
Science of the Total Environment 875 (2023) 162582

Contents lists available at ScienceDirect

Science of the Total Environment

j ourna l homepage: www.e lsev ie r .com/ locate /sc i totenv
High-resolution patterns and inequalities in ambient fine particle mass
(PM2.5) and black carbon (BC) in the Greater Accra Metropolis, Ghana
Abosede S. Alli a, Sierra N. Clark b,c, Jiayuan Wang a, James Bennett b,c, Allison F. Hughes d, Majid Ezzati b,c,e,
Michael Brauer f, James Nimo d, Josephine Bedford-Moses d, Solomon Baah d, Alicia Cavanaugh g,
Samuel Agyei-Mensah h, George Owusu i, Jill Baumgartner j,k, Raphael E. Arku a,⁎

a Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, USA
b Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
c MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
d Department of Physics, University of Ghana, Accra, Ghana
e Regional Institute for Population Studies, University of Ghana, Accra, Ghana
f School of Population and Public Health, The University of British Columbia, Vancouver, Canada
g Department of Geography, McGill University, Montreal, Canada
h Department of Geography and Resource Development, University of Ghana, Accra, Ghana
i Institute of Statistical, Social & Economic Research, University of Ghana, Accra, Ghana
j Institute for Health and Social Policy, McGill University, Montreal, Canada
k Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Canada
H I G H L I G H T S G R A P H I C A L A B S T R A C T
⁎ Corresponding author at: School of Public Health and H
E-mail address: rarku@umass.edu (R.E. Arku).

http://dx.doi.org/10.1016/j.scitotenv.2023.162582
Received 1 December 2022; Received in revised form
Available online 3 March 2023
0048-9697/© 2023 The Authors. Published by Elsevi
• Few long-term city-wide air pollution ex-
posure data exists in growing SSA cities.

• We provide the first space-time city-wide
mapping of PM2.5 and BC in West Africa.

• Monitoring data at 146 sites were com-
bined with GIS, weather, and census vari-
ables.

• Models explained 48–69 % and 63–71 %
of the variance in PM2.5 and BC, respec-
tively.

• PM2.5 levels were above the WHO IT-3
with higher exposures in poorer neighbor-
hoods.
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Growing cities in sub-Saharan Africa (SSA) experience high levels of ambient air pollution. However, sparse long-term
city-wide air pollution exposure data limits policy mitigation efforts and assessment of the health and climate effects.
In the first study of its kind in West Africa, we developed high resolution spatiotemporal land use regression (LUR)
models tomap fine particulatematter (PM2.5) and black carbon (BC) concentrations in the Greater Accra Metropolitan
Area (GAMA), one of the fastest sprawlingmetropolises in SSA.We conducted a one-year measurement campaign cov-
ering 146 sites and combined these data with geospatial andmeteorological predictors to develop separate Harmattan
and non-Harmattan season PM2.5 and BC models at 100 m resolution. The final models were selected with a forward
stepwise procedure and performance was evaluated with 10-fold cross-validation. Model predictions were overlayed
with themost recent census data to estimate the population distribution of exposure and socioeconomic inequalities in
exposure at the census enumeration area level. The fixed effects components of the models explained 48–69 % and
63–71 % of the variance in PM2.5 and BC concentrations, respectively. Spatial variables related to road traffic and
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vegetation explained the most variability in the non-Harmattan models, while temporal variables were dominant in
the Harmattan models. The entire GAMA population is exposed to PM2.5 levels above the World Health Organization
guideline, including even the Interim Target 3 (15 μg/m3), with the highest exposures in poorer neighborhoods. The
models can be used to support air pollution mitigation policies, health, and climate impact assessments. The measure-
ment and modelling approach used in this study can be adapted to other African cities to bridge the air pollution data
gap in the region.
1. Introduction

Ambient air pollution is a major environmental risk factor for death and
ill-health globally (Anenberg et al., 2019; Cohen et al., 2017). Most of the
estimated global deaths attributed to ambient air pollution occur in low-
and middle-income countries (LMICs) (Cohen et al., 2017; World Health
Organization, 2016). Emerging evidence from mostly short-term measure-
ment studies (≤24-hour) indicates that ambient air pollution in sub-
Saharan African (SSA) cities are among the highest in the world and
substantially exceed the World Health Organization (WHO) health-based
guidelines (Katoto et al., 2019). However, limited robust long-term air pol-
lution data hinders mitigation efforts and quantification of the health and
climate effects (Awokola et al., 2020; Malings et al., 2020; Coker and
Kizito, 2018) in growing SSA cities. As SSA cities expand, systematic and
long-term tracking of the sources and variations in air quality in fine spatial
resolution can facilitate specific policy interventions that are socio-
culturally relevant to SSA settings (Katoto et al., 2019; Coker and
Kizito, 2018). Further, reliable long-term spatial and time-resolved
data for addressing air pollution in SSA cities will contribute to the
global fight against climate change, with significant health benefits for
a region where an estimated 1.4 billion people will live by year 2050
(United Nations, 2022).

Patterns and inequalities in air pollution exposure in SSA cities are influ-
enced by a complex mix of local (e.g., transportation, biomass use, informal
industries, etc.) and regional sources (crustal dust from regional dust
storms) (Petkova et al., 2013). Thus, any air quality management in a
changing global climate in SSA will require detailed mapping of pollutant
concentration over space and time. Given the high cost of establishing
and maintaining ambient air quality monitoring networks, it is imperative
to explore high resolution space-time mapping approaches to supplement
the scant monitoring data in this low-resource and data-poor region
(Coker and Kizito, 2018). Though widely employed in European (Hoek
et al., 2011; Eeftens et al., 2012; Beelen et al., 2013), North American
(Henderson et al., 2007; Moore et al., 2007; Novotny et al., 2011), and
Asian (Saraswat et al., 2013; Lee et al., 2017; Liu et al., 2019) cities, fine
space-time air pollution data are scarce in SSA cities where poor air quality
presents a major health, economic, and climate threat (Coker and Kizito,
2018). Moreover, the sources and influence of socio-economic indices on
spatial patterns of air pollution may differ considerably from those in
high-income countries (Coker and Kizito, 2018) and will in turn require
specific mitigation approaches.

This study developed land use regression (LUR) models to predict and
map fine-scale spatiotemporal variations in ambient particulate matter pol-
lution (PM2.5) and black carbon (BC) in one of the largest metropolises in
West Africa. LUR modelling offers a cost-effective approach for capturing
high-resolution, within-city variability in air pollution (Beelen et al.,
2013; Saraswat et al., 2013; Saucy et al., 2018). To our knowledge, LUR
technique has only been applied to model PM2.5 in four SSA cities (Saucy
et al., 2018; Tularam et al., 2020; Abera et al., 2020; Coker et al., 2021),
and none is theWest African sub-region.We are not aware of any LUR stud-
ies of BC, a combustion-related component of PM2.5 and an important cli-
mate change pollutant. We integrated field data from a large-scale air
pollution measurement campaign conducted in the Greater Accra Metropo-
lis of Ghana (Alli et al., 2021), withmeteorological and geospatial data. The
final models were used to assess the distribution of population exposure to
predicted PM2.5 and BC levels and inequalities in exposure in relation to
area level socio-economic status.
2

2. Methods

2.1. Study location

This study was conducted in the Greater Accra Metropolitan Area
(GAMA), Ghana's hub of administrative, industrial, and economic activities
(Addae and Oppelt, 2019). The GAMA spans ~1500 km2 and comprises of
13 districts, including the Accra Metropolitan Area (AMA) at its center
(~1.66 million residents) and the port city of Tema (600,000 residents) to
the east (GSS, 2012). Though the metropolis is expanding rapidly, huge
gaps exist between the demand and provision of adequate infrastructure
(e.g. clean roads and household energy) for its urban residents (Addae and
Oppelt, 2019; Odonkor and Mahami, 2020). Major sources of air pollution
in the GAMA include road traffic, industrial emissions, household biomass
use, and seasonal regional dust storms (Zhou et al., 2013). Other sources
unique to the GAMA include open burning of trash and solid waste, espe-
cially in low-income neighborhoods (Zhou et al., 2013). The GAMA's cli-
mate is characterized by the rainy (May–October) season, which is
dominated by primary emissions from local sources; and the dry and dusty
Harmattan season (November–February) characterized by north-easterly
tradewinds from the Sahara Desert alongwith changes in local meteorology
(e.g., no rainfall, lower relative humidity, and wind speed) that may create
slower vertical mixing and result inmanifold increases in air pollution levels
(Alli et al., 2021; Dionisio et al., 2010a; Wang et al., 2021).

2.2. Data

2.2.1. Ambient PM2.5 and BC measurement
Between April 2019 and June 2020, we measured gravimetric (filter-

based) and continuous PM2.5 concentrations at 146 locations comprising
of ‘fixed’ (~1-year, n = 10) and ‘rotating’ (7-days, n = 136) sites across
the GAMA (Fig. S1). The data collection period excluded COVID-19 related
lockdowns between March and May 2020. The fixed sites were sampled
continuously for about 52 weeks, while each rotating site was sampled
for a week. The ten fixed sites were selected to represent the variability in
population density, socioeconomic features, and emission sources. The ro-
tating sites were selected through a stratified random sampling method
where potential measurement locations were randomly distributed across
land-use strata (peri-urban, commercial/business/industrial, low-density,
and high-density residential) with greater emphasis on the more urbanized
AMA (Clark et al., 2020). The combination of ‘fixed’ and ‘rotating’ allowed
us to utilize a finite number of monitors while capturing data across the en-
tire geographical extent of the study area.

The quality assurance/quality control (QA/QC) procedures for PM2.5

measurement are described in detail elsewhere (Alli et al., 2021). Briefly,
weekly gravimetric PM2.5wasmeasuredusing theUltrasonic Personal Aero-
sol Samplers (UPAS) (Access Sensor Technologies, Fort Collins, USA) set at a
flow rate of 1 liter per minute (lpm). Continuous PM2.5 was sampled at 1-
minute intervals with the Zefan (http://www.tjzfsk.com/) real-time light-
scattering based monitor that used plantower sensor and assembled in
China. Monitors were housed in protective cases attached to metal poles
at an average height of 4 m (±1m). To estimate BC concentrations, the ab-
sorption coefficient (light absorbance) (10−5 m−1) of the post-weighed
PM2.5 filters was analyzed with an image-based reflectance method that
was highly correlated (r = 0.99) with elemental carbon concentrations on
sampled filters (1 absorbance unit [1 × 10−5 m−1] is equivalent to
1.67 μg/m3 elemental carbon) (Jeronimo et al., 2020; Shupler et al., 2020).

http://www.tjzfsk.com/
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We collected 654 weekly-integrated PM2.5 samples (518 fixed and 136
rotating sites) spanning non-Harmattan (March–October) and Harmattan
seasons. Sampleswere included in the statistical analysis if themonitors op-
erated for≥75 % of the 7-day measurement period and maintained an av-
erage flow rate of ±10 % of the intended rate. When gravimetric monitors
operate for<75% (fixed sites=19 and rotating sites=7; 4% of total sam-
ples) of the measurement period, they were replaced by the co-located con-
tinuous PM2.5 concentrations, following corrections using a correction
factor (CF) derived from all co-located gravimetric vs continuous samples
that met our inclusion criteria. In brief, CF was calculated such that the av-
erage of continuous PM2.5 measurements was equal to the gravimetric
PM2.5 concentration at the same location over the same 7-daymeasurement
period. Details of the correction process are described elsewhere (Alli et al.,
2021). In all, only two PM2.5 samples from fixed sites and three from rotat-
ing sites were excluded due to complete data loss (e.g., both gravimetric
and continuous monitors malfunctioned). Thus, a total of 649 weekly
PM2.5 samples (516 fixed and 133 rotating sites) and 623 BC (497 fixed
and 126 rotating sites) samples contributed to this analysis. These data
spanned both the non-Harmattan (PM2.5/BC=524/503 samples) andHar-
mattan (PM2.5/BC= 125/117 samples) and served as dependent variables
for the season specific models.

2.3. Land use regression modelling

We follow typical air pollution LURmodelling approaches by regressing
measured pollutant concentrations against site-specific geospatial predic-
tors that are potential surrogates for emission sources, dispersion processes,
Table 1
Description of candidate spatial predictor variables.

Variable (type) Variable sub-categories Spa

Road network
(Spatial line)

Major roads Sum
EucSecondary roads

Minor roads
Airport
(Spatial polygon)

NA Euc

Land use
(Raster)

Commercial/business/industrial (CBI) Tot
Informal residential areas
Formal residential areas
Other (non-built-up areas e.g., vegetation, water)

Normalized Difference Vegetation
Index (NDVI)

(Raster)a

NA Ave

Building footprints
(Spatial point)

NA Cou

Rivers and waterways
(Spatial line)

NA Sum

Elevation
(Raster)

NA NA

Population density within census
enumeration areas (EA)b

(Spatial polygon)

NA Ave

Locations of human activity
(Spatial point)

Bus stations Cou
PreBus terminals

Restaurants
Shopping centers

Time-related predictors
Meteorological parameters Temperature (°C) Ave

PreRelative humidity (%)
Wind speed (m/s)
Wind direction
Rainfall
Mixing layer depth (m)
Water vapor mixing ratio
Solar radiation

Month of year January–December NA

Table shows all potential predictor variables used to build the models. The final models
circular buffer sizes with radii of 50 m, 100 m, 200 m, and 500 m were considered. NA

a The NDVI was calculated from spectral bands of green vegetation in Landsat 8 satel
measurement campaign (January 2nd 2020).

b An enumeration area (EA) is the small geographic unit covered by a census enumer
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and green spaces (Hoek et al., 2011; Lee et al., 2017; Gebreab et al., 2015).
The model is then used to predict concentrations at unmonitored locations
throughout the study area (Henderson et al., 2007).

2.3.1. Predictor variables
We obtained or derived spatial and temporal predictor variables that

had a plausible association with the emission, dispersion, or deposition of
air pollution in the urban environment. Our variable selection was guided
by previous LUR models (Henderson et al., 2007; Lee et al., 2017; Saucy
et al., 2018; Gebreab et al., 2015; Proietti et al., 2016; He et al., 2018;
Knibbs et al., 2014) and data availability. Detailed information on the pre-
dictor variables and their sources are provided in Table 1.

2.3.2. Spatial and temporal variable generation
Following previous air pollution LUR studies (Gebreab et al., 2015;

Proietti et al., 2016; He et al., 2018), buffers of 50, 100, 200 and 500 m
were generated around the measurement sites to take into account varia-
tion in dispersion patterns, scales of influence (local and background pollu-
tion sources) and the geographic extent of our study area. We estimated the
total length of each road category, rivers/waterways; total area of each land
use category; total number and area of buildings, bus stops, bus terminals,
restaurants, and shopping centers; elevation above sea level; average vege-
tation quantified by normalized difference vegetation index (NDVI) and
population densitywithin each buffer size. Euclidean distance of eachmon-
itoring site to the airport and all road categories were also calculated
(Table 1).
tial statistics Source (year)

of the length of roads within buffer (m);
lidean and inverse distance to nearest road (m)

OpenStreetMap (2019) (OpenStreetMap
contributors, 2015)

lidean distance (m) to the airport Google Earth (2019)

al area within buffer (m2) World Bank (2014)
20 m × 20 m from spot 5 imagery
(World Bank, 2014)

rage NDVI value within buffer United States geological survey (USGS)
(2020) – 30 m × 30 m Landsat 8
imagery (U.S. Geological Survey, 2020)

nt within buffer Maxar/Ecopia.ai (2020)

within buffer (m) OpenStreetMap (2019) (OpenStreetMap
contributors, 2015)
USGS Digital Elevation Model (DEM)
(2017) (~90 m) (Verdin, 2017)

rage population per km2 within buffer Ghana census (2010) (GSS, 2012)

nt within buffer;
sence within buffer;

Google Places (2020)

rage weekly value;
sence of rainfall during the week

Measurement campaign (Clark et al., 2020);
Ghana Meteorological Agency (GMA)
(2020);
National Oceanic and Atmospheric
Administration (NOAA) (2020)

NA

include a subset of these predictors chosen during the model selection process. Four
: not applicable.
lite images with the least amount of cloud cover (0.02 %) at the midpoint of the

ator during the 2010 census.
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We measured minute-by-minute temperature, relative humidity, wind
speed, and wind direction data at a peri-urban background fixed site
throughout the campaign, while hourly rainfall data was obtained from
the Ghana Meteorological Agency. Data on mixing layer depth, water
vapor mixing ratio, and solar radiation were derived from the Global Data
Assimilation System (GDAS1) and downloaded from the National Oceanic
and Atmospheric Administration (NOAA) using the Hybrid Single-Particle
Lagrangian Integrated Trajectory (HYSPLIT) 4 model at hourly resolution.
All meteorological predictors were averaged into weekly data to corre-
spond to the measurement data.

2.3.3. Model development
We developed a linear mixed-effects LUR model to interpret the rela-

tionships between PM2.5 or BC with predictor variables, and to predict
weekly PM2.5 and BC concentrations at all locations (100 m resolution)
across the GAMA. A log-transformation was applied to normalize the
skewed distribution of the PM2.5 data (Moore et al., 2007; Proietti et al.,
2016; Shi et al., 2020). We included random intercepts for measurement
site to account for potential unmeasured site-specific influences on pollu-
tion levels and correlation among repeated samples taken at the fixed
sites over the fifty-two weeks of measurement. We also incorporated ran-
dom intercepts for week of the year to account for the impact of potential
seasonal influences on measured PM2.5 and BC concentrations.

2.3.4. Variable selection
We employed a two-stage variable model selection process to create a

parsimonious model and maximize the percentage of explained variability
(R2) (Gebreab et al., 2015). First, we ranked all predictor variables by the
absolute strength of their linear correlation (Pearson's r) with measured
PM2.5 and BC concentrations. The buffer radius for each predictor variable
that had the highest rank was selected. We excluded variables where the
sign of the coefficient was inconsistent with a priori assumptions
(Henderson et al., 2007; Lee et al., 2017). Second, we applied a supervised
forward stepwise regression procedure which allowed us to minimize the
number of variables in the final models. Predictor variables selected in
the first stage were added into the model starting from the variable with
the highest absolute linear correlation. Selection of subsequent variables
were made based on the magnitude of their added contribution to the
model with a cut-off criterion of at least 1 % increase in adjusted R2 and
p-value <0.05 (Saraswat et al., 2013; Lee et al., 2017; Wu et al., 2015;
Miri et al., 2019). Collinearity between variables was assessedwith variable
inflation factor (VIF) and variables were excluded for VIF >3 (Tularam
et al., 2020; Proietti et al., 2016; Amini et al., 2014). The process of variable
evaluation continued until inclusion of additional variables no longer im-
proved the model. Finally, all excluded variables were sequentially added
to the models to check if an improved model could be found.

2.3.5. Model evaluation
We evaluated model performance with 10-fold cross validation where

models were trained with a random 90 % of samples and validated on the
remaining 10 %. This procedure was repeated 10 times so that all samples
were used at least once for both model training and validation (Proietti
et al., 2016; Shi et al., 2020). Pearson correlation coefficients (r and r2)
were used to compare the predicted with measured concentrations. We
assessed each cross-validation technique with median absolute error
(MAE), and mean error (ME) which measure random and systematic (bias)
deviations in predictions, respectively. Validation results for PM2.5 were cal-
culated for actual concentrations (i.e., we exponentiated the log-transformed
predicted values and compared them with the measured concentrations). In
addition, diagnostic plots including residual and QQ plots were used to eval-
uate whether the final models complied with the underlying assumptions of
linear regression (Gebreab et al., 2015; Proietti et al., 2016). The models
were then tested for residual spatial autocorrelation using Moran's I statistic
(Abera et al., 2020; Sieber et al., 2017). Final models were applied to a reg-
ular 100× 100 m grid covering the GAMA to generate a surface of concen-
trations for unmeasured locations for visualization. This spatial resolution is
4

typical for urban LUR models (Huang et al., 2017; Bechle et al., 2015). Sea-
sonal (non-Harmattan and Harmattan) PM2.5 and BC averages were esti-
mated from the predicted weekly PM2.5 and BC concentrations and used to
produce season-specific maps for the GAMA. Annual values were calculated
as the mean of weekly concentrations from both seasons.

2.3.6. Population distribution of exposure and local community socioeconomic
status

We assessed inequalities in population exposure to different levels of
ambient air pollution within the AMA by spatially overlapping the pre-
dicted PM2.5 and BC concentrations with a map of census enumeration
area (EA) population distribution from Ghana's most recent national census
(2010) data. An EA is the smallest geographical unit for enumeration in
Ghana's national censuses. On average, EAs in AMA (Fig. S2) have amedian
population of 750-800 people and cover 0.03-0.04 km2. For each EA,we es-
timated annual mean PM2.5 and BC from the predicted seasonal concentra-
tions and calculated number of people exposed relative to the WHO air
quality guidelines for PM2.5.

Characterizing socio-economic disparities in air pollution exposure is
vital to identifying groups/communities at highest risk of health burden
and designing targeted air pollution mitigation efforts. Thus, we examined
the association betweenmeasures of EA-level SES and air pollution levels in
the AMA, themost urbanized and densely populated core of the GAMA.Our
primary measure of neighborhood SES was the median log equivalized
household consumption (Ghanaian Cedi (GH₵)) within each EA estimated
from household expenditures and rent (Text S1) collected by the Ghana
Living Standards Surveys (GLSS) Round 6. The GLSS data on expenditure
were combined with the 2010 Ghana Population and Housing Census
dataset in small area estimation models to derive relationships between es-
timated consumption, area, and other demographic features (Elbers et al.,
2003; Corral et al., 2020) and explained in more detail in (Clark et al.,
2022). We then summarized distributions of predicted PM2.5 and BC levels
(annual and non-Harmattanmeans) across quintiles of EA SES (20% of EAs
in each group). Differences across groups were tested using analysis of var-
iance and post hoc Tukey's Honest Significant Difference. Further, we ex-
amined bivariate associations between EA air pollution levels and the
number of individuals with post-secondary education. All analyses were
conducted in R (version 4.0.2).

3. Results

3.1. Descriptive statistics for measured PM2.5 and BC concentrations

The mean (SD) PM2.5 and BC absorbance for all weekly samples col-
lected at the 146 monitoring sites across the GAMA were 35.1 (40.8) μg/
m3 and 6.8 (4.3) × 10−5 m−1, respectively. PM2.5 exhibited substantial
seasonal variations with 4-fold increase in concentrations during the
Harmattan (90.3 (68.3) μg/m3) compared to the non-Harmattan season
(21.9 (7.5) μg/m3). Similarly, BC levels were two times higher during the
Harmattan (11.4 (5.4) × 10−5 m−1) relative to non-Harmattan season
(5.7 (3.2) × 10−5 m−1). Therefore, we developed separate LUR models
for Harmattan and non-Harmattan seasons to capture the observed spatio-
temporal variations in pollutant concentrations.

3.2. LUR model performance and predictor associations

Thefinal PM2.5 and BCmodel estimates for each season are presented in
Table 2. PM2.5 and BC models had three to five predictors that explained
48–71 % of the semi-partial variance in the fixed effect components. For
PM2.5, the predictors that remained in the final non-Harmattan model in-
cluded negatively correlated Normalized Difference Vegetation Index
(NDVI) and rainfall; and positively correlated population density (a proxy
for anthropogenic sources) and road length. Conversely, only time-related
variables, including relative humidity (RH), temperature, and calendar
month were selected in the Harmattan PM2.5 model. To understand the rel-
ative importance of temporal and spatial predictors in explaining the



Table 2
Mean associations of log PM2.5 and BC with spatial predictor variables in the final modelsa.

Pollutant/season Predictorsc (unit) Buffer sizes Slope coefficient (95 % confidence interval) Cumulative R2 (fixed effects)

Non-Harmattan
PM2.5 (μg/m3)b

(n = 524 from 127 measurement sites)
Intercept – 3.02 [2.95, 3.08] –
NDVI 100 −0.12 [−0.17, −0.07] 0.26
Population density (people/km2) 50 0.12 [0.04, 0.20] 0.35
Total length of major roads (m) 500 0.07 [0.01, 0.13] 0.41
Total length of secondary roads (m) 200 0.07 [0.01, 0.13] 0.45
Presence of rainfall – −0.05 [−0.09, −0.02] 0.48

BC (×10−5 m−1)
(n = 503 from 122 measurement sites)

Intercept – 5.17 [4.71, 5.62] –
Total length of major roads (m) 100 1.36 [0.89, 1.82] 0.44
Total length of secondary roads (m) 200 0.93 [0.51, 1.34] 0.55
NDVI – −0.78 [−1.08, −0.49] 0.59
Wind speed (m/s) – −0.65 [−0.98, −0.31] 0.63

Harmattan
PM2.5 (μg/m3)b

(n = 125 from 26 measurement sites)
Intercept – 3.94 [3.69, 4.18] –
Relative humidity (%) – −0.49 [−0.59, −0.39] 0.34
Temperature (°C) – 0.18 [0.06, 0.29] 0.51
Month of year: January 0.56 [0.21, 0.90] 0.69
Month of year: February 0.52 [0.19, 0.84]

BC (×10−5 m−1)
(n = 117 from 24 measurement sites)

Intercept – 9.63 [8.11, 11.16] –
Relative humidity (%) −1.61 [−2.31, −0.96] 0.13
Wind speed (m/s) – −1.77 [−2.57, −0.96] 0.34
Total length of major roads (m)c 100 2.27 [1.17, 3.38] 0.67
Bus stops (count) 200 2.63 [0.74, 4.57] 0.71

n: number of sites from which samples were collected for model development.
a Models included random effects for site and week of year. The direction (±) of the coefficient for predictor variables in the final models were the same as those in bi-

variate models (Table S2).
b PM2.5 concentrations were log-transformed.
c Continuous variables were standardized by subtracting the data mean and dividing by the data standard deviation. A 1-point change in a standardized variable corre-

sponds to a 1 standard deviation increase on the original scale.
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variation in PM2.5, we excluded temporal variables during model selection.
However, no useful Harmattan PM2.5 model was obtained using this
method, suggesting the dominant role of meteorological variables in this
season (Table S1). Like PM2.5, road length was an important predictor in
the BC models. Further, non-Harmattan BC was negatively associated
with NDVI and wind speed, while number of bus stops in an area (a
proxy for traffic intensity) and RH emerged as important predictors in the
Harmattan BC model.

The cross-validation results for PM2.5 and BC seasonal models are
shown in Table 3. For both pollutants, predicted concentrations from the
seasonal models correlated strongly with measured PM2.5 (r: 0.76–0.91,
r2: 0.58–0.83) and BC concentrations (r:0.89–0.94, r2: 0.79–0.88) (Fig. 1).
Mean error (ME) for the models were close to zero indicating that system-
atic bias was not apparent. The range of median absolute error (MAE) for
PM2.5 (2.05–10.63 μg/m3) and BC (0.65–1.09 × 10−5 m−1) models were
relatively low compared with the range of measured concentrations in
each season. Furthermore, Moran's I statistic of model residuals for PM2.5

and BC indicated that residual spatial autocorrelation was not a concern
in the seasonal models. VIF values for all pollutant models were also low
(<2), suggesting little to no collinearity among the variables that could in-
flate the coefficients.

3.3. Spatial and temporal variations of PM2.5 and BC in GAMA

Predicted non-Harmattan PM2.5 concentrations were 25% higher in the
more urbanized, densely populated AMA in the south (mean: 20 μg/m3),
Table 3
Evaluation of PM2.5 and BC models external generalizability with 10-fold cross validatio

Model r r2 Median absolu

Non-Harmattan PM2.5 (μg/m3) 0.76 0.58 2.05
Harmattan PM2.5 (μg/m3) 0.91 0.83 10.47
Non-Harmattan BC (×10−5 m−1) 0.89 0.79 0.65
Harmattan BC (×10−5 m−1) 0.94 0.88 1.09

a Mean [min–max].
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than in the peri-urban districts around the north-western boundary of the
GAMA (Ga-East, Ga-West, and Ga-South) (mean: 16 μg/m3) (Fig. 2a). The
Harmattan PM2.5 model contained only temporal variables (Table 2);
hence, the predicted value was the same for the entire metropolis
(Fig. S3). However, predicted BC showed similar spatial pattern in both sea-
sons with higher values in the city center where the road network is more
extensive than in the peri-urban areas at the northwest periphery of the
GAMA (Fig. 2b and c). Accordingly, predicted non-Harmattan BC concen-
trationswere highest alongmajor roads (mean: 9.4×10−5m−1), followed
by secondary roads (4.9×10−5 m−1) andminor roads (3.4×10−5 m−1).
Similar trendwas observed for the predicted Harmattan BC values. The sea-
sonal pattern of predicted PM2.5 and BC maps were consistent with that of
measured values, with 3–5-fold increase in predicted concentrations in the
Harmattan (mean: PM2.5: 79.2 μg/m3, BC: 9.2 × 10−5 m−1) compared to
non-Harmattan season (PM2.5: 15.4 μg/m3, BC: 3.0 × 10−5 m−1).

3.4. Proportion of population exposed to varying levels of air pollution in the Ac-
cra metropolis

All residents of AMA (~1.66million people in 2010) lived in EAs where
average predicted non-Harmattan PM2.5 concentrations exceeded theWHO
annual guideline of 5 μg/m3, and even the interim target-3 (IT-3) of 15 μg/
m3, while 15 % of AMA residents lived in EAs with values above the IT-2 of
25 μg/m3 (Fig. 3a). Based on the annualmean values, nearly half of the pop-
ulation lived in EAs with PM2.5 above the IT-1 of 35 μg/m3 (Fig. 3a). Accra
residents, especially those in proximity tomajor and secondary roads, were
n of samples, including descriptive statistics of the measured concentrations.

te error Mean error Moran's I Measured concentrationa

0.37 −0.02 21.9 [6.1–66.2]
1.35 −0.04 90.3 [15.9–313.2]

−0.01 −0.02 5.7 [0.6–17.5]
−0.02 −0.09 11.4 [2.6–25.3]



Fig. 1. Predicted versus measured concentrations for (a) PM2.5 (b) BC based on the results of 10-fold cross-validation.
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exposed to high proportion of combustion by-products with 45% and 95%
of the population residing in EAs where predicted non-Harmattan and an-
nual mean BC values were >5 × 10−5 m−1, respectively (~8.4 μg/m3)
(Fig. 3b).

3.5. Exposure inequalities by enumeration area level socioeconomic status in the
Accra metropolis

Weobserved amoderate inverse association between ourmainmeasure
of SES (median log equivalized household consumption) and predicted air
pollution levels in Accra. Predicted non-Harmattan PM2.5 concentrations
were about 20% higher in the poorest EAs (lower 20% of SES distribution)
compared with the wealthiest EAs (upper 20 %) (23 vs 19 μg/m3), with a
stepwise gradient across intermediate SES quintiles (Fig. 4). We found sim-
ilar trend for BC, butwith aweaker association across SES groups.When ed-
ucationwas used as a secondarymetric for SES, we also observed an inverse
association between the share of individuals in an EA with post-secondary
education and air pollution levels (Fig. S4). The EAs in the lowest quantile
of this distribution had PM2.5 concentrations that were 4 μg/m3 higher than
the EAs in the highest quantile. The relative differences across SES groups
remained consistent for predicted Harmattan and annual mean concentra-
tions. The quantitative relationship between predicted air quality and SES
measures are shown in Table S2.

4. Discussion

We leveraged 649 PM2.5 and 623 BC weekly integrated outdoor air
pollution measurement data from 146 sites along with meteorology and
land-use data to estimate in high-resolution PM2.5 and BC concentrations
for the GAMA. Given the strong seasonal variation in air pollution, we de-
veloped separate models for the non-Harmattan (primarily local emissions)
and Harmattan (local emissions enhanced by regional transport and
changes in meteorology) seasons. PM2.5 and BC models were spatiotempo-
ral in nature with the highest predicted values in the Harmattan season and
in the city center and near major roads. Even in the non-Harmattan when
6

concentrations are attributed primarily to local emissions, the entire
population of GAMA was exposed to levels exceeding both the WHO
guideline and the IT-1. Half of the residents of Accra metropolis (Ghana's
capital) lived in areas with annual mean PM2.5 concentrations above
WHO IT-3 of 35 μg/m3, with the highest exposures occurring in the poorest
communities.

Consistent with findings from previous LUR studies in SSA cities (Saucy
et al., 2018; Tularam et al., 2020; Coker et al., 2021), non-Harmattan PM2.5

concentrations were positively associatedwith population density and road
length. Consequently, predicted non-Harmattan PM2.5 showed a distinct
pattern with higher concentrations in the densely populated AMA (urban
core in the south of Accra) where two-thirds of all registered vehicles in
Ghana are located (ImoroMusah et al., 2020). PM2.5 was also negatively as-
sociatedwith NDVI and valueswere lower in the peri-urban areas along the
north-western boundary, likely reflecting the effect of increased green
space/vegetation in attenuating air pollution (Tularam et al., 2020). Con-
versely, the Harmattan PM2.5 model was temporal, with relative humidity,
temperature and calendarmonth being the retained variables. The Harmat-
tan is characterized by absence of precipitation, low wind speed, and hu-
midity, higher temperature, lower mixing layer height, and large amounts
of transported mineral dust from the Sahara Desert. This period is associ-
ated with substantial increases in PM levels as well as drastic temporal
variations depending on the intensity of the dust storm episodes (Alli
et al., 2021; Weinstein et al., 2010; Dionisio et al., 2010b; Baumbach
et al., 1995). Thus, the overwhelming influence of these meteorology-
related factors may have minimized or masked the contribution of spatial
variables in the Harmattan PM2.5 model. Nonetheless, model performance
(R2) for both seasons are within the overall range (0.17–0.73) for PM2.5

LUR models across the globe (Hoek et al., 2008) and higher than those re-
ported in some LUR studies in SSA (Saucy et al., 2018; Abera et al., 2020).

Black carbon warms the climate (Yamineva and Liu, 2019) and is
considered an important indicator of the health impacts of combustion-
derived particulate matter, particularly in areas such as the GAMA where
primary combustion (e.g., traffic, biomass burning) is widespread
(Janssen et al., 2011). Like PM2.5, length of major and secondary roads,



Fig. 2. Predicted (a) Non-Harmattan PM2.5, (b) Non-Harmattan BC, and (c) Harmattan BC concentrations from the final land use regression models.

A.S. Alli et al. Science of the Total Environment 875 (2023) 162582
indicating traffic emissions, were the most predictive variables for BC
models. This is consistent with existing BC LUR literature across the globe
(Eeftens et al., 2012; Xu et al., 2021; Wang et al., 2014; Lee et al., 2015).
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Further, the number of bus stops in an area was positively associated with
BC in the Harmattan model. This is expected as 85 % of Accra residents
rely on public transportation (Kumar et al., 2004), hence, the presence of



Fig. 3. Cumulative densities of the proportion of the population in AccraMetropolitan Area (AMA) living in enumeration areas (EA) with varying (a) PM2.5 and (b) BC levels
(population estimated from the 2010 Ghana census). IT-1: WHO Annual Average Interim Target 1 = 35 μg/m3; IT-2 = 25 μg/m3; IT-3 = 15 μg/m3.
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bus stops in an area can be a good proxy for traffic volume. Accordingly, the
distribution of predicted BC levels in both seasons, followed road networks,
with highest levels along major roads and lowest in the northwestern peri-
urban areas with fewer highways. Predicted BC levels (non-Harmattan
mean: ~5.3 μg/m3)made up a significant proportion of PM2.5mass concen-
tration (non-Harmattan mean: 16.6 μg/m3), reflecting results from a previ-
ous study in Accra (Zhou et al., 2013).

Like PM2.5, BCwas higher in the Harmattan than non-Harmattan. There
is a possibility that Iron content in the desert mineral dust may be contrib-
uting to small increase in absorbance levels during the dusty Harmattan pe-
riod (Janssen et al., 2012). However, beside the dust, the Harmattan period
is also associated with drastic changes to local meteorological conditions
(Alli et al., 2021; Dionisio et al., 2010a; Wang et al., 2021). These factors
are known to create slower vertical mixing and stagnant conditions that
may cause progressive accumulation of local anthropogenic emissions, re-
sulting in higher levels of not just PM, but also combustion-related pollut-
ants like BC (Marais et al., 2014; Querol et al., 2019). Besides PM2.5 and
Fig. 4. Distribution of enumeration area (EA) average non-Harmattan (a) PM2.5 and (b
household consumption (EA SES) in Accra metropolis.
Median log equivalized household consumption (GH₵) was used as a proxy for EA SES.
The upper and lower boundaries of the black box represent the interquartile range of t
colored point is an EA average PM2.5 or BC concentration.

8

BC, we also observed a similar seasonal variation in NOx levels, another
combustion-related pollutant (Wang et al., 2021). Altogether, the evidence
strongly points to role of local meteorology in amplifying/enhancing local
air pollution beyond just dust transport during the Harmattan.

The prediction results showed that the entire GAMAhad non-Harmattan
PM2.5 concentrations that exceeded both the new (5 μg/m3) and previous,
less ambitious (10 μg/m3) WHO annual guidelines. Focusing on the more
urbanized city core, we estimated that half of residents in the Accra metrop-
olis (AMA) lived in EAs where average annual PM2.5 concentrations were
above the interim-guideline-1 (IT-1: 35 μg/m3). The proportions of Accra
residents living in areas where PM2.5 levels exceed the annual WHO guide-
line are comparable to estimates for Asian cities (range: 98.6–100 %) (Shi
et al., 2020; Long et al., 2018), but higher than those for most Latin
American (Gouveia et al., 2021) and European (Sicard et al., 2021;
Khomenko et al., 2021) cities (range: 58–80%). The spatial variability of es-
timated BC in Accra (range: 2.1–25.5 × 10−5 m−1) was much higher than
the range (0.2–5.1 × 10−5 m−1) typically found in developed countries
) BC concentrations across quintiles (20 % increments) of Median log equivalized

he distribution and the horizontal line within the box represents the median. Each
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(Hoek et al., 2011; Lee et al., 2015; Montagne et al., 2013; de Hoogh et al.,
2016). Further, annual BC levels (mean: ~11.2 μg/m3) in Accra are several
folds more than typical range of ambient levels (mean: 0.2–5.1 μg/m3) re-
ported in the WHO's “good practice statement for BC” (WHO, 2021).

By SES measures, the median predicted PM2.5 and BC concentrations
were lowest in the high-SES areas compared to low-SES areas. This inverse
association was stronger for PM2.5 where we observed a 20 % difference in
exposure between these groups. Correlation between air pollution and edu-
cation, another common measure of SES yielded similar results, with lower
air pollution levels in EAs with higher number of residents with post-
secondary education. These findings expand previous research in four
neighborhoods in Accra which showed higher PM levels in poor neighbor-
hoods (Dionisio et al., 2010a). Our estimates are generally consistent with
the widely documented disparities in air pollution exposure across SES
groups (defined by income, wealth, or education) in international research
(Hajat et al., 2015; Cooper et al., 2019; Bell and Ebisu, 2012). Lower SES is
associatedwith increased susceptibility to health effects of air pollution and
exacerbation of existing morbidity and mortality rates (Hajat et al., 2015;
Loizeau et al., 2018; Laurent et al., 2007). Therefore, the observed differ-
ences in exposure levels signify the need to identify and address the under-
lying causes of exposure inequities in poorer communities in Accra. Taken
together, our results for PM2.5 and BC add to the small but growing body of
evidence (Alli et al., 2021; Zhou et al., 2013; Dionisio et al., 2010a) that im-
proving air quality in the GAMA will require a multidimensional approach
that should include environmental management programs, creation of
urban green spaces, improvements to road infrastructure, support for
green transportation and cleaner cooking fuels, and enforcement of existing
air quality regulations. Our non-Harmattan models provide clearer guide
for key emission sources that need to be included in any air qualitymanage-
ment or policy initiatives for reducing air pollution exposure in Accra and
could serve as a roadmap for other cities in the West African context.

4.1. Strengths and limitations

Only four PM2.5 LUR models have been developed for growing SSA cit-
ies, comparedwith hundreds in North America and Europewhere air pollu-
tion has declined dramatically. The lack of monitoring in the vast majority
of SSA cities has been identified as a major hindrance to mapping air pollu-
tion in this large global region that accounts for 15 % of the global popula-
tion (Coker and Kizito, 2018; Abera et al., 2020). Our study addressed this
limitation by using week- and year-long PM2.5 and BC data from 146 loca-
tions monitored during a city-wide environmental monitoring campaign
(Clark et al., 2020). We are the first to develop LURmodel for BC pollution
in SSA. Our research improved upon previous LUR studies in SSA by
leveraging high quality air pollution data and coupling spatial and temporal
predictors to explain the seasonal variability in air pollutant concentrations.
We showed that meteorological predictors improvedmodel prediction per-
formance, especially for the Harmattan season. Additionally, the spatial
datasets used in this study are globally available for most major cities,
thus, our approach can be readily applied to urban areas in LMICs, espe-
cially those in SSA. Furthermore, the percentage of explained variance of
our models indicate that they can be applied to fill the gap as exposure es-
timates in health and climate impact studies in the GAMA. In particular, the
spatiotemporal nature of our predictions offers the flexibility to generate
PM2.5 and BC exposure estimates for specific periods relevant for investigat-
ing acute and chronic health outcomes. Our models could also be useful for
the tracking of policies designed to improve air quality. Finally, this study
explored socioeconomic disparities in air pollution exposure and provided
primary evidence that low-income communities in Greater Accra bear sub-
stantial exposure burden.

Our study has some limitations to consider for future studies. Given the
complex structure of the rapidly urbanizing GAMA, quantitative traffic data
on local sources of pollution such as road surface material (paved or un-
paved), informal industries, community biomass use, and trash/solid
waste burning might improve LUR model performance. However, such
datasets were not available during the study period. Another potential
9

limitation is the temporal discrepancy between the collection of certain spa-
tial predictors (e.g., land-use raster was created in 2014, population density
and enumeration areas were derived from 2010 census) and our measure-
ment campaign which occurred in 2019/2020. Hence, analyses of popula-
tion exposure to air pollution and SES disparities using data from the most
recent 2010 census were restricted to Accra where urban expansion and
land-use changes are smaller, relative to other districts in the GAMA
(Stow et al., 2016). Our analytical approach presumed that the spatial dis-
tribution of residents in the EAs in 2010 and 2019/2020were similar. How-
ever, preliminary report from the 2021 census showed a 35 % increase in
the population size of the Greater Accra Region (GAR), implying that the
2010 census may not perfectly reflect Accra's population characteristics
for our study period. Finally, increasing the number of sites sampled during
the relatively short Harmattan may improve the ability of LUR model to
capture spatial patterns. Nonetheless, our results show the need for policies
that are focused on multisectoral approach and equitable urban infrastruc-
ture for reducing air pollution exposure in Accra and similar settings in SSA.

4.2. Conclusion

Within the complex urban source-pollution and climatic environment of
SSA, we used data from a large-scale measurement campaign involving
systematic site selection and space-time sampling and developed high-
resolution spatiotemporal PM2.5 and BC pollution surfaces for the Greater
Accra metropolis. We used the data to assess population distribution of ex-
posure and the role of SES in exposure disparities. Our results show the
need for policies that are focused on multisectoral approach and equitable
urban infrastructure for reducing air pollution exposure in Accra and simi-
lar settings in SSA.
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