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a b s t r a c t 

High-level brain functions are widely believed to emerge from the orchestrated activity of multiple neural sys- 
tems. However, lacking a formal definition and practical quantification of emergence for experimental data, 
neuroscientists have been unable to empirically test this long-standing conjecture. Here we investigate this fun- 
damental question by leveraging a recently proposed framework known as “Integrated Information Decomposi- 
tion, ” which establishes a principled information-theoretic approach to operationalise and quantify emergence 
in dynamical systems — including the human brain. By analysing functional MRI data, our results show that the 
emergent and hierarchical character of neural dynamics is significantly diminished in chronically unresponsive 
patients suffering from severe brain injury. At a functional level, we demonstrate that emergence capacity is 
positively correlated with the extent of hierarchical organisation in brain activity. Furthermore, by combining 
computational approaches from network control theory and whole-brain biophysical modelling, we show that 
the reduced capacity for emergent and hierarchical dynamics in severely brain-injured patients can be mechanis- 
tically explained by disruptions in the patients’ structural connectome. Overall, our results suggest that chronic 
unresponsiveness resulting from severe brain injury may be related to structural impairment of the fundamental 
neural infrastructures required for brain dynamics to support emergence. 
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. Introduction 

Understanding how brain structure and function give rise to the
unctioning of the human mind is one of the major open challenges in
ontemporary neuroscience ( Suárez et al., 2020 ). In addition to inves-
igating how specific neuroanatomical regions contribute to brain func-
ion, it is also useful to study their dependence on highly distributed
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patio-temporal patterns of collective activity arising from the complex
nteractions between multiple neural systems. At its core, this approach
uilds on the long-standing conjecture that mental activity may be an
mergent phenomenon arising from the collective activity of neurons in
he brain ( Luppi et al., 2021 ; Mediano et al., 2022 ; Rosas et al., 2020 ;
urkheimer et al., 2019 ). Unfortunately, so far empirical investigations
f this conjecture have been challenging, due at least in part to the
iversity of Cambridge, UK. 
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bsence of means to practically quantify emergence in experimental
ata. For the same reason, the potential relationship between emergence
nd functional and structural properties of the human brain still remains
o be empirically investigated. 

Thanks to recent technical breakthroughs, these questions can now
e rigorously brought together under the same conceptual framework,
nd empirically investigated on neuroimaging data. By leveraging re-
ent developments at the interface between information theory and dy-
amical systems, the Integrated Information Decomposition ( ΦID) frame-
ork provides the means to conceptualise and quantify emergence in
ynamical systems ( Mediano et al., 2021 ). Specifically, it can be rigor-
usly shown that a system exhibits causal emergence to the extent that its
tate as a whole provides information about its future state that cannot
e obtained from the states of its individual components ( Mediano et al.,
022 ; Rosas et al., 2020 ). In other words, causal emergence can be
ormally defined and mathematically quantified as the causal (predic-

ive) power of the macroscale, above and beyond the microscale effects

 Rosas et al., 2020 ). ΦID is widely applicable, offering rigorous methods
o reason about and quantify causal emergence across a variety of dif-
erent systems — from flocks of birds and Conway’s celebrated Game of
ife, to functional MRI measurements of human and non-human primate
rain dynamics ( Luppi et al., 2022c ; Rosas et al., 2020 ). 

By making emergence in the brain formally quantifiable, ΦID also
akes it possible to contextualise how emergence relates to other fun-
amental properties of brain functional and structural organisation.
onceptually, emergence is deeply intertwined with the idea of hier-

rchical organisation, which (in its many possible conceptualisations
 Hilgetag and Goulas, 2020 )) is a fundamental principle in our con-
emporary understanding of the brain ( Burt et al., 2018 ; Deco and
ringelbach, 2017 ; Demirta ş et al., 2019 ; Golesorkhi et al., 2022 , 2021 ;
ansen et al., 2022 , 2021 ; Margulies et al., 2016 ; Sydnor et al., 2021 ;
urkheimer et al., 2021 ). Thanks to ΦID, we are now in a position to
haracterise the empirical relationship between emergence and hierar-
hy in the activity the human brain. 

Physiologically, the conditions for the dynamics of functional brain
ctivity to exhibit hierarchical and potentially emergent properties are
haped by the structural connectome on which they unfold ( Avena-
oenigsberger et al., 2017 ; Hagmann et al., 2008 ; Petersen and
porns, 2015 ; Sporns, 2011 ; Suárez et al., 2020 ). Therefore, different
hysical configurations of the structural network may be expected to
upport different degrees of emergent or hierarchical dynamics. One
ttractive avenue to tackle the relationship between structural organ-
sation and emergent dynamics is via the recent framework of network

ontrol theory ( Gu et al., 2015 ), which studies how the organisation of a
tructural network shapes its ability to influence the functional dynam-
cs that take place over it. 

A unique opportunity to investigate how emergence is related to
oth functional and structural characteristics of the human brain comes
rom studying patients with chronic disorders of consciousness (DOCs)
s a result of severe brain injury. Chronic DOCs involve permanent neu-
oanatomical damage, including disruption of the brain’s structural con-
ectivity and dynamics ( Berlingeri et al., 2019 ; Cao et al., 2019 , 2021 ;
avaliere et al., 2015 ; Demertzi et al., 2019 ; Fernández-Espejo et al.,
011 , 2012 ; Hannawi et al., 2015 ; Luppi et al., 2019 , Luppi et al., 2021b ;
uppi et al., 2021a ; Wang et al., 2018 ; Zheng et al., 2017 ). In addi-
ion to providing a powerful avenue to relate brain organisation and
dys)function, this approach also addresses a pressing need to under-
tand how the structural and functional brain reorganisation induced
y DOC patients’ injuries prevent them from recovering ( Claassen et al.,
021 ; Luppi et al., 2021 ). Therefore, in the present work we combine
unctional and diffusion MRI data to study brain function and structure
n a cohort of 21 DOC patients and 18 healthy controls. We leverage
ID and network control theory to investigate the relationship between
mergence in brain dynamics, on one hand, and healthy and patholog-
cal aspects of the brain’s structural and functional architecture, on the
ther. 
h  

2 
Our main hypothesis was that emergent and hierarchical character
f brain activity should be diminished in the brains of severely brain-
njured unresponsive patients. Further, we hypothesised that the capa-
ility of these patients’ anatomical connectomes to control brain activity
hould be compromised as a result of their injury. Crucially, these hy-
otheses are tightly interconnected: emergence and hierarchy are two
istinct but complementary ways of viewing the same dynamics, and
 controllability shapes the repertoire of dynamics that the structural
onnectome can entertain. Therefore, as our final hypothesis we expect
hat causal emergence, functional hierarchy and structural controlla-
ility should be related to each other. To obtain mechanistic insights
eyond pure correlation, we address this last hypothesis using whole-

rain computational models , which simulate neurobiologically realistic
rain dynamics based on different empirical connectomes ( Cabral et al.,
017 ; Cofré et al., 2020 ; Deco and Kringelbach, 2014 ; Demirta ş et al.,
019 ; Kringelbach and Deco, 2020 ; Luppi et al., 2021 ; Shine et al., 2021 ;
ang et al., 2019 ). The model-generated dynamics can then be directly

nterrogated in terms of causal emergence via ΦID, through the same
rocess as the empirical brain dynamics. This approach enables us to
eek a mechanistic interpretation of our results. Through these con-
ergent, multimodal investigations we shed light on how healthy and
athological brain structure influences brain dynamics. 

. Results 

Here, we adopted the recently developed mathematical framework
f Integrated Information Decomposition ( ΦID) to quantify causal emer-
ence in the dynamics of the human blood-oxygen-level dependant
BOLD) signal from fMRI data of N = 18 healthy controls and N = 21
OC patients, further subdivided into N = 10 patients diagnosed with
nresponsiveness wakefulness syndrome (UWS, also known as the vege-
ative state), and N = 11 patients in a minimally conscious state (MCS),
ho can occasionally exhibit behavioural signs consistent with transi-

ory responsiveness. Through this powerful new approach to quantify
mergence, we sought to investigate the fundamental connection be-
ween emergence and human consciousness, and how they both relate to
elevant aspects of brain function (spatiotemporal hierarchy) and struc-
ure (network controllability). 

.1. Diminished emergence in the brain dynamics of DOC patients 

To empirically investigate the hypothesis that the macroscale ca-
acity for emergence is diminished in chronically unresponsive brain-
njured patients, we adopted the account of causal emergence recently
ormalized by ΦID (Methods). Here, causal emergence has a specific
echnical meaning, that was recently formalized mathematically, and
hich is defined as follows (see Methods for further details). Given a sys-

em composed of multiple elements that co-evolve over time, we say that
 macroscale feature V t is said to be causally emergent if it has “unique ”
redictive power over the future evolution of X t — in the sense of provid-
ng information about the dynamics of the system that cannot be found
n any of the parts of the system when considered separately. Thus, su-
ervenience is a relationship between the macroscale (for example, the
hape of a flock of birds) and the microscale (the individual birds) at
 particular point in time, whereas emergence pertains to the joint dy-
amics of the macro- and the microscale ( Figs. 1 and S1) ( Rosas et al.,
020 ). Crucially, ΦID allows one to define a quantity that upper-bounds
he unique predictive power that any possible macroscopic feature could
ave. We refer to this quantity as “emergence capacity, ” as it represents
he ability of the system to host emergent features (see Methods). 

Here, we employed ΦID to measure the capability for causal emer-
ence of the coevolving activity of pairs of brain regions, based on
heir fMRI BOLD signals at rest (see Methods for details of how ΦID’s
nformation-theoretic quantities are computed). In other words, we
uantify the capacity of pairs of regions to give rise to emergent be-
aviour together. By averaging the resulting estimates of emergence ca-
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Fig. 1. Causal emergence is diminished in the brain dynamics of DOC patients. (A) Relationship between emergence and supervenience. A macroscale feature Vt of 
a system is supervenient on the state of the system at time t, denoted by 𝑋 𝑡 , if 𝑉 𝑡 is fully determined by 𝑋 𝑡 (beyond the addition of noise), such that anything about 
𝑉 𝑡 that can be predicted from the system’s previous state, 𝑋 𝑡 −1 can also be predicted from the system’s current state, 𝑋 𝑡 . Then, a supervenient feature 𝑉 𝑡 is said to 
be causally emergent if it has “unique ” predictive power over the future evolution of the system 𝑋 𝑡 — in the sense of providing information about the dynamics of 
the system that cannot be found in any of the parts of the system when considered separately. The two components of emergence capacity are causal decoupling , the 
unique predictive power of 𝑉 𝑡 on 𝑉 𝑡 +1 corresponding to the system’s macroscale influencing the macroscale’s future; and downward causation , the unique predictive 
power of 𝑉 𝑡 on 𝑋 𝑡 +1 i.e. the macroscale influencing the microscale. (B) The global emergence capacity of the human brain is obtained from Integrated Information 
Decomposition as the average emergence capacity (downward causation + causal decoupling) between each pair of discretised regional fMRI BOLD signals (Methods 
and Fig. S1). (C) Violin plots of each subject’s emergence capacity by group. Data points represent subjects. White circle, median; centre line, mean; box limits, upper 
and lower quartiles; whiskers, 1.5x interquartile range. ∗ ∗ p < 0.01; ∗ ∗ ∗ p < 0.001, FDR-corrected. Here we used a time-step of 1 TR (2 s), the fastest available for 
our functional MRI data. No significant difference was observed when using a slower timescale of 4 TRs. We also show that analogous results are obtained using 
continuous (rather than discretised) signals (Fig. S3A), and using a different information-theoretic formalism (Methods and Fig. S3B), with UWS patients exhibiting 
significantly lower emergence capacity than healthy controls in both cases. We found that differences in emergence capacity can be attributed to downward causation 
(Fig. S4), rather than causal decoupling (all p > 0.05): that is, the overall difference in emergence capacity is primarily accounted for by the effects of the macroscale 
on the microscale. 
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acity across all pairs, we obtained an estimate of the global emergence
apacity across the brain for each subject. 

An analysis of variance revealed a significant effect of disorder sever-
ty (control, MCS or UWS) on the mean values of emergence capacity
F(2,37) = 26.08, p < 0.001), with subsequent post-hoc tests (corrected
or multiple comparisons using the Benjamini-Hochberg procedure to
ontrol the false discovery rate ( Benjamini and Hochberg, 1995 )) indi-
ating that healthy controls had significantly higher capacity for causal
mergence than both MCS and UWS patients across brain regions - as
ell as a trend towards significance for the difference between patient
roups ( p = 0.072) (see Fig. 1 and Table S1). Thus, supporting our first
ypothesis, we identified that lower causal emergence is observed in
hronically unresponsive patients after severe brain injury. We further
how that significant differences are also observed when considering
3 
he emergence capacity normalised by the total time-delayed mutual
nformation in the system (Figure S2). Thus, both the total emergence
apacity, and the proportion of information that is accounted for by
mergence capacity, are diminished in DOC patients. 

.2. Compromised spatiotemporal brain hierarchy in DOC patients 

Emergence is conceptually intertwined with another central concept
n the modern neuroscientific literature: hierarchical organisation. In
articular, recent theoretical and empirical work has shown that the
lobal activation patterns that arise in response to spontaneous local
ctivity induce a spatiotemporal hierarchy, whereby different regions
ary in their capability to elicit spatially distributed neural activity
ver time — a phenomenon dubbed “intrinsic-driven ignition ” ( Fig. 2 A)
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Fig. 2. Spatio-temporal hierarchy of intrinsic-driven ignition is compromised in DOC patients. (A) intrinsic-driven ignition is obtained by identifying “driver events ”
(unusually high BOLD spontaneous activity; here, an event is defined to occur at a given region when its BOLD signal exhibits a Z-score larger than 1, following 
previous work ( Deco et al., 2017 ; Deco and Kringelbach, 2017 )), and measuring the magnitude of the concomitant activity occurring in the rest of the brain within 
a short time window (here, 4 TRs, approximately corresponding to the duration of the hemodynamic response function, following previous work ( Deco et al., 2017 ; 
Deco and Kringelbach, 2017 )). By the term “event ” we refer to each regional occurrence of threshold-crossing; so if two regions cross the threshold within the same 
BOLD volume, then two events are occurring. The level of intrinsic-driven ignition is calculated as the size of the resulting largest connected component over a 
network linking regions that exhibit co-occurring events within the chosen time window. A measure of spatio-temporal hierarchy is obtained by calculating the 
variability across regions of their average IDI. (B) Violin plots of each subject’s spatio-temporal hierarchy by group, showing that UWS patients exhibit diminished 
hierarchy compared with both healthy controls and MCS patients. Data points represent subjects. White circle, median; centre line, mean; box limits, upper and 
lower quartiles; whiskers, 1.5x interquartile range. ∗ p < 0.05; ∗ ∗ p < 0.01, FDR-corrected. 
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 Deco and Kringelbach, 2017 ). Crucially, in previous work, this spatio-
emporal hierarchy (meaning, as a summary, the difference in elicited
ctivity between the most and least influencing regions throughout the
rain) was diminished during the transient unresponsiveness induced by
oth sleep and anaesthesia ( Deco et al., 2017 ; Signorelli et al., 2020 ).
herefore, having identified an association between diminished emer-
ence capacity and disorders of consciousness due to severe brain in-
ury, we proceeded to test whether DOCs also induce a reduction in the
patio-temporal hierarchy of brain function. 

Operationally, intrinsic-driven ignition (IDI) is obtained by identi-
ying “driver events ” of unusually high activity in spontaneous BOLD
ignals of each region and measuring the concomitant activity occur-
ing in the rest of the brain. Importantly, regions generally vary in the
xtent of the ignition they typically elicit, and the spatial variability of
he mean IDI across regions defines the brain’s spatio-temporal hierarchy :
hen driver events in some regions are able to recruit a large fraction
f the brain while events in others not at all, brain dynamics can be
haracterised as being highly hierarchical ( Deco et al., 2017 ; Deco and
ringelbach, 2017 ). In other words, hierarchy is operationalised here

n terms of a steeper difference of ranking between regions (in terms of
heir capacity to elicit broad ignition): when regions are all near-equal,
here is low hierarchy, whereas when regions differ widely, then there
s high hierarchy. 

Results supported our hypothesis of diminished spatio-temporal hi-
rarchy in the functional brain activity of DOC patients: an ANOVA re-
ealed a significant effect of diagnosis on the spatiotemporal hierarchy
f ignition (F(2,37) = 11.28, p < 0.001), with follow-up t-tests indi-
ating that UWS patients exhibited reduced hierarchical organisation
ompared with both MCS patients and healthy controls ( Fig. 2 B and Ta-
le S2). Therefore, our results are in line with previous studies on sleep
nd anaesthesia ( Deco et al., 2017 ; Signorelli et al., 2020 ), indicating
4 
hat spatiotemporal hierarchy of the brain’s intrinsic-driven ignition is
ompromised following the kind of severe brain injury that results in
hronic disorders of consciousness. 

To ensure the robustness of our results, we repeated our analyses
ertaining to both emergence capacity and spatio-temporal hierarchy
fter controlling for mean framewise displacement as a covariate of no
nterest (Figure S5) and using a different parcellation size (129 ROIs;
ig. S6). 

.3. Reduced network controllability of the DOC connectome 

Our results so far have shown that the brain activity of chron-
cally unresponsive brain-injured patients compared to healthy con-
rols is characterised by decreased causal emergence, and, possibly
losely related to this, a diminished spatio-temporal hierarchy of
rain dynamics. Crucially, however, brain dynamics are fundamentally
haped by the underlying structural connectome on which they unfold
 Avena-Koenigsberger et al., 2017 ; Hagmann et al., 2008 ; Petersen and
porns, 2015 ; Sporns, 2011 ; Suárez et al., 2020 ) - and indeed DOC pa-
ients often exhibit disrupted structural connectivity due to their injury,
s well as subsequent complications and atrophy. To study how reduc-
ions in emergence and spatio-temporal hierarchy are related to brain
tructure we leverage principles of network control theory , which has
ecently become a prominent approach to investigate the relationship
etween the brain’s network structure and its ability to support differ-
nt kinds of functional dynamics ( Betzel et al., 2016 ; Cornblath et al.,
018 ; Gu et al., 2015 ; Kim et al., 2018 ; Lynn and Bassett, 2019 ;
edaglia et al., 2017 ; Parker Singleton et al., 2021 ; Tang et al., 2020 ,

017 ; Zarkali et al., 2020 ). 
Given a system of active elements (e.g., brain regions) intercon-

ected by a network of structural connections (here, from the human
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Fig. 3. Reduced controllability of structural brain networks in DOC patients. (A) To obtain the structural connectome, diffusion weighted imaging (which measures 
the direction of water diffusion in the brain) is used to reconstruct white matter streamlines through tractography algorithms, obtaining a network representation 
of the physical connections between brain regions (here, N = 234 regions from the Lausanne atlas). The average structural networks for each group (control, 
MCS and UWS) are shown. (B) Functional brain activity (colored nodes are active, grey nodes are inactive) evolves through time over a fixed network structure 
(displayed below the brains). From a given starting configuration of activity (green), some alternative configurations are relatively easy to reach in the space of 
possible configurations (valley, in blue), whereas others are relatively difficult to achieve (peak, in yellow). To achieve a desired target configuration, input energy 
(represented by the lightning bolt icons) can be injected locally into the system, and it will spread to the rest of the system based on its network organisation. Average 
controllability quantifies the network’s support for moving the system from an initial configuration of activity (green) to easy-to-reach configurations (blue), whereas 
modal controllability quantifies the network’s support for moving the system to difficult-to-reach configurations of activity (yellow). (C) Example of easier and harder 
transitions from the literature ( Karrer et al., 2020 ): starting from a baseline state corresponding to activation of the default mode network regions (green), previous 
work has shown that under the framework of linear network control theory it is easier to transition to activation of the limbic network regions (blue) than of the 
somatomotor network regions (yellow). (D) Global modal controllability is significantly reduced in DOC patients. Data points represent subjects. (E) Global average 
controllability across each group. White circle, median; center line, mean; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range. ∗ ∗ ∗ p < 0.001, 
FDR-corrected. 
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onnectome project), the organisation of the network’s connections can
e studied via control theory to determine how to intervene on the sys-
em to achieve a desired configuration of activity of its elements ( Fig. 3 A
nd B). Specifically, if energy is injected into the system via a particular
ode or set of nodes, it will spread to the rest of the system according
o the network’s connectivity, so that the activity of individual elements
ill be differently affected. As a consequence, a specific desired pattern
f activity may be best achieved by intervening on some nodes rather
han others. Nodes requiring comparatively less effort (i.e., smaller in-
ut energy) to achieve the same target configuration are said to be more
5 
ontrollable . Importantly, network control theory makes it possible to
heoretically estimate controllability based on the structural network
tself, without the need for physical interventions. 

According to this formalism, different types of controllability can
e defined depending on the type of desired outcomes. Here, we focus
n two widely adopted and complementary notions: average and modal

ontrollability (Methods) ( Gu et al., 2015 ). Average controllability refers
o the ability to steer the dynamics of the system towards configura-
ions of activity that are relatively easy to reach, in the sense that they
ould require little energy to be injected into the system, because they
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Fig. 4. Functional and structural properties of the brain are correlated across subjects. Plots show Spearman’s rank-based correlation tests between each pair of 
structural and functional measures that had exhibited significant differences across DOC patients and controls. Each data-point represents one subject (note that the 
two healthy controls and one DOC patient who did not have both structural and functional data were not included in this analysis). 
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re relatively close to the initial pattern of activity ( Fig. 3 B, blue). In
ontrast, modal controllability has been interpreted in the literature in
erms of steering the dynamics of the system towards patterns of activ-
ty that are relatively difficult to reach, because they are very differ-
nt from the current activity of the system ( Fig. 3 B, red). Considering
he widespread alterations typically observed in DOC patients’ brain dy-
amics ( Cai et al., 2020 ; Cao et al., 2021 , 2019 ; Coppola et al., 2022 ;
emertzi et al., 2019 ; Huang et al., 2020 ; Luppi et al., 2019 ), our third
ypothesis was that DOC patients should exhibit compromised control-
ability of their structural connectomes, reflecting a diminished capacity
o control brain dynamics towards desired functional configurations. 

We used diffusion MRI data to construct a network of structural
onnectivity for each subject in terms of the number of white matter
treamlines connecting each pair of 234 cortical and subcortical regions
 Cammoun et al., 2012 ) (Methods) ( Fig. 3 A). Based on each individ-
al’s structural connectome, we derived the average and modal control-
ability of each subject by taking the mean controllability across brain
egions ( Tang et al., 2017 ). Analysis of variance revealed a significant ef-
ect of diagnosis on whole-brain modal controllability between the three
roups (F(2,36) = 14.50, p < 0.001) ( Fig. 3 C), while showing no signif-
cant differences in average controllability (F(2,36) = 2.79, p = 0.075)
 Fig. 3 D). Post-hoc pairwise t-tests (FDR-controlled) to explore the sig-
ificant effect from the ANOVA indicated significantly higher modal
ontrollability across brain regions for healthy controls than either MCS
r UWS patients (Table S3). Analogous results were also obtained when
sing a different parcellation size (129 ROIs; Figure S7). Thus, our re-
ults indicate that the structural connectomes of DOC patients are sig-
ificantly less suitable to steer their dynamics specifically towards hard-
o-reach configurations - in line with existing results about the central
mportance of appropriate dynamics to support consciousness in hu-
ans and other mammals ( Barttfeld et al., 2015 ; Demertzi et al., 2019 ;
utierrez-Barragan et al., 2021 ; Luppi et al., 2019 , 2020b ; Uhrig et al.,
018 ) 

.4. Convergent evidence for structural-functional relationships 

So far, we have demonstrated that the brains of chronically unre-
ponsive brain-injured patients are characterized by reduced emergence
nd spatiotemporal hierarchy of brain activity, as well as structural net-
ork differences, specifically in terms of compromised modal control-

ability. This set of results raises the question of how exactly functional
nd structural deficits observed in these brain-injured patients are re-
ated with each other. 

This section and the next will investigate the structure-function
elationship via two convergent approaches: First, by correlating the
unctional (emergence, spatiotemporal hierarchy) and structural (modal
ontrollability) measures that had exhibited significant differences be-
ween controls and DOC patients across all subjects (patients and con-
rols); Second, to derive mechanistic insights beyond correlation, by us-
6 
ng whole-brain computational modelling to generate biophysically re-
listic macroscale dynamics based on different connectomes, thereby il-
uminating how connectome structure shapes emergence and hierarchy.

e report the results of these two investigations in turn below. 
Results of the correlation analysis supported our hypothesis, indicat-

ng significant positive values of Spearman correlation between all mea-
ures: causal emergence, spatiotemporal hierarchy, and overall modal
ontrollability of the structural connectome ( Fig. 4 ). These correlations
ave two key consequences: they support the theoretical link between
mergence and spatiotemporal hierarchy, and they confirm our expec-
ation that the presence of emergent and hierarchical dynamics in func-
ional brain activity is related to controllability of the underlying struc-
ural connectome. In contrast, we did not observe significant differences
cross conditions in terms of the correlation between structural connec-
ivity and pairwise emergence capacity (all p > 0.05). 

.5. Causal evidence for structure-function relationships from whole-brain 

omputational models 

Finally, we sought to determine whether the structural alterations
bserved in DOC patients may be part of the causal mechanism re-
ponsible for the observed functional deficits (emergence capacity and
patiotemporal hierarchy). To this end we employed whole-brain com-
utational modelling, a powerful tool to investigate how macroscale
eural dynamics emerge from the underlying anatomical connectivity
 Cabral et al., 2017 ; Cofré et al., 2020 ; Deco and Kringelbach, 2014 ;
emirta ş et al., 2019 ; Kringelbach and Deco, 2020 ; Shine et al., 2021 ;
ang et al., 2019 ). These models represent regional macroscale activ-

ty in terms of two key ingredients: (i) a biophysical model of each re-
ion’s local dynamics; and (ii) inter-regional anatomical connectivity. In
articular, the neurobiologically plausible Dynamic Mean Field (DMF)
odel relies on a mean-field reduction to recapitulate the microscale
europhysiological properties of spiking neurons ( Deco et al., 2013 ,
014 , 2018; Deco and Jirsa, 2012 ; Hansen et al., 2015 ; Herzog et al.,
020 , 2022; Luppi et al., 2022b ; Wong and Wang, 2006 ). Each corti-
al region is modelled as a macroscopic neural field comprising mu-
ually coupled excitatory and inhibitory populations, and regions are
hen connected according to empirical anatomical connectivity obtained
.g., from diffusion weighted imaging (DWI) data ( Deco et al., 2018 ,
014 , 2013 ; Deco and Jirsa, 2012 ; Hansen et al., 2015 ; Wong and
ang, 2006 ). The flexibility of this neurobiologically inspired whole-

rain modelling makes it ideal to investigate how the anatomical con-
ectivity of the brain shapes its macroscale neural dynamics ( Cofré et al.,
020 ; Deco and Kringelbach, 2020 ; Shine et al., 2021 ). 

We fitted three whole-brain DMF models, each using a connectome
btained from combining the DTI of healthy controls, MCS patients, and
WS patients, respectively (Fig. 5A). The DMF model has one free pa-

ameter, the global coupling G ; this parameter was selected separately
or each model to lie just before the point where the simulated firing
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Fig. 5. Whole-brain models informed by empirical connectomes replicate empirical changes in brain dynamics. (A) Overview of the whole-brain modelling approach 
to investigate structure-function relationships. The whole-brain model is based on local biophysical models of excitatory and inhibitory neuronal populations, 
corresponding to brain regions as defined by an anatomical parcellation, interconnected by a network of structural connections obtained from diffusion MRI from 

each group of subjects (healthy controls, MCS and UWS patients). The whole-brain model has one free parameter, the global coupling G, which is selected as the 
value just before the simulated firing rate becomes unstable. (B) Emergence capacity is highest in the dynamics simulated from control connectome, in line with 
empirical results. (C) Spatio-temporal hierarchical character is highest in the dynamics simulated from control connectome, in line with empirical results. Each data- 
point corresponds to one of 40 simulations obtained from each whole-brain model. White circle, median; centre line, mean; box limits, upper and lower quartiles; 
whiskers, 1.5x interquartile range. ∗ ∗ ∗ p < 0.001, FDR-corrected. 

Fig. 6. Correlation between empirical and simulated functional properties of the brain. Plots show Spearman’s rank-based correlation tests between each pair of 
simulated functional measures (A), and between simulated and empirical measures (B,C). 
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ate becomes unstable, which is typically where the model best repro-
uces empirical brain dynamics (Methods). Analyses performed on 40
imulations generated by each of these models replicated our main em-
irical findings, showing significant differences in emergence capacity
nd spatiotemporal hierarchy across each group – being highest in the
odel derived from healthy connectomes, and lowest in the model de-

ived from UWS connectomes (Fig. 5B,C). We chose this data-agnostic
uning procedure to ensure that the results could be unequivocally at-
ributed solely to the structural connectome. However, analogous results
ere also obtained when fitting the model G parameter to best match

he empirical dynamics observed in the corresponding condition (Fig.
8). As with the empirical results, the results pertaining to global emer-
ence capacity and spatio-temporal hierarchy could also be replicated
sing the 129-ROI parcellation (Fig. S9). 

Finally, we also used biophysical models based on each individual’s
tructural connectome, to fit the functional connectivity dynamics of
hat individual. We then used the tuned individual models to simu-
ate subject-wise BOLD signals, whose emergence capacity and ignition-
riven spatio-temporal hierarchy we computed as for the empirical
ata. In accordance with previous results using a Hopf model ( López-
onzález et al., 2021 ), we observed lower G value for the DOC patients

mean = 2.41) than for the healthy controls (mean = 2.70; t(37) = 2.67,
 = 0.011, Cohen’s d = 0.84). Our modelling results show that the
mergence capacity and ignition-driven spatio-temporal hierarchy were
ignificantly and positively correlated in the simulated data ( Fig. 6 A),
nalogously to what we observed in empirical data. We also found
7 
hat ignition-driven spatio-temporal hierarchy was significantly and
ositively correlated between simulated and empirical data ( Fig. 6 B);
hough also positively correlated, emergence capacity narrowly failed
o meet the standard threshold for statistical significance ( Fig. 6 C). 

Overall, this computational modelling demonstrates that injury-
nduced changes in the structural connectome are sufficient to replicate
he corresponding alterations in functional brain dynamics observed in
hronically unresponsive patients ( Fig. 5 ). 

. Discussion 

The relationship between mind and emergence has been a recurrent
pen question in the philosophy of mind and cognitive science literature,
ut heated debates still persist — fostered by the lack of a practical oper-
tionalization of emergence applicable to empirical neuroimaging data
 Turkheimer et al., 2019 ). Here, we present an empirical investigation
f this long-standing question in neuroscience. We applied the recent
ramework of Integrated Information Decomposition to quantify the ca-
acity of macroscale brain activity (from functional MRI recordings) to
xhibit emergent phenomena. 

Our results reveal that the capacity for causal emergence across the
rain is significantly reduced following severe brain injury leading to
hronic unresponsiveness. Subsequently, we investigated functional and
tructural correlates of emergence in the human brain. Functionally,
ur results show that the brains of chronically unresponsive patients
re characterized by diminished hierarchical organization in the brain’s
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bility to ignite distributed neural activity. To explore how these func-
ional alterations are related to injury-induced changes in the brain’s
tructural organisation, we used structural connectivity data obtained
rom diffusion-weighted MRI to examine differences in controllability of
he structural connectome in DOC patients. Our investigation revealed
hat the organisation of DOC patients’ structural brain networks exhibits
 consistent reduction in modal controllability, reflecting diminished
tructural support to achieve the desired functional configurations. In
urn, this reduction in controllability of structural brain networks is as-
ociated with the observed functional reductions in emergence capacity
nd spatiotemporal hierarchy. Finally, a mechanistic relationship be-
ween structural and functional changes was confirmed by whole-brain
omputational modelling, which provided evidence that the kinds of
tructural alterations observed in chronically unresponsive patients may
e sufficient to induce the corresponding deficits in functional emer-
ence and hierarchy - both at the group-level and even at the single-
ubject level. 

There is an important difference in interpretation between our mea-
ure of emergence capacity and traditional functional connectivity (FC):
s a way to quantify co-fluctuations of BOLD activity over time, FC re-
ects a meaning of “integration-as-coupling ”: the notion that if elements
f a system behave similarly, they likely do so because of an underly-
ng interaction existing between them. In contrast, emergence capacity
eflects what we may refer to as “integration-as-complementarity ”: be-
ng based on synergistic dynamics ( Luppi et al., 2022c ; Mediano et al.,
022 ), emergence capacity is high when the two elements interact in
uch a way that their joint contribution to their temporal evolution is
ore than the sum of their individual contributions. It is easy to see

hat integration-as-coupling (correlation) is maximised when one ele-
ent is “enslaved ” to be identical to the other, whereas in such a sce-
ario integration-as-complementarity (emergence capacity) is nil - and
oth will be near-zero in the case of two unrelated processes. Therefore,
C and emergence capacity provide complementary perspectives and
nsights on the relationships that exist between elements of a system:
ere, the human brain. 

It is noteworthy that of the two kinds of structural controllability in-
estigated here, DOC patients exhibited global reductions in modal con-
rollability. It has been argued that, under the specific parametrisation
f controllability that is commonly adopted by investigations of average
nd modal controllability of the structural connectome (which is not the
nly possible one), modal controllability of the connectome may reflect
he capability of a structural network to support transitions to functional
onfigurations that are very different from the current one and there-
ore difficult to reach ( Gu et al., 2015 ) (but see ( Pasqualetti et al. 2019 ;
uweis et al. 2019 ; Tu et al. 2018 )). We found that brains that are more
odally controllable also exhibit greater hierarchical character (vari-

bility across regions) in terms of the capacity for local intrinsic events
o ignite global propagation. We speculate that this ability to support
lobal propagation of local activity may facilitate the presence of states
f activity compatible with causally emergent dynamics - an intriguing
ossibility that opens several avenues for theoretical and empirical en-
uiry. 

Together, our correlation between diminished functional properties
nd structural network alterations (here summarised in terms of dimin-
shed modal controllability), and our modelling results pertaining to di-
inished hierarchical integration and emergence capacity when using
OC patients’ connectomes, jointly suggest that DOC patients’ brain dy-
amics may suffer from insufficient structural support for transitions to-
ards other states of activity. By highlighting a critical role of structural
etwork organisation in shaping the kind of dynamics that characterise
onsciousness, our results might contribute to explaining why DOC pa-
ients remain chronically unresponsive, unlike anaesthetised or asleep
ndividuals, who also exhibit behavioural unresponsiveness and dimin-
shed hierarchical character of ignition, but only temporarily. Sleep and
naesthesia do not influence the connectome, which is therefore still
apable in principle of supporting emergent dynamics. In contrast, the
8 
esults of our whole-brain simulations indicate that the connectomes of
OC patients are less capable of supporting hierarchical and emergent
rain dynamics - which seems to be critical for supporting consciousness
nd higher-order cognition, in line with recent proposals ( Northoff et al.,
020 ). 

.1. Limitations and future directions 

A number of limitations should be acknowledged when interpreting
he results of the present study. Firstly, the account of emergence ca-
acity adopted here is based on Integrated Information Decomposition,
hich is a recent development in the field of information theory and may
e subject to further refinements as this field evolves ( Mediano et al.,
021 ). In particular, although we have shown that our results are ro-
ust to the use of different operationalisations of information decom-
osition, methods for estimating ΦID in empirical data are not yet ca-
able of accounting for all brain regions simultaneously, and therefore
ere we opted to use the average of all pairwise interactions as our
uantification of global capacity to support causal emergence. Thus, we
cknowledge that an important avenue for future work will be to ex-
end our approach beyond pairwise interactions, and quantify causal
mergence across larger groups of regions, up to the entire brain simul-
aneously, whether through theoretical developments or computational
pproximations. Indeed, recent advances in the related but complemen-
ary account of emergence proposed by Integrated Information Theory
 Hoel et al., 2016 ; 2013 ; Klein and Hoel, 2020 ; Varley and Hoel, 2021 )
resent promising avenues for future investigation ( Luppi et al., 2021b ).
imilarly, “hierarchy ” is a protean, multi-faceted concept in neuro-
cience ( Golesorkhi et al., 2022 ; Hilgetag and Goulas, 2020 ), and dif-
erent operationalisations may bear different relationships with emer-
ence, which should be borne in mind when interpreting the present
esults. 

Additionally, although here we capitalised on the availability of
unctional and diffusion MRI data in the same cohort of patients, future
ork may also seek to investigate emergence capacity from electrophys-

ological signals, which have higher temporal resolution and provide a
ore direct quantification of neuronal activity. This is especially rele-

ant since we found that our results about emergence capacity depend
n the timescale, and may be best characterised at a relatively short
ime-scale (by fMRI standards): extending the present results to elec-
rophysiological data will enable a thorough investigation of the most
iscriminative timescale for the quantification of emergence capacity. It
s also worth acknowledging that, although the network control frame-
ork adopted here for the analysis of structural connectivity has been

ecently used to model pathological and pharmacological changes in
rain dynamics ( Singleton et al., 2022 ; Zarkali et al., 2022 ; 2020 ), as
ell as pathological changes in regional metabolism ( He et al., 2022 ), it

till rests on assumptions about linearity ( Gu et al., 2015 ; Lynn and Bas-
ett, 2019 ). In contrast, the DMF model used is non-linear in character.
hese different modelling paradigms represent complementary avenues
o interrogate the relationship between brain dynamics and the network
tructure of the underlying human connectome, despite their different
ssumptions and different levels of neurobiological fidelity. Nonethe-
ess, there are several factors that point to the comparability of results
rom our controllability and whole-brain modelling analyses: First, the
hole-brain model we use for our simulations (Dynamic Mean Field
odel; DMF) has been shown to be well approximated by linear dynam-

cs (only small decrease in goodness-of-fit after linear approximation to
he model, as per Deco et al. (2014) ). Second, we replicated our results
sing emergence measures based on a linear-Gaussian approximation
Fig. S3). And finally, bridging between the two, convergent recent evi-
ence suggests that empirical fMRI data may be adequately described by
inear models ( Nozari et al., 2020 ; Schulz et al., 2020 ). In future work, it
ould also be interesting to consider non-linear extensions of the tools

rom network control theory employed here, to converge onto a unified
athematical framework. 
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We also note that linear network control theory and nonlinear bio-
hysical modelling are only two of a fast-growing number of methods
or interrogating the relationship between brain network structure and
unction ( Srivastava et al., 2020 ). Although we did not find statisti-
ally significant differences between conditions in terms of the corre-
ation between pairwise emergence capacity and structural connectiv-
ty between regions, recent work has shown that complex changes in
tructure-function relationships can be identified in the brain of DOC
atients through approaches such as dynamic functional connectivity
 Demertzi et al., 2019 ; Huang et al., 2020 ) and eigenmode decompo-
ition ( Luppi et al., 2020b ; Mortaheb et al., 2019 ; Panda et al., 2022 ).
uch approaches have shown that abnormal structure-function coupling
n DOC patients’ brains manifests in time-resolved and spatial frequency-
esolved patterns. While time- and frequency-resolved extensions of In-
egrated Information Decomposition are ongoing, simultaneously ac-
ounting for all these complex relationships, and the complementary
nsights that they offer about healthy and pathological brain function,
ill be a key goal for future modelling work. 

It is worth acknowledging that our results did not always identify
tatistically significant differences between healthy controls and MCS
atients, or between MCS and UWS patients. We believe that this is
ikely due in part to the combination of our limited sample sizes and
tatistical stringency, since the larger sample sizes allowed by whole-
rain modelling (40 for each group’s connectome) provided statistically
ignificant differences between each group. In this sense, biophysical
odelling can serve the role of a data-augmentation tool, as recent work
as also been exploring ( Sanz Perl et al., 2020 ), to highlight effects of
nterest and isolate them from potential confounds such as physiological
oise ( Luppi et al., 2022a ). However, it is important to bear in mind the
aveat that such models are currently limited in the kind of information
hat they can take into account: as an example, cerebral metabolism is
nown to be compromised in DOC patients ( Bodart et al., 2017 ; He et al.,
022b ; Laureys et al., 1999 ; Sala et al., 2021 ), but not taken into ac-
ount by current models. Likewise, we expect that explicitly incorpo-
ating information accounting for the differences between DOC aetiolo-
ies would increase these models’ clinical usefulness. Indeed, we openly
cknowledge that our correlations between empirical and subject-level
imulations were far from perfect: while the present results represent
 powerful proof-of-concept for the ability of personalised biophysical
odels to reproduce in silico a number of empirically relevant functional
easures based on structural alterations, such models are yet to reach

heir full potential for guiding personalised interventions for therapeu-
ics. 

Additionally, our correlation plots suggest that patients and controls
ay lie on a continuum in terms of these functional and structural char-

cteristics of the brain, rather than occupying clearly defined categories.
hus, replication in a larger cohort may be warranted to shed light on
he differences between patient subgroups. In this context, future work
ay investigate whether the structural connectomes of DOC patients
ho recover consciousness also show a corresponding recovery of modal

ontrollability, and whether emergence from unconsciousness also cor-
esponds to restored emergence in the brain’s functional dynamics. 

Relatedly, it will be important to obtain cross-modal validation of the
resent results: as a particularly relevant example, does greater emer-
ence capacity of BOLD haemodynamics correlate with a higher Per-
urbational Complexity Index ( Bodart et al., 2017 ; Casali et al., 2013 ;
asarotto et al., 2016 ; Rosanova et al., 2018 ; Sarasso et al., 2015 )? This
easure quantifies the complexity (information-richness) of the brain’s

lectrophysiological responsiveness to causal intervention, in terms of
MS pulses, and it is arguably one of the most successful neuroimaging
arkers of consciousness, both in DOC patients and other perturbations

f consciousness (anaesthesia, sleep) ( Bodart et al., 2017 ; Casali et al.,
013 ; Casarotto et al., 2016 ; Rosanova et al., 2018 ; Sarasso et al., 2015 ).
herefore, it is natural to wonder whether the EEG patterns in response
o TMS would also exhibit not only greater information content, but
lso a greater proportion of that information being accounted for in
9 
erms of emergence capacity, mirroring what is observed in the spon-
aneous BOLD signal. On the other hand, it is tempting to hypothesise
hat greater modal controllability of the DWI-based structural connec-
ome may facilitate the spread of exogenous TMS perturbations and be
eflected in more complex EEG patterns. It is also intriguing that the
CI was the very inspiration for Deco and Kringelbach (2017) devel-
pment of the Intrinsic-Driven Ignition, which was intended as an en-
ogenous counterpart of the PCI, applicable in the absence of exogenous
erturbational data. Although we are not aware of PCI-IDI cross-modal
omparison studies, such efforts would provide insights into the rela-
ionships between different ways of characterising brain dynamics, and
heir relationship with brain network architecture and its pathological
eorganisation. Modelling efforts have also recently been undertaken to
imulate PCI in silico ( Goldman et al., 2021 ), and to evaluate the reper-
ussions of different regional stimulation regimes ( Deco et al., 2019 ;
anz Perl et al., 2021 ): the extension of such models to fit both fMRI
nd EEG data will be an important step towards personalised medicine
or DOC patients. 

.2. Conclusion 

Overall, in the present work we combined a suite of cutting-edge
omputational tools to characterise emergence capacity in the human
rain, in the context of functional and structural changes induced by
evere brain injury. Bringing the notion of emergence from the realm of
hilosophy into neuroscience, we identified links between emergence
nd the spatio-temporal hierarchy of local-global interactions in the hu-
an brain, and further discovered a fundamental role of the structural

onnectome in supporting emergent and hierarchical dynamics. Taken
ogether, the present results lead us to speculate that the chronic nature
f unconsciousness in DOC patients may be due to permanent impair-
ent of the fundamental neural infrastructures required to support hi-

rarchical brain dynamics, capable of balancing local segregation and
lobal integration - and ultimately the emergence of consciousness. 

. Methods 

.1. Disorders of consciousness patient data 

The DOC patient data employed in this study have been published
efore ( Luppi et al., 2019 , 2022b ; Spindler et al., 2021 ; Varley et al.,
020 ). For clarity and consistency of reporting, where applicable we
se the same wording as our previous studies. 

.1.1. Recruitment 

As previously reported ( Luppi et al., 2019 ), 71 DOC patients were
ecruited from specialised long-term care centres from January 2010 to
ecember 2015. Ethical approval for this study was provided by the Na-

ional Research Ethics Service (National Health Service, UK; LREC refer-
nce 99/391). Patients were eligible to be recruited in the study if they
ad a diagnosis of chronic disorder of consciousness, provided that writ-
en informed consent to participation was provided by their legal rep-
esentative, and provided that the patients could be transported to Ad-
enbrooke’s Hospital (Cambridge, UK). The exclusion criteria included
ny medical condition that made it unsafe for the patient to participate,
ccording to clinical personnel blinded to the specific aims of the study;
r any reason that made a patient unsuitable to enter the MRI scanner
nvironment (e.g., non-MRI-safe implants). Patients were also excluded
ased on significant pre-existing mental health problems, or insufficient
uency in the English language prior to their injury. After admission
o Addenbrooke’s Hospital, each patient underwent clinical and neu-
oimaging testing, spending a total of five days in the hospital (includ-
ng arrival and departure days). Neuroimaging scanning took place at
he Wolfson Brain Imaging Centre (Addenbrooke’s Hospital, Cambridge,
K), and medication prescribed to each patient was maintained during

canning. 
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Table 1 

Demographic information for patients with Disorders of Consciousness. 

Sex Age Aetiology Diagnosis CRS-R Score Scan 

M 46 TBI UWS 6 12 dir 
M 57 TBI MCS 12 12 dir 
M 46 TBI MCS 10 Not available 
M 35 Anoxic UWS 8 12 dir 
M 17 Anoxic UWS 8 12 dir 
F 31 Anoxic MCS 10 12 dir 
F 38 TBI MCS 11 12 dir 
M 29 TBI MCS 10 63 dir 
M 23 TBI MCS 7 63 dir 
F 70 Cerebral bleed MCS 9 63 dir 
F 30 Anoxic MCS 9 63 dir 
F 36 Anoxic UWS 8 63 dir 
M 22 Anoxic UWS 7 63 dir 
M 40 Anoxic UWS 7 63 dir 
F 62 Anoxic UWS 7 63 dir 
M 46 Anoxic UWS 5 63 dir 
M 21 TBI MCS 11 63 dir 
M 67 TBI MCS 11 63 dir 
F 55 Hypoxia UWS 7 63 dir 
M 28 TBI MCS 8 63 dir 
M 22 TBI MCS 10 63 dir 
F 28 ADEM UWS 6 63 dir 

CRS-R, Coma Recovery Scale-Revised; UWS, Unresponsive Wakefulness 
Syndrome; MCS, Minimally Conscious State; TBI, Traumatic Brain Injury. 
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For each day of admission, Coma Recovery Scale-Revised (CRS-R)
ssessments were recorded at least daily. Patients whose behavioural
esponses were not indicative of awareness at any time, were classified
s UWS. In contrast, patients were classified as being in a minimally con-
cious state (MCS) if they provided behavioural evidence of simple au-
omatic motor reactions (e.g., scratching, pulling the bed sheet), visual
xation and pursuit, or localisation to noxious stimulation. Since this
tudy focused on whole-brain properties, coverage of most of the brain
as required, and we followed the same criteria as in our previous stud-

es ( Luppi et al., 2019 , 2022b ): before analysis took place, patients were
ystematically excluded if an expert neuroanatomist blinded to diagno-
is judged that they displayed excessive focal brain damage (over one
hird of one hemisphere), or if brain damage led to suboptimal segmen-
ation and normalisation, or due to excessive head motion in the MRI
canner (exceeding 3 mm translation or 3° rotation). A total of 22 adults
14 males; 17–70 years; mean time post injury: 13 months) meeting
iagnostic criteria for unresponsive wakefulness syndrome/vegetative
tate (UWS; N = 10) or minimally conscious state (MCS; N = 12) due to
rain injury were included in this study ( Table 1 ). One patient only had
unctional data due to incomplete DWI acquisition. 

.1.2. FMRI data acquisition 

As previously reported ( Luppi et al., 2019 , ( Luppi et al., 2021b ),
022b ), resting-state fMRI was acquired for 10 min (300 vol,
R = 2000 ms) using a Siemens Trio 3T scanner (Erlangen, Germany).
unctional images (32 slices) were acquired using an echo planar se-
uence, with the following parameters: 3 × 3 × 3.75 mm resolution,
R = 2000 ms, TE = 30 ms, 78° FA. Anatomical scanning was also per-
ormed, acquiring high-resolution T1-weighted images with an MPRAGE
equence, using the following parameters: TR = 2300 ms, TE = 2.47 ms,
50 slices, resolution 1 × 1 × 1 mm. 

.1.3. Acquisition of diffusion-weighted imaging data 

As we previously reported (,( Luppi et al., 2021b ) 2022b ), the DOC
atients’ data were acquired over the course of several years, and as a
esult two different diffusion-weighted image acquisition schemes were
sed. The first acquisition scheme involved diffusion-sensitising gradi-
nts applied along 12 non-collinear directions, and 5 different b-values
anging from 340 to 1590 s/mm 

2 . An echo planar sequence was used
TR = 8300 ms, TE = 98 ms, matrix size = 96 × 96, 63 slices, slice
10 
hickness = 2 mm, no gap, flip angle = 90°). This acquisition scheme
as used for the first N = 6 patients ( Table 1 ). The second acquisition

cheme included 63 directions with a b-value of 1000 s/mm2; this acqui-
ition scheme was adopted for all remaining DOC patients and also for
ll healthy controls. Each of these DWI acquisition types has been used
efore with DOC patients (( Luppi et al., 2021b ); 2022b ; Wang et al.,
018 ; Zheng et al., 2017 ). 

.2. Healthy controls 

We also used previously-acquired fMRI and DWI data from N = 20
ealthy volunteers (13 males; 19–57 years), with no history of psychi-
tric or neurological disorders . The mean age was not significantly dif-
erent between healthy controls ( M = 35.75; SD = 11.42) and DOC pa-
ients ( M = 38.24; SD = 15.96) ( t (39) = − 0.57, p = 0.571, Hedges’s
 = − 0.18; permutation-based t -test). 

.2.1. FMRI data acquisition 

Resting-state fMRI was acquired for 5:20 min (160 vol, TR = 2000 ms)
sing a Siemens Trio 3T scanner (Erlangen, Germany). The acquisition
arameters were the same as those for the DOC patients: Functional
mages (32 slices) were acquired using an echo planar sequence, with
he following parameters: 3 × 3 × 3.75 mm resolution, TR = 2000 ms,
E = 30 ms, 78° FA. High-resolution T1-weighted anatomical im-
ges were also acquired, using an MPRAGE sequence with the follow-
ng parameters: TR = 2300 ms, TE = 2.47 ms, 150 slices, resolution
 × 1 × 1 mm. Data from two subjects were excluded due to incom-
lete acquisition, leaving N = 18 healthy controls for the functional
nalysis. 

.2.2. Acquisition of diffusion-weighted imaging data 

The diffusion-weighted acquisition scheme was the same 63-
irections scheme used for the DOC patients, as described above and
n previous work ( Luppi et al., 2021b ): TR = 8300 ms, TE = 98 ms,
atrix size = 96 × 96, 63 slices, slice thickness = 2 mm, no gap, flip

ngle = 90°, 63 directions with a b-value of 1000s/mm2. 

.3. Data preprocessing and denoising 

.3.1. Functional MRI data 

We preprocessed the functional imaging data using the CONN
oolbox, version 17f ( http://www.nitrc.org/projects/conn ) ( Whitfield-
abrieli and Nieto-Castanon, 2012 ) based on Statistical Parametric
apping 12 ( http://www.fil.ion.ucl.ac.uk/spm ). For each dataset and

ondition, we applied a standard preprocessing pipeline, the same
s we employed in our previous studies ( Luppi et al., 2019 , 2020b ,
021c ). The pipeline involved the following steps: removal of the first
ve volumes, to achieve steady-state magnetization; motion correc-
ion; slice-timing correction; identification of outlier volumes for sub-
equent scrubbing by means of the quality assurance/artefact rejec-
ion software art ( http://www.nitrc.org/projects/artefact_detect ); nor-
alisation to Montreal Neurological Institute (MNI-152) standard space

2 mm isotropic resampling resolution), using the segmented grey mat-
er image from each volunteer’s T1-weighted anatomical image, to-
ether with an a priori grey matter template. Due to the presence of
eformations caused by brain injury in the DOC patients, our prepro-
essing avoided automated pipelines. Each patient’s brain was individu-
lly preprocessed using SPM12, with visual inspections after each step.
dditionally, to further reduce potential movement artefacts, data un-
erwent despiking with a hyperbolic tangent squashing function. These
rocedures are the same as in our previous publications on these data
 Luppi et al., 2019 , 2020b , 2022b ). 

To reduce noise due to cardiac and motion artefacts, we applied
he anatomical CompCor method of denoising the functional data
 Behzadi et al., 2007 ). The anatomical CompCor method (also imple-
ented within the CONN toolbox) involves regressing out of the func-

http://www.nitrc.org/projects/conn
http://www.fil.ion.ucl.ac.uk/spm
http://www.nitrc.org/projects/artefact_detect
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ional data the following confounding effects: the first five principal
omponents attributable to each individual’s white matter signal, and
he first five components attributable to individual cerebrospinal fluid
CSF) signal; six subject-specific realignment parameters (three transla-
ions and three rotations) as well as their first- order temporal deriva-
ives; the artefacts identified by art; and main effect of scanning con-
ition. Linear detrending was also applied, and the subject-specific de-
oised BOLD signal timeseries were band-pass filtered to eliminate both
ow-frequency drift effects and high-frequency noise, thus retaining fre-
uencies between 0.008 and 0.09 Hz. The step of global signal regression
GSR) has received substantial attention in the literature as a denoising
ethod ( Andellini et al., 2015 ; Lydon-Staley et al., 2019 ; Power et al.,
014 ). GSR mathematically mandates that approximately 50% of cor-
elations between regions will be negative ( Murphy and Fox, 2017 );
owever, the proportion of anticorrelations between brain regions has
een shown to vary across states of consciousness, including anaesthe-
ia and DOC ( Luppi et al., 2021b , 2022b ; Tournier et al., 2019 ). Indeed,
ecent work has demonstrated that the global signal contains informa-
ion about pathological and pharmacological states of unconsciousness
 Tanabe et al., 2020 ). Therefore, in line with our previous studies, here
e decided to avoid GSR in favour of the aCompCor denoising proce-
ure, which is amongst those recommended for investigations of brain
ynamics ( Lydon-Staley et al., 2019 ). 

.3.2. DWI preprocessing and tractography 

The diffusion data were preprocessed with MRtrix3 tools, follow-
ng the same pipeline as in our previous work ( 2022b ; Tournier et al.,
019 ). After manually removing diffusion-weighted volumes with sub-
tantial distortion ( Zheng et al., 2017 ), the pipeline involved the follow-
ng steps: (i) DWI data denoising by exploiting data redundancy in the
CA domain ( Veraart et al., 2016 ) ( dwidenoise command); (ii) correction
or distortions induced by eddy currents and subject motion by register-
ng all DWIs to b0, using FSL’s eddy tool (through MRtrix3 dwipreproc

ommand); (iii) rotation of the diffusion gradient vectors to account for
ubject motion estimated by eddy ( Leemans and Jones, 2009 ) ; (iv) b1
eld inhomogeneity correction for DWI volumes ( dwibiascorrect com-
and); and (v) generation of a brain masque through a combination of
Rtrix3 dwi2mask and FSL BET commands. 

After preprocessing, the DTI data were reconstructed using
he model-free q-space diffeomorphic reconstruction algorithm
QSDR) implemented in DSI Studio ( www.dsi-studio.labsolver.org )
 Yeh et al., 2011 ), following our previous work ( 2022b ; Luppi and
tamatakis, 2021 ). Use of QSDR is desirable when investigating group
ifferences ( Tan et al., 2019 ; Yeh et al., 2013 , 2011 ) because this
lgorithm preserves the continuity of fibre geometry for subsequent
racking ( Yeh et al., 2011 ), since it reconstructs the distribution of
he density of diffusing water in standard space. This approach has
herefore been adopted in previous connectomics studies focusing on
ealthy individuals ( Gu et al., 2015 ) but also brain-injured patients
 Gu et al., 2017 ) and DOC patients specifically ( Tan et al., 2019 ;
eh et al., 2013 , 2011 ). QSDR initially reconstructs DWI data in native
pace, and subsequently computes values of quantitative anisotropy
QA) in each voxel, based on which DSI Studio performs a nonlinear
arp from native space to a template QA volume in Montreal Neuro-

ogical Institute (MNI) space. Once in MNI standard space, spin density
unctions are reconstructed, with a mean diffusion distance of 1.25 mm
ith three fibre orientations per voxel ( Yeh et al., 2011 ). 

Finally, fibre tracking was carried out by means of DSI Studio’s
wn “FACT ” deterministic tractography algorithm, requesting 1000,000
treamlines according to widely adopted parameters ( Gu et al., 2017 ,
015; 2022b ): angular cutoff = 55°, step size = 1.0 mm, tract length
etween 10 mm (minimum) and 400 mm (maximum), no spin density
unction smoothing, and QA threshold determined by DWI signal in the
erebro-spinal fluid. Streamlines were automatically rejected if they pre-
ented improper termination locations, based on a white matter masque
utomatically generated by applying a default anisotropy threshold of
11 
.6 Otsu’s threshold to the anisotropy values of the spin density function
 Gu et al., 2017 , 2015 ; 2022b ). 

.4. Brain parcellation 

For both BOLD and DWI data, brains were parcellated into 234
ortical and subcortical regions of interest (ROIs), according to the
ausanne sub-parcellation of the Desikan-Killiany anatomical atlas
 Cammoun et al., 2012 ; Desikan et al., 2006 ). This parcellation has been
sed in previous work on controllability of structural brain networks
 Gu et al., 2015 ; Tang et al., 2020 ). Recent work has shown that parcel-
ations in the range of 200 regions provide generalisable network results
 Luppi and Stamatakis, 2021 ). Additionally, to ensure the robustness of
ur results, we also replicated our analyses with a different version of
he same parcellation, which includes 129 cortical and subcortical re-
ions ( Cammoun et al., 2012 ). 

.5. Quantifying emergence capacity 

Consider a stochastic process 𝑋 comprised of two random variables
volving jointly over time, 𝑋 𝑡 = { 𝑋 

1 
𝑡 
, 𝑋 

2 
𝑡 
} . In our case, this corresponds

o the timeseries of the BOLD activity of two brain regions, although
n other applications it could be any form of multivariate timeseries
ata. One can now consider the amount of information flowing from the
ystem’s past to its future, known as time-delayed mutual information
TDMI) and given by 𝐼( 𝑋 

1 
𝑡 − 𝜏 , 𝑋 

2 
𝑡 − 𝜏 ; 𝑋 

1 
𝑡 
, 𝑋 

2 
𝑡 
) ( Mediano et al., 2021 ). 

Following the insights of Williams and Beer (2010) , the informa-
ion that two source variables X and Y give about a third target vari-
ble Z , denoted by I ( X,Y; Z ), can be decomposed in terms of different
ypes of information: information provided by one source but not the
ther (unique information), by both sources separately (redundant in-
ormation), or jointly by their combination (synergistic information).
he mathematical framework of Integrated Information Decomposition
 ΦID) ( Mediano et al., 2021 ) has generalized this insight to the case
f multiple sources and multiple target variables - such as the respec-
ive future states of the parts of the system under consideration. Thus,
hrough ΦID it is possible to decompose TDMI into redundant, unique,
nd synergistic information shared with respect to both past and present
tate of both variables. 

Importantly, ΦID’s decomposition of information offers a way to
ompute the formal, quantitative definition of causal emergence estab-
ished by Rosas and colleagues ( Rosas et al., 2020 ), according to which
 supervenient feature 𝑉 𝑡 of system X is causally emergent if it has predic-
ive power about the future evolution of 𝑋 𝑡 that is unique with respect
o 𝑋 

1 
𝑡 
, …, 𝑋 

𝑛 
𝑡 
. Here, supervenience of 𝑉 𝑡 on 𝑋 𝑡 (the instantaneous state of

he system at time t ) is defined as 𝑉 𝑡 being a function of 𝑋 𝑡 , so that there
s nothing about 𝑉 𝑡 that can be predicted from the system’s previous
tate, 𝑋 𝑡 −1 , that cannot be already predicted from the system’s current
tate, 𝑋 𝑡 ( Rosas et al., 2020 ). Crucially, it can be mathematically demon-
trated ( Rosas et al., 2020 ) that a system’s capacity for having causally
mergent features depends directly on how synergistic its dynamics are.
n particular, from ΦID’s characterisation of causal emergence it follows
hat causal emergence can take place in two distinct scenarios: when an
mergent feature has unique predictive power over parts of the system
 “downward causation ”), or when the emergent feature’s unique predic-
ive power is not over any individual constituent but only over the sys-
em as a whole ( “causal decoupling ”). The latter can be thought of as
the macroscale having causal influence on the macroscale, above and
eyond the microscale effects ” ( Rosas et al., 2020 ). Here we focus on
he system’s “emergence capacity ”, the combination of both downward
ausation and causal decoupling. 

Conceptually, obtaining downward causation and causal decoupling
nvolves obtaining the full integrated information decomposition of the
ystem, which is achieved by setting up a linear system of 15 equations
ith 16 unknowns relating various standard (Shannon) mutual infor-
ation terms with the redundant, unique, and synergistic components

https://www.dsi-studio.labsolver.org
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f the TDMI. The system can be solved by specifying the redundancy
etween 𝑋 𝑡 − 𝜏 and 𝑋 𝑡 . This provides a solution to the linear system of
quations, from which all information atoms can be computed, and in
urn downward causation and causal decoupling can be obtained as the
um of their constituent atoms. Practically, however, since our inter-
st is in the aggregate of several atoms rather than individual atoms,
ausal emergence can also be computed more directly from partial infor-
ation decomposition tools ( https://github.com/robince/partial-info- 
ecomp ). Here, we follow the “common change in surprisal ” (CCS)
ethod ( Ince, 2017 ). For all the analyses in the paper we compute

nformation-theoretic quantities for each pair of brain regions, using
 standard plug-in estimator applied to the mean-binarised BOLD sig-
als. To validate our results, we also replicated them using continuous
nstead of discrete signals and the Gaussian solver implemented in the
IDT toolbox ( Lizier, 2014 ). Likewise, we replicate our results using an
lternative definition of redundancy known as the minimum mutual in-
ormation (MMI) ( Williams and Beer, 2010 ). In accordance with our
revious work ( Luppi et al., 2022c , 2020a ) and previous studies using
nformation-theoretic measures in the context of functional MRI data,
or these analyses we used a state-of-the-art toolbox ( Wu et al., 2013 )
o deconvolve the hemodynamic response function from our regional
OLD signal timeseries. 

.6. Spatiotemporal hierarchy from intrinsic-driven ignition 

“Intrinsic-driven ignition ” ( Deco and Kringelbach, 2017 ) quantifies
he extent to which spontaneously occurring ( “intrinsic ”) local events
licit whole-brain activation ( “ignition ”). For this analysis, first the
OLD signal is narrowband-filtered in the range 0.04–0.07 Hz range,

n line with previous 1 . The filtered timeseries are then transformed
nto z-scores, and subsequently thresholded to obtain a binary sequence

based on the combined mean and standard deviation of the regional
ransformed signal, such that 𝜎(t) = 1 if z(t) > 1 and is crossing the
hreshold from below, indicating that a local event has been triggered;
therwise, 𝜎(t) = 0 1. Note that the threshold of 1 standard deviation for
riggering an event is chosen for consistency with previous work, but it
as been demonstrated that the results of this procedure are robust to
he specific threshold chosen ( Tagliazucchi et al., 2012 ). Subsequently,
or each brain region, when that region triggers a local event ( 𝜎(t) = 1,
 “driver event ” in Fig. 2 A), the resulting global ignition is computed
ithin a time-window of 4 TRs (corresponding approximately to the du-

ation of one hemodynamic response function, given our TR of 2 s). An
xN binary matrix M is then constructed ( Fig. 2 A), indicating whether

n the period of time under consideration two regions i and j both trig-
ered an event (M ij = 1). The size of the largest connected component
f this binary matrix M defines the breadth of the global ignition gen-
rated by the driver region at time t, termed “intrinsic-driven ignition ”
IDI) ( Deco and Kringelbach, 2017 ) ( Fig. 2 A). To obtain a measure of
patio-temporal hierarchy of local-global integration, each region’s IDI
alues are averaged over time, and the variability (standard deviation)
cross regions is then computed. Consequently, higher standard devi-
tion reflects more heterogeneity across brain regions with respect to
heir capability to induce ignition, which suggests in turn a more elab-
rate hierarchical organisation between them ( Fig. 2 A). 

.7. Structural network construction 

A network consists of two basic elements: nodes, and the edges con-
ecting them. To construct structural brain networks, patients’ brains
ere parcellated into 234 or 129 cortical and subcortical regions of in-

erest (ROIs) of approximately equal size, derived from the Lausanne
tlas (the parcels were dilated by 2 voxels to extend them to the grey-
atter-white matter interface) ( Gu et al., 2015 ). These ROIs represent

he nodes of the brain network. Then, for each pair of nodes i and j , an
dge was drawn between them if there were white matter tracts con-
ecting the corresponding brain regions end-to-end; edge weights were
12 
uantified as the number of streamlines connecting each pair of regions
nd-to-end. In turn, this network can be represented as an adjacency ma-
rix A, whose entry A ij corresponds to the weight of connection between
odes (brain regions) i and j . 

.8. Network controllability 

The model of brain dynamics used for network controllability anal-
sis is based on extensive prior work demonstrating its wide appli-
ability in health and disease ( Betzel et al., 2016 ; Cornblath et al.,
018 ; Gu et al., 2015 ; Kim et al., 2018 ; Lynn and Bassett, 2019 ;
edaglia et al., 2017 ; Parker Singleton et al., 2021 ; Tang et al., 2020 ,

017 ; Zarkali et al., 2020 ). In effect, there exists substantial evidence
hat linear models provide an adequate description of the brain dynam-
cs measured with fMRI - such that more complicated non-linear models
nly capture little additional variance ( Nozari et al., 2020 ; Schulz et al.,
020 ). Additionally, the controllability framework adopted here has
een shown to have substantial overlap with the analysis of systems
f non-linear oscillators connected with neurobiologically realistic cou-
ling constants (using white matter connectivity, analogous to the use of
hite matter connectivity employed here) ( Menara et al., 2021 ). Based
n this literature and the well-known tractability of linear models, here
e follow prior work on network control theory applications to struc-

ural brain networks ( Gu et al., 2017 , 2015 ) which uses a time-invariant
etwork model on discrete-time of the form 

 ( 𝑡 + 1 ) = 𝐴𝑥 ( 𝑡 ) + 𝐵 𝐾 𝑢 𝐾 ( 𝑡 ) (1)

hich has been previously used as a model of both BOLD signals and
eural activity ( Gu et al., 2015 ; Honey et al., 2009 ). Here, x is a vector
escribing the state of each brain region at a given point in time (e.g.
n terms of neural activation as given by the BOLD signal magnitude -
hough note that the network control framework is agnostic about the
ature of the system’s activity), and A is the adjacency matrix repre-
enting the structural connectome (to ensure Schur stability, the adja-
ency matrix is divided by its largest singular value + 1 ( Gu et al., 2017 ,
015 )). In turn, the input u k represents the control strategy, which is
pplied according to the control points K identified by the matrix B K ,
here K = { k 1 …k m 

} and B K = [ 𝑒 𝑘 1 , … 𝑒 𝑘 𝑚 
] with e i representing the i th

anonical vector of size N. While this is a time-discrete model, previous
ork has shown that the controllability Gramian (see below) is statis-

ically similar to that obtained from continuous-time system ( Gu et al.,
017 , 2015 ). 

Network control analysis enables us to investigate the ability of each
rain region to influence the brain’s dynamics in different ways. Tech-
ically, the “controllability ” of a dynamical system (such as the human
rain) refers to the extent to which the state of the dynamical system
n question can be driven towards a chosen target state by means of
n external input. Based on well-known results from control theory, the
ystem described in Eq. (1) is controllable from the control nodes K if
he “controllability Gramian ” matrix given by 

 𝐾 = 

∞∑
𝜏=0 

𝐴 

𝜏𝐵 𝐾 𝐵 

𝑇 
𝐾 
𝐴 

𝜏 (2)

s invertible. Following previous work, the input nodes are chosen one
t a time, so that the input matrix B K reduces to a vector denoting the
ontrol node. 

Based on this controllability framework, we focus on two comple-
entary control strategies for determining how the system can be moved

owards different states (i.e., regional activation patterns): “average ”
nd “modal ” controllability ( Gu et al., 2015 ). 

.8.1. Average controllability 

If the states that are accessible to the system are conceptualized as
onstituting an energy landscape, then average controllability describes
ow easily the system can transition between nearby states on this land-
cape. Average controllability of a network then equals to the average

https://github.com/robince/partial-info-decomp
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a  
nput energy needed at a set of control nodes, averaged over all possible
arget states. It is well-established that average input energy is propor-
ional to Trace ( 𝑊 

−1 
𝐾 

) . However, since the trace of the inverse Gramian
s often uncomputable due to ill-conditioning, we follow previous work
 Gu et al., 2015 ) in using Trace ( 𝑊 𝐾 ) instead (which encodes the energy
f the network impulse response), since the traces of the Gramian and
ts inverse are inversely proportional. 

.8.2. Modal controllability 

Modal controllability describes how easily the system can be induced
o transition to a state that is distant on the energy landscape of its pos-
ible state. Technically, it corresponds to the ability of a node to control
ach of the dynamic modes of the network, and it can be computed from
he matrix V of the eigenvectors of A. From well-established results, it
s known that if the entry v ij is small, then the j th mode of the system
s poorly controllable from node i ( Gu et al., 2015 ). Therefore, here we
ollow previous work in defining a scaled measure of the controllability
rom brain region i of all the N modes of the system, 𝜆1 ( 𝐴 ) … 𝜆𝑁 

( 𝐴 ) as:

 𝑖 = 

𝑁 ∑
𝑗=1 

(
1 − 𝜆2 

𝑗 
( 𝐴 ) 

)
𝑣 2 
𝑖𝑗 
) . (3)

From this definition, a region will have high modal controllability if
t is able to control all the dynamic modes of the system, which implies
hat they are well-suited to drive the system towards difficult-to-reach
onfigurations in the energy landscape ( Gu et al., 2015 ). 

For both average and modal controllability, whole-brain values can
e obtained by taking the mean of all regional controllability values, as
er prior work ( Tang et al., 2017 ). 

.9. Whole-brain computational modelling 

Macroscale whole-brain computational models represent regional
ctivity in terms of two key ingredients: (i) a biophysical model of each
egion’s local dynamics; and (ii) inter-regional anatomical connectiv-
ty. Thus, such in silico models provide a well-suited tool to investigate
ow the structural connectivity of the brain shapes the corresponding
acroscale neural dynamics ( Cabral et al., 2017 ; Cofré et al., 2020 ;
eco and Kringelbach, 2014 ; Demirta ş et al., 2019 ; Kringelbach and
eco, 2020 ; Shine et al., 2021 ; Wang et al., 2019 ). In particular,

he Dynamic Mean Field (DMF) model employed here simulates each
egion (defined via an anatomical parcellation scheme) as a macro-
copic neural field comprising mutually coupled excitatory and in-
ibitory populations (80% excitatory and 20% inhibitory), providing
 neurobiologically plausible account of regional neuronal firing rate.
egions are then connected according to empirical anatomical con-
ectivity obtained e.g. from DWI data ( Deco et al., 2014 ; G. 2013 ;
eco and Jirsa, 2012 ). The reader is referred to ( Deco et al., 2018 ;
erzog et al., 2022 ; 2020 ; Luppi et al., 2022b ) for details of the
MF model and its implementation. Due to its multi-platform com-
atibility, low memory usage, and high speed, we used the recently
eveloped FastDMF library ( Herzog et al., 2022 ), available online at
ttps://www.gitlab.com/concog/fastdmf . 

The structural connectivity (SC) for the DMF model used here was
btained by following the procedure described by Wang et al. (2019) to
erive a consensus structural connectivity matrix. A consensus matrix A
as obtained separately for each group (healthy controls, MCS patients,
WS patients) as follows: for each pair of regions i and j , if more than
alf of subjects had non-zero connection i and j, A ij was set to the average
cross all subjects with non-zero connections between i and j . Otherwise,
 ij was set to zero. 

The DMF model has one free parameter, known as “global coupling ”
nd denoted by G , which accounts for differences in transmission be-
ween brain regions, considering the effects of neurotransmission but
lso synaptic plasticity mechanisms. Thus, separately for each group,
e used a model informed by that group’s consensus connectome to
13 
enerate 40 simulations for each value of G between 0.1 and 2.5, us-
ng increments of 0.1. Finally, we set the G parameter to the value just
efore the one at which the simulated firing of each model became un-
table, reflecting a near-critical regime. 

Subsequently, for each group, 40 further simulations were obtained
rom the corresponding DMF model with the optimal G parameter. A
alloon-Windkessel hemodynamic model ( Friston et al., 2003 ) was then
sed to turn simulated regional neuronal activity into simulated regional
OLD signal. Finally, simulated regional BOLD signal was bandpass fil-
ered in the same range as the empirical data (0.008–0.09 Hz, or 0.04–
.07 Hz for the intrinsic ignition analysis). 

As an alternative way of finding the most suitable value of G for
he simulation of each condition, we adopted the approach previously
escribed ( Deco et al., 2018 ; Hansen et al., 2015 ; Herzog et al., 2020 ;
uppi et al., 2022b ) which aims to obtain the best match between empir-
cal and simulated functional connectivity dynamics. First, we quanti-
ed empirical functional connectivity dynamics (FCD) in terms of Pear-
on correlation between regional BOLD timeseries, computed within a
liding window of 30 TRs with increments of 3 TRs ( Deco et al., 2018 ;
ansen et al., 2015 ; Herzog et al., 2020 ; Luppi et al., 2022b ). Subse-
uently, the resulting matrices of functional connectivity at times t x 
nd t y were themselves correlated, for each pair of timepoints t x and
 y , thereby obtaining an FCD matrix of time-versus-time correlations.
hus, each entry in the FCD matrix represents the similarity between
unctional connectivity patterns at different points in time. This proce-
ure was repeated for each subject of each group (controls, MCS, and
WS). For each simulation at each value of G , we used the Kolmogorov-
mirnov distance to compare the histograms of empirical (group-wise)
nd simulated FCD values (obtained from the upper triangular FCD ma-
rix). Finally, we set the model’s G parameter to the value that was ob-
erved to minimize the mean KS distance - corresponding to the model
hat is best capable of simulating the temporal dynamics of resting-state
rain functional connectivity observed in the corresponding group (Fig-
re S8). After having found the value of G for each condition, simulated
OLD signals were obtained as described above. This same procedure
as also used for fitting the DMF model based on each individual’s struc-

ural connectome, simulating BOLD signals to fit their own empirical
CD. 

.10. Statistical analysis 

Statistical significance of differences in functional measures was as-
essed by conducting a three-way analysis of variance (ANOVA), testing
or the effect of interest (diagnostic condition, with three levels: con-
rol, MCS and UWS). Upon finding the effect of interest to be statisti-
ally significant, we conducted post-hoc tests (two-sided non-parametric
etween-subjects t-tests with 10,000 permutations) using three pair-
ise comparisons between the conditions (control vs. MCS, control vs.
WS, and MCS vs. UWS). We adopted the method of Benjamini and
ochberg (1995) to control the false discovery rate across these three
airwise comparisons, at a two-sided alpha value of 0.05. The effect
izes were estimated using Cohen’s d . For the statistical analysis of dif-
erences in structural measures (global average and modal controllabil-
ty), we used an analysis of covariance to control for DWI sequence type
12 vs 63 directions) and the number of removed volumes due to motion
orruption, as covariates of no interest ( Luppi et al., 2021 b). Although
e thoroughly preprocessed our functional data to minimise the poten-

ial confounding effects of head motion, to ensure the robustness of our
esults we also carried out a validation analysis including motion (mean
ramewise displacement) as a covariate of no interest in the functional
nalyzes. 

. Data and code availability 

We have made available multi-platform code for the FastDMF model
t https://www.gitlab.com/concog/fastdmf . We also provide annotated

https://www.gitlab.com/concog/fastdmf
https://www.gitlab.com/concog/fastdmf
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ATLAB code to follow our workflow as Supplementary Material, in-
luding code for Information Decomposition implementing the measures
sed in this study. 

Due to patient privacy concerns, data are available upon request
y qualified researchers. The UK Health Research Authority mandates
hat the confidentiality of data is the responsibility of Chief Inves-
igators for the initial studies (in this case, Dr. Allanson and Prof
enon; and anyone to whom this responsibility is handed – for ex-

mple, in the context of retirement or transfer to another institution).
or researchers interested in working with this dataset, please con-
act Dr. Judith Allanson (judith.allanson@addenbrookes.nhs.uk), Prof.
avid Menon (dkm13@cam.ac.uk) and/or Dr. Emmanuel Stamatakis

eas46@cam.ac.uk). Requests will be considered on a case-by-case basis,
ssessing the feasibility and appropriateness of the proposed study, and
he capacity to maintain the required levels of data security, consistent
ith the original approved Research Ethics approval, and the patient

nformation sheet that was the basis of consent obtained. 
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