
1. Introduction
Drought-prone regions host many of the world's least developed countries, which are experiencing increasing 
drought risk as a result of population pressures and increasing drought frequencies (UNDRR, 2015). This is 
evident in Somalia, where estimated fatalities from the 2011 drought exceeded 250,000 and a further drought in 
2017 required humanitarian assistance for 6 million people (FAO, 2018, 2019). Drought early warning systems 
(DEWSs) aim to monitor and forecast drought risk, enabling early interventions that mitigate the most severe 
socioeconomic impacts. To formulate this risk, DEWSs require evidence of drought intensity and community 
exposure collected by monitoring systems (Brown, 2014; UNDRR, 2015).

1.1. Current Drought Monitoring Methods for Early Warning

A range of regional-scale, satellite-based indicators are used to monitor physical drought development. The 
Standardized Precipitation Index (SPI) is a popular indicator for monitoring meteorological drought (McKee 
et al., 1993; Van Loon, 2015). The SPI indicates rainfall anomaly compared to the long-term average for that 
chosen time period (Sheffield et al., 2014). For agricultural drought (Van Loon, 2015), satellite-based indica-
tors are used such as soil moisture and the Normalized Difference Vegetation Index (NDVI; Liang et al., 1994; 
NASA Worldview,  2022; Tarpley et  al.,  1984). These indicate available soil moisture for vegetation growth, 
which in turn indicates crop failure in areas where agriculture is nonirrigated (Brown, 2014; FEWS NET, 2021; 
FSNAU, 2021; Sheffield et al., 2014). However, in most arid zones during late dry seasons, water availability for 
human consumption depends on groundwater supply. As such, these surface indicators are not ideal for assess-
ing hydrological droughts—the most intense form of drought that causes water shortages (Kumar et al., 2016; 
MacAllister et al., 2020; Tallaksen & Van Lanen, 2004; Van Loon, 2015). Nevertheless, these same satellite-based 
indicators of meteorological and agricultural drought are used by DEWSs to infer the spatial intensity of hydrolog-
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ical drought by proxy because of a paucity of direct groundwater observations (Brown, 2014; FEWS NET, 2021; 
FSNAU, 2021; Kumar et al., 2016; Sheffield et al., 2014; UCSB, 2021).

In practice, these indicators show abnormally large declines during the early stages of drought (Kchouk 
et al., 2021), and thus provide some evidence to trigger a national or regional early warning at a good lead-time 
ahead of the highest intensity phase of drought. However, despite useful lead-times, the spatial accuracy of these 
indicators is low due to the coarse resolution and measurement uncertainty of the satellite data used as inputs 
(FSNAU, 2021; Karnieli et al., 2010; Sheffield et al., 2014). Furthermore, the extent to which seasonal changes 
in these indicators reflect actual underlying groundwater levels is unknown—aquifer recharge and well recovery 
depends heavily on drainage basin characteristics and human activity. As a result, these coarse physical drought 
indicators are used by practitioners with caution when determining which communities are most locally exposed 
to hydrological drought and therefore at risk of water shortages (Karnieli et  al.,  2010; Kchouk et  al.,  2021; 
MacAllister et al., 2020; Okpara et al., 2017).

During drought development, these physical indicators are viewed alongside seasonal climate forecasts from 
international organizations such as the GHACOF (Greater Horn of Africa Climate Outlook Forum), the Famine 
Early Warning Systems Network (FEWS NET), the National Oceanic and Atmospheric Administration (NOAA), 
and the UK Met Office, which give a low-certainty prediction of how the drought may evolve in future months 
(Brown, 2014; Dinku et al., 2018; FAO, 2021; FEWS NET, 2021; Mwangi et al., 2014). For shorter-range fore-
casts, the popular United States Geological Survey's Early Warning Explorer (USGS EWX) tool provides open 
access to the latest 15-day pentadal rainfall forecasts (UCSB, 2021). Meteorological forecasts are also compro-
mised by a low spatial resolution and high uncertainty, particularly at longer lead-times. Furthermore, the scarcity 
of national hydrological monitoring programs in Sub-Saharan Africa prevents national agencies from augmenting 
these forecasts with local data (Brown, 2014; Stephens et al., 2015). Therefore, combining low resolution indica-
tors of physical drought intensity with these forecasts results in high uncertainty about current and future drought 
exposure at the local scale (Boluwade, 2020; Dinku et al., 2018; Kumar et al., 2016; Pappenberger et al., 2005).

As a result of these limitations, drought managers, including national agencies and international NGOs, depend 
on national socioeconomic data to spatially monitor drought exposure through evidence of drought impacts 
(FAO, 2018; FSNAU, 2021). These data are the primary source of information used to plan and finance early 
interventions with prioritized communities (Brown, 2014; Buchanan-Smith & McCelvey, 2018; FSNAU, 2021; 
Stephens et al., 2015). In Somalia and Somaliland, this information is made available in real-time by the United 
Nations Food and Agriculture Organization's Food Security and Nutrition Analysis Unit's (UN FAO FSNAU) 
Early Warning Early Action dashboard (FSNAU, 2021). It presents monthly data on market prices, livestock 
prices, migration data, disease prevalence, wages, and nutrition. For example, by October 2016, when the soci-
oeconomic impacts of the 2016/17 drought first became apparent, the socioeconomic indicators had reached the 
“alarm” phase over 200 times across all of Somalia's administrative regions, over double the previous year's level 
(FSNAU, 2021).

Socioeconomic data are fundamental for monitoring vulnerabilities to drought (Brown, 2014; UNDRR, 2015); 
however, an over-dependence on socioeconomic data for monitoring real-time drought exposure is problematic 
for DEWSs. Requiring signals from socioeconomic drought impacts for an early warning to be triggered means 
that opportunities for early, water shortage-mitigating interventions have already been missed. A further limita-
tion is the coarse spatial and temporal resolution of the socioeconomic indicators, with monthly data aggregated 
by FAO FSNAU in Somalia for each administrative region (Brown, 2014; FSNAU, 2021). This has the effect of 
smoothing out localized drought impacts, to the extent that DEWSs have little information on relative exposure 
at the community level. This can lead to poorly targeted and ill-timed interventions which fail to mitigate water 
shortages and the cascading secondary impacts of malnutrition, economic losses, community displacement, 
famine, and conflict in the most exposed regions (Brown, 2014; FAO, 2014; MacAllister et al., 2020; Stephens 
et al., 2015).

1.2. Modern Sensors for In Situ Groundwater Monitoring

The limitations of using regional methods to monitor hydrological drought exposure illustrate the need for alter-
natives. Despite advice in 2003 by UN FAO that data on groundwater level fluctuations are “essential as a basis 
for management” (FAO, 2003), methods to monitor drought still widely omit in situ groundwater data (Lewis & 
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Liljedahl, 2010). Reasons have included the high economic cost of data collection, the labor-intensive nature of 
monitoring, difficulties with community participation, and a lack of hydrological expertise to process the data 
(Ajoge, 2019; Calderwood et al., 2020; Frommen et al., 2019).

Advances in sensing technology have reduced the cost and complexity of in situ monitoring to a level where 
it can now be implemented on an unprecedented scale (Buytaert et  al.,  2016; Calderwood et  al.,  2020; Paul 
& Buytaert, 2018). Modern automatic sensors have lower costs, greater accuracy, higher-frequency measure-
ments, real-time telemetry, longer battery lives, and now require less labor and expertise for installation and 
data processing (Calderwood et al., 2020; Paul & Buytaert, 2018). However, the long-term maintenance of in 
situ sensors remains resource intensive. Therefore, in proposing a scalable method for groundwater monitoring, 
understanding the optimal duration of in situ data collection for useful and cost-effective monitoring is crucial.

Here, we explore whether short-term, high frequency monitoring can be used to calibrate a groundwater model 
sufficiently to enable accurate simulations of groundwater availability at the local scale, using a case study of 
three abstraction wells in Maroodi Jeex, in the self-declared independent republic of Somaliland. The paper is 
structured as follows. First, we describe the groundwater model and calibration procedure. Then, by varying 
the calibration length between 1 and 30 weeks, we assess the value of additional calibration weeks for model 
performance. From this, a 7-week calibration is used to evaluate how effectively the model simulates observed 
groundwater availability compared to satellite-based proxy indicators. The calibrated wells are then simulated 
between 2015 and 2020, to illustrate how the model can be used to index hydrological drought during the 2016/17 
and 2019 Horn of Africa drought events. This is followed by a discussion of how this method can be scaled-up 
to a large number of wells, and how the information can be used to inform the planning of early and effective 
interventions during droughts.

2. Method
2.1. Modeling Approach

In data-scarce regions, simple conceptual groundwater models are favored over process driven models 
(Beven, 2001; Mackay et al., 2014). Here, we use a modified version of the quasi-physically based AquiMod 
model to simulate the local water table in response to satellite derived rainfall and evapotranspiration rates 
(Mackay et al., 2014). The model (fully described in Supporting Information S1) provides a simple and effi-
cient method to simulate time-dependent well water levels based on a conceptual representation of ground-
water systems, with a parameter set small enough to deploy automated calibration procedures at low runtimes 
(Beven,  2001; Mackay et  al.,  2014). Model inputs, comprised of daily rainfall and actual evapotranspiration 
values for an area surrounding the pumping well, were obtained from satellite data (Maidment et al., 2017; Shef-
field et al., 2014). The model was calibrated against in situ groundwater level data using a Monte Carlo approach 
(Mackay et al., 2014; Pianosi et al., 2015).

2.2. Input Data

Daily precipitation and actual evapotranspiration data for the period 2015–2020 were obtained from, respec-
tively, TAMSAT (Tropical Applications of Meteorology using Satellite Data; Maidment et al., 2017) and AFDM 
(African Flood and Drought Monitor; Sheffield et al., 2014). For point-scale applications, there is higher uncer-
tainty associated with the daily rainfall product when used at its finest 4-km spatial resolution, particularly when 
employing temporal downscaling from the initial 5-day cumulation product. To reduce this uncertainty, we aver-
aged daily rainfall over a 40-km square (Maidment et al., 2017). Daily AFDM actual evapotranspiration data 
have a spatial resolution of 27 km. The lower spatial variability of evapotranspiration means it is associated with 
less uncertainty than the rainfall input (Sheffield et al., 2014). Average evapotranspiration over 54 × 54 km was 
calculated for model input.

Groundwater levels at 15-min intervals were obtained using pressure transducers in three shallow, large-diameter 
wells in Maroodi Jeex, Somaliland. Shallow wells provide an ideal target for DEWSs because they typically run 
dry before deeper boreholes and thus display an earlier drought signal in rural areas (MacAllister et al., 2020). 
Sensor installation took place on 21 July 2017, at sites <10 km apart (Figure 1).
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The selected wells, although geographically close, displayed markedly different behavior due to differences in 
local geology, construction, and usage (Figures  4b–4d). Although they sit within a common unit—a weath-
ered, unconfined section of the Upper Cretaceous Yesomma (Nubian) Sandstone—local differences in porosity, 
conductivity, and specific yield were observed due to regional interfingering of clastic and carbonate facies 
(Ali, 2009, FAO SWALIM, 2021). This heterogeneous aquifer was therefore a suitable location to test the mode-
ling approach under varying unconfined aquifer properties.

A 7-month time series of data was collected for the three wells, which reflected some of the outstanding chal-
lenges of continuous data collection in this environment including logistics, battery supply, and staffing (Paul & 
Buytaert, 2018). The three data sets were each used for separate calibrations of the modified AquiMod model.

2.3. Groundwater Model

We use a modified form of AquiMod (Mackay et al., 2014) to estimate aquifer recharge (R) and calculate ground-
water drainage (Qg), outputting a daily water balance for the well. The unconfined (saturated) aquifer module is 
represented as a single locally homogeneous and isotropic layer, above which is an equally homogeneous unsatu-
rated module that is, in turn, overlain by a soil module (Figure 2). Precipitation (P) enters the top soil module 
following losses due to actual evapotranspiration (AE). If the soil moisture (SM) exceeds the maximum soil 

Figure 1. Location of the three shallow, large-diameter wells in Maroodi Jeex, Somaliland.

Figure 2. Modified AquiMod lumped catchment regional model for a single unconfined aquifer layer.
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moisture capacity (SMmax), the surplus water becomes soil drainage (SD) to the unsaturated zone module. This 
drainage is then delayed by being distributed over time using a Weibull distribution to provide recharge (R) to the 
saturated module. In the saturated container, recharge from soil drainage is the sole input.

The main output is the volume of groundwater drained (Qg), which represents losses from the local groundwater 
system through regional processes. This assumes that the groundwater level drains from the system at a rate 
proportional to its height (Hg) above the minimum drainage level (Hg,min; Cuthbert, 2014). In this study, Qg is 
adapted from the single layer AquiMod model in Mackay et al. (2014), by lumping the parameters used to calcu-
late its value. This allows the model to be reduced to a single vertical spatial dimension (Figure 2), where Qg is 
calculated according to the difference in the height of the groundwater level (Hg) above the base of the aquifer 
(Hg,min, which is set equal to the pump inlet depth, Hw,min, as this is the “effective” locally accessible depth of aqui-
fer) factored by a time constant “τ” [day −1]. Therefore, “τ” is an empirical, lumped parameter open for calibration, 
representing the combined effects of groundwater flow from well to outlet, aquifer leakage, and nearby abstrac-
tions that can all combine to decrease the local water level (Mackay et al., 2014). This simplification removes the 
need to represent groundwater flow using Darcy's law and thus avoids needing to define hydraulic conductivity 
and distances to outlets on the boundary of the model. It improves the feasibility of a short calibration period by 
removing two additional parameters from the procedure, which in turn increases the sensitivity of τ to improve 
the calibration (Beven,  1989). The model conceptualization and the adapted equations are fully described in 
Supporting Information S1.

Equation 1 calculates the change in groundwater level (Hg) for each time step, by dividing the balance between 
the total recharge (R), drainage (Qg), and well-abstraction (Qw) by specific yield (Sy) and a nominal area around 
the well (A)

𝑑𝑑𝑑𝑑𝑔𝑔

𝑑𝑑𝑑𝑑
=

𝑅𝑅 −𝑄𝑄𝑔𝑔 −𝑄𝑄𝑤𝑤

𝑆𝑆𝑦𝑦𝐴𝐴
=

𝑟𝑟 − 𝑞𝑞𝑔𝑔

𝑆𝑆𝑦𝑦

−

𝑄𝑄𝑤𝑤

𝑆𝑆𝑦𝑦𝐴𝐴
=

𝑟𝑟 − 𝑞𝑞𝑔𝑔

𝑆𝑆𝑦𝑦

 (1)

If the area is sufficiently large whereby |R| and |Qg| >> |Qw|, as is common in shallow wells with low abstraction 
volumes, then the impacts on the regional groundwater level due to abstraction from the modeled well can be 
ignored, and the recharge and groundwater drainage can be modeled as fluxes (r and qg, respectively). Equation 1 
is then discretized using an explicit forward difference scheme and integrated on a time step of 1 day, using daily 
recharge values obtained from the soil and unsaturated zone modules. This gives a continuous daily time series of 
the unpumped groundwater level elevation (Hg) for each well site (Figures 4b–4d; Veness et al., 2022).

2.4. Calibration Method

We calibrated the model using Monte Carlo and Global Sensitivity Analysis (GSA) methods (Ochoa-Tocachi 
et al., 2018; Pianosi et al., 2015). Following sensitivity analysis, we focused on calibrating four sensitive param-
eters, while setting the remaining parameters to fixed values estimated from prior understanding of the aquifer 
and general hydrological systems. We sampled 10,000 combinations from a uniform distribution using Latin 
Hypercube Sampling (LHS; McKay et al., 1979). Input ranges were set following a manual calibration and an 
initial scoping study of parameter sensitivity.

In this study, the AquiMod calibration is modified so that Hg,i is calibrated to the maximum water level in the 
observed data for day “i” (Hw,i,max). In abstraction wells, pumping causes partial recovery (Hw) to the unpumped 
water table (Hg). This difference is at a minimum following well recovery, immediately before the onset of the 
following abstraction event. Therefore, calibrating Hg,i to these daily observed peaks in groundwater level changes 
Hg to a simulation of “available groundwater level” in that well. This requires an assumption that daily partial well 
recoveries reach a constant distance from the natural unpumped water level, which was considered appropriate 
based on the observed well recoveries. In data sets where Hg,i − Hw,i ≠ constant, this method can be coupled to 
a pumping model to include the effect of variable abstraction rates on the modeled water level (see Supporting 
Information S1). For example, given the variable abstraction drawdowns and partial recoveries seen in Well 3 
(Figure 4d), coupling a pumping model may improve the fit in future implementations.
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2.5. Calibration Length Analysis

To assess the relationship between calibration length and model performance, the calibration period was varied 
at weekly intervals between 1 and 30 weeks. The Root Mean Square Error (RMSE) score was calculated for the 
full 30 week combined calibration and validation period each time (Pianosi et al., 2015). This method highlights 
an “optimal” calibration period within the 30-week range for groundwater modeling in this context, once addi-
tional weeks of in situ observations have diminishing value in improving model performance and the challenges 
of monitoring outweigh the benefits. Following this, a 7-week calibration was selected as a suitable duration and 
used for further analysis.

The best scoring parameter sets from the 7-week calibrations at each well (4.5 week for Well 3 due to a shorter 
data set) were used in a 23-week validation (Table 1). The fit of the validations was compared to satellite-based 
indicators of NDVI, soil moisture and SPI-3 (Figure 4), as well as uncalibrated simulations of the original Aqui-
Mod model at each well that define literature-derived parameter values (see Supporting Information S1; Ascott 
et al., 2020; Domenico & Schwartz, 1990; FAO SWALIM, 2021; Jackson et al., 2016; Lohman, 1972; Mackay 
et al., 2014).

Satellite-based indices were downloaded to compare how well they represent these observed groundwater 
levels by proxy. NDVI and Soil Moisture Active Passive (SMAP) data were downloaded at Well 2's coordinates 
from NASA Worldview (NASA Worldview, 2022), and daily SPI-3 values from Princeton's African Flood and 
Drought Monitor (5). NDVI is generated by the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) 
instrument and downloaded in 16-day intervals at a 250-m spatial resolution (NASA Worldview, 2022). The 
SMAP layers show a daily composite of surface soil moisture in cm 3/cm 3, calculated by the Single Channel 
Algorithm V-Pol for the daily half-orbit passes by the SMAP radiometer and posted to the 9-km EASE-Grid 2.0 
(NASA Worldview, 2022). SPI-3 is calculated from bias-corrected Multisatellite Precipitation Analysis (TMPA) 
and hybrid reanalysis data (Huffman et al., 2007; Sheffield et al., 2014).

2.6. Model Simulations During 2017 and 2019 Droughts

Using the same calibration parameters (Table 1), the models were simulated from January 2015 to December 
2020 using historic rainfall and evapotranspiration as inputs (Maidment et al., 2017; Sheffield et al., 2014). The 
initial heads to start the model have been estimated by comparing January 2015 SPI-3/6/12 values with January 
2018, for which there is corresponding observed groundwater level data, and assessing a likely groundwater 
level relative to the January 2018 level. The 2016/17 drought event is highlighted from the date the Somalia 
government declared drought (Guled, 2017) to the final observed rains of the following Gu rainy season. The 
2019 drought is highlighted from the declaration date of drought emergency made by Oxfam (Barter, 2019), to 
the final Gu rains that year.

Parameter Units Input range (Well 1) Calibration (Well 1) Input range (Well 2) Calibration (Well 2) Input range (Well 3) Calibration (Well 3)

Sy – 0.05–0.12 0.0753 0.005–0.01 0.00720 0.025–0.045 0.0340

τ day −1 5e −4–1e −3 7.29e −4 5e −5–1.5e −4 1.02e −4 2e −4–4e −4 2.65e −4

k (Weibull) – 3–15 3.67 3–8 5.24 3–30 19.0

λ (Weibull) – 10–30 20.1 18–30 23.9 10–30 14.1

Hg (t = 0) (fixed) m 1.17 1.17 1.9 1.9 1.65 1.65

SMmax (fixed) m 0.005 0.005 0.005 0.005 0.005 0.005

SMinitial (fixed) m 0 0 0 0 0 0

Hg,min (fixed) m 0 0 0 0 0 0

RMSE (calibration) m 0.0577 0.339 0.0423

RMSE (validation) m — 0.0997 — 0.982 — 0.218

Table 1 
Parameter Input Ranges, Calibrated Parameter Values and Root Mean Square Error (RMSE) Scores for the Top Scoring 7-Week Calibration Sets at Wells 1, 2, and 3
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A critical level is defined for each well, below which the regular abstraction drawdowns observed during the dry 
season would not be possible. This is due to the water level falling below the pump inlet depth during abstraction 
drawdown, causing a “dry pump.” A “regular” dry season drawdown was calculated as the mean drawdown depth 
(m) during the final 50 observed dry-season abstractions at each well. This value was then added to the pump inlet 
depth (Hw,min) to calculate the well's critical level.

3. Results and Discussion
3.1. Calibration Length Analysis

The analysis shows that there is little further improvement in calibration performance after extending to 5 weeks 
(Figure 3). At this period (3 weeks at Well 3), the calibration window is long enough to include the start of the wet 
season, with groundwater level observations that have increased due to recharge. This causes the recharge param-
eters of Sy, λ, and k to become sensitive and trained in the calibration. It is therefore essential to have a calibration 
period that captures observations from both the wet and dry seasons for sufficient calibration of the model. The 
remaining error in RMSE at the longest calibrations will be sourced from input inaccuracies from the rainfall 
and evapotranspiration data, as well as modeling uncertainty with processes uncaptured by the simple, lumped 
parameter model (Ascott et al., 2020; Mackay et al., 2014). Following this analysis, a 7-week calibration period 
covering equal intervals of dry and wet season conditions is selected as a suitable time window (Figures 4b–4d). 
The three calibrated wells achieve an efficient fit to the observed water levels in validation, with RMSE scores of 
0.0997, 0.982, and 0.218 m respectively.

3.2. Model Performance

The satellite-based indicators (Figure  4a) are not suitable proxies of local groundwater level. Soil moisture 
approaches its minimum months before the observed wells and remains at a flat minimum level throughout the 
long dry season. SPI-3 represents rainfall anomaly instead of absolute rainfall, so is unlikely to follow ground-
water levels closely due to its calculation (6). NDVI shows the closest fit to observed groundwater levels, but it 
underestimates the dry season water level decline and suffers from a low temporal resolution. This potential for 
NDVI to misrepresent ground conditions was highlighted recently by UN FAO SWALIM, who removed it as a 
parameter from their Combined Drought Index DEWS platform, citing a “poor correlation” between NDVI and 
ground information (FAO SWALIM, 2022).

Compared to the regional indicators, the calibrated model provides a substantially improved representation of 
observed groundwater levels (Figures 4b–4d). The locally calibrated simulations capture the unique response 
of each well to recharge and dry periods, giving a more reliable indication of water availability. In comparison, 

Figure 3. Root Mean Square Error (RMSE) for the full calibration and validation period, with calibration lengths varied at 
weekly intervals.
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the poor performance of the uncalibrated groundwater model highlights the need for a local calibration, as 
literature-derived parameters fail to capture differences in well and local aquifer properties.

There are remaining limitations in the model performance, with compounding uncertainties from input data, 
lumped model design, and the short calibration (Mackay et al., 2014). Although it is difficult to quantify the 
contribution of individual uncertainties to model error, validation tests of this approach when implementing it 
in a new region will highlight if there are local causes of significant error requiring factoring into the modular 
AquiMod model (Ascott et al., 2020). It is recommended to extend this validation testing in a sample of wells to 
multiyear durations, to assess if any interannual variabilities in aquifer or human behaviors affect the performance 
of parameters fixed by the short calibration. In any application, the outstanding uncertainty of simulations and the 
potential causes and effects of interannual variability must be carefully conveyed to users (Twomlow et al., 2022).

The required model performance depends on the use case and the specific decisions being informed by the 
real-time simulations (Maxwell et al., 2021; Twomlow et al., 2022; Zulkafli et al., 2017). This can be modified 
to an extent, by adjusting the model setup or extending calibration durations where practical. In some implemen-
tations, strategic wells within the simulated monitoring network may warrant continuous monitoring to reduce 
monitoring uncertainties further. However, in drought-prone areas where no groundwater information is currently 
available and communication between communities and intervening authorities are weak, short monitoring may 
provide best value and practicality for generating useful evidence to support early interventions by stakeholders 
who are increasingly adopting “no regrets” approaches to anticipatory action (Lentz et al., 2020).

Figure 4. (a) Normalized satellite-based proxy indicators of physical drought intensity compared to Well 2's observed daily maximum water levels. Calibrations of 
(b) Well 1, (c) Well 2, and (d) Well 3 are shown to compare performance with the proxy indicators and an uncalibrated AquiMod groundwater model. Observed water 
levels and the corresponding calibration targets set at the daily maxima are shown for comparison of fit.
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3.3. Simulating the 2017 and 2019 Droughts

To demonstrate the model's use as a localized index of groundwater availability, the calibrated wells are simulated 
during the two most recent droughts in Somaliland (Figure 5). These water levels are put into the context of local 
water availability by plotting each well's critical level, below which a full, regular abstraction drawdown would 
not be possible (Section 2.6).

The lowest water levels are seen during the two documented droughts (Figure 5; Barter, 2019; FEWS NET, 2021; 
FSNAU, 2021; Guled, 2017). Wells 1 and 2 fall below their critical level during the two droughts, indicating that 
regular abstraction drawdowns would have been restricted. Well 3 remained above its critical level throughout. 
This indicates that Wells 1 and 2 suffered abstraction shortages during the two droughts, which may have required 
interventions depending on the function of the well, the availability of alternative water sources and the socioec-
onomic context of the community using it for water supply.

During long dry seasons where recharge is typically zero from January to early March (Figure 5; Maidment 
et al., 2017), this real-time visualization of water level decline enables a visual trajectory of the lead-time before 
the wells reach their critical levels. Users can also compare real-time water levels to simulations of water levels 
during previous drought years, such as 2017 (Figure  5), to contextualize the severity of the real-time water 
shortage with their experiences or understanding of previous droughts in that region (Campbell et  al.,  2021; 
Sword-Daniels et al., 2016). For both hydrologists and nonexperts, this direct comparison connects an under-
standing of the potential impacts of current water shortages, as well as the actions that can be taken to mitigate 
them based on learned lessons (Hillbruner & Moloney, 2012).

Forecast inputs have not been explored here, as they suffer from high cascading uncertainties at lead-times 
beyond 1 week (Pappenberger et al., 2005; Walker et al., 2019). However, future development of this approach 
may explore the use of meteorological forecast data to simulate future water levels. On a lead-time of 1–2 weeks, 
data sets such as the 15-day CHIRPS-GFES pentadal rainfall forecasts can be used (UCSB, 2021). If forecasting 
months ahead, seasonal forecasts from GHACOF (56) can be used to project future water levels under different 

Figure 5. 2015–2020 simulations of the three wells using the 7-week calibration parameters. Water levels are normalized to the distance between the top of the well 
and the pump inlet depth. The two droughts are indicated from the dates that humanitarian crises were declared by the Somalia president (2017; Guled, 2017) and 
Oxfam (2019; Barter, 2019). The critical level is the level below which the mean observed dry-season abstraction drawdown would not be possible due to water level 
falling below the pump inlet.
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rainfall scenarios. This can further support decision-makers in planning interventions, by translating how water 
levels will respond to upcoming surface conditions.

4. Conclusions
This study finds that groundwater models with short calibrations, capturing 1–2 months of wet and dry season 
observations, offer substantial improvements in quantifying local groundwater availability when compared to 
satellite-based indicators used to infer this by proxy (Brown, 2014; FEWS NET, 2021; FSNAU, 2021; Kumar 
et al., 2016; UCSB, 2021). Furthermore, by presenting water levels relative to each well's unique critical depth, 
the method provides a local and contextualized indicator that translates water levels to water availability (4; 
Sutanto et al., 2019).

By using modern sensors with short observation periods, the barriers to scaling-up these methods in a 
national-scale monitoring system are reduced. The low cost of the sensors addresses the economic hurdle of 
monitoring (Paul et al., 2020), and the short residence time means the sensors can be relocated to calibrate a 
large number of wells. Short, high frequency measurements also capture abstraction behaviors, enabling contex-
tualizing calculations of each well's critical water level. Although serious challenges and ethical considerations 
in implementation remain, such as monitoring system governance, sensor security, and community consent to 
participation (Buytaert et al., 2014; Paul & Buytaert, 2018), this study highlights the renewed technical feasibility 
of large-scale groundwater monitoring for hydrological drought monitoring and early warning.

For DEWSs, maps and hydrographs of real-time water levels can be presented alongside simulated water levels 
during historic drought events to place the real-time hydrological drought intensity into context (Twomlow 
et  al.,  2022). Stakeholders with lived experience of previous droughts can then interpret the likely processes 
and socioeconomic impacts that will arise from groundwater levels being higher or lower than previous drought 
years (Campbell et al., 2021; Hillbruner & Moloney, 2012). For national and humanitarian stakeholders, spatial 
maps of relative drought exposure can inform the national programming of anticipatory action and emergency 
response. Furthermore, with forecast-based financing systems in need of more evidence to confidently trigger 
earlier anticipatory financing release (Stephens et al., 2015), maps of drought exposure can be used to trigger the 
release of intervention financing. A recent growth in parametric insurance for drought, seeking to payout ahead 
of peak impacts based on hydrological parameter threshold exceedance, also suggests demand for groundwater 
availability as a localized parameter to index these policies (Okpara et al., 2017). For local stakeholders, access 
to localized, community-scale information enables actions that mitigate water shortages. Early interventions 
include site visits, advice and technical assistance, scaling-up proportionately to emergency water supplies, other 
lifestyle-sustaining supplies, and cash transfers (Brown, 2014; Stephens et al., 2015; Wendt et al., 2021).

The methodology outlined in this report is deliberately parsimonious, and it aims to serve as a demonstration of 
technical feasibility upon which greater complexity can later be introduced. There are considerable limitations 
in these methods from a traditional hydrological modeling perspective, from input uncertainties to the lump-
ing of model parameters and the use of empirical “critical level” calculations (Mackay et al., 2014; Maidment 
et al., 2017; Sheffield et al., 2014). However, groundwater modeling in a data-scarce region is intrinsically bound 
to modeling limitations that cannot be resolved without collecting extensive field data, and this is not a feasible 
requirement across a monitoring network in this context (Beven, 2001). Further development of this approach 
should therefore focus on more validation testing of short calibrations in larger pilot schemes, while resolving 
the degree of uncertainty that is acceptable for users in guiding specific decisions and actions that mitigate water 
shortages (Maxwell et al., 2021; Zulkafli et al., 2017). Monitoring systems can then be designed that equilibrate 
practical feasibility with acceptable uncertainty and simulation accuracy (Maxwell et al., 2021).

Drought-prone, data-scarce regions such as the Horn of Africa are challenging environments for modeling, yet 
these areas can benefit the most from groundwater models to improve drought monitoring and early warning. 
Overcoming these challenges requires innovative approaches in both data collection and analysis to gener-
ate useful, decision-informing early warning information (Nature Sustainability,  2021). Therefore, this study 
proposes a viable method of generating a useful, localized groundwater availability index for DEWSs and antici-
patory actions, that remains mindful of the fundamental requirement of a groundwater monitoring solution to be 
technically and practically feasible (Beven, 1989).
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Data Availability Statement
The input data and model implementation are available online (https://doi.org/10.5281/zenodo.6631801).
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