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Abstract—Data-driven approaches for molecular diagnostics
are emerging as an alternative to perform an accurate and
inexpensive multi-pathogen detection. A novel technique called
Amplification Curve Analysis (ACA) has been recently developed
by coupling machine learning and real-time Polymerase Chain
Reaction (qPCR) to enable the simultaneous detection of multiple
targets in a single reaction well. However, target classification
purely relying on the amplification curve shapes currently faces
several challenges, such as distribution discrepancies between
different data sources of synthetic DNA and clinical samples
(i.e., training vs testing). Optimisation of computational models
is required to achieve higher performance of ACA classification
in multiplex qPCR through the reduction of those discrepancies.
Here, we proposed a novel transformer-based conditional domain
adversarial network (T-CDAN) to eliminate data distribution
differences between the source domain (synthetic DNA data) and
the target domain (clinical isolate data). The labelled training
data from the source domain and unlabelled testing data from
the target domain are fed into the T-CDAN, which learns both
domains’ information simultaneously. After mapping the inputs
into a domain-irrelevant space, T-CDAN removes the feature
distribution differences and provides a clearer decision boundary
for the classifier, resulting in a more accurate pathogen identifi-
cation. Evaluation of 198 clinical isolates containing three types
of carbapenem-resistant genes (blaNDM, blaIMP and blaOXA-48)
illustrates a curve-level accuracy of 93.1% and a sample-
level accuracy of 97.0% using T-CDAN, showing an accuracy
improvement of 20.9% and 4.9% respectively, compared with
previous methods. This research emphasises the importance of
deep domain adaptation to enable high-level multiplexing in a
single qPCR reaction, providing a solid approach to extend qPCR
instruments’ capabilities without hardware modification in real-
world clinical applications.

Index Terms—Domain Adaptation, Transformer, ACA, Ampli-
ficaion Curve Analysis, PCR, Multiplex.
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I. INTRODUCTION

S INCE the invention of Polymerase Chain Reaction (PCR)
in 1985, this technology has become the paradigm in the

clinical diagnosis of infectious diseases by enabling the rapid
and effective detection of DNA and RNA from pathogens [1].
By specifically amplifying the target nucleic acids, PCR is
a well-established tool for detecting genetic material even at
small concentrations in an extremely sensitive manner [2]. Fur-
thermore, as highlighted by the recent pandemic of COVID-19,
real-time quantitative PCR (qPCR) is an essential tool for the
surveillance and control of highly infectious diseases at both
individual and population levels [3].

Although widely accepted as a gold-standard diagnostic
tool, qPCR is commonly used for single-target amplifica-
tion reactions (singleplex), which means detecting only one
pathogen in a single well each time [4]. With the grow-
ing global challenges of public health, detection of multiple
pathogens simultaneously has become a demanding issue
and raised attention from researchers of several fields. Such
identification capabilities can see broad applications in a
variety of clinical scenarios. For example, in the screening and
diagnosis of influenza-like illnesses caused not by influenza
but by other pathogens (e.g., rhinoviruses, coronaviruses,
human respiratory syncytial virus, adenoviruses, and human
parainfluenza viruses) in patients with comparable symptom,
which provides reliable guidance for patient treatments and
public-health policy making, in a fast, low-cost, and easy-to-
operate manner [5]; or, the rapid and accurate identification of
bacterial infections carrying antimicrobial-resistance (AMR)
genes to support better clinical decisions about the use of
antimicrobials and improve patient outcomes [6].

One solution to this challenge is the detection of multi-
ple nucleic acid targets simultaneously using PCR or qPCR
(multiplexing). Conventional multiplexing approaches require
a certain number of reaction wells which increases the cost
and the volume of clinical samples required from patients. In
the effort of developing cost and time-effective solution for
multi-pathogen detection, single-well multiplex PCR conducts
several amplification reactions of many targets in a single well
setting by combining all the reaction agents [7]. Theoretically,
a positive reaction can be observed in the amplification curve
of qPCR when any of the targets presents inside the sample.

Differentiating targets in single-well multiplex reactions is
not trivial. To identify the reaction products, several methods
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have been proposed [8], including melting curve analysis
(MCA) [9], multi-channel detection [9, 10], and Final Fluores-
cent Intensity (FFI) Modulation [11, 12], each of which shows
drawbacks for their clinical use. When using intercalating dyes
(e.g., SYBR green) which are non-specific to targets [13],
melting curves can be generated by conducting a melting step
at the end of the PCR reaction. As the chemical composition
of each amplification product (amplicon) differs from the
others, analysis of melting peaks can be applied to distinguish
targets. However, the target identification ability is limited by
the temperature resolution of equipment and also subject to
dedicated chemical optimisation [9, 14]. MCA is also unavail-
able for many Point-of-Care (PoC) devices where isothermal
chemistries are applied [15, 16]. Besides intercalating dyes,
fluorescent probe-based solutions can also be used for mul-
tiplexing by detecting each target in a separate fluorescence
channel. However, the number of targets is constrained by the
number of colour channels in the qPCR equipment (4-6 for
commercial machines), and the accuracy also suffers from the
unavoidable spectrum leakage among channels [17]. Recently,
new methods such as High Definition PCR (HDPCR) tried to
differentiate targets based on their FFI by conducting sophis-
ticated optimisations on probe and/or primer concentrations
[11, 12]. However, FFI-based modulation can be challenged in
sensitivity in case of noisy reactions and become less reliable
on real-world clinical samples [18]. All these drawbacks of
existing approaches indicate the significance of developing
a robust, cheap, and easy-to-use solution for single-well and
single-channel multiplex PCR.

In recent years, our group has proposed a number of ma-
chine learning-based methods for Amplification Curve Anal-
ysis (ACA), which utilise the kinetic information encoded in
the amplification curves of PCR reactions to classify different
clinical targets [18, 19, 20, 16]. In particular, the first ACA
method applied the K-Nearest Neighbour (KNN) algorithm on
the entire amplification curves and showed promising results in
identifying three AMR genes on synthetic DNA [18]. Coupling
KNN-based ACA with the MCA method, a newly developed
Amplification and Melting Curve Analysis (AMCA) further
extended the single-well single-channel detection capability
to nine targets on synthetic DNA [19], and validations on
over 250 clinical isolates have highlighted the potential of
the AMCA clinical use [20]. However, as we previously
mentioned, melting curves are not always available: they can
be generated neither when using probe-based chemistries (e.g.,
TaqMan) nor in many PoC devices. Therefore, we explored the
feature extraction of amplification curves to further improve
the ACA performance without the necessity of introducing
thermodynamic information from melting curves. Specifically,
by applying five-parameter sigmoidal fitting to amplification
curves, we represented each reaction with several fitting pa-
rameters, which were further used as features for a Machine
Learning (ML) classifier [21].

The aforementioned previous efforts demonstrated the
promising application of the ACA method. However, problems
still exist: (1) Unlike some other biomedical signals, the
nature of amplification curves is not fully revealed, which
brings difficulties to the empirical design of manually extracted

features [22]. Therefore, an end-to-end solution with automatic
feature extraction capability is required. (2) We noticed a
significant difference in the distributions of amplification curve
data between synthetic DNA and real clinical samples, that
are caused by the inherent complexity of real-world samples,
in which not only target pathogen genes but also undesired
background genetic materials such as human DNA and other
bacteria’s genes exist [23]. While synthetic DNA can be
easily acquired from manufacturers to generate data for ML
model training, annotated clinical samples can be difficult to
obtain, especially during the emergence of new pathogens
where safety and ethical consent need to be considered. It is
ideal that we could train ACA deep classifiers with synthetic
DNA data rapidly without the need of having access to
clinical samples, which requires additional restrictions such
as appropriate safety level facilities, and apply the model
directly to unannotated clinical samples in clinical facilities.
However, when training an ML model on synthetic DNA data
and testing on clinical data, there is a significant performance
drop compared to cross-validation results on either synthetic or
clinical data [21]. From the machine learning perspective, the
discrepancy between two data distributions can be regarded
as domain differences, where synthetic DNA and clinical
specimens are from source and target domains, respectively.
In clinical settings, the true identity (true label) of the target
domain is not available, therefore the detection of multiple
targets require a robust and unsupervised domain adaptation
algorithm.

Over the past few years, deep learning-based approaches
have achieved state-of-the-art performance in various classifi-
cation tasks. One major advantage of utilising deep learning to
categorise time series is that it eliminates the need to extract
features manually and instead automatically derives high-
dimensional feature representations from data while training
[24]. Among the existing deep learning structures, transform-
ers have demonstrated excellent modelling abilities for long-
range dependencies and interactions in sequential data, making
them ideal for time series analysis [25]. Conditional Domain
Adversarial Network (CDAN) [26] is an unsupervised domain
adaption framework that combines the concepts of conditional
Generative Adversarial Network (cGAN) [27] and Domain
Adaptation (DA). It has emerged as a powerful tool for
reducing marginal distribution discrepancies between domains
in the vision field [28]. CDAN outperforms other adversarial
learning-based DA algorithms (e.g., Domain-adversarial neu-
ral networks or DANN [29] and Adversarial Discriminative
Domain Adaptation or ADDA [30]) on the alignment of
multimodal distributions, allowing it to work better on multi-
classification problems. In this work, our contributions are
two-fold: (1) we introduced a state-of-the-art deep transformer-
based network which delivers automatic feature extraction
through the attention mechanism to classify amplification
curves belonging to different pathogens or targets, providing
an end-to-end solution for ACA. (2) A novel transformer-based
conditional domain adversarial network (T-CDAN) is proposed
to eliminate data distribution discrepancies between source
domain (synthetic DNA data) and target domain (clinical data).

The overall concept workflow of the proposed strategy is
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Fig. 1: Concept workflow of the proposed T-CDAN based strategy. To identify different targets within the collected sample,
synthetic DNAs of these targets are ordered from the manufacturer and used to generate the training dataset of the deep
learning model. The domain shifts between the training (source domain) and testing (target domain) data cause the distant
feature distributions in the two domains, and thus result in a dropped performance when applying the source-domain trained
model on target-domain data. To eliminate this domain discrepancy, labelled training data and unlabelled testing data are fed
into the T-CDAN network, which learns the target and domain information simultaneously. After mapping the inputs into a
domain-irrelevant space, T-CDAN can remove the feature distribution differences and provide a clearer decision boundary for
the classifier, enabling a better classification result of targets.

depicted in Fig. 1. To identify different targets within the
collected samples, synthetic DNAs of these targets are ordered
from the manufacturer and used to generate the training data
set of the deep learning model. The domain shifts between
the training (source domain) and testing (target domain) data
cause the distant feature distributions among them, resulting
in a dropped performance when applying the source-domain
trained model on target-domain data. To eliminate this domain
discrepancy, labelled training data and unlabelled testing data
are fed into the T-CDAN network, which learns the target
and the domain information simultaneously. After mapping
the inputs into a domain-irrelevant space, T-CDAN can re-
move the feature distribution differences and provide a clearer
decision boundary for the classifier, resulting in a better target
identification.

To verify the effectiveness of our methods, we evalu-
ated T-CDAN on 198 clinical isolates containing three types
of carbapenem-resistant genes (blaNDM, blaIMP, blaOXA-48),
achieving the curve-level accuracy of 93.1% and the sample-
level accuracy of 97.0%. Compared to previously published
methods, T-CDAN shows an accuracy improvement of 20.9%
and 4.9% at curve and sample levels, respectively, with clearer
target cluster boundaries and fewer inter-domain distribution
differences. This is the first work of using a deep feature
generator to extract high-level amplification curve features for
target identifications in multiplex PCR, and it emphasises the
importance of deep domain adaptation in tackling the real-
world clinical problem of molecular diagnostics.

This article is organised in the following way: Section II

describes the data and methodology in detail; Section III
presents the comparison results, the discussion of which is
provided in Section IV; Section V concludes the paper.

II. METHODOLOGY

A. Data Information

The data used in this work are originated from Miglietta
et al. 2022 [21]. The dataset includes amplification events
from synthetic DNA (gBlocksTM gene fragments, IDT) of
three different carbapenemase genes: blaNDM (N=18,480),
blaIMP (N=17,710), and blaOXA-48 (N=17,710). Synthetic target
sequences were used as the training/source domain, and 198
clinical isolates containing these three genes were used as the
testing/target domain. A total of 152,460 amplification events
(each containing 45 data points as the number of PCR cycles
performed) were pre-processed accordingly with the pipeline
described in Miglietta et al. 2022 [21].

B. Transformer-based Amplification Curve Analysis

Amplification curves are typical 1D time-series data; nev-
ertheless, extracting handcrafted features from these curves
is largely underexplored. After preliminary experiments on a
number of deep network structures (Table S1), we presented
a transformed-based method to process amplification curves
in our work due to its strength in processing bio-signal time
series and capability in automatic feature extraction.

An overview of the proposed transformer model for clas-
sifying amplification curves is shown in Fig. 2. Assuming



IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XXX, NO. XXX, MARCH 2023 4

B. Transformer EncoderA. 1D-transformer Architecture for ACA
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Fig. 2: Part A: Illustration of the proposed 1D-transformer network for amplification curve analysis (ACA). The input
amplification curve is embedded using the addition of linear projection and positional embedding. The resulting embedding
sequence Z is then fed into N conventional transformer encoders, where its detailed structure is depicted in Part B. An MLP
neural network finally utilises the features resulting from the encoders to perform target identification.

that the amplification curve data follow a normal distribution,
We first applied standardization to set the mean of the data
to 0 and the standard deviation to 1. Let X ∈ RC×1 be a
standardised amplification curve, where C is the length of
the input curve (i.e., number of cycles). X is subsequently
projected to a Nd-dimensional latent vector using a trainable
linear projection layer. Furthermore, because a transformer
encoder lacks recurrence or convolution to leverage sequential
information, a typical learnable position embedding Epos were
element-wise added to the linear projection results Elinear to
retain essential sequential information within the curve. The
resulting embedding sequence Z0 ∈ RC×Nd were then fed into
N standard transformer encoder layers [31] to extract features
(i.e., kinetic information) encoded in the entire amplification
curve.

As illustrated in Fig. 2 Part B, the structure of the trans-
former encoder block is composed of two sub-layers: (1)
multi-head self-attention (MSA) and (2) position-wise mul-
tilayer perceptron (MLP) sub-layer. In order to speed up the
model convergence and avoid the gradient vanishing problem,
a residual connection module followed by a Layer Normal-
ization (LN) Module is inserted around each sub-layer. The
representation matrix produced by the ith encoder block is of
the consistent size as the input embedding matrix Z0.

Instead of following the original Transformer architecture
[31], we replaced the decoder part of the transformer with a

feed-forward neural network to allow our model to categorise
k clinically relevant targets. Mathematically, the entire work-
flow of our transformer model can be described as below:

Z0 = Elinear ⊕ Epos (1)
Z ′
i = MSA(LN (Zi−1)) + Zi−1, ∀i = 1, 2 . . . N (2)

Zi = MLP (LN (Z ′
i)) + Z ′

i, ∀i = 1, 2 . . . N (3)

y = Softmax
(
MLP(Flatten (ZN ))

)
(4)

where ⊕ denotes element-wise addition and Elinear, Epos ∈
RC×Nd , Z ′

i is the output of ith MSA block and Zi represents
the ith point-wise MLP output. ZN stands for the output of the
last transformer encoder layer and y ∈ Rk indicates categorical
distribution over class labels.

The presented transformer model in this article is composed
of N = 4 transformer encoder blocks, where each of them
contains a 4-head self-attention module and a position-wise
network with 128 hidden neurons. The expected number of
embedding vectors generated using linear projection and a po-
sition encoding layer is Nd = 16. The presented MLP network
consists of three hidden layers, where a batch normalisation
and a dropout layer are added in between. To address the class
imbalance of datasets, we employed focal loss [32] as our loss
function.
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C. Conditional Adversarial Domain Adaptation for Amplifi-
cation Curve Analysis

Let synthetic DNA data be a source domain S ={
(xs

1, y
s
1) , . . . ,

(
xs
ns
, ysns

)}
of ns labelled amplification

curves, where (xs
i , y

s
i ) denotes the ith source domain exam-

ple, and clinical isolates dataset be a target domain T ={
xt
1, . . . , x

t
nt

}
of nt unlabelled curves, where xt

i is the ith
target domain example. The problem of bridging the domain
shift between synthetic DNA and clinical isolates datasets can
be intuitively modelled as an unsupervised domain adaptation
problem. In our work, we presented a transformer-based con-
ditional domain adversarial network (T-CDAN), to incorporate
the aforementioned transformer-based network with Condi-
tional Domain Adversarial Networks (CDAN) [26] strategy,
formally mitigating the discrepancy in data distributions across
domains.

An overview of the T-CDAN is presented in Fig. 3, includ-
ing a transformer-based feature extractor F with parameters
θf , a label predictor G with parameters θg , and a conditional
domain classifier D with parameters θd. In the forward pass,
F extracts domain-specific feature representation denoted as
f = F (x) from input curve x. G takes captured features f as
input to output label predictions g = G(f). D is a binary
domain classifier conditioned by the cross-covariance of f
and g, resulting in a domain label which indicates whether
f is from the source domain or target domain. Throughout the
training procedure, F grows to learn domain-invariant features
that can successfully confuse the domain classifier. D, on the
other hand, seeks a rule to distinguish whether the features
extracted by F are from the source or target domains.

1) Feature Extractor and Label Predictor: The purpose of
the feature extractor F is to learn high-level feature represen-
tations from amplification curves, which are implemented in a
manner that is consistent with the transformer model described
in Sec. II-B without the last MLP network. The output of the
last transformer encoder blocks will be reshaped into a vector
and utilised directly as the generated feature representation f .
The MLP network attached to the transformer encoder block
(see Fig. 2) serves as the label predictor G in the proposed T-
CDAN framework. As illustrated in Fig. 3, F and G comprise
a conventional feed-forward architecture. Providing the source
and target domain data S and T , the loss function of label
predictor G is a negative log-likelihood, expressed as:

Lg(θf , θg) = −E(xs
i ,y

s
i )∼S

nc∑
c=1

τ(ysi , c) logG(c; fsi ) (5)

where τ(ysi , c) = 1 if ysi = c and τ(ysi , c) = 0 otherwise. fsi
represents the ith source domain features, G(c; fsi ) denotes is
the probability of predicting fsi to the cth class, and nc is the
number of class.

2) Conditional Domain Classifier: The aim of the condi-
tional domain classifier is to distinguish the high-level features
in amplification curves across the source and target domains.
When we deal with multi-classification problems, the feature
distribution is multimodal. In this case, the failure of the
classical domain classifier in identifying domain types does not
necessarily demonstrate that features which belong to the same

class but in different domains have identical distributions,
resulting in non-ideal classification performance. Therefore,
an ideal domain classifier can only be deceived when it dif-
ferentiates completely transferable and discriminative features.
Inspired by conditional GANs [27], the domain classifier D
presented in this paper can capture multimodal structures
behind the feature distribution, by conditioning D on the class
information included in the label prediction g when adapting
the feature representation f . In particular, the conditioning
strategy adopted in D is multilinear mapping, where we
compute the outer product of f and g, as defined in Eq.
6, to capture multiplicative interactions between the feature
representation and the label prediction.

M(h) = M((f ,g)) = f ⊗ g (6)

where h represents the joint variable of f and g, and M(·)
denotes the multilinear mapping function. Based on binary
cross-entropy, the loss function of D is modified and formu-
lated as follows:

Ld (θf , θd) = −Exs
i∼S log [D (M(hs

i ))]

− Ext
j∼T log

[
1−D

(
M(ht

i)
)]

(7)

where hs
i and ht

i denote the joint variable of fsi and gs
i , f ti and

gt
i at ith source or target domain label prediction, respectively.

The proposed domain classifier D, like the label predictor, is a
feed-forward neural network with two fully connected layers,
each of which comprises 256 neurons. Sigmoid activation is
adopted in the output layer, since identifying domain type is
a binary classification problem.

3) Optimization of T-CDAN: During the training stage, the
optimal parameters of the feature extractor (θ̂f ) and the label
predictor (θ̂g) are achieved by maximizing Ld(θf , θd) (Eq.
7), while minimizing Lg(θf , θg) (Eq. 6) leads to the optimal
parameters of the domain classifier θ̂d. It yields adversarial
learning between the feature extractor/label predictor and the
classifier. Based on the above analysis, the optimization of T-
CDAN can be formulated as a minimax problem of minimizing
the below overall loss function L(θf , θg, θd),

L(θf , θg, θd) = Lg(θf , θg)− λLd(θf , θd) (8)

where 0 ≤ λ ≤ 1 is a hyperparameter for balancing the two
objectives. Motivated by previous work [29, 26], a gradient
reversal layer (GRL) is added before the conditional domain
classifier, as shown in Fig. 3. GRL takes no actions in the
forward pass, whereas it reverses the gradient when performing
a backpropagation operation, which explains why Eq. 8 uses
a minus sign to combine two losses into a single overall loss
function. The optimal parameters (θ̂f , θ̂g, θ̂d) can be finally
learned by iteratively minimising L(θf , θg, θd) in Eq. 8. More
specifically, θ̂f and θ̂g can be obtained by addressing the
following problem:

(θ̂f , θ̂g) = argmin
θf ,θg

L(θf , θg, θ̂d) (9)
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Fig. 3: The proposed T-CDAN framework is composed of three main components: (a) deep feature generator F , (b) label
predictor G, and (c) domain classifier D. A sequence of transformer encoder blocks compose F to generate a feature
representation f from a standardized amplification curve X . Label predictor is a standard feed-forward neural network to
classify source domain data. D is a 2-layer perceptron to determine whether X is from the source or target domain. Multilinear
mapping is applied to condition D on label predictions obtained from G, capturing multi-modal information behind the feature
distribution. During the training procedure, the label prediction loss Lg and domain classifier loss Ld obtained from G and D
are iteratively minimized, enabling F to learn domain-invariant features finally. The Gradient reversal layer inserted between
F and D is utilized to discover shared representations between source and target domains, neatly combining domain-specific
and domain-invariant shared features [33].

Once the optimal parameters θ̂f and θ̂g are obtained, solving
the below problem to search the optimal parameters θ̂d for
domain classifier.

θ̂d = argmax
θd

L(θ̂f , θ̂g, θd) (10)

Adaptive Moment Estimation (Adam) optimizer [34] with the
L2 regularization of 0.0001 was used to train T-CDAN. The
batch size of each domain was 128. As for the learning rate µ,
an annealing strategy according to [29] was adopted, defining
as η = 0.001(1 + 10p)−0.75, where 0 ≤ p ≤ 1 denotes
the training progress. Note that the learning rate of 15µ was
applied to train the domain classifier D, since D has a more
lightweight design than feature extractor G, making it harder
to discriminative features compared to G. The hyperparameter
λ for balancing the two objectives gradually increases from 0
to 1 using the following formula:

λ =
1− exp (−10p)
1 + exp (−10p)

(11)

This method was trained using 104 iterations for at least 10
times to reduce the impact of the randomness, and its complete
training procedure of T-CDAN for amplification curve analysis
is summarized in Algorithm 1. Note that the feature distribu-
tions over the source and target domains will be unidentifiable
for the domain classifier at the end of the training phase,
resulting in domain-invariant feature representation.

III. RESULTS

A. Experimental Setup

In this work, we focus on evaluating the performance of
the proposed transformer-based Conditional Domain Adver-
sarial Network (T-CDAN) on distinguishing three carbapenem-
resistant genes: blaNDM, blaIMP, and blaOXA-48. All codes were
implemented in PyTorch.

We compared the proposed one-dimensional (1D) Trans-
former and T-CDAN with state-of-the-art machine learning
methods for amplification curve analysis: K-Nearest Neigh-
bour (KNN) [18] and Random Forest (RF) [21]. It is worth
noting that KNN used curve-cycle dimensional data as input,
whereas RF used handcrafted features (i.e., sigmoid curve-
fitting parameters) as input to the model. 1D-transformer and
T-CDAN were trained using the standardised whole curve as
inputs.

We used over 14,000 double-stranded synthetic DNA as
the source domain curves and over 116,000 clinical isolates
as the target domain curves. T-CDAN followed the standard
protocol for unsupervised domain adaptation [29] by using
labelled source domain data and unlabelled target domain data
for training. All other comparison algorithms solely exploited
the source domain data during the training procedure. Feature
extractor and label predictor in T-CDAN, together, compose
the architecture of 1D-transformer to fairly evaluate the effec-
tiveness of the domain adaptation.

The two-dimensional t-distributed Stochastic Neighbour-
hood Embedding (t-SNE) [35] plot was utilised in this research
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Algorithm 1: CDAN Model for Amplification Curve
Analysis - Training Procedure

Input :
• Labelled amplification curves from synthetic DNA

(source domain) S = {(xs
i ,y

s
i )}

ns

i=1,
• Unlabelled amplification curves from clinical isolates

(target domain) T =
{
xt
j

}nt

j=1
,

• Source domain label set Ds = {0} and target domain
label set Dt = {1},

• Parameter λ for weighting loss and learning rate µ;

Output: Trained parameters θ̂f , θ̂g, θ̂d;

1 Initialize model parameters and learning rate µ.
2 while pre-defined maximum iterations is not met do
3 Compute label prediction loss Lg(θf , θg)
4 Compute domain classifier loss Ld(θf , θd)

// Update feature generator
parameters

5 θf ← θf − µ(
∂Lg

∂θf
− ∂Ld

∂θf
)

// Update label predictor
parameters

6 θg ← θg − µ
∂Lg

∂θg

// Update conditional domain
classifier parameters

7 θd ← θd − µλ∂Ld

∂θd

to visualise the difference between feature representations.
Besides, the ProxyA-distance [36] is used as a metric to assess
the discrepancy between the representations of source and tar-
get features. It is computed as distA = 2(1−2ϵ), where ϵ is the
test error of a KNN classifier when distinguishing the source
domain from the target domain. Furthermore, because each
sample in a panel is divided into 770 microwells and utilised
to generate 770 curves in our digital PCR chip, we assessed
the models’ classification performance at both the curve and
sample levels (panel-level). The latter is computed by applying
hard votes on predicted positive curve results inside the panel.
The model’s sample-level classification performance is better
than its curve-level performance in most cases because it
ensembles hundreds of independent predictions. This ensemble
strategy ensures that the sample will be distinguished correctly
as long as the majority of the curves in a panel are correctly
classified.

B. Feature Visualisation

One practical way to compare classification algorithms is
to visualise the feature clusters of different targets. The first
two columns of Fig. 4 show the t-SNE plots colour-labelled by
domains and targets, respectively. When we look at the overall
clustering of plots, only the features generated from T-CDAN
can form three clearly recognisable clusters with no apparent
domain shift.

The domain-labelled plots in Fig. 4a-d (column 1) illustrate
the shift between source and target feature representations.
The less overlapping area of the two domains’ feature dis-

tributions shown in the plot, the more significant the domain
gap is. Circled areas in Fig. 4a–c clearly show that, without
the domain adaptation method, there is at least one visible
domain discrepancy between the source and target domains.
However, as compared to the RF and KNN techniques, the 1D-
transformer can yield more domain overlapping features. This
shows that the features captured from the transformer attention
mechanism are more domain-invariant than the handcrafted
features. Fig. 4d demonstrates that both source and target
domain features generated from T-CDAN have no apparent
domain shift and can be projected at relatively consistent
locations in 2D t-SNE space. This can be explained by the fact
that non-domain adaptation-based classifiers learnt from the
source domain data will be biased by the source distribution
and adjusted only according to these data. The T-CDAN, on
the other hand, focuses on the feature extractor to consider
the (unlabelled) distribution of both source and target domain,
resulting in a more generalised mapping from raw curves to
the feature space, with a unified distribution of features and
no significant density differences, as shown in the first column
of Fig. 4d.

The target-labelled plots in Fig. 4a-d (column 2) illustrate
the distances of target clusters in the feature space, where
more separate clusters with clearer boundaries and larger
distances usually indicate easier classification. By using hand-
craft sigmoidal fitting parameters as features, the RF method
outperforms the original KNN method with more separate
target clusters, but there is still an isolated cluster which
mix all targets together. The deep features extracted auto-
matically by the transformer further reduce the overlapping
area by enlarging the inter-target distances. Even though,
cluster boundaries are still unclear between blaNDM and blaIMP
features for the 1D-transformer, with a joint circled on the
plot. By finding a common space for both domains, as shown
in the second column of Fig. 4d, T-CDAN further benefits the
target clustering and enables much clearer boundaries, with no
overlap and only a tiny number of data points being clustered
to the wrong group.

In addition, we observe that T-CDAN features achieves the
smallest A-distance among all models’ features, implying that
T-CDAN is the most effective method to reduce the domain
gap. The 1D-transformer, with the second-smallest A-distance,
outperforms the RF and KNN methods in terms of reducing
domain shifts, thanks to its ability to extract features from
higher-dimensional space compared to machine learning-based
methods. This outcome supports the inference we made based
on the t-SNE feature visualisations.

C. Quantitative Evaluations

In this subsection, we further analyse the four methods’
quantitative results of target identifications. Confusion ma-
trices at the curve and sample level for the four compared
algorithms are illustrated in the last two columns of Fig. 4.
Although all the algorithms, to various extent, struggle in
distinguishing blaOXA-48, transformer-based approaches defeat
the rest of two classical methods, with much fewer misclas-
sifications shown for this target. The 1D-transformer presents



IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XXX, NO. XXX, MARCH 2023 8

(a) KNN (𝒜-distance: 1.48)

(b) Random Forest (𝒜-distance: 1.69)

(c) 1D-transformer (𝒜-distance: 1.07)

(d) T-CDAN (𝒜-distance: 0.96)

𝑏𝑙𝑎!"#𝑏𝑙𝑎$#%𝑏𝑙𝑎&'()*+
Synthetic DNA Clinical Isolates

Curve Level Sample Level

Acc. 72.2% Acc. 82.3% 

Acc. 83.1% Acc. 92.6% 

Acc. 88.5% Acc. 96.6% 

Acc. 93.1% Acc. 97.0% 

Fig. 4: Visualization and results of considered methods. Each subtitle depicts the name of the evaluated methods and their
related A-distance. Column 1&2: t-SNE feature visualisations, where features from different domains are coloured differently
in Column 1 plots, and features from distinct AMR targets are coloured differently in Column 2 plots. Column 3: curve-level
classification confusion matrix; Column 4: sample-level classification confusion matrix.

slightly worse performance for blaNDM than the RF method,
but these drawbacks are partially eliminated by integrating
the transformer into the CDAN framework. When considering
sample-level results, the advantages of the newly proposed
algorithms in clinical use are emphasised, with only 7 and 6
of 198 samples misclassified for 1D-transformer and T-CDAN,
respectively, compared to 38 (KNN) and 15 (RF) for the two
previous methods.

Detailed numerical results are shown in Table I and II.
For either curve or sample level, an increasing trend in both
F1-score and Accuracy from KNN to T-CDAN methods for
all targets can be observed (except for the F1-score between

RF and 1D-transformer for blaNDM, where the results of
the new method slightly dropped), indicating a better overall
performance when utilising the new strategies. Compared to
KNN and RF, the transformer increases the mean accuracy by
16.3% and 5.4% at the curve level, and by 14.3% and 4% at the
sample level. After applying the domain adaptation, T-CDAN
further widens the performance gap by 20.9% and 10% at the
curve level, 14.7% and 4.4% at the sample level. Providing
the 97% of sample-level accuracy of T-CDAN, it is very
promising for this algorithm to be introduced to real-world
clinical diagnosis after certain optimisations [37]. Although
KNN and RF-based methods show slightly higher sensitivity
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TABLE I: Curve-level performance of four methods in three AMR target classifications.

KNN Random Forest 1D-transformer T-CDAN

blaIMP

Specificity (%) 69.3 72.4 87.0 92.2
Sensitivity (%) 99.9 98.5 98.5 97.6

F1-score 0.818 0.834 0.924 0.948

blaNDM

Specificity (%) 65.4 79.2 86.3 90.1
Sensitivity (%) 86.3 97.1 87.9 95.1

F1-score 0.744 0.872 0.870 0.925

blaOXA-48

Specificity (%) 85.6 97.0 91.0 95.7
Sensitivity (%) 50.7 67.0 84.6 89.7

F1-score 0.636 0.793 0.878 0.926
Mean Accuracy (%) 72.2 83.1 88.5 93.1

TABLE II: Sample-level performance of four methods in three AMR target classifications.

KNN Random Forest 1D-transformer T-CDAN

blaIMP

Specificity (%) 80.4 81.8 97.8 97.8
Sensitivity (%) 100.0 100.0 100.0 100.0

F1-score 0.891 0.900 0.989 0.989

blaNDM

Specificity (%) 76.9 93.7 95.9 94.8
Sensitivity (%) 94.6 100.0 95.9 98.7

F1-score 0.848 0.967 0.959 0.967

blaOXA-48

Specificity (%) 92.9 100.0 96.4 98.8
Sensitivity (%) 61.9 82.1 95.2 94.0

F1-score 0.743 0.902 0.958 0.963
Mean Accuracy (%) 82.3 92.6 96.6 97.0

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
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Micro-averaged One-vs-Rest
Receiver Operating Characteristic

KNN (AUC = 0.86)
Random Forest (AUC = 0.95)
1D-transformer (AUC = 0.96)
T-CDAN (AUC = 0.98)

Fig. 5: Micro-averaged Receiver Operating Characteristics of
all the compared algorithms.

and specificity for some targets, their performance is severely
biased and unbalanced among targets.

In Fig. 5, where the micro-averaged Receiver Operating
Characteristics (ROC) of all the algorithms are shown, it shows
that the proposed T-CDAN provides the highest Area under
Curve (AUC) among all the compared methods.

IV. DISCUSSION

We can plainly see from the findings that transformer
models extract more discriminative features that are more
robust to domain shift than machine learning-based methods.
The primary reason is that the positional encoding module

enables the transformer to extract additional positional infor-
mation from the curve. Furthermore, unlike other types of time
series, qPCR amplification data from different targets represent
a complex classification problem because of difficulties in
manipulating the shape of this biological signal. As a result,
the local features retrieved from the original dimensional
space may be insufficiently discriminative. The encoding block
in the transformer model, on the other hand, can extract
deeper features by mapping curves into a higher dimensional
space. In addition, providing that the amplification curve can
be further divided into three different phases: (1) Initiation
phase, (2) Exponential phase and (3) Plateau phase, the kinetic
information from different phases can be effectively captured
and aggregated by the multi-head attention mechanism of the
encoding block.

T-CDAN outperforms all other methods in the AMR target
classification because non-domain adaptation-based methods
only aim to perform well on the source domain data, whereas
T-CDAN also ensures that the feature distributions across the
two domains are as similar as possible. Besides, T-CDAN
exploits multilinear mapping to control the uncertainty of label
predictions, which guarantees the features’ transferability and
discriminability simultaneously. In addition, T-CDAN is also
robust in the convergence, which is illustrated in Figure S1.

Unlike conventional machine learning methods, the pro-
posed T-CDAN provides balanced performance for all the
target categories, which will benefit the real-world clinical
application where observations of different pathogens follow
various distributions [38]. In this research, we demonstrated
the proposed algorithm on digital PCR data. An apparent
advantage of using dPCR for learning-based multiplexing is
that numerous amplification reactions that happened simulta-
neously generate millions of amplification curves in a short
period of time, providing the huge training dataset required
by deep neural networks. Leveraging dPCR, we can further
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extend the training size and introduce more variability easily
in our future work.

As all other deep learning models, T-CDAN can be deployed
on standard PC or workstations after the training progress is
finished, and the inference time for classifying new samples
can be negligible, since the network size of the transformer
backbone is not large. These facts make the proposed al-
gorithm accessible to every PCR lab with basic computing
resources.

We are also aware of the demand for implementing the
proposed deep ACA algorithm in conventional qPCR devices,
which will widen the application scenarios and increase the
clinical value of the methodology by integrating it into the
current diagnosis flow without any hardware modification. Un-
derstandably, data from dPCR and qPCR will show heteroge-
neous structures with inconsistent distributions. The potential
performance gap when transferring a dPCR trained network
to a qPCR application can also be filled by the proposed deep
domain adaptation approach, inside which the qPCR data are
considered coming from the target domain. Future work will
be focused on validating the T-CDAN on qPCR while gaining
benefits from the large-scale dPCR training data.

Under certain circumstances, the data distributions shift
among different experiments due to the variance of chemical
agents, operation procedures, and manufacturer bias, which
can become a significant factor causing the inter-experiment
discrepancy in performance. If data from each experiment
are considered belonging to a separate domain, this issue
can be described as a multi-domain adaption problem. Our
future work will further extend T-CDAN into the multi-source
one-target (multiple training experiments vs one testing) and
one-source multi-target (one training experiment vs multiple
testing) manners, by integrating with other techniques such as
knowledge distillation to learn domain-invariant features on
multiple domains.

We demonstrated in this article the precise classification
of three AMR genes. Our next step is to enlarge the target
number in the multiplex assay while maintaining a high
accuracy level. Furthermore, research will be carried on for co-
amplification situations, for example, when double infection
occurs and more than one target show up in a single sample.
Our preliminary results suggest the possibility of identifying
co-infections by including them as additional categories and
applying ACA accordingly [18, 20]. Efforts will also be
made regarding the optimisation of chemical agents, such as
modifying primer and probe concentrations [12], to generate
amplification curves with more significant shape discrepancy
when co-amplifications happen.

Regarding the economic benefit of single-well multiplexing,
it can be assumed that by applying multiplex and multi-target
detection of N targets in a single well, the total cost of
screening these N targets would be reduced to 1/N compared
to the traditional singleplex setting which requires N times
the reaction chambers. In addition, preparation time can be
reduced, resulting in a simplified and lower workload for the
entire testing.

V. CONCLUSION

This article proposed a novel framework, referred to
as a Transformer-based Conditional Domain Adversarial
Network (T-CDAN), to address the problem of domain
discrepancy in amplification curve analysis. Currently, no
published study has applied deep learning techniques to
analyse PCR amplification curves. Also, our work is the first
to incorporate the idea of a one-dimensional Transformer and
CDAN to alleviate domain shifts in time series. Extensive
experiments validated the effectiveness of the T-CDAN for
the target identification of three AMR genes: blaNDM, blaIMP,
and blaOXA-48. A comparison of experimental results with
the state-of-the-art ACA methods illustrates that T-CDAN
achieves the most promising classification performance,
by learning domain-invariant and discriminative feature
representations from labelled synthetic DNA data and
unlabelled clinical isolates data. T-CDAN provides the
lowest A-distance value of all approaches and exhibits
the clearest decision boundary between different targets
in feature visualisations, showing that it can significantly
reduce the discrepancy between feature distributions from
both domains while ensuring feature discriminability. We
believe that T-CDAN’s impressive performance in bridging
the domain gap between multiple amplification curve datasets
demonstrates its potential to address various types of domain
shifts that may occur during PCR multiplexing.
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