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Model Learning With Backlash Compensation for a
Tendon-Driven Surgical Robot

Francesco Cursi , Member, IEEE, Weibang Bai , Eric M. Yeatman , Fellow, IEEE, and Petar Kormushev

Abstract—Robots for minimally invasive surgery are becoming
more and more complex, due to miniaturization and flexibility re-
quirements. The vast majority of surgical robots are tendon-driven
and this, along with the complex design, causes high nonlinearities
in the system which are difficult to model analytically. In this work
we analyse how incorporating a backlash model and compensation
can improve model learning and control. We combine a backlash
compensation technique and a Feedforward Artificial Neural Net-
work (ANN) with differential relationships to learn the kinematics
at position and velocity level of highly articulated tendon-driven
robots. Experimental results show that the proposed backlash com-
pensation is effective in reducing nonlinearities in the system, that
compensating for backlash improves model learning and control,
and that our proposed ANN outperforms traditional ANN in terms
of path tracking accuracy.

Index Terms—Model learning, backlash compensation, tendon-
driven robots, minimally invasive surgery.

I. INTRODUCTION

IN RECENT years, a major translation in Robotic Assisted
Minimally Invasive Surgery (RAMIS) has been towards

flexible surgical robots, in order to ensure miniaturization,
flexibility, and precision while navigating inside a confined
human anatomy and performing complicated surgical tasks. The
advancements in design and manufacturing have enabled the
possibility to build highly complex structures such as highly
articulated and parallel robots [1], [2], continuum robots [3],
and soft robots [4]. These structures use complex actuation
mechanisms such as tendon sheath, wire drives, or customized
joint designs which make them very dexterous, flexible, and
well-fitted for navigation during surgical procedures [5], [6].
Despite the promising capabilities of these systems, their appli-
cations in real clinical scenarios are still limited due to many
limitations, such as lack of effective motion control strategies
and proper modelling caused by their high complexities [7].
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The main modelling difficulties come from the mapping from
actuation to configuration space (such as joint space), caused
by the complex transmission, and from configuration space to
Cartesian space, due to the highly articulated design.

Different works have focused on analytically modelling and
compensating for tendon nonlinearities [8]–[10] by using fric-
tion models such as LuGre or Wouc-Ben. Yet, properly mod-
elling these nonlinearities is usually not generalizable, as it
requires knowledge about the specific robot design, and it also
requires measuring both motor and joint positions, which might
be tedious for highly articulated systems.

Baek et al. [11] employed computer vision to estimate the joint
positions of a single-segment 2-Degree-of-Freedom (DOF) con-
tinuum robot from camera images and exploit a friction model
to compensate for the system’s nonlinearities. Using cameras,
however, has the major limitation of being highly affected by
light reflection, shadows, and occlusions that might prevent the
approach from properly estimating the robot’s state.

Other researchers have instead focused on offline modelling
approaches, that thus do not rely on any external sensors during
the operation. In [12] the authors present a simplified piece-wise
linear model to compensate non-linear hysteresis of both back-
lash and dead zone together. This approach might work only for
specific systems where such an approximation is valid. In [13]
the authors tackle backlash compensation by estimating the size
of the deadzones, removing the deadzone jumps, and modelling
the remaining mapping from actuation to configuration space.
Similarly to the other works, this approach was validated on a
one-DOF robotic catheter only.

Because of the complexities in modelling such systems, re-
searchers have also shifted towards using black-box data-driven
approaches. In [14], [15] Long Short-Term Memory Neural
Network (LSTM) is employed, given its capability to consider
sequences of data for model learning. In [14], LSTM is used in an
end-to-end fashion to learn only the forward kinematics of their
one-DOF unidirectional catheter and thus evaluate how well it
can predict the robot’s pose. In [15] it is used still in end-to-end
fashion to learn the robot’s inverse kinematics, with the model
trained on task-specific data. In [16], instead, the authors used
feedforward Artificial Neural Networks (ANN) to learn directly
the inverse kinematics of their 2-DOF continuum surgical robot
and compare the control results with using the pure learned
model or an adaptive closed-loop PID feedback controller.

Most of the state-of-the-art work have focused on learning
directly the inverse kinematics of their robots, which generally
have low DOFs. Learning the inverse kinematics is a challenging
task as there exist multiple solutions [17], it does not allow the
exploitation of redundancy or including motion constraints [18],
makes it more challenging to control surgical robotic tools
when in conjunction with serial-link manipulators [19], [20],
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and it requires information about the robot pose, which might
be unavailable during use due to the lack of sensors, as in the
case of robotic surgery. On the other hand, learning the forward
kinematics of the robot can be beneficial to overcome these
limitations [21], [22].

The common approaches are end-to-end which means that, if
applied to tendon-driven robots, the learning technique should
be able to also learn an intrinsic compensation of the ten-
don nonlinearities. Yet, this might make the modelling more
tedious and less accurate. Thus far these nonlinearities have
generally been neglected or treated as unmodelled noise [23].
Additionally, state-of-the-art learning techniques only model the
mapping between the control variables and the robot pose, but
neglect information that comes from the differential relation-
ship between positions and velocities. As shown in [24], [25]
including the differential relationships can help improving robot
model learning, but it has never been tested on highly nonlinear
systems like tendon-driven surgical robots. For these reasons,
the contributions of this manuscript are:
� employing a Feedforward ANN architecture (AugNet),

incorporating physical differential relationships during
training to model the forward kinematics of a tendon-driven
surgical robot;

� proposing an offline backlash identification and compen-
sation approach for highly articulated robots with limited
sensor measurements;

� analysing how black-box end-to-end model learning with
ANN compares to modelling with additional a priori
knowledge of the backlash model and compensation.

Compared to the state-of-the-art research, our proposed ap-
proach is here tested on the highly articulated Micro-IGES
tendon-driven surgical robot [26]. The a priori backlash compen-
sation is used to limit the effects of time and motion-dependent
nonlinearities, aiming to simplify model learning. We are also
carrying out an additional comparison to the results obtained
when controlling the Micro-IGES robot through LSTM-based
inverse kinematics modelling [15].

The manuscript is thus structured as follows. Section II
presents the Micro-IGES robot, describing its design and kine-
matic structure. Section III-B describes the method to identify
and compensate for backlash in the system. Section IV presents
the model learning technique and how it is used to learn the
robot kinematic model with and without backlash compensation.
Section V shows the robot modelling and experimental control
results and, finally, conclusions are drawn in Section VI.

II. ROBOT DESCRIPTION

In this section, the Micro-IGES surgical robot is presented,
describing its design and its kinematic model.

A. Robot Description

The Micro-IGES (Figs. 1 and 2) is a custom-made surgical
robotic tool, composed of a rigid shaft and a flexible section.
In total it has 6 DOF for motion control, with the two elbows
consisting of a pair of coupled joints. As shown in Fig. 1(a), the
robot’s base is attached to the motor package by means of pinned
connectors. Each motor drives two antagonistic tendons, which
have multiple routings on the capstans. The coupling of the two
pairs of joints of the elbows occurs directly at the distal driving
unit. For a more thorough description, please refer to [15]. The

Fig. 1. The Micro-IGES robot with: 1(a) the robot’s components; 1(b) exper-
imental setup.

Fig. 2. Micro-IGES kinematic model.

system is not equipped with any sensor, except for the motor
encoders in the motor pack. Due to the current setup that prevents
the use of the shaft, in this work only 4 DOF are considered (El-
bow 1, Elbow 2, Wrist Pitch, Wrist Yaw) and the system’s state is
hereby expressed by θ =

[
θe1 θe2 θW θor

]
. Additionally,

due to the designed tendon routing of the robot, backlash effect
is predominant only in these joints.

B. Robot Kinematic Model and Control

In tendon-driven robots, tendons are connected to the motors
on one end and to the joints on the other. The routing of the
tendons inside the robot causes nonlinearities in the mapping
from motor to joint space, described as q = f(θ), being θ ∈
R4 the vector of motor positions, q ∈ R4 the vector of joint
positions, and θ̇ ∈ R4 the vector of motor velocities. The control
problem for the Micro-IGES can therefore be formulated as a
function of the motor values, which can be directly measured
and controlled.
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Algorithm 1: Offline procedure to identify deadzone sizes
for each motor.

1: procedure IdentifyDeadzones(Data)
2: t = 0
3: while t <= T do
4: θt, θ̇t ←getMotorValues(Data)
5: P t, Ṗ t ←getTipPosition&Velocity(Data)
6: if |θ̇t| > ε AND ||Ṗ t|| < εv then
7: θinit = θt
8: t = t+ 1
9: while t <= T do

10: θt, θ̇t ←getMotorValues(Data)
11: P t, Ṗ t ←getTipPosition&Velocity(Data)
12: if |θ̇t| >= ε AND ||Ṗ t|| >= εv then
13: θfin = θt
14: break
15: end if
16: t = t+ 1
17: end while
18: δset ← Append (|θfin − θinit|)
19: θset ← Append (θinit)
20: end if
21: t = t+ 1
22: end while
23: return δset, θset
24: end procedure

Modelling the robot’s inverse kinematics is a tedious task
due to the non convexity of the problem [27]. If a forward
kinematic model outputting the predicted robot’s tip position
P̂ (θ) is available, given a desired Cartesian trajectory specified

by P̃ (t) = P̃ t,
˙̃P (t) = ˙̃P t, the control problem at each timestep

t can be formulated at the velocity level as a Quadratic Program
such that:

θ̇
∗
t = arg minθ̇

1

2
|| ˙̃P t − Ĵ(θt)θ̇||2

s.t. θm − θt ≤ θ̇Δt ≤ θM − θt

and θt+1 = θt + θ̇
∗
tΔt (1)

where Ĵ = ∂P̂
∂θ , θM ,θm are the motor position bounds, and Δt

is the sampling time. This formulation allows optimally solving
for robot’s redundancies and guarantees satisfaction of possible
motion constraints.

III. BACKLASH COMPENSATION

In this section we present how backlash is identified and
compensated for.

A. Offline Backlash Identification

The main causes of backlash in tendon-driven robots are
effects like friction, tendon elongation, tendon slacking, which
cause a delay in the motion of the robot whenever there is a
change in motion direction. During the motion reversals, if the
system’s state is in deadzone, the robot would not move, despite
commanding non-null commands. Approaches to compensate

Fig. 3. Backlash identification for each motor, with θ =
[θe1 θe2 θW θor] corresponding to Elbow 1, Elbow 2, Wrist Pitch,
Wrist Yaw. The red dots indicate the identified points in the deadzones. For
visualization purposes, the tip position norm is computed neglecting the robot
length at its zero configuration.

for backlash act in general on the motor to joint mapping.
However, surgical robots do not have any sensors on the joints,
due to sterilization and miniaturization requirements, and accu-
rately measuring the joint positions by means of external sensors
may be tedious. Similarly to [13], in this work we use only
measurements of the tip position to estimate the backlash size.
For highly articulated robots, the contribution of each joint can
still lead to zero tip’s velocity, even with non-null motor com-
mands. Therefore, in order to identify the size of the deadzone
for each motor j of the robot and avoid mis-classifications of
deadzones, sinusoidal waves with linearly varying amplitude
are commanded to each motor independently for a total amount
of time T = 500 s. Electromagnetic (EM) trackers are here
employed to collect the corresponding 3D tip position P , given
a desired motor command.

In this work we are assuming a simplified backlash model,
where the deadzones are considered to be only functions of
the current robot’s configuration. To estimate the sizes of the
deadzones, the procedure described in Algorithm 1 is used. We
iteratively search through the collected datapoints to find the
regions where, despite commanding non null motor velocities
(|θ̇j | > ε), the tip is not moving (||Ṗ || < εv). ε and εv are two
user-defined thresholds. Thanks to the design of the Micro-
IGES, all tendons pass through the center of the cross-section
area, thus minimizing crosstalk and motion interference. For
this reason, the identification can be conducted for each motor
independently, neglecting any contribution to the tip motion of
the other motors. The deadzone regions will be identified by
the initial motor position θj,init, when the change of motion
occurs and the tip stops moving, and θj,fin, when instead
the motor goes out of the deadzone and the tip starts moving
again. The size of the deadzone at location θj,i = θj,init is then
computed as δj,i = |θj,fin − θj,init|. Since the change of motion
occurs at different locations, the sizes of the deadzones and the
corresponding motor positions are stored in δj,set = {δj,i, i =
1 . . . I} and θj,set = {θj,i, i = 1 . . . I}, where I is the number
of times deadzones were identified. This procedure is repeated
for each motor independently. Fig. 3 shows a represenatation of
the identification of the deadzones for each motor.
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Fig. 4. Mapping from motor values to deadzone size for the four motors θ =
[θe1 θe2 θW θor] corresponding to Elbow 1, Elbow 2, Wrist Pitch, and
Wrist Yaw, as a function of the motor positions.

B. Backlash Modelling and Compensation

Given the two sets δj,set and θj,set, for each motor j it is
then possible to construct a function to estimate the size of the
deadzone at each motor position δj = δj(θj). In this work we
employed cubic splines to find this mapping, and results are
shown in Fig. 4. The obtained function allows estimating the
size of the deadzone at each possible motor position during the
motion. Once the mapping for each motor is obtained, it is then
possible to compensate for the backlash by simply adding or
removing the deadzone size whenever there a desired change of
motion is commanded, meaning:

θj,comp(t)=

⎧⎨
⎩
θj(t)− δj(θj(t)), if θ̇j(t) < 0 ∧ θ̇j(t− 1) > 0

θj(t) + δj(θj(t)), if θ̇j(t)>0 ∧ θ̇j(t− 1)<0

θj(t), otherwise
(2)

IV. NEURAL NETWORKS FOR MODEL LEARNING

In this section, the approach to model the robot’s kinematics
by means of Artificial Neural Networks is presented.

A. Feedforward Neural Networks

In this work, a standard ANN (FFNet) is employed to
directly map the motor positions to the tip Cartesian position
θ → P̂ , where P̂ is the network output (Fig. 5(a)). By learning
the motor to tip mapping, we inherently learn the motor to joint
mapping, which is generally very tedious to retrieve analytically.
Even though the mapping from joints to tip could be easily
computed from the geometry of the robot, joint data are hard
to collect compared to the tip position, which, instead, can
be measured directly through external sensors. The network
weights are thus computed by minimizing the position loss
function cp =

∑
D

1
2 ||P̂ − PD||2, where PD are the measured

positions. From the learnt motor to tip position mapping, it is
also possible to have an estimate of the Jacobian Ĵ after the
training.

B. Augmented Feedforward Neural Networks

In order to optimally control a robotic system using the
techniques described in Section II-B, the forward kinematics
of a robot should be computed, obtaining both a mapping from
the control variables to the tip position and information about
the robot Jacobian. Even though FFNet allows obtaining the
Jacobian by derivation, information on the velocity mapping is

not included in the training. This might, however, be beneficial
for the network to learn a more accurate model. For this reason an
augmented network AugNet (Fig. 5(b)) is proposed. AugNet
takes as input both the motor positions θ and velocities θ̇ and

outputs both the estimated tip positions P̂ and velocities ˙̂P .
The decoupling layer is only used to split the inputs into two
sub-vectors. The motor positions θ are fed into a feedforward
layer to estimate the tip position. The derivative layer computes
the derivatives of the network, given the current set of weights
and inputs, to estimate the Jacobian Ĵ during the network
training. This layer, however, does not add additional weights
to the model. The Jacobian is then multiplied by the motor

velocities to produce the expected tip velocities ˙̂P = Ĵ θ̇. The
cost function to train the network’s weights is then defined as

cpv =
∑
D

wp

2 ||P̂ − PD||2 + wdp

2 || ˙̂P − ṖD||2, where ṖD are
the measured tip velocities, and wp = 10−3, wdp = 1 are user-
defined weights.

Even if for the training phase θ and θ̇, and are needed, for
the inference in testing and control it is necessary to only use
θ, as only the feedforward layer will be retained and used for
estimations of P̂ .

C. Model Learning and Control Approach

To evaluate the effects of backlash compensation, two dif-
ferent strategies are tested, employing both presented network
architectures FFNet and AugNet. It is worth mentioning that
all the control is performed in open-loop, without any on-board
sensory feedback. For this reason, the input to the controller
is the desired tip position and the only output is the model’s
predicted position.

1) Learning and Control Without Compensation: In this
case, the mapping from motor to tip is built without com-
pensating the motor positions to send to the robot, but in a
pure black-box fashion. Training data is collected without the
compensation and consists of the desired motor positions θ and
corresponding measured tip positions PD. Once the kinematic
model is learnt, the control strategy in Fig. 6(a) is employed. The
learnt model outputs the expected tip position P̂ and Jacobian
Ĵ , which are then used in the inverse kinematics solver (1)
to compute the motor values, given a desired tip position P̃ .
The resulting motor positions from the solver are then directly
commanded to the robot.

2) Learning and Control With Compensation: In this case,
the training data to learn the kinematic model is collected includ-
ing the backlash compensation described in III-B. Because of the
deadzones, non-null desired motor commands would correspond
to null tip velocities, making the mapping less univocal and
more challenging to invert. The a priori backlash compensation
is used to isolate time-dependent nonlinearities, simplify the
model and the computation of its derivatives, and reduce the
occurrence of uncertain states due to the motor inputs being
in the deadzones. The input of the network is still the desired
motor positions θ, yet they are first compensated before being
sent to the robot and the corresponding tip position PD is then
measured. Similarly to the case without compensation, the learnt
model predicts the expected tip position and Jacobian to use in
the inverse kinematics solver. Since the network’s inputs are the
uncompensated desired motor commands, the resulting motor
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Fig. 5. The architectures for the two artificial neural network models: 5(a)) standard feedforward neural network; 5(b)) augmented neural network.

Fig. 6. Control strategy for the case: 6(a)) without compensation; 6(b)) with
compensation.

TABLE I
AVERAGE DEADZONE SIZES (IN RAD) FOR EACH MOTOR, WITH AND WITHOUT

COMPENSATION

The values in brackets are the percentage reduction with respect to the case without
compensation.

positions are first compensated and then commanded to the robot
(Fig. 6(b)).

V. RESULTS

In this section, results are presented, showing tests to validate
the backlash compensation, the accuracy of the learnt models,
and the comparison of the control tasks with the two different
learned models.

A. Validation of Backlash Compensation

To validate the proposed backlash compensation, three dif-
ferent kinds of motions were commanded to each motor inde-
pendently: sinusoidal motion with linearly increasing amplitude
(same as the one used to estimate the deadzones), sinusoidal
motion with exponentially varying amplitude, random motion
(Fig. 7(a)).

Fig. 7(b) shows the comparison of the motion obtained with
and without backlash compensation when commanding the sinu-
soidal motion, whereas Table I reports the sizes of the deadzones
identified as described in III-A for each motion when setting
ε = εv = 10−4 for each motor. Results prove that the proposed
approach ensures good compensation of the deadzones, thus
largely reducing motion lag at each change of direction. The
offsets and discrepancies in the tip position are due to the initial

Fig. 7. Example of the commanded motions for validating the back-
lash compensation and comparison of the backlash compensation for θ =
[θe1 θe2 θW θor] corresponding to Elbow 1, Elbow 2, Wrist Pitch, and
Wrist Yaw with sinusoidal motion.

misalignment when running the different tests. In fact, at the
beginning of each test the robot needs to be manually brought to
the home configuration, and this causes inaccuracies. Some of
the overshooting, instead, may be caused by an overestimation
of the deadzone size due to the spline approximation of the motor
to deadzone function.

B. Robot Model Learning

To generate the data, the Micro-IGES motors are
excited with sinusoidal motion of the type θu,i(t) =

0.8
θu,i,max−θu,i,min

2 (sin(2πψ t
T ) + 0.2 sin(20πψ t

T )). In order to
explore as much as possible of its workspace, each motor is
excited with two possible choicesψ = {2, 4}, resulting in a total
of 24 combinations, with an additional independent excitation
for each single motor also included. In total 24 + 4 = 20 exci-
tations were commanded, each one lasting T = 40 s and with
a sampling rate Δt = 200 ms. Consequently, 4000 data points
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TABLE II
ROOT MEAN SQUARE ERROR (RMSE) FOR THE TRAINED MODELS IN THE

TRAINING AND TEST SETS, FOR BOTH CASE WITH AND WITHOUT BACKLASH

COMPENSATION

RMSEP is the error on the tip positions and RMSEdP on the velocities per unit of
time. All measures are in mm.

were collected and randomly split into a training (80%) and test
(20%) set.

The sampling rate is the same later used for control, and its
choice was dictated by the acquisition frequency of the EM
trackers. Due to the reduced number of DOF available, only
the Cartesian x, y components are controlled and, therefore,
modelled. Fig. 1 shows the experimental setup. Two EM trackers
are used to collect the tip position data, with a reference sensor
at the Micro-IGES base and one on the tip, which allows refer-
ring all measurement with respect to the robot’s base directly.
To learn the forward kinematics, two networks are used to
model independently the x and y Cartesian components and, for
both FFNet and Augnet, the feedforward network consists
of one input layer with 4 neurons (corresponding to the robot
motor values θ), a single hidden layer with 30 neurons, and
a one-dimensional output layer. sigmoid activation function
is employed, the training learning rate was set to 10−4, and
20000 epochs were run. These parameters were heuristically
chosen on a trial-and-error basis. The same procedure for data
collection and the same network architecture are also used for
the modelling when no backlash compensation is implemented.

Table II reports the Root Mean Square Error (RMSE) in the
training and test sets for each model. Due to the weights in the
cost function for AugNet, the model accuracy on the tip posi-
tion is generally lower than FFNet. However, since FFNet
neglects any information about the derivative of the kinematics,
and therefore about the velocity mapping, its error at the velocity
level is generally higher. The slightly smaller errors on the
positions in the models without compensation may be due to the
fact that, when the motors are in deadzones, multiple close motor
positions correspond to the same tip position, resulting in a lower
prediction error. Yet, without the compensation non-null motor
velocities might correspond to null tip velocities, which might
be more challenging for the network to capture as demonstrated
by the larger errors at the velocity level using AugNet.

C. Control Tests

The robot is required to follow four different paths (two
ellipses with axes of 12 and 20 mm and two rectangles with sides
of 12 and 20 mm) starting from the home straight configuration.
We compared the tracking accuracy when employing the learnt
AugNet and FFNet models and the currently implemented
geometric model based on Denavit-Hartenberg (DH) conven-
tion, both with and without the backlash compensation. Fig. 8
plots the comparison of the tracking tasks and the norm of
the tracking error εP = P̃ − P act, where P act is the actual
robot tip position measured with the EM trackers. It is worth
mentioning that each test was conducted in open-loop and the
EM trackers were only used to collect the tip position data.

Table III(a) reports the mean tracking error norm ε̄P and
the improvements in the case with backlash compensation over
those without. AugNet is the model resulting in the lowest
tracking errors, with a mean of 3.74 mm over the four tests
in the case with backlash compensation and 5.13 mm without,
compared to5.88mm and 5.80 mm forFFNetwith and without
compensation, and 5.39 mm and 6.35 mm for the DH model
(with and without compensation). This means that AugNet
results in an overall improvement of 36% over FFNet and
31% over DH model, in the case with backlash compensation.
Even though FFNet performs slightly better on the rectangles,
it is AugNet to lead to paths more similar to the desired ones,
as reported by the ratio of the areas of the tracked paths over
the desired ones. Additionally, adding derivatives information
during training with AugNet allows having smoother and less
jerky motion compared to FFNet.

Our results also show that the backlash compensation is effec-
tive in improving the robot control. In the control tests without
compensation, a large motion lag is noticeable, especially when
performing the elliptical shapes, and the robot’s paths result
to be scaled (Table III(b)). This effect might be caused by
the not proper tensioning of the tendons by the motors when
commanding the desired motor commands. When employing
the backlash compensation, this effect is reduced thanks to
the additional rotations of the motors added to compensate for
the deadzones. The backlash compensation leads to an overall
improvement of 27% for AugNet and 15% for DH model
in terms of tracking error with respect to the control without
compensation. For FFNet, instead, there is a slight deteriora-
tion, mostly caused by the poor performance over the second
ellipse. With regards to the sizes of the areas, the compensation
leads to an overall increase of 60% for AugNet, 57% for
FFNet, and 22% for the DH model. Our results thus show
that:
� the implemented backlash compensation helps improving

the robot’s control, even with traditional DH geometric
model;

� adding a priori knowledge of the backlash results in better
performance;

� adding differential relationships during training by using
AugNet improves model learning and control.

Even though the proposed backlash compensation and learn-
ing approach allow for improved modelling accuracy and track-
ing precision with respect to the currently implemented DH
model, the control performances are still not perfect. In fact,
most of the tracking errors occur at the beginning of the motion,
where understanding if the system is in a deadzone is highly chal-
lenging due to manual homing and lack of sensors. Currently,
because of its design (Fig. 1(a)), our system does not allow
estimating tensions on the tendons due to the lack of sensors
and to the fact that each motor drives two tendons, thus making
it challenging to properly have an estimation of the tensions
on each tendon. Including such information and employing
more advanced modelling techniques capable of including more
information about the hysteretic behaviour might lead to even
further improvements.

D. Comparison to LSTM Learning

Because of the time and motion-dependent nonlinearities
in tendon-driven robots, LSTM could be beneficial to learn
robot’s kinematics. However, if LSTM were used to learn the
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Fig. 8. Control test results on different paths for both cases with and without backlash compensation. εP is the error between the desired and the actual robot
position.

TABLE III
RESULTS FOR THE PATH TRACKING TESTS WITH AND WITHOUT BACKLASH COMPENSATION: III IS THE TIP POSITION ERROR NORM; III IS THE RATIO BETWEEN

THE AREAS OF THE ACTUAL AND DESIRED PATHS

The values in brackets are the percentage improvements over the case without compensation.

forward kinematics, then extrapolating the network derivatives
for Jacobian computation would be tedious and computationally
expensive. In [15] LSTM was employed to directly learn the
inverse kinematics of the Micro-IGES on task-specific data and
perform Cartesian motion control, thus aiming to inherently
learn a backlash compensation. The Micro-IGES is required to
follow the 12× 20 mm ellipse, the 20× 12 mm rectangle, and a
10× 10 mm square. The LSTM model-based mean tracking

errors ¯||εP || result to be 3.69 mm, 3.60 mm, and 3.47 mm
on the ellipse, rectangle, and square respectively, compared to
2.58 mm, 5.58 mm, and 2.73 mm for AugNet with compensa-
tion. The current compensation and modelling technique based
onAugNet leads to an improvement in the mean tracking error
of 30% and 21% on the ellipse and square paths, but to a less
accurate tracking on the rectangle. One of the causes of the
larger errors in tracking the rectangle might be due to the use of
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a more sparse and less-task specific dataset for training. Future
work will focus on comparing how backlash compensation and
training on full workspace exploration data benefits an LSTM
approach.

VI. DISCUSSION AND CONCLUSION

In this work we analysed how an offline a priori backlash
compensation strategy can improve model learning. The pro-
posed backlash compensation technique is employed in order for
the ANN to bypass learning the compensation and just build a
forward kinematic model that maps from desired motor positions
to the robot’s tip position. Incorporating the backlash compensa-
tion reduces the nonlinearities in the system, simplifying model
learning. For better modelling, we employed the novel ANN
architecture named AugNet that includes differential relation-
ships during training to additionally learn velocity mapping.

Results on the real Micro-IGES tendon-driven robot show
that our proposed backlash compensation strategy is effective at
reducing lags in the robot motion and at improving the model
learning, leading to more accurate motion tracking. Further-
more, results show the proposed AugNet model outperforms
both standard ANN modelling (FFNet) and the generally used
DH model. Nevertheless, the proposed backlash compensation
is still based on some simplified assumptions and it does not
manage to fully compensate for the nonlinearities in the system.
Future work will focus on improving the compensation by
exploring novel architectures, including additional information
about motion history, and, eventually, implementing adaptive
modelling strategies.
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