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A B S T R A C T

The development of an economic model predictive control (E-MPC) strategy is presented. The strategy uses a
novel dynamic flotation model that incorporates the physics of the froth phase in a flotation cell. The dynamic
model was previously calibrated and validated using experimental data.

Sensitivity analyses were conducted to select a suitable objective function that accounted for both process
economics and control variable sensitivities. While the ultimate goal of a rougher flotation cell is to maximise
the metallurgical recovery at a steady state for a specified minimum grade, it was evident that the incorporation
of air recovery dynamics (which can be measured in real-time) and concentrate grade dynamics (calculated
through first-principle models) led to the best results. The addition of a dynamic variable that can be easily
measured online, i.e. air recovery, offers great potential to improve plant performance in existing froth flotation
systems. Furthermore, a minimum concentrate grade was imposed in the E-MPC strategy. This acts as an
economic constraint as it allows the metallurgical recovery to be optimised while ensuring that concentrate
grade requirements are met.

The dynamic optimisation problem for the E-MPC strategy was discretised using orthogonal collocations,
and was implemented in Matlab using automatic differentiation via CasADi. Two typical manipulated variables
were considered: air flowrate and pulp height setpoints. Based on laboratory-scale data, the implementation
of the E-MPC strategy resulted in improvements ranging from +8 to +22 % in metallurgical recovery, while
maintaining the specified grade. This is therefore an encouraging control strategy to explore in larger flotation
systems.
1. Introduction

Much recent research has focused on advanced control and optimi-
sation techniques to improve plant performance. Model predictive con-
trol (MPC) is widely recognised as one of the most efficient advanced
control techniques to improve the performance of a process (Mahmoodi
et al., 2009). However, in comparison to other chemical industries, the
mineral processing sector still lacks successful implementation of such
advanced techniques (Pérez-García et al., 2021). Particularly for froth
flotation, the potential of implementing MPC strategies has remained
untapped this far because of the difficulties in modelling this process
due to its complex dynamics.

Most models for froth flotation control are oversimplified, in partic-
ular neglecting the phenomena within the froth phase. The importance
of modelling the froth lies in the fact that the phenomena occurring
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there ultimately determine the separation efficiency and thus have a
significant impact on the metallurgical recovery and, especially, the
concentrate grade. For a critical review on modelling for flotation
control, the reader is referred to Quintanilla et al. (2021a).

In terms of MPC implementation for flotation control, Maldonado
et al. (2007) proposed an optimal control for a rougher flotation
circuit using dynamic programming. They suggested a control strategy
for the first three flotation banks for regulation while maintaining
deep froth depths in the last two flotation banks. Their results were
validated against industrial data, showing good agreement with the
actual operational performance. The authors were concerned about
the high computational load of the proposed optimisation strategy.
However, in the intervening fifteen years, there has been a significant
increase in the available computational resources allowing for the
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solution of complex optimisation problems (e.g. large-scale, nonlinear,
non-convex, among others) (Ellis et al., 2014). In Maldonado et al.
(2009), a Proportional–Integral (PI) controller was combined with a
constrained MPC strategy to optimise a two-phase (gas-water) pilot
flotation column. The controlled variables were froth depth, gas holdup
and bias rate, while the manipulated variables were tailings, wash-
water and air flowrates. The MPC strategy was formulated to track
the error in the gas holdup and bias rate under certain operating con-
straints. The same two-phase pilot flotation column was subsequently
used by Riquelme et al. (2016) to develop a predictive control of the
bubble size distribution (BSD). BSD is an important factor in froth
flotation since it is related to the surface area available for particle
attachment due to differences in surface properties (Mesa et al., 2022).
A Wiener model was used to estimate and control the BSD. A Wiener
model consists of a linear system followed by a unitary gain in series
with a static non-linear element (Billings and Fakhouri, 1977). It is
a suitable option for multiple-input multiple-output (MIMO) systems
in which multiple linear variables are dependent upon a nonlinear
element (Riquelme et al., 2015). Riquelme et al. (2016), however, did
not link the influence of the BSD to flotation performance indicators,
such as concentrate grade and metallurgical recovery.

To date, few studies have reported MPC implementation at the in-
dustrial scale in the flotation process; yet, all of these studies have used
empirical models. For example, Brooks and Koorts (2017) proposed a
model predictive control strategy for a zinc flotation circuit using online
X-ray fluorescence analysers, based on empirical dynamic models from
plant step test data. As a result, significant reductions in reagents
were achieved while maintaining grade constraints. However, the main
challenges were related to the slow measurement frequency of the X-
ray fluorescence analysers, as well as the necessity of validating the
sensor for the measurements. The authors also remarked that dealing
with control room operators and some metallurgists and engineers on
site was not an easy task. It seems natural for operators to challenge
any new idea that contradicts their own established control strategies,
which may have worked well for them for years. In Brooks and Mu-
nalula (2017), cascaded model predictive controllers were implemented
at the industrial scale. The controlled variables were froth velocity and
X-ray fluorescence analysers, and the manipulated variables were air
flowrate, pulp height, and frother dosage setpoints. Empirical models
based on Finite Impulse Responses (FIR) were developed and im-
plemented in the MPC strategy. Although encouraging results were
obtained from this MPC implementation, the authors also identified
challenges related to measurement validation. They proposed a scheme
based on high/low limits, but this has the disadvantage that there are
several tuning and sensing decisions that are based on experience rather
than formal analysis.

With regard to economic optimisation in froth flotation, steady-state
models are generally implemented via real-time optimisation (RTO)
strategies, such as those found in Sbarbaro et al. (2008) and Navia et al.
(2019). Nonetheless, although steady-state operations are typical in
chemical process industries, they may not be the best economic strategy
given the dynamic nature of many of these systems (Ellis et al., 2014).
The integration of economics into the process control layer (dynamic)
is known as economic model predictive control (E-MPC) (Diehl et al.,
2011; Amrit et al., 2011; Huang et al., 2011; Liu et al., 2015; Schäfer
et al., 2019). E-MPC considers both closed-loop stability and dynamic
performance (Ellis et al., 2014). It is important to point out that the
term ‘‘economic’’ does not necessarily imply that the objective function
is in currency terms but rather can be a reflection of the economics of
the process. This is further discussed in Ellis et al. (2014), where an
example of E-MPC implementation to maximise production in a reactor
using kinetic models is given.

The main contribution of this paper is therefore to present the
first E-MPC strategy developed for the froth flotation process. A
2

novel phenomenological dynamic model that includes the froth physics
was used in this study, which was developed by Quintanilla et al.
(2021c), and calibrated and validated using experimental data, as
shown in Quintanilla et al. (2021b). An optimal objective function
was proposed to maximise the metallurgical recovery while ensuring
a minimum limit on the concentrate grade. The objective function was
built based on available online measurements and process economics
and was supported by thorough sensitivity analyses with respect to
the degrees of freedom, i.e. air flowrate and pulp height setpoints. It
was established that the incorporation of the dynamic evolution of air
recovery (measured online) and the concentrate grade (estimated using
first-principle models) into the objective function would lead to optimal
results.

The nomenclature and the relevant background theory are pre-
sented in Section 2. An overview of the dynamic model, modifications
and assumptions are shown in Section 3. Sensitivity analyses of the
different terms in the objective function are presented in Section 4. The
optimal control problem formulation is presented in Section 5, whereas
simulation results of the economic model predictive control strategy are
discussed in Section 6.

2. Preliminaries

2.1. Nomenclature

The notation used in this work is standard. Bold lowercase symbols
represent column vectors. 𝐱(𝑡) ∈ R𝑁𝑥 is a vector of state variables,
(𝑡) ∈ R𝑁𝑦 is a vector of process variables, 𝐮(𝑡) ∈ R𝑁𝑢 is a vector
f control inputs, and 𝐳(𝑡) ∈ R𝑁𝑧 is a vector of algebraic variables,
is a vector of parameters of an objective function, 𝐩 is a vector of

arameters of the model, and 𝑡𝑓 is the final time. Each discrete time is
epresented by 𝑡𝑛. The prediction horizon is 𝑁𝑝 and the control horizon
s 𝑁𝑐 .

For the dynamic model of the process, ∙̃ refers to normalised vari-
bles (states and time). Nomenclature of all variables of the model of
he process, including further explanation of each variable can be found
n Quintanilla et al. (2021c,b).

.2. Economic optimisation and process control

Generally, economic optimisation and process control are carried
ut in different layers, as shown in Fig. 1. The upper layer is known
s the real-time optimisation (RTO) layer, in which the economic opti-
isation is performed based on steady-state models of the process (Liu

t al., 2015). The RTO layer gives instructions to a lower layer, which
orresponds to the supervisory control (Liu et al., 2005; Engell, 2007;
avia et al., 2018).

In the supervisory layer, MPC can be used as an advanced control
trategy due to its ability to handle multivariate processes, taking into
onsideration process constraints. A schematic of the MPC strategy is
hown in Fig. 2. MPC relies upon a dynamic model of the process to
redict the future behaviour of important variables (Qin and Badgwell,
997; Camacho and Bordons, 2007). Specifically, the model is used
o solve a dynamic optimisation problem while taking into account
rocess constraints in order to obtain a control action sequence for
he manipulated variables (Camacho and Bordons, 2007; Sbarbaro and
el Villar, 2010; Bergh and Yianatos, 2011; Ellis et al., 2014). Process
onstraints and multivariable interactions can be also added to the
ptimisation problem, which allows the implementation of MPC into
ultiple-input, multiple-output (MIMO) nonlinear systems.

Standard MPC for supervisory control uses a quadratic performance
ndex, which corresponds to measurements of the predicted deviation
f the error of process variables (𝐲 − 𝐲𝐬𝐩), where y is the process
ariable and 𝐲𝐬𝐩 is the setpoint, and inputs (u) from their corresponding
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Fig. 1. Classic control hierarchy for process optimisation and control. Adapted from Rawlings et al. (2013) and Ellis et al. (2014).
Fig. 2. Schematic of the model predictive control strategy. A dynamic model of the process is used to forecast the future (grey dots). At the same time, the MPC strategy gives
the best control sequence u (blue piecewise curve) to maximise or minimise the objective function. Green dots are the measurements from the sensors (x: states, and/or y: process
ariables), which allow for the estimation of new states (red curve) every time that the prediction and control horizons are shifted. (For interpretation of the references to colour
n this figure legend, the reader is referred to the web version of this article.)
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teady-state values, to force the process to the nominal steady-state. The
lassic dynamic optimisation problem is shown in Eqs. (1a)–(1e):

minimise
𝐮∈R𝑁𝑢

∫
𝑡𝑁𝑝
0

(

‖𝐲(𝑡) − 𝐲𝐒𝐏‖2𝜷𝟏 + ‖𝛥𝐮(𝑡)‖2𝜷𝟐
)

𝑑𝑡,

subject to
(1a)

𝑑𝐱
𝑑𝑡

= 𝑓𝑀𝑃𝐶 (𝐱(𝑡),𝐮(𝑡),𝐩) ∀𝑡 ∈
[

𝑡𝑛, 𝑡𝑁𝑝

]

, (1b)

(0) = 𝐱
(

𝑡𝑛
)

, (1c)

𝑔(𝐱(𝑡),𝐮(𝑡)) ≤ 0, ∀𝑡 ∈
[

𝑡 , 𝑡
)

, (1d)
3

𝑛 𝑁𝑝 E
𝐲(𝑡) = 𝐡(𝐱(𝑡),𝐮(𝑡),𝐩), (1e)

here 𝛽1 and 𝛽2 are tuning parameters that ensure a good trade-off
etween the speed of response in 𝐲 and the cost of control action
. Eq. (1b) represents the predicted evolution of the states using a
ynamic model. Initial conditions of the dynamic model (Eq. (1c))
re obtained at each sampling period thanks to the measurements of
urrent process variables/states. Note that it is not always possible to
ave measurements of all states and, therefore, an estimator strategy
uch as a moving horizon estimator (MHE) should be implemented. The
rocess constraints are also considered (Eq. (1d)) in the optimisation.
q. (1e) denotes the model equations for the process variables 𝐲,
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which can be calculated from the model of the process and/or can be
measured online.

MPC is implemented following a receding horizon strategy, which
means that only the first step of the control sequence is applied to the
real system. That is to say, the first control action is sent to the control
actuators to be implemented over the sampling period, i.e. from 𝑡𝑛 to
𝑛+1. After an appropriate time, the horizon is shifted one 𝛥𝑡. At the

next sampling period, the MPC (Eq. (1a) to (1e)) is resolved, and the
new first step of the control sequence is applied to the real system.

One of the disadvantages of hierarchical control (Fig. 1) is that it
neglects the economic performance of the dynamic process (Liu and
Cui, 2018). A promising alternative for optimisation is to implement
RTO and MPC in a single layer to enable dynamic process optimisation
has been attracting widespread attention (Ellis et al., 2014). This is
known as economic model predictive control (E-MPC). There is ex-
tensive literature on the theoretical framework for E-MPC concerning
stability and optimality properties (see Diehl et al. (2011), Angeli
et al. (2012), Heidarinejad et al. (2012), Ellis et al. (2014), Liu et al.
(2015)). The use of E-MPC has some requirements that need to be met.
For example, the dynamic optimisation must be carried out on time
scales that are sufficient for both economic performance evaluation and
disturbance rejection (Schäfer et al., 2019). The standard formulation
of the quadratic cost in Eq. (1a) allows a closed-loop response to
be obtained. Nevertheless, it may not be appropriate for dynamic
economic optimisation (E-MPC). A general form of the E-MPC problem
is given below:

minimise
𝐮∈R𝑁𝑢

∫
𝑡𝑁𝑝
𝑡𝑛

𝑙𝑒(𝐱(𝑡),𝐮(𝑡))𝑑𝑡,

subject to
(2a)

𝑑𝐱
𝑑𝑡

= 𝑓𝐸𝑀𝑃𝐶 (𝐱(𝑡),𝐮(𝑡), 𝑝) ∀𝑡 ∈
[

𝑡𝑛, 𝑡𝑁𝑝

)

, (2b)

𝐱(0) = 𝐱
(

𝑡𝑛
)

, (2c)

𝑔(𝐱(𝑡),𝐮(𝑡)) ≤ 0, ∀𝑡 ∈
[

𝑡𝑛, 𝑡𝑁𝑝

)

. (2d)

The E-MPC strategy is also implemented in a receding horizon
fashion. The objective function in Eq. (2a) is different from the one
presented in Eq. (1a) as the economic cost function is considered
through the dynamic operation of the process (Ellis et al., 2014).
Furthermore, a linear model of the process (𝑓𝑀𝑃𝐶 in Eq. (1b)) is usually
sufficient for standard MPC because of its regulatory control purpose.
However, although linear models are relatively easy to solve, they lose
generality as they are accurate only in a narrow operating condition
range. In contrast, the economic objective of an E-MPC needs a more
general model of the process (𝑓𝐸𝑀𝑃𝐶 in Eq. (2b)) that allows optimal
operating conditions to be found over a wider range. This means that
phenomenological, nonlinear models are usually the best option for E-
MPC implementation. However, due to the challenges in solving this
type of model, an E-MPC implementation is not always widely explored.
Our study, therefore, provides the first E-MPC implementation in a
froth flotation cell using a phenomenological dynamic model.

2.3. Direct methods for optimal control problems

In order to implement an MPC or E-MPC strategy, it is necessary to
solve in a closed-loop an optimal control problem (OCP), repeatedly,
accounting for the feedback from each loop. The OCP is the dynamic
optimisation problem presented in Eqs. (1a)–(1d) (MPC) and Eqs. (2a)–
(2d) (E-MPC), which is solved in a receding fashion. Direct methods to
convert the infinite-dimensional OCP to a finite-dimensional nonlinear
programming problem (NLP) have been extensively studied for over
40 years (e.g. Tsang et al., 1975; Cuthrell and Biegler, 1987; Fabien,
1998; Chachuat et al., 2006; Biegler, 2007, 2010). Direct methods
involve discretising the optimisation problem and applying NLP tech-
niques to the resulting finite-dimensional optimisation problem. The
4

discretisation approaches can be divided into two sub-categories: se-
quential and simultaneous (Chachuat et al., 2006). Flowcharts of both
sequential and simultaneous methods are presented in Fig. 3.

As can be seen from Fig. 3, in the sequential methods, only the
control variables are discretised, and a DAE (differential and alge-
braic equations) solver is embedded in the NLP problem. While the
sequential methods are relatively easy to implement (Beck, 2010), they
usually fail for unstable and ill-conditioned systems (Biegler, 2010).
In contrast to the sequential methods, simultaneous methods do not
use a computationally expensive embedded DAE solver. Instead, both
state and control variables are discretised using collocations over finite
intervals in time, as a Runge–Kutta method, and are approximated as
polynomials over each finite interval. The best-known approach for
simultaneous methods is called orthogonal collocations across finite
elements (Fig. 4). The differential equations are discretised at selected
interpolation points (𝜏𝑛𝑗 , 𝑗 = 1,… , 3 in Fig. 4) across every sampling
time. Once the interpolation points are defined, polynomial approx-
imations of the state 𝐱(𝑡), and piecewise polynomials of the control
𝐮(𝑡), are considered. These polynomial approximations, also known as
collocation equations, are algebraic equations that are easy to derive
and are therefore incorporated directly within the NLP implementation.
Details on the theorems and a full derivation of collocation equations
can be found in Biegler (2010).

While all three discretisation methods were implemented in this
study, the sequential methods were found to be impractical. Specifi-
cally, sequential methods had an elapsed time of over 150 s for each
loop, while orthogonal collocations solved the dynamic optimisation in
less the one second (generally as low as 600 ms). The large differences
in resolution times are due to the fact that convergence is improved in
simultaneous methods by avoiding an embedded solver, and sensitivity
calculations from the solver are replaced by direct gradient and Hessian
evaluations within the NLP implementation taking advantage of the
sparsity of the corresponding matrices (Biegler, 2010). Therefore, in
this study, only the results using orthogonal collocations and automatic
differentiation, are discussed in Section 6.

2.4. CasADi framework for nonlinear programming problems (NLP)

The dynamic optimisation problem in this study was implemented
in Matlab R2020B using CasADi (Andersson et al., 2019). CasADi is an
open-source software tool that allows large-scale optimisation for DAE
systems to be solved. CasADi uses a symbolic framework to efficiently
obtain the derivatives of the problem using automatic differentiation.
It has embedded integrators for ODE and DAE systems. Embedded
NLP solvers, such as interior point methods and sequential quadratic
programming are also included. It also allows dynamic systems with
algebraic loops to be solved via an embedded root-finding solver.

In this study, the three direct discretisation methods (i.e. single
shooting, multiple shooting and orthogonal collocations) were imple-
mented using CasADi. As shown in Fig. 3, the sequential methods
require an integrator for the DAE system. In both sequential cases, an
IDAS integrator was used. The IDAS integrator is described in Serban
et al. (2021). The NLP solver was the Interior Point Optimizer (IPOPT),
which is described in Curtis et al. (2012).

3. Dynamic froth flotation model overview

The dynamic model developed by Quintanilla et al. (2021c) was
used to make predictions for the E-MPC. The model was calibrated and
validated with experimental data from Quintanilla et al. (2021b). An
overview of the main aspects of the dynamic model and considerations
are presented in this section. Nevertheless, for a comprehensive under-
standing of the model development and the physical meaning of all the
variables, the reader is referred to Quintanilla et al. (2021c,b).

The E-MPC strategy proposed in this study considers a rougher froth
flotation cell. The rougher cell objective is to recover as much valuable
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Fig. 3. Flowchart of the direct optimisation methods. Left: sequential method (e.g. single shooting and multiple shooting). Right: simultaneous method (e.g. orthogonal collocations).
Source: Adapted from Rohman and Aziz (2019).
Fig. 4. Polynomial approximation for state profile, 𝐱(𝑡), across a finite element, 𝛥𝑡, in the orthogonal collocation strategy.
Source: Adapted from Biegler (2010).
etal as possible while maintaining the desired concentrate grade. The
oncentrate is sent to further stages, usually to cleaning cells, where the
bjective is to increase the concentrate grade. A piping and instrument
iagram (P&ID) of a typical rougher flotation cell is presented in Fig. 5,
hich consists of an air flowrate controller (FIC) and a pulp level
5

controller (LIC). These are the manipulated variables in this study, as
shown in Table 1, which are the most common manipulated variables
in the vast majority of froth flotation plants.

The dynamic model is classified as a DAE system (i.e. composed of
differential and algebraic equations), and it has a total of 26+5𝐾 +10𝐼
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Fig. 5. P&ID of a typical froth flotation cell. FIC is a flowrate controller for the air flowrate, LIC is a level controller, and AR is an air recovery sensor. The AR sensor consists
of two sensors: an optical laser, and one or more cameras (more information in Section 4). ℎ𝑝 refers to pulp height.
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Table 1
Variables of the DAE system from Quintanilla et al. (2021c).

Variables Nomenclature Units

Control variables (𝐮)
Air flowrate setpoint 𝑄𝑆𝑃

𝑎𝑖𝑟 m3 s−1

Pulp height setpoint ℎ𝑆𝑃
𝑝 m

States (𝐱)
Mass of mineralogical class 𝑖 = 1,… , 𝐼 𝑀𝑖 kg
Gas holdup of bubble size class 𝑘 = 1,… , 𝐾 𝜙𝑘 –
Pulp height ℎ𝑝 m
Tailings flowrate 𝑄𝑡𝑎𝑖𝑙𝑠 m3 s−1

Algebraic variables (𝐳)
Air recovery 𝛼 –
Froth air recovery 𝛼∗ –

equations and 29 + 5𝐾 + 12𝐼 variables, where 𝐾 is the number of
bubble size classes, and 𝐼 is the number of mineralogical classes used.

he number of bubble size classes, 𝐾, allows better accuracy for the
estimation of dynamic gas holdup (Shean et al., 2018). In this work, a
total of 10 bubble size classes (i.e. 𝐾 = 10) were considered, in addition
to two mineralogical classes (i.e. 𝐼 = 2): (1) Chalcopyrite as a valuable
mineral, which contains 34.5% of copper, and (2) quartz as gangue. The
values of the parameters 𝑎, 𝑏, and 𝑐 of the bursting rate equation were
the same as those found in Neethling and Brito-Parada (2018) assuming
a quadratic relationship between bursting rate (𝑣𝑏) and superficial air
velocity (𝑗𝑔). A quadratic relationship ensures that air recovery goes
through a peak for a certain superficial air velocity (Hadler and Cilliers,
2009; Hadler et al., 2010; Neethling and Brito-Parada, 2018).

3.1. Model modifications and considerations

The original dynamic model was slightly modified to ease the
control implementation. As can be seen from equations 41, 44, 54 and
57 in Quintanilla et al. (2021c), there are four variables defined with
if-else statements: concentrate flowrate (𝑄𝑐), slurry content (𝜖), froth
recovery (𝑅 ), and entrainment factor (𝐸𝑁𝑇 ). The if-else formulations
6

𝑓 h
define these variables depending on the value of air recovery (𝛼) such
that the model equations change when 𝛼 is lower than or greater than
0.5. These model equations are continuous at 𝛼 = 0.5 and hence a sharp
transition can be made.

The optimisation algorithm used in this study is derivative-based;
however, derivatives for if-else formulations are not defined and there-
fore cannot be calculated. This issue was addressed by defining sat-
uration (𝛼∗𝑠𝑎𝑡) and switch (𝑆𝐹 ) functions that are differentiable. The
saturation function was defined as a function of 𝛼∗ (Equation 42
in Quintanilla et al. (2021c)) as follows:

𝛼∗𝑠𝑎𝑡(𝛼
∗) = 𝑎𝑠𝑎𝑡 +

𝑏𝑠𝑎𝑡
1 + exp

(

−𝑐𝑠𝑎𝑡
(

𝛼∗ − 𝑑𝑠𝑎𝑡
)) , (3)

where 𝑎𝑠𝑎𝑡, 𝑏𝑠𝑎𝑡, 𝑐𝑠𝑎𝑡, 𝑑𝑠𝑎𝑡 are tuning parameters. The switch function was
defined as a sigmoid function as follows:

𝑆𝐹 (𝛼) =
1

1 − exp
(

−𝑎𝑆𝐹

(

𝛼 − 𝑏𝑆𝐹

)) , (4)

where 𝑎𝑆𝐹
, and 𝑏𝑆𝐹

are tuning parameters. Using Eqs. (3) and (4), a
variable that is defined using if-else statements can be then approxi-
mated as a continuous, differentiable function (y) as follows:

𝑦 = (1 − 𝑆𝐹 (𝛼))𝐹1(𝛼∗𝑠𝑎𝑡) + 𝑆𝐹 (𝛼)𝐹2(𝛼∗𝑠𝑎𝑡), (5)

here 𝐹1(𝛼∗𝑠𝑎𝑡) is the model equation for the variable if air recovery (𝛼)
s lower than 0.5, and 𝐹2(𝛼∗𝑠𝑎𝑡) if air recovery is greater or equal to 0.5.
ote that 𝛼∗𝑠𝑎𝑡 ∈ (0, 1) and it replaces 𝛼∗ in the original dynamic model

o avoid numerical problems. The tuning parameters were calibrated,
sing a solver of nonlinear least-squares (lsqnonlin) in Matlab, for the
our variables together to reduce the model complexity. The values for
he tuning parameters are given in Table 2, assuming 𝑎𝑆𝐹

and 𝑏𝑆𝐹
equal

o 50 and 0.5, respectively. A comparison of the results from the simu-
ations using the original model (if-else statements) and sigmoid approx-
mations (i.e. Eqs. (3)–(5)) are displayed in Fig. A.13 in Appendix A.

Additionally, a modified version of the model equation for gas
oldup was used (Equation 17 in Quintanilla et al. (2021c)), where a
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Table 2
Tuning parameters for Eq. (3).

Parameter Value 95% confidence interval

𝑎𝑠𝑎𝑡 0.01 [0.001267, 0.01873]
𝑏𝑠𝑎𝑡 0.4927 [0.4764, 0.509]
𝑐𝑠𝑎𝑡 10.48 [9.312, 11.65]
𝑑𝑠𝑎𝑡 0.2588 [0.2464, 0.2712]

new variable was defined as: 𝜙𝑘 =
(

𝜀𝑘0
1−𝜀0, total

)

. k refers to the bubble
size class. Therefore, the ODE for gas holdup is now:

𝑑𝜙𝑘

𝑑𝑡
=
1 + 𝜙𝑇

𝐴𝑐𝑒𝑙𝑙ℎ𝑝

(

𝑄𝑘
𝑎𝑖𝑟𝑑

𝑘
𝑏𝑝𝑟𝑜𝑝

− 𝐴𝑐𝑒𝑙𝑙𝑣
𝑘
𝑔𝑎𝑠,𝑜𝑢𝑡

𝜙𝑘

1 + 𝜙𝑇 −
(

𝑄𝑓𝑒𝑒𝑑 −𝑄𝑜𝑢𝑡
)

𝜙𝑘
)

𝑘 = 1,… , 𝐾, (6)

here 𝜙𝑇 =
∑𝐾

𝑘=1 𝜙
𝑘.

In the original model, the tailings flowrate (𝑄𝑡𝑎𝑖𝑙𝑠) was modelled
ssuming that the pulp height was controlled via a valve (Equation
2 in Quintanilla et al. (2021c)), as proposed by Jämsä-Jounela et al.
2003). In the present study, we have defined tailings flowrate in terms
f a Proportional–Integral (PI) controller equation to make it more
eneric. The controller goal is to maintain a pulp height setpoint (ℎ𝑆𝑃𝑝 ).
he derivation of the PI controller yields:

𝑑𝑄𝑡𝑎𝑖𝑙𝑠
𝑑𝑡

= 𝑘𝑝
𝑑ℎ𝑝
𝑑𝑡

+
𝑘𝑝
𝜏𝑖

𝑒, (7)

here the error was defined as:

(𝑡) = ℎ𝑝 − ℎ𝑆𝑃𝑝 . (8)

he proportional constant (𝑘𝑝) used for this study was 0.1 𝑚2𝑠−1 and
he integral time constant (𝜏𝑖) was 50 𝑠.

Finally, two algebraic equations were added to solve the algebraic
oop presented in the dynamic model between 𝑣∗𝑔 , 𝛼, and 𝛼∗. Eqs. (9)
nd (10) are equated to zero when solving the DAE system.

𝑎𝑙𝑔1 = 𝛼 −
𝑣𝑓 𝑙𝑙𝑖𝑝ℎ𝑜𝑣𝑒𝑟

𝑄𝑎𝑖𝑟
(9)

𝑎𝑙𝑔2 = 𝑣∗ −
𝑑ℎ𝑝
𝑑𝑡

− 𝑣total
𝑔 (10)

3.2. Model normalisation

The state variables were normalised to avoid failure in convergence
due to differences in the order of magnitude of the different states.
Further, the normalisation added robustness and rapidness to the solver
convergence. To carry out the normalisation, five constants were de-
fined in terms of the initial states (𝑀𝑖0 , 𝜙0, ℎ𝑝0 , 𝑄𝑡𝑎𝑖𝑙𝑠0 ), and the total
time of prediction (𝑡𝑓 ), as shown in Table 3.

The normalised DAE model used for the control problem is given by
Eqs. (9) and (15) (algebraic equations) and Eqs. (11)–(14) (differential
equations) as follows:

Normalised mass balance for each mineralogical class 𝑖:

𝑑𝑀𝑖

𝑑𝑡
= 𝑘𝑀𝑖

(

𝑚𝑓𝑒𝑒𝑑𝑖 − 𝑚tails 𝑖
− 𝑚𝑇𝐹𝑖 − 𝑚𝐸𝑁𝑇𝑖

)

𝑖 = 1,… , 𝐼. (11)

Normalised gas holdup for each bubble size class 𝑘:

𝑑𝜙𝑘

𝑑𝑡
=𝑘𝜙

(

1 + 𝜙𝑇

𝐴𝑐𝑒𝑙𝑙ℎ𝑝

(

𝑄𝑎𝑖𝑟𝑑
𝑘
𝑏𝑝𝑟𝑜𝑝

− 𝐴𝑐𝑒𝑙𝑙𝑣
𝑘
𝑔𝑎𝑠

𝜙𝑘

1 + 𝜙𝑇 −
(

𝑄𝑓𝑒𝑒𝑑 −𝑄𝑜𝑢𝑡
)

𝜙𝑘
))

𝑘 = 1,… , 𝐾. (12)

Normalised pulp height:

𝑑ℎ̃𝑝 = 𝑘
(

𝑄 −𝑄 +𝑄 − 𝐴 𝑣total
)

(13)
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𝑑𝑡 ℎ𝑝 𝑓𝑒𝑒𝑑 𝑜𝑢𝑡 𝑎𝑖𝑟 𝑐𝑒𝑙𝑙 𝑔𝑎𝑠,𝑜𝑢𝑡
Normalised tailings flowrate:

𝑑𝑄tails
𝑑𝑡

= 𝑘𝑄tails

(

𝑘𝑝
𝑘ℎ𝑝

𝑑ℎ̃𝑝
𝑑𝑡

−
𝑘𝑝
𝜏𝑖

𝑒

)

, (14)

where ∙̃ refers to normalised variables (states and time). Note that the
normalised time �̃� = 𝑡∕𝑡𝑓 ∈ [0, 1]. Additionally, the algebraic Eq. (10)

had to be normalised as well since it is a function of 𝑑ℎ̃𝑝
𝑑𝑡 . This yields:

𝑓𝑎𝑙𝑔𝛼𝑓 = 𝑘ℎ𝑝
(

𝑣∗𝑔 − 𝑣total
𝑔

)

−
𝑑ℎ̃𝑝
𝑑𝑡

. (15)

4. Sensitivity analyses for the objective function

Sensitivity analyses were performed to select an effective objective
function for the control problem. The E-MPC strategy proposed in this
study considers a rougher froth flotation cell, which aims to recover as
much valuable metal as possible while complying with a minimum con-
centrate grade. This means that the ultimate objective of the dynamic
optimisation problem is to maximise metallurgical recovery, which is
defined as the fraction of total valuable metal contained in the feed
that is recovered in the concentrate. Metallurgical recovery can be
calculated using Eq. (16), where 𝑀𝑚𝑒𝑡𝑎𝑙,conc is the mass of metal (copper
in this study) in the concentrate, and 𝑚𝑚𝑒𝑡𝑎𝑙, feed is the mass of metal in
he feed.

ec =
𝑀metal,conc
𝑚metal, feed

. (16)

The mass of metal (𝑀𝑚𝑒𝑡𝑎𝑙,conc) in the concentrate can be calculated
using first-principle models (see Equations 51 and 56 in Quintanilla
et al. (2021c)). However, it is worth mentioning that metallurgical
recovery is only meaningful at steady state, as it compares how much
metal is recovered in the concentrate versus how much metal entered
the feed after a certain residence time (i.e. it is not instantaneous).
For this reason, in this study, the objective function (Eq. (20)) of the
dynamic optimisation strategy evaluates recovery only at a final time
(𝑡𝑓 ), assuming that a steady state is reached. Therefore, the objec-
tive function should include more information coming from process
variables that (1) are dynamic, (2) ideally, can be estimated in real-
time, and (3) contribute to maximising the metallurgical recovery.
These three characteristics can be found in two flotation variables: air
recovery and concentrate grade.

Air recovery is a measure of froth stability that is defined as the
fraction of air that enters a flotation cell that overflows as unburst
bubbles. Air recovery can be calculated using the overflowing froth
velocity (𝑣𝑓 ), froth height above the cell lip (ℎ𝑜𝑣𝑒𝑟), lip length (𝑙𝑙𝑖𝑝),
and the inlet air flowrate (𝑄𝑎𝑖𝑟), as follows:

𝛼 =
𝑣𝑓 𝑙𝑙𝑖𝑝 ℎ𝑜𝑣𝑒𝑟

𝑄𝑎𝑖𝑟
=

𝐴𝑐𝑒𝑙𝑙 𝑣𝑓 𝑙𝑙𝑖𝑝 ℎ𝑜𝑣𝑒𝑟
𝑗𝑔

. (17)

Air recovery is directly linked to flotation performance. Hadler
and Cilliers (2009) demonstrated that the best flotation performance
is obtained when a peak in air recovery (PAR) is found, as shown
schematically in Fig. 6. At air flowrates lower than PAR air flowrate,
bubbles tend to be heavily loaded, with froth moving slowly but
steadily. These froths produce low air recovery and metallurgical re-
covery, but high concentrate grades. On the contrary, air flowrates
beyond PAR air flowrate cause bubbles to be under-loaded, resulting
in unstable froths that burst quickly. These froths result in reasonably
high metallurgical recoveries, but low concentrate grades (Hadler et al.,
2010).

Air recovery can be measured using an optical laser to measure
the froth height above the lip, and a camera (or more than one) to
measure overflowing froth velocity (e.g. via a block-matching image
analysis). Since air recovery is a non-intrusive, reliable indicator of
froth stability and gives dynamic information on the performance of the
cell, it is a sensible variable to incorporate into the objective function.
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Table 3
Normalisation parameters for the ODEs in the dynamic model in Quintanilla et al. (2021c).

ODE Normalisation parameter

Mass balance for each mineralogical class 𝑖 𝑘i =
𝑡𝑓
𝑀0

i
(Equation 9 in Quintanilla et al. (2021c))

Gas holdup for each bubble size class 𝑘 (modified - See Eq. (6)) 𝑘𝜙 =
𝑡𝑓
𝜙0

Pulp height (Equation 22 in Quintanilla et al. (2021c)) 𝑘ℎ𝑝 =
𝑡𝑓
ℎ0
𝑝

Tailings flowrate (modified - See Eq. (7)) 𝑘𝑄tails =
𝑡𝑓

𝑀𝑄0
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Fig. 6. Schematic showing the evolution of air recovery (blue line) as a function of air
flowrate. Adapted from Hadler et al. (2010) and Shean et al. (2017). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

To this end, a sensitivity analysis was carried out to assess the effect of
the decision variables (𝑄𝑆𝑃

𝑎𝑖𝑟 and ℎ𝑆𝑃𝑝 ) on air recovery. In other words,
by varying the air flowrate and pulp height setpoints, this sensitivity
analysis enables quantifying the magnitude and direction of changes
in air recovery. Note that the superficial air velocity 𝑗𝑔 is used instead
of 𝑄𝑎𝑖𝑟 since it is comparable between flotation cells of different sizes
and is therefore widely used in the minerals processing community.
As shown in Fig. 7, air recovery is highly sensitive to air flowrate, as
expected. However, with the current models available for air recovery,
it is relatively insensitive to the other decision variable, pulp height,
leaving room for incorporating more information into the objective
function. It is worth mentioning that pulp height was considered in the
optimisation problem because it is measured online in most flotation
cells. Thus, further sensitivity analyses for metallurgical recovery and
concentrate grade were performed to assess their sensitivity to pulp
height.

The concentrate grade is the mass concentration of metal in the
concentrate which, unlike metallurgical recovery, is meaningful in a
dynamic state. As shown in Eq. (18), the concentrate grade can be
calculated as the mass of metal in the concentrate divided by the total
mass of solids in the concentrate.

Grade =
𝑀metal , conc
𝑀total, conc

. (18)

The sensitivity analyses displayed in Figs. 8 and 9 reveal that both
etallurgical recovery and concentrate grade are highly sensitive to

oth decision variables. It can also be observed that, as expected,
here is a clear trade-off between metallurgical recovery and grade.
8

hat is to say, while higher grades can be achieved for lower pulp
eights (i.e. froth depth increases), this results in the lowest met-
llurgical recovery. Since metallurgical recovery is only meaningful
t a steady state, an indirect way to maximise recovery during the
ynamic state is by minimising the concentrate grade up to a certain
imit. Hence, another sensible term to be included in the objective
unction is the minimisation of the concentrate grade, restricting it to
minimum value, with 20% used in this study (Eq. (26)). While the

0% grade requirement is a sensible value, the actual number that a
lant might use would depend upon its specific technical and economic
equirements and could therefore, ultimately, form part of plant scale
conomic optimisation, with this value being cascaded to the control
f the individual cell via the method outlined in this paper. Further
imulations of the proposed control strategy for different minimum
oncentrate grades can be found in the Supplementary Material.

After the sensitivity analyses shown above, it was decided to im-
lement the E-MPC using the objective function shown in Eq. (20).
dditionally, since the concentrate grade is not usually measured online

or individual cells in most flotation plants, simulations were performed
o evaluate the effect of air recovery alone on the final metallurgical
ecovery, i.e. without adding the concentrate grade and metallurgical
ecovery in the objective function.

. Dynamic optimisation formulation

The optimal control problem (OCP) of dynamic optimisation has
een formulated using nonlinear programming (NLP). The general form
or the NLP using orthogonal collocations (i.e. full discretisation), and
ormalised variables (̃∙), is:

maximise
�̃�(𝑡)∈R𝑁𝑥 ,𝐮𝑛∈R𝑁𝑢 ,𝑛=0,…,𝑁𝑝−1,�̃�(𝑡)∈R𝑁𝑧

𝐽 (�̃�, 𝐲, �̃�,𝐮, 𝜷, 𝑡𝑁𝑃
)

s.t. 𝐡(�̃�, 𝐲, �̃�,𝐮,𝐩, 𝑡) = 0 𝑡 ∈ [𝑡0, 𝑡𝑁𝑝
]

𝐠(�̃�, 𝐲, �̃�,𝐮,𝐩, 𝑡) ≤ 0 𝑡 ∈ [𝑡0, 𝑡𝑁𝑝
]

𝐮(𝑡) = 𝐮𝑛 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1] 𝑛 = 0,… , 𝑁𝑝 − 1

(19)

where the normalised time limits are 𝑡0 = 0, 𝑡𝑁𝑝
= 1, and:

�̃�𝑇 ∶=
[

𝑀𝑖, �̃�𝑘, ℎ̃𝑝, �̃�tails

]

𝒚𝑇 ∶=
[

𝛼,𝐺conc,Rec
]

�̃�𝑇 ∶= [𝛼, 𝛼∗]
𝒖𝑇 ∶=

[

𝑄tails , ℎ𝑆𝑃𝑝
]

𝒉 ∶ Dynamic model found inQuintanilla et al. (2021c)
(normalised models in Eqs. (9), (11)- (15)).

𝒈 ∶ Process constraints (Eqs. (25) − (26)),

where 𝛼 is air recovery, 𝐺𝑐𝑜𝑛𝑐 is the concentrate grade, Rec is the met-
allurgical recovery, and 𝐮𝑗 for 𝑗 = 1, 2, are the control inputs (decision
variables) defined in Eq. (22). After conducting sensitivity analyses
in Section 4, it was concluded that a robust objective function for
maximising the performance of a rougher flotation cell should include
three variables: (1) the dynamics of air recovery (as a measure of froth
stability), (2) the dynamics of concentrate grade (calculated through
first principles), and (3) the maximisation of metallurgical recovery
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Fig. 7. Sensitivity analysis of air recovery in terms of the two decision variables: air flowrate (𝑄𝑎𝑖𝑟 = 𝐴𝑐𝑒𝑙𝑙𝑗𝑔) and pulp height (ℎ𝑝) at steady state.
Fig. 8. Sensitivity analysis of metallurgical recovery in terms of the two decision variables: air flowrate (𝑄𝑎𝑖𝑟 = 𝐴𝑐𝑒𝑙𝑙𝑗𝑔) and pulp height (ℎ𝑝) at steady state.
m
t
o

s

t the end of the prediction horizon (assuming that steady-state is
eached). These three variables contribute to taking full advantage of
oth decision variables. However, due to the trade-off between grade
nd recovery, the concentrate grade is minimised in the objective
unction but constrained to a minimum value, as previously discussed.
dditionally, minimising control effort is also considered in the ob-

ective function to avoid oscillations. The resulting objective function,
enoted by J, is expressed as follows:

∶= ∫

𝑡𝑁𝑝

𝑡0
(𝛽𝛼𝛼(𝑡)−𝛽𝐺𝑟𝑎𝑑𝑒𝐺𝑐𝑜𝑛𝑐 (𝑡))𝑑𝑡+𝛽Rec Rec

(

𝑡𝑁𝑝

)

−
𝑁𝑝−1
∑

𝑛=0

(

𝛥𝐮𝑇𝑛 𝜷𝐮𝛥𝐮𝑛
)

.

(20)

Each term is penalised by a parameter such that:

𝐮 ∶=
[

𝛽𝑢1 0
0 𝛽𝑢2

]

, (21)

here:

𝑇 8 6 8 6 2
9

∶= [𝛽𝛼 , 𝛽𝐺conc , 𝛽Rec , 𝛽𝑢1 , 𝛽𝑢2 ] = [10 , 10 , 10 , 10 , 10 ].
The selection of the values for the vector 𝜷 was supported by a para-
etric sensitivity analysis. Under the operating conditions analysed in

his study, these selected values for 𝜷 led to the optimal performance
f the optimisation solver in terms of convergence time.

The economic performance in a froth flotation cell can be mea-
ured through the metallurgical recovery (Rec in Eq. (16)) at the

final time, assuming that a steady state is reached. To achieve this,
dynamic air recovery (𝛼 in Eq. (17)) is maximised, as it has been
demonstrated that operating froth flotation cells at high air recoveries
improve metallurgical performance (Hadler and Cilliers, 2009).

The terms 𝛥𝐮𝑛 represent the control efforts, which are defined as:

𝛥𝐮𝑛 = 𝐮𝑛 − 𝐮𝑛−1, 𝑛 = 0,… , 𝑁𝑐 − 1, (22)

It is always assumed that the first values for the control variables are
known. Thus, 𝐮−1 in Eq. (22) was defined as 𝐮−1 = [𝑄𝑆𝑃0

𝑎𝑖𝑟 , ℎ𝑆𝑃0𝑝 ].
By definition, the control variables must not change after the control

horizon; therefore, Eq. (23) was imposed:

𝛥𝐮𝑛 = 0, 𝑛 = 𝑁𝑐 ,… , 𝑁𝑝 − 1, (23)
where 𝑁𝑐 is the number of control intervals.
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Fig. 9. Sensitivity analysis of concentrate grade in terms of the two decision variables: air flowrate (𝑄𝑎𝑖𝑟 = 𝐴𝑐𝑒𝑙𝑙𝑗𝑔) and pulp height (ℎ𝑝) at steady state.
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Note that 𝛥𝑡 = 𝑡𝑓∕𝑁𝑝, and the normalised 𝛥𝑡 is 𝛥𝑡∕𝑡𝑓 . Hence, 𝛥𝑡 =
∕𝑁𝑝. Additionally:

�̃�+1 = 𝑡𝑛 + 𝛥𝑡 𝑛 = 0,… , 𝑁𝑝 − 1. (24)

Constraints were imposed for all states �̃�, control variables 𝐮, and
lgebraic variables �̃� to ensure that they are physically consistent:

�̃�𝐥𝐛 ≤ �̃� ≤ �̃�𝐮𝐛
𝐥𝐛 ≤ 𝐮 ≤ 𝐮𝐮𝐛
�̃�𝐥𝐛 ≤ �̃� ≤ �̃�𝐮𝐛

(25)

The lower and upper bounds for the states and algebraic variables
ere normalised with the respective initial state for each iteration.
ince E-MPC is applied following a receding horizon strategy, the vec-
ors �̃�𝐥𝐛, �̃�𝐮𝐛, �̃�𝐥𝐛 and �̃�𝐮𝐛 must be updated in every iteration with a new
ector of state variables. The lower and upper limits of the control vari-
bles (𝐮𝐥𝐛 and 𝐮𝐮𝐛) were limited to a predefined range of changes with
espect to their current value at each iteration: changes by up to 100%
or 𝑄𝑆𝑃

𝑎𝑖𝑟 and 10% for ℎ𝑆𝑃𝑝 . Additionally, another constraint was imposed
o ensure a minimum concentrate grade of 20% (Eq. (26)). This is be-
ause there is always a trade-off between metallurgical recovery (Rec)
nd concentrate grade. As discussed previously, an appropriate mini-
um concentrate grade value for a flotation plant depends on its tech-
ical and economic needs and can be determined through plant-scale
conomic optimisation. Additional simulations for various minimum
oncentrate grades are available in the Supplementary Material.

𝑐𝑜𝑛𝑐 ≥ 0.2 (26)

Other considerations for the implementation of the optimal control
roblem are listed below:

1. Data from the experiments carried out in Quintanilla et al.
(2021b) for model calibration and validation were used as initial
states and control variables. This means that there are nine
different operating conditions in total (full factorial design of
32), which correspond to three levels of superficial air velocity
𝑗𝑔 : 0.5, 0.7, and 0.9 cm s−1 and three levels for the tailings valve
position (which will define the initial pulp height): 25%, 37.5%,
and 50% open. Additionally, other relevant parameters, such as
tank dimensions and operating condition ranges, were the same
as those used for model calibration and validation.
10
2. Two mineralogical classes were assumed: chalcopyrite (the valu-
able mineral that contains 34.5% of copper) and quartz (gangue).
It was assumed that particle sizes and floatability were constant.

3. Total time of prediction (𝑡𝑓 ) was 600 s because the experimental
rig used for the model validation reached steady-state at about
10 min (settling time).

4. Number of prediction intervals (𝑁𝑝) was 10, and number of
control intervals (𝑁𝑐) was 3. Each time step, 𝛥𝑡 was equalled
to 𝑡𝑓

𝑁𝑝
= 60 s.

The dynamic optimisation problem presented here from Eq. (19)
to Eq. (26) was implemented using CasADi by solving the OCP using
orthogonal collocations as the discretisation method using automatic
differentiation, as explained in Section 2.3.

. E-MPC results and discussions

Fig. 10 displays the evolution of air recovery, 𝛼, and the control
ariable 𝑄𝑎𝑖𝑟 (represented as 𝑗𝑔) over time. As can be seen from Fig. 10,
is always maximised until it reaches a peak in all cases. The control

equences for superficial air velocity seem to have a similar trend,
.e. increasing superficial air velocity until a maximum is reached,
ollowed by a gradual reduction of its value. It is expected that air
ecovery reaches a peak for a certain superficial air velocity when pulp
eight is constant. However, it is not the case for this study as pulp
eight is the other control variable that changes over time in order
o maximise the objective function of Eq. (20). As was demonstrated

in the sensitivity analysis (Section 4), air recovery not only depends
on 𝑗𝑔 but also on pulp height. For the first time, air recovery is
included in a dynamic optimisation strategy, which is an excellent
option for the majority of current industrial flotation cells, as it is
a reliable and non-intrusive technique for measuring froth stability
online (Hadler et al., 2010). Moreover, as mentioned before, it has
been demonstrated that air recovery is directly linked to froth flotation
performance (improvements in concentrate grade and metallurgical
recovery).

As shown in Fig. 11, in all cases the pulp heights decrease until
reaching a lower limit. It can be observed that the pulp height in the
process is not the same as the pulp height setpoint, particularly for the
first three steps. These differences are due to the fact that the pulp
height is controlled by manipulating the tailings flowrate, which was
simulated as a PI controller (Eq. (7)). It must be emphasised that the
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Fig. 10. Air recovery (𝛼) and superficial air velocity (𝑗𝑔) over time for the E-MPC implementation for the nine different operating conditions used as starting points in the
imulations (rows 1–3: 𝑗𝑔0 = 0.5, 0.7 and 0.9 cm s−1, respectively; columns 1–3: tailings valve = 25%, 37.5% and 50% open, respectively). The asterisks are the initial values of
ir recovery and 𝑗𝑔 (i.e. 𝑡 = 0) for each operating condition. The black circles are the air recovery values in the process (simulated) and the red stairs are the control sequences
or superficial air velocity (𝑗𝑔). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
uning parameters of any PI controller are never perfect, and there is
time delay in the regulatory control layer (see Fig. 1) before it can

each the setpoint sent to it by the upper optimisation layer. Note that,
n this study, supervisory control and optimisation layers are combined
n a single layer: E-MPC. A noticeable improvement in metallurgical
ecovery was achieved in all cases. In Fig. 12, the transition from one
teady-state (𝑡 = 0) to another (𝑡 = 𝑡𝑓 ) is shown in the top graphs of
ach condition for the recoveries (blue dots), while the dynamic grade
s shown on the bottom (black curves). From the figure, it can be seen
hat the concentrate grade always goes towards its limit in all cases, as
xpected.

Overall, the controller manipulates the 𝑄𝑎𝑖𝑟 setpoints (denoted as
uperficial air velocity in Fig. 10), ranging from 0.77 cms−1 (condition

1) to 0.84 cms−1 (condition 6) at 𝑡 = 600 s. In contrast, the pulp height
11
setpoints reach the lowest boundary in all conditions. The behaviour
of the pulp height setpoints may be due to the range of movement
for the pulp setpoint not being very large, since we are simulating
a laboratory-scale cell (there is a difference of 5.5 cm between the
upper and lower limits). Hence, lower pulp heights (i.e. deeper froths)
might be necessary to achieve or maintain a 20% concentrate grade
in the conditions assessed in this study. To further generalise this
point, additional simulations were performed with the pulp height
constraint relaxed. The Supplementary Material contains the results
of the simulations comparing different pulp height lower bounds for
the middle condition (condition 5), as well as simulations without
pulp height constraints in all conditions. It was concluded that the
controller found different solutions when the lower bound changed, but
did not hit it in every case. Furthermore, even though metallurgical
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Fig. 11. Pulp height (simulated) and pulp height setpoint (control variable) over time for the E-MPC implementation for the nine different operating conditions used as starting
points in the simulations (rows 1–3: 𝑗𝑔0 = 0.5, 0.7 and 0.9 cm s−1, respectively; columns 1–3: tailings valve = 25%, 37.5% and 50% open, respectively). The asterisks are the
initial values of pulp height (i.e. 𝑡 = 0) for each operating condition. The black circles are the pulp height values in the process (simulated) and the red stairs are the control
sequences for the pulp height setpoints. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
recoveries without pulp height constraints were higher than those with
constraints, this does not necessarily indicate what actually occurs
within a flotation cell, as a low pulp height may indicate the froth is
not overflowing, which is undetected by the controller. Therefore, it is
essential to impose a constraint on the minimum pulp height.

It is clear that economic improvements can be achieved by imple-
menting E-MPC. It can be seen from Fig. 12 that recovery improvements
as high as 22% can be achieved (e.g. condition 4) from one steady state
to another, based on the laboratory-scale data considered in this study.
It is also interesting to note that the dynamic optimisation can easily
handle the concentrate grade constraint in all cases, even when the ini-
tial grade was below 20% (e.g. condition 7 in Fig. 12). Additionally, this
figure illustrates the evolution of the simulated metallurgical recovery
12
over time, which confirms the assumption that a steady state is reached
after 600 s in all the conditions.

In parallel, an E-MPC strategy using Eq. (27) as an objective func-
tion was implemented for the same nine conditions to compare their
performance.

𝐽1 ∶= 𝛽𝛼 ∫

𝑡𝑓

𝑡0
𝛼 𝑑𝑡 −

𝑁𝑝−1
∑

𝑛=0

(

𝛽𝑢1𝛥𝑢
2
1
(

𝑡𝑛
)

+ 𝛽𝑢2𝛥𝑢
2
2
(

𝑡𝑛
)

)

. (27)

In this new objective function, neither metallurgical recovery nor
concentrate grade was considered. The results using Eq. (27) as an
objective function revealed that the final metallurgical recovery was
between 1 to 2% lower than the first E-MPC results (objective function
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Fig. 12. Recovery (blue) and concentrate grade (black) for the nine different operating conditions (rows 1–3: 𝑗𝑔0 = 0.5, 0.7 and 0.9 cm s−1, respectively; columns 1–3: tailings
valve = 25%, 37.5% and 50% open, respectively). Recovery is shown only from one steady state (first blue dot) to another steady state (second blue dot) because, by definition,
it has no meaning in a dynamic state. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
shown in Eq. (20)). While these results seem to be fairly similar, un-
doubtedly, the differences are significant as even small improvements
in efficiency will lead to great economic impacts for a large-scale
process such as froth flotation.

For illustrative purposes and to have an estimate of how the eco-
nomics of the process improves when the metallurgical recovery is
maximised, a net smelter return formula (Eq. (28)) was evaluated
at steady-state. This economic function, which was first suggested
by Schena et al. (1996), has been used in different optimisation appli-
cations, such as those found in Hu et al. (2013), Jamett et al. (2015),
Liang et al. (2020). However, it should be noted that a rougher flotation
cell, such as the one studied here, has a final goal to recover as much
mineral as possible for a certain concentrate grade. The concentrate
flow is typically sent to a cleaning stage within the flotation circuit,
13
which has as an objective to increase concentrate grade. This means
that the smelter return formula is appropriate to optimise flotation
circuits rather than a single flotation cell and, for this reason, it was
not included in the objective function of the dynamic optimisation for
one single flotation cell.

Revenue = 𝑄c𝑝
(

𝐺conc − 𝑢
)

(𝑞 − 𝑅𝑓𝑐) −𝑄c Trc . (28)

𝑄𝑐 is the concentrate flowrate, 𝐺𝑐𝑜𝑛𝑐 is the concentrate grade, and
𝑝, 𝑢, 𝑞, 𝑅𝑓𝑐 and 𝑇 𝑟𝑐 are parameters. The value of each parameter can
be found in the original Ref. Schena et al. (1996). Taking into consid-
eration that all nine conditions are those carried out at a laboratory
scale, an increment of 1% in the metallurgical recovery produced a
profit improvement of about 600 to 900 $∕h, depending on the operating
conditions and the concentrate grade. Overall, these results confirm
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the importance of implementing advanced control techniques, such
as E-MPC, in the froth flotation process, using an adequate objective
function.

7. Conclusions

In this study, we implemented the first economic model predictive
control (E-MPC) for a froth flotation cell using a phenomenological dy-
namic model that includes froth physics. The dynamic model is a DAE
system that was previously calibrated and validated with experimental
data. The same experimental data were used as initial conditions for the
implementation of the E-MPC strategy, using orthogonal collocations
with automatic differentiation via CasADi. Four model equations were
modified from the original dynamic flotation model to facilitate the
calculation of derivatives as well as to avoid numerical problems.
Furthermore, to improve convergence and add robustness, the variables
of the dynamic model (states and time) were normalised, leading to a
feasible implementation strategy in terms of computational time.

Sensitivity analyses were performed to select the best objective
function for the dynamic optimisation, which has as an ultimate goal
of maximising the metallurgical recovery at a steady state, subject to a
minimum concentrate grade constraint. These analyses indicated that
14

the best use of the two control variables (air flowrate and pulp height
setpoints) is achieved by incorporating air recovery, metallurgical re-
covery and concentrate grade in the objective function.

The E-MPC implementation results revealed that this strategy led to
substantial increments in metallurgical recovery, as high as 22% from
one steady-state to another, based on laboratory-scale data. Further
E-MPC simulations were carried out to assess the effect of including
only air recovery in the objective function, as it can be more easily
measured online than metallurgical recovery or concentrate grade. The
results showed that maximising air recovery alone led to metallurgical
recoveries between 1 to 2% lower than when considering the three
variables in the objective function. While the selection of variables for
the objective function is shown to be crucial, even the simpler option of
maximising air recovery represents a good control strategy. Our results
thus provide compelling evidence that confirms the substantial benefits
of implementing an advanced control technique, such as E-MPC, in the
froth flotation process.

Future work will focus on the assessment of the proposed E-MPC
strategy in a laboratory-scale froth flotation bank, as the one described
in Quintanilla et al. (2023), to mimic what can be found at the indus-
trial scale. Disturbances in the process, such as changes in feed flowrate
and particle size distribution, should also be included in the control
strategy. To this end, a state estimator, such as the moving horizon
estimator (MHE) strategy, should be implemented to improve model

predictions under disturbances.
Fig. A.13. Sigmoid approximations for variables defined with if-else statements in the dynamic model from Quintanilla et al. (2021c): Concentrate flowrate (𝑄𝑐 ), slurry content
𝜖), froth recovery (𝑅𝑓 ) and entrainment factor (𝐸𝑁𝑇 ). They were simulated at a steady state for different values of air recovery and different values of superficial air velocities
𝐽𝑔). The squared dots were calculated using the original models (if-else statements), while the continuous lines were calculated using the sigmoid approximations shown in Eqs. (3)
nd (4).



Minerals Engineering 196 (2023) 108050P. Quintanilla et al.

M
D
W

CRediT authorship contribution statement

Paulina Quintanilla: Conceptualization, Funding acquisition,
ethodology, Software, Validation, Formal analysis, Investigation,
ata curation, Resources, Visualization, Writing – original draft,
riting – review & editing. Daniel Navia: Conceptualization,

Methodology, Software, Validation, Formal analysis, Writing –
review & editing. Stephen J. Neethling: Conceptualization, Method-
ology, Formal analysis, Writing – review & editing, Supervision.
Pablo R. Brito-Parada: Conceptualization, Methodology, Validation,
Formal analysis, Investigation, Resources, Supervision, Writing –
review & editing.

Declaration of competing interest

The authors declare the following financial interests/personal
relationships which may be considered as potential competing
interests: Paulina Quintanilla reports financial support was provided
by National Agency for Research and Development.

Data availability

Data will be made available on request.

Acknowledgments

Paulina Quintanilla would like to acknowledge the National Agency
for Research and Development (ANID) for funding this research with a
scholarship from ‘‘Becas Chile’’.

Appendix A

A comparison of the results from the simulations using the original
model (if-else statements) and sigmoid approximations (i.e. Eqs. (3)–
(5)) are displayed in Fig. A.13 for the four variables. The simulations
were carried out using the same data for model validation in Quin-
tanilla et al. (2021b), for different levels of air recovery (𝛼 in the
x-axis) and superficial air velocity (different curve colours). Note that
the superficial air velocity, 𝑗𝑔 , is defined as 𝑄𝑎𝑖𝑟∕𝐴, where 𝑄𝑎𝑖𝑟 is the
volumetric air flowrate (which is a control variable), and 𝐴 is the
cross-sectional area of the froth flotation cell.

As can be seen from Fig. A.13, the sigmoid approximations are
highly accurate for all cases. A minimal underestimation in the en-
trainment factor for 𝛼 < 0.3 can be observed. However, these small
discrepancies are not significant when implementing advanced control
strategies, as they can be corrected through feedback control. What is
even more important to notice is that in all cases the trends of the
approximations are the same as those using if-else statements.

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.mineng.2023.108050.

The Supplementary material contains further simulations performed
for different concentrate grade and pulp height constraints.
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