossbar switch,” in 2007 Workshop on High Perfor-
mance Switching and Routing. IEEE, 2007, pp. 1–8.

[51] A. Baranowska, G. Danilewicz, W. Kabacinski, J. Kleban,
D. Parniewicz, and P. Dabrowski, “Performance evaluation of
the multiple output queueing switch under different traffic pat-
terns,” in GLOBECOM’05. IEEE Global Telecommunications Confer-
ence, 2005., vol. 1. IEEE, 2005, pp. 5–pp.

[52] C. J. Glass and L. M. Ni, “The turn model for adaptive routing,” in
25 years of the international symposia on Computer architecture (selected
papers), 1998, pp. 441–450.

[53] X. U. G. UG612, “Timing closure user guide,” 2012.
[54] C.-S. Chang, W.-J. Chen, and H.-Y. Huang, “On service guarantees

for input-buffered crossbar switches: a capacity decomposition
approach by birkhoff and von neumann,” in 7th Int. Workshop on
Quality of Service. IWQoS’99 (Cat. 98EX354). IEEE, 1999, pp. 79–86.

[55] J. W. Brown, “Adaptive network on chip routing using the turn
model,” Ph.D. dissertation, University of New Hampshire, 2013.

Philippos Papaphilippou received his PhD
from Imperial College London in 2021. His PhD
was funded by dunnhumby for researching novel
accelerators to improve the performance of big
data analytics. He is now a senior CPU archi-
tect at Huawei Technologies R&D (UK) Limited.
His research topics include FPGAs, sorting algo-
rithms, network switches, multi-processor archi-
tecture and data science.

Kentaro Sano is the team leader of the pro-
cessor research team at RIKEN Center for
Computational Science (R-CCS), responsible
for research and development of future high-
performance processors and systems. His re-
search includes data-driven and spatial-parallel
processors such as a coarse-grain reconfig-
urable array (CGRA), FPGA-based HPC, high-
level synthesis for reconfiguration, and system
architectures for next-generation supercomput-
ing based on the data-flow model.

Boma A. Adhi graduated with Bachelor and
Master degrees in Electrical Engineering from
University of Indonesia in 2010 and 2013. He
obtained his PhD in Computer Science and En-
gineering from Waseda University in 2020 and
is currently a postdoc researcher in the Proces-
sor Research Team, RIKEN R-CCS, Japan. His
interests include compilers, multicore SoC, and
heterogeneous reconfigurable computing.

Wayne Luk is a professor of computer engineer-
ing at Imperial College London. He leads the
Programming Languages and Systems Section,
and the Custom Computing Research Group at
the Department of Computing. He is a Fellow
of the Royal Academy of Engineering, the IEEE,
and the BCS.

	Introduction
	Background
	Crossbar
	Input-Queued Crossbar
	Output-Queued Crossbar
	Output-Queued Switch (Without Memory Sharing)

	Challenges
	A novel queue balancing switch
	Evaluation
	Scheduling Performance (Simulation): Latency
	Scheduling Performance (Simulation): Packet Loss
	Input rate
	Traffic model-specific attributes

	NoC Simulation
	FPGA-based Implementation
	Basic Implementation Comparison
	Latency and Throughput Design Space

	Complexities
	Discussion and Future Work
	Conclusions
	References
	Biographies
	Philippos Papaphilippou
	Kentaro Sano
	Boma A. Adhi
	Wayne Luk

