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A B S T R A C T

In order to assess the intelligibility of a target signal in a noisy environment, intrusive speech intelligibility
metrics are typically used. They require a clean reference signal to be available which can be difficult to obtain
especially for binaural metrics like the modified binaural short time objective intelligibility metric (MBSTOI).
We here present a hybrid version of MBSTOI that incorporates a deep learning stage that allows the metric to
be computed with only a single-channel clean reference signal. The models presented are trained on simulated
data containing target speech, localised noise, diffuse noise, and reverberation. The hybrid output metrics
are then compared directly to MBSTOI to assess performances. Results show the performance of our single
channel reference vs MBSTOI. The outcome of this work offers a fast and flexible way to generate audio data
for machine learning (ML) and highlights the potential for low level implementation of ML into existing tools.
1. Introduction

The intelligibility of a noisy speech signal can be measured directly
using listening tests. However, such tests may be lengthy and difficult
so that it is often preferred to estimate intelligibility using one of
the many available instrumental or computed intelligibility metrics.
The most reliable current metrics are intrusive, meaning that they
require the original, clean signal as a Ref. French and Steinberg (1947),

NSI (1997), Hu and Loizou (2008), Kates and Arehart (2014, 2021),
ørgensen and Dau (2011) and Jørgensen et al. (2013).

One of the most popular single-channel intrusive metrics remains
he short time objective intelligibility metric (STOI) (Taal et al., 2011).

This was later improved, resulting in ESTOI, to handle fluctuating
interferers better (Jensen and Taal, 2016), before being extended into
a binaural metric by adding an equalisation cancellation (EC) stage in
DBSTOI (Andersen et al., 2016). DBSTOI however was found to over-
estimate intelligibility with spatially distributed interferers when the
signal to noise ratio (SNR) was low. This inaccuracy was resolved with
the introduction of a modified version, called MBSTOI, in Andersen
et al. (2018a) which improves the robustness of the metric by using a
modified optimality criterion for determining the EC parameters. The
EC stage (Durlach, 1963) has also been used in other binaural metrics
(stBSIM in Beutelmann and Brand (2006), Beutelmann et al. (2010) or
B-sEPSM in Chabot-Leclerc et al. (2016)) and uses binaural cues to find
parameters to align and cancel undesired localised interference.

The recent widespread availability of machine learning (ML) and
deep learning (DL) tools (Abadi et al., 2016; Paszke et al., 2019)
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has led to the creation of many new metrics. Where end-to-end met-
rics have been created (Pedersen et al., 2020; Cauchi et al., 2019),
these are mostly aimed at improving presented techniques (ANIQUE+,
STOI-NET, NI-SIP) (Kim and Tarraf, 2007; Zezario et al., 2020; An-
dersen et al., 2018b). The majority of existing methods implement
single-channel metrics although recently some metrics have applied ML
to binaural signals such as the binaural speech intelligibility metric
(BAPSI) (Rosbach et al., 2021).

While binaural metrics perform well, the need for a binaural clean
reference limits their scope of application. Following a sensitivity analy-
sis of EC estimation errors in MBSTOI, it has recently been shown that it
is possible to replace this EC estimation in MBSTOI by a DL network and
so create a hybrid metric (Guiraud et al., 2022). ML is here integrated
at a low level so that most steps of the metric computation remain
unchanged. In the present paper, a DL model is used to reproduce
the performance of traditional MBSTOI using only a single-channel
reference signal rather than a binaural reference. Its performance is
assessed in a range of situations using both simulated datasets and an
independent open-source dataset of real recordings.

The principles of MBSTOI are presented in Section 2.1 before intro-
ducing two new hybrid ML metrics in Section 2.2. Details of the created
datasets, DL models and training process are provided in Sections 3,
4.1 and 4.2 respectively. Analysis of the performance on the created
datasets is presented in Sections 5.1 and 5.2. Section 5.3 shows the
performance of the metrics with the independently recorded dataset.
Finally, conclusions and perspectives are given in Section 6.
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Fig. 1. MBSTOI computation block diagram. The EC stage is performed independently at every time frame and over all third-octave bands. The estimation of the EC parameters
consists of a grid-like search and an optimisation criterion determines the retained value for each time and frequency.
Fig. 2. DEC and Dcor MBSTOI computation block diagram. The preprocessing stage is unchanged from traditional MBSTOI. DEC-MBSTOI uses DL to estimate directly the optimal
EC parameters to remove the grid search. Dcor-MBSTOI estimates directly the correlation coefficient of the current time frame and frequency band.
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2. MBSTOI, DEC-MBSTOI and Dcor-MBSTOI

2.1. MBSTOI: Principle, EC stage and correlation

The calculation of the MBSTOI binaural intelligibility metric is
illustrated in Fig. 1. The inputs to the metric are a noisy binaural
ignal and a clean binaural signal containing only the target speech
omponents. The signals are resampled to 10 kHz and divided into
verlapping analysis frames. After removing frames in which the target
peaker is silent, the signals are transformed into the frequency domain
sing the short-time Fourier Transform (STFT), and the frequency bins
ggregated into third-octave bands. The DFT coefficients of both ears
re combined to model binaural advantage in intelligibility when there
s spatial separation between target and interferer. This EC stage uses
arameters which represent the interaural level and time differences
ILD and ITD) of the dominant interferer and are denoted 𝛾 and 𝜏
espectively. However, since the direction of the source and interferer
re not known, an exhaustive grid search of the EC parameters, with
esolutions of 1 dB and 20 μs in 𝛾 and 𝜏 respectively, is performed to
etermine the potential advantage of having two ears. A single pair of
alues is selected for each frequency band based on the optimisation
riterion and then used to incorporate the binaural advantage into
BSTOI (Andersen et al., 2018a). The correlation between clean and

egraded envelopes is then computed and averaged across all time
rames and all frequency bands to predict a metric value between 0
nd 1.
75
.2. DEC-MBSTOI and Dcor-MBSTOI

Within MBSTOI, the clean binaural reference signal is then used for
hree purposes:

• silent frame removal,
• estimation of the EC parameters, 𝛾 and 𝜏,
• calculation of the correlation coefficients.

f the binaural reference were to be replaced by a single-channel refer-
nce, this would not significantly influence the silent frame removal
tage but the EC parameters and correlation coefficients estimation
ould need to be modified. In this work, two approaches to using ML

n place of the EC stage are investigated. In both cases, the end goal is
o be able to replace the binaural reference signal by a single-channel
eference signal in the computation of MBSTOI.

Fig. 2 summarises the processing stages of the two metrics. The first
etric, called deep equalisation cancellation MBSTOI (DEC-MBSTOI),

liminates the exhaustive search for the optimal values of 𝛾 and 𝜏.
nstead, a deep neural network (DNN) is trained to estimate the optimal
C parameters and the correlation coefficient is then calculated using
he single-channel reference as both the left and right ear channel. The
econd metric is called deep correlation coefficients MBSTOI (Dcor-
BSTOI). Here, the DNN directly estimates the correlation coefficient

nd bypasses the use of the EC parameters. The motivation for this
etric arises from the difficulty in applying the EC and correlation

tages when only a single-channel reference is available.
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Fig. 3. Histogram distribution of MBSTOI in all four datasets in each Train, Test and Validation split.
Table 1
Dataset details.

Target Interferer

Distance (m) 1 1
Level (dB) 60 [50, 51, . . . , 70]
Azimuth (degrees) [−30, 0, 30] [0, 22.5, . . . , 180]
Elevation (degrees) [−45, 0, 45] [−45, 0, 45]

3. Dataset creation

Four datasets with increasing scene complexity were created using
tascar (Grimm et al., 2019). While these datasets share similar scene
eatures, they were generated independently. Hence, scenes are not
quivalent between datasets. The interested reader is invited to look at
he tascar manual for more details about the various plugins used.
or each dataset, 5000 sentences were generated and split randomly
nto Train, Test and Validation sets comprising respectively 70%, 25%
nd 5% of the total dataset. The MBSTOI (Andersen et al., 2018b)

distribution for each set is shown in Fig. 3. These are the values that
the presented hybrid-MBSTOI metrics aim to reproduce.

3.1. Dataset D1: Interfering noise

The first dataset consists of an anechoic scene where a target
speaker is located in front of the listener. The speech is randomly
chosen from the IEEE speech corpus (Rothauser et al., 1969), UK
recordings. This corpus consists of 72 individual male and 72 individual
female recordings of up to 10 sentences each. Each token in this corpus
is a sentence of less than 6 s duration. An interfering noise signal taken
76
randomly either from the same IEEE speech corpus or from the PNL100
non-speech noise corpus (Hu and Wang, 2010) is played from a position
around the listener. If the interfering noise comes from the IEEE corpus,
a random different talker (male or female) and sentence is used for the
target signal. Sound is played in tascar using the sndfile plugin.

A simulated listener which incorporates the main features of a
measured head related transfer function (HRTF) is located at the origin
of the spatial coordinate system. This is implemented using the re-
ceiver hrtf plugin with default values. The location and level of the
target and interferer signal relative to the listener are randomly chosen
from the values listed in Table 1. In addition to the binaural HRTF
receiver, an omnidirectional microphone (receiver omni plugin) is
placed at the origin to provide the single-channel reference signal.

3.2. Dataset D2: Diffuse noise

The second dataset adds diffuse noise in addition to the localised
interferer from dataset D1. The room considered is still anechoic. The
target and interferer signal are chosen in a similar fashion as in D1. The
diffuse noise is implemented using tascar diffuse plugin which
generates a diffuse sound field within a space. Recorded babble noise
from a crowded bar is used. Its level is selected from the same range
as the interferer in Table 1 but is independently chosen.

3.3. Dataset D3: Reverberant room

The third dataset places the target and interfering noise from dataset
D1 in a reverberant environment. The dimensions of the room are

varied randomly from a minimum of 2.5 × 2.5 × 2.2 m to a maximum
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Fig. 4. Schematic of the DNN model used. The legend states in parentheses the exact name of the corresponding layers used in Pytorch (Paszke et al., 2019). 𝐹𝑏𝑎𝑛𝑑 ∈ [2, 45] is
he number of STFT frequency bins in the current third-octave band, 𝑁 = 30 is the number of time frames, 𝐷 = 6 for a single-channel reference or 8 for a binaural reference, and
= 2 for DEC models and 1 for Dcor models.
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Table 2
Reverberation time (𝑅𝑇60) calculation for the smallest and largest rooms of the
imulations using the Sabine formula.
Room size / absorption coefficient 0.1 0.9

Smallest 0.64 s 0.07 s
Largest 1.79 s 0.20 s

Table 3
ML hyperparameters.

Hyperparameters Values

Learning rate 0.001
Batch size 16
Max epoch 6
Optimiser Adam

Kingma and Ba (2015)
Criterion MSE
Early stopping Patience of 2 on test loss

Zhang and Yu (2005) and Yao et al. (2007)

of 10 × 10 × 4 m. The listener is always at the centre of the room.
The absorption coefficient of the walls is randomly chosen between
0.1 and 0.9 with a 0.1 step. The early reflections are implemented
using tascar facegroup plugin and diffuse reverberation is done

ith a ‘‘simple feedback delay network’’ from the reverb plugin.
he reverberation time (𝑅𝑇60) is calculated using the Sabine formula
𝑇 60 = 0.161𝑉 ∕(𝑆𝛼) (Schomer and Swenson, 2002) with 𝑉 volume, 𝑆

urface and 𝛼 average absorption coefficient. The resulting maximum
𝑇60 for the smallest and largest room are seen in Table 2. As with
ataset D1, there is no diffuse noise.

.4. Dataset D4: General case

The fourth dataset combines all the tascar plugins of the previous
atasets. The scenes consist of a target signal with interfering localised
oise, diffuse noise and room reverberation. This dataset is intended
o represent a diverse and more general case in which to test the
etrics. It is stressed that datasets are generated independently, and

hat sentences do not correspond directly between datasets.
77
. Machine learning models and training

.1. Deep learning models

Fig. 4 shows the architecture of the deep neural networks (DNN)
sed in both DEC-MBSTOI and Dcor-MBSTOI. Each DNN comprises a
ombination of convolution neural network (CNN) and artificial neural
etwork (ANN) layers. Details of the hyperparameters of the models
re given in Table 3. The input parameters used are the same as for
raditional MBSTOI, meaning the spectrograms for each channel of
he binaural noisy signal and the binaural or single-channel reference
ignal. For each single input signal, the size of a spectrogram is the
umber of STFT frequency bins in the current third-octave band (𝐹𝑏𝑎𝑛𝑑)
ultiplied by the number of time frames, 𝑁 , in the analysis window. A
ifferent model is trained for each third-octave-band due to the varying
umber of STFT bins in each band. Each analysis window forms an
ndividual training input.

The use of a binaural or single-channel reference changes the num-
er of input parameters 𝐷. Whereas four spectrograms are used for
raditional MBSTOI, only three are used in the case of a single-channel
eference. In order to preserve the phase information, each input spec-
rogram is separated into its real and imaginary parts. Hence the
umber of parameters 𝐷 of the model is a total of either 8 or 6 real-
alued spectrogram components according to whether a binaural or
ingle-channel reference is used.

In Guiraud et al. (2022), more complex structures were tested with
o significant improvements in results, these included DNNs with an
ncreased number of layers, nodes and with alternative input parameter
epresentations. The DNN model presented in Fig. 4 is used through-
ut this paper as it gave accurate MBSTOI estimation and similar
omputational time to MBSTOI.

All the DNNs were implemented using the PyTorch library (Paszke
t al., 2019) and used the Python implementation of MBSTOI provided
y the Clarity challenge (Graetzer et al., 2021).

.2. Training

Fig. 5 details the simulation process and how it is used to train
he metrics. Using the available original audio files, tascar (Grimm
t al., 2019) generates two outputs for all scenes: binaural and single-
hannel audio recordings at the listener’s position. The noisy binaural
ignals for D1 to D4 are then computed as well as their associated clean
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Fig. 5. Block diagram of the construction of the hybrid MBSTOI metrics. tascar is used to generate the datasets for training. Traditional MBSTOI is then computed to provide
he target outputs being either the EC parameters or the correlation coefficient. D1 to D4 identify alternative datasets with increasing complexity. DEC and Dcor identify alternative
ortions of the MBSTOI algorithm that are replaced by a neural network.
g
F
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nechoic reference. Using matching noisy and clean signals, MBSTOI
s calculated and the EC parameters and correlation coefficients are
xtracted. They are then used as target values for DL training using
he same signals.

To evaluate the trained metrics, DEC and Dcor MBSTOI results are
ompared with the target MBSTOI value. It is noted that the new
etrics will learn any shortcomings of MBSTOI, since it is used as the

raining target. In particular, performance results of MBSTOI and the
ew metrics might differ when compared on human intelligibility data.
owever, any hypothetical better performance of the hybrid models
ould be purely coincidental as the DL section is implemented at low

evel of MBSTOI calculation.
Both metrics are first tested on MBSTOI reproduction using the bin-

ural reference before being trained using the single-channel reference
nly.

. Evaluation results

In this section, all presented results were obtained using the Vali-
ation sets. In other words, observed data are similar to the Train and
est sets but were never seen before by the ML models during training.

Throughout this section, in order to establish whether two models
isplay statistically significant differences, paired t-tests have been
erformed on the hybrid-MBSTOI results. However, in order to not
reak the independent observation hypotheses of paired t-test, the
esults have been randomly split in two. This process is repeated five
imes and the average 𝑝-value is calculated (Dietterich, 1998; Bouckaert

and Frank, 2004; Vanwinckelen and Blockeel, 2012). 5 × 2-fold paired
t-test is then applied to every combination of models to all datasets
of interest and the results are displayed in Tables 4 and 5. Values in
old are above the 5% threshold and are considered not statistically
ifferent.

.1. DNN estimation performance

Plots investigating a single representative sentence from D4 can be
ound in Figs. 6 to 9. They display the accuracy of DEC in estimating

and 𝜏 or of Dcor in estimating the correlation coefficients across
requency bands. The darker, blue, dots correspond to binaural DEC and
78

p

Table 4
Averaged p-values of a 5 × 2-fold paired t-test on the validation data of the various
models used across datasets. In bold are the values above 0.05 being not statistically
significant.

Compared pair DEC-b Dcor-b DEC-m Dcor-m

D1/D2 1.28e−02 6.45e−01 4.84e−01 3.25e−01
D1/D3 3.04e−07 1.63e−15 5.08e−08 2.22e−06
D1/D4 1.84e−10 4.10e−12 1.02e−06 3.19e−05
D2/D3 1.79e−03 7.71e−16 3.93e−08 3.19e−08
D2/D4 1.38e−06 3.05e−13 2.91e−07 2.60e−06
D3/D4 1.91e−02 4.08e−01 3.88e−01 2.31e−01

D1/EC = 0 4.08e−08 2.08e−01 1.68e−03 2.78e−03
D2/EC = 0 8.47e−11 3.38e−01 1.45e−04 1.40e−05
D3/EC = 0 1.37e−15 2.87e−09 9.06e−02 1.58e−01
D4/EC = 0 4.52e−19 1.48e−07 5.41e−01 5.30e−01

Table 5
Averaged p-values of a 5 × 2-fold paired t-test on the validation data of the various
datasets used across models. In bold are the values above 0.05 being not statistically
significant.

Compared pair D1 D2 D3 D4 Clarity

DEC-b/Dcor-b 1.61e−14 9.62e−22 1.93e−03 1.07e−08 3.65e−01
DEC-m/Dcor-m 7.13e−01 3.54e−01 5.74e−01 4.61e−01 6.31e−01
DEC-b/DEC-m 8.63e−23 7.51e−23 1.03e−13 3.11e−19 6.41e−65
Dcor-b/Dcor-m 1.06e−02 2.41e−04 3.43e−05 7.92e−06 1.67e−57

Dcor while the lighter, orange, dots correspond to the single-channel
version.

It is observed in Figs. 6 and 7 for EC parameters estimation, that
ML models tend to often output a value close to 0 making for poor
estimation. This is confirmed when calculating the Pearson correlation
coefficients for all frequency bands. The resulting mean Pearson co-
efficient is below 0.2 for both 𝛾 and 𝜏. However, Fig. 8 shows that
the resulting calculated correlation coefficient correlates well with the
target ones, with Pearson coefficients of 0.918 for binaural and 0.825
for single-channel. It will be seen in Section 5.2 than this leads to
ood estimation of DEC-MBSTOI despite poor EC parameter estimation.
rom a ML point of view, it is likely that many local minima can
e found for the EC parameter optimisation that all lead to similar
rediction accuracy. This relates well with the unequal importance of
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Fig. 6. DL model estimation of gamma across third-octave bands compared to their target value. Title provides the centre frequency. Blue dots correspond to binaural DEC while
orange dots correspond to the single-channel version. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 7. DL model estimation of tau across third-octave bands compared to their target value. Title provides the centre frequency. Blue dots correspond to binaural DEC while
orange dots correspond to the single-channel version. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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EC parameters across frequency bands. More details about the relative
importance of accurate estimation of the EC parameters in the MBSTOI
calculation are found in Guiraud et al. (2022).

It is seen in Fig. 9 that Dcor models estimate parameters well across
requency bands with similar binaural and single-channel predictions at
igh frequency. An average correlation of 0.896 and 0.820 is observed
or binaural and single-channel reference respectively.

.2. DEC- and Dcor-MBSTOI

The parameters estimated by the DNNs are subsequently used in
he computation of DEC- and Dcor-MBSTOI. The 𝛥MBSTOI measure is
omputed as the difference between DEC- or Dcor-MBSTOI with the
rue MBSTOI.
79

c

.2.1. DEC/Dcor-MBSTOI performance
Fig. 10(a) compares DEC and Dcor when using the anechoic bin-

ural reference, as done in MBSTOI. First it is observed that MBSTOI
s almost always underestimated. DEC models estimate MBSTOI with
ean absolute deviation below 0.04 across all datasets. It was shown

n Guiraud et al. (2022) that this magnitude of error corresponds to
misestimation of the EC parameters of less than 1 dB and 40 μs

espectively. Dcor estimation error on the other hand reaches a mean
bsolute deviation of up to 0.08 for D1 and D2 and drops below 0.04
n D3 and D4. This gain in performance is also observed to a lesser
egree in DEC. The addition of reverberation in D3 and D4 seems to
elp ML models differentiate the target speech from the interferer. This
s corroborated in Table 4 where it is shown that statistical difference
annot be established between D1 and D2, or D3 and D4, for Dcor.
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Fig. 8. Calculated correlation coefficient using DL estimated EC parameter compared to their target value across third-octave bands. Title provides the centre frequency. Blue dots
orrespond to binaural DEC while orange dots correspond to the single-channel version. (For interpretation of the references to colour in this figure legend, the reader is referred
o the web version of this article.)
Fig. 9. DL model estimation of correlation coefficient across third-octave bands compared to their target value. Title provides the centre frequency. Blue dots correspond to binaural
Dcor while orange dots correspond to the single-channel version. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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Only DEC binaural increases in accuracy in a significant way with each
datasets. It is also observed that DEC models outperform Dcor models
across all four datasets when using a binaural reference, as confirmed
by Table 5.

Fig. 10(b) compares results of DEC and Dcor models trained using
a single-channel reference signal. Similarly to in Fig. 10(a), MBSTOI
is almost always underestimated and performance increases in D3 and
D4, which include reverberation, compared to D1 and D2. However,
a general decrease in performance is observed compared to binaural.
This decrease is more pronounced for DEC leading to comparable
performance between DEC and Dcor across the four datasets. Similarly
80

as in Fig. 10(a), Table 4 indicates that statistical difference cannot be
stablished between D1 and D2, or D3 and D4, for both DEC and Dcor.
n the most complex situation with D4, the mean absolute deviation of
cor-MBSTOI is of 0.07 with standard deviation of 0.058.

As an added reference in Fig. 10(a), MBSTOI𝐸𝐶=0 displays MBSTOI
ariations when 𝛾 and 𝜏 are manually set to 0. It has a mean absolute
eviation of 0.074 and standard deviation of 0.063. According to Table 4

and Fig. 10(a), binaural DEC-MBSTOI models are statistically different
and outperform MBSTOI𝐸𝐶=0 across all datasets, while it is only true in
D3 and D4 for binaural Dcor-MBSTOI. For models with single channel
reference, it is interesting to see that, without reverb (D1 and D2),
models are statistically different from MBSTOI𝐸𝐶=0 but perform worse

as seen in Fig. 10(b). The increase in performance observed with
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Fig. 10. Box plots representing the difference between the estimated ML MBSTOI and the true MBSTOI value. This comparison is done for all 4 datasets, with DEC and Dcor
models, using either a binaural, −𝑏, or a single-channel, −𝑚, reference. (a) compares binaural models and (b) single-channel models for both DEC and Dcor MBSTOI.
Fig. 11. Scatter plot of Dcor-MBSTOI trained on D4 using (a) binaural reference, −𝑏, and (b) single-channel reference, −𝑚. Results are presented with bias correction for both the
binaural and single-channel metrics.
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added reverb (D3 and D4) only brings the models to the level of
MBSTOI𝐸𝐶=0. This is corroborated by Figs. 6 and 7 where estimated EC
arameters are mostly around 0. Notably, no statistical differences can
e established between DEC and Dcor single channel across all datasets
ccording to Table 5.

The poor estimation of EC parameters in DEC models from Figs. 6
nd 7, discussed in Section 5.1, still led to good DEC-MBSTOI perfor-
ance in Fig. 10. On the contrary, while Dcor shows good correlation

n Fig. 9, it led to poorer performance in Dcor-MBSTOI in Fig. 10. It
as shown in Guiraud et al. (2022) that MBSTOI is relatively robust

o misestimation of EC parameters hence why DEC has more stable
erformance. A direct misestimation in MBSTOI correlation coefficients
eads to bigger changes, making Dcor-MBSTOI more prone to errors.

It has been shown that while Dcor is more efficient as a machine
earning model than DEC, the subsequent DEC-MBSTOI metric is more
ccurate than Dcor-MBSTOI. This is particularly true when using a
inaural reference but less so with single-channel reference.

.2.2. Bias correction
Due to the construction of MBSTOI, our hybrid DL models output a

onsistent underestimation of the target value as observed in Fig. 10.
o prevent this tendency a bias correction term, called Bias, is calcu-

ated. This Bias is then consistently subtracted after the DL-MBSTOI
stimation. To include the estimation of this term within the models’
81

onstruction, it is calculated after training on the Test set. The Bias is C
hosen to be the mean deviation from MBSTOI defined as

ias = 𝐸 (x-MBSTOI − MBSTOI) , (1)

here 𝐸 is the arithmetic mean and x-MBSTOI is either DEC-MBSTOI
r Dcor-MBSTOI. All following plots showing results on the Validation
et now include their model’s corresponding Bias correction calculated
rom the D4 Test set.

Fig. 11 shows scatter plots of Dcor trained on D4 using binaural
eference in (a) and single-channel reference in (b) both with their re-
pective bias correction. Strong correlation between true and estimated
BSTOI is observed with a wider spread for the single-channel case.

n other words, the Pearson correlation coefficient and the standard
eviation are 0.972 and 0.034 with binaural reference and 0.914 and
.058 with single-channel reference. The bias correction allows to retain
he positive association between true and estimated while focusing the
ata around the true value. Only Dcor-MBSTOI is presented here but
imilar plots are obtained with DEC-MBSTOI.

.3. Validation clarity challenge data

Previous results have all been on unseen data from the Validation
et. However, this Validation set has been generated in a similar
ashion to the Train and Test set. It is then necessary to see how the
odels perform when confronted with data from other scenarios and

ollections. To that end, the validation dataset scenes provided by the

larity challenge has been used (Graetzer et al., 2021). Similarly to our
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Fig. 12. Clarity challenge dataset analysis. Figure (a) display the MBSTOI distribution of the validation set. Figure (b) shows the difference in MBSTOI estimation with both DEC-
and Dcor-MBSTOI, trained on D4 using binaural, −𝑏, or single-channel reference, −𝑚. Figures (c) and (d) then show the scatter plots of estimated and true MBSTOI.
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data, they consist of binaural audio with a localised speech in noise. The
results are presented here.

Fig. 12(a) shows the MBSTOI distribution of the Clarity sentences
used. It is observed that most sentences have a high MBSTOI. While
this does not affect the model, it is here for reference purposes and
to show complementary distribution with D4 Validation set as seen
in Fig. 3. Fig. 12(b) shows the distribution of 𝛥MBSTOI across the set
using DEC-MBSTOI and Dcor-MBSTOI metrics trained on D4, using both
single-channel and binaural reference. Fig. 12(c) and (d) displays the
scatter plots of those models after applying the same bias correction
used in Fig. 11, calculated on D4 Test set.

As for the simulated datasets, the binaural models perform better
as they have a mean absolute deviation of 0.01 and standard deviation
less than 0.02, while single-channel reference mean absolute deviation
is of 0.12 and standard deviation up to 0.04. Nonetheless, Fig. 12(c) and
(d) show good correlation using single-channel reference. The Pearson
correlation coefficient is of 0.94, as opposed to more than 0.99 with
binaural reference. Overall, use of a binaural reference leads to better
performance than single-channel reference models but no statistical
difference can be observed in Table 5 between DEC and Dcor on the

larity dataset.

. Conclusion and future work

In this work, a hybrid ML-based method to calculate the MBSTOI
s presented. The two DEC- and Dcor-MBSTOI metrics replace partially
r entirely the EC stage to estimate either the EC parameters or else
he correlation coefficients at every time frame and third-octave band.
o this end, multiple datasets of increasing difficulty have been created
nd two variants of each metrics have been tested: the first one using a
inaural reference as for MBSTOI, and the other using a single-channel
eference.

Presented results show that DEC-MBSTOI with binaural reference
an very accurately reproduce MBSTOI with a mean absolute deviation
nd standard deviation of 0.016 and 0.019 in the most complex scenario
ith interferer, diffuse noise and reverberation. Dcor-MBSTOI did not
82

R

erform as well with binaural reference with mean absolute deviation
nd standard deviation of 0.037 and 0.034 in the same scenario. The
EC DNN model showed poor estimation 𝛾 and 𝜏, whereas Dcor model
as more accurate in estimating the correlation coefficients. Nonethe-

ess, due to the robustness of MBSTOI in EC parameters variation,
EC-MBSTOI perform better overall.

A decrease in performance is observed for DEC-MBSTOI when using
ingle-channel reference with a mean absolute deviation and standard
eviation of 0.068 and 0.056 in the same scenario. Similar performance
s achieved with Dcor-MBSTOI using single-channel reference, with a
ean absolute deviation and standard deviation of 0.069 and 0.058 in

he same scenario. However, it has been shown that single-channel
eference model are not statistically different from MBSTOI with a
onstant estimation of the EC parameters to be 0.

Predictions were improved by correcting for bias (mean deviation),
entring metric results around the target value. Similar performance
s also observed when using the Clarity challenge dataset indicating
hat DEC- and Dcor-MBSTOI could be suitable for use in real world
cenarios.

By replacing only parts of the MBSTOI estimation by a DL model,
ybrid metrics have been created where an originally binaural metric
an now be computed using only a single-channel reference. Both
ybrid metrics raise the question of how best to integrate ML into an
xisting tool to improve it, while retaining the original idea. Those
etrics extend the range of use of speech intelligibility estimation, for

nstance to binaural signal processing experiments of a source speech
ignal.
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