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Abstract: Obstructive sleep apnea (OSA) is a risk factor for neurodegenerative diseases. This study
determined whether continuous positive airway pressure (CPAP), which can alleviate OSA symptoms,
can reduce neurochemical biomarker levels. Thirty patients with OSA and normal cognitive function
were recruited and divided into the control (n = 10) and CPAP (n = 20) groups. Next, we examined
their in-lab sleep data (polysomnography and CPAP titration), sleep-related questionnaire outcomes,
and neurochemical biomarker levels at baseline and the 3-month follow-up. The paired t-test and
Wilcoxon signed-rank test were used to examine changes. Analysis of covariance (ANCOVA) was
performed to increase the robustness of outcomes. The Epworth Sleepiness Scale and Pittsburgh Sleep
Quality Index scores were significantly decreased in the CPAP group. The mean levels of total tau
(T-Tau), amyloid-beta-42 (Aβ42), and the product of the two (Aβ42 × T-Tau) increased considerably
in the control group (∆T-Tau: 2.31 pg/mL; ∆Aβ42: 0.58 pg/mL; ∆Aβ42 × T-Tau: 48.73 pg2/mL2),
whereas the mean levels of T-Tau and the product of T-Tau and Aβ42 decreased considerably in the
CPAP group (∆T-Tau: −2.22 pg/mL; ∆Aβ42 × T-Tau: −44.35 pg2/mL2). The results of ANCOVA
with adjustment for age, sex, body mass index, baseline measurements, and apnea–hypopnea index
demonstrated significant differences in neurochemical biomarker levels between the CPAP and
control groups. The findings indicate that CPAP may reduce neurochemical biomarker levels by
alleviating OSA symptoms.
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1. Introduction

Obstructive sleep apnea (OSA) is characterized by disordered breathing triggered by
upper airway obstruction [1]. In the United States, the prevalence of OSA is approximately
17% and 34% in men and women aged between 30 and 70 years, respectively, and more
than 40% and 25% in men and women aged above 50 years, respectively [2]. Although most
patients with OSA experience mild symptoms, OSA is a risk factor for various comorbidities,
such as cardiovascular disease, metabolic disorder, and neurocognitive impairment [2,3]. A
review study summarized the outcomes of clinical and animal studies and indicated that
OSA may causally affect the incidence of Alzheimer’s disease (AD) [4]. Moreover, a study
reported a relationship between OSA and cognitive function decline [5].

Typical manifestations of OSA include snoring, intermittent hypoxia, arousal, and
sleep fragmentation, and all of these may affect neurocognitive functioning. For example,
apnea or hypopnea interrupts the oxygen supply in circulation, resulting in hypercapnia [6].
Repetitive hypoxia and reoxygenation occur along with hypercapnia, resulting in reactive
oxygen species generation, followed by oxidase overactivation and regional oxidative
stress elevation [7]. Furthermore, recurrent hypoxia and elevated oxidative stress have
been reported to be associated with a neuroinflammatory reaction [8]. OSA may lead
to cognitive dysfunction by damaging the hippocampus, cerebral cortex, or other brain
regions due to chronic intermittent hypoxia and neuroinflammation [9]. Previous neurolog-
ical studies have reported similar outcomes regarding the relationship between OSA and
neurocognitive function. For instance, studies have reported that acute sleep deprivation
increased the level of Tau protein (T-tau), which is associated with neurodegeneration,
and chronic sleep deprivation accelerated T-tau deposition in neural networks [10,11].
Sleep arousal caused by OSA has been reported to increase the deposition of amyloid
beta (Aβ), a neurochemical biomarker of neurodegenerative diseases [12]. Another rel-
evant study analyzed the outcomes of polysomnography (PSG) and reported that the
apnea–hypopnea index (AHI) was significantly correlated with the T-Tau level (r = 0.34,
p < 0.01) [13]. All these aforementioned findings indicate that because OSA is associated
with the development of neurodegenerative diseases, appropriate OSA treatment may
reduce the risks of neurodegenerative diseases.

Continuous positive airway pressure (CPAP) treatment is the clinical standard non-
invasive therapy for OSA. CPAP treatment holds the collapsed airway by maintaining
positive pressure during respiration, thus alleviating hypoxia risk and improving sleep
quality [14]. CPAP intervention can alleviate cognitive impairment caused by OSA. For
example, CPAP may delay the onset age of mild cognitive impairment or AD by approx-
imately 10 years (72 vs. 82 years; p < 0.01) [15]. In patients with AD, CPAP treatment
delayed cognitive decline over a 3-year follow-up period (p < 0.05) [16]. Compared with
no use of CPAP, the long-term use of CPAP improved sleep quality and delayed cognitive
decline [17]. However, the relationship between CPAP intervention and alterations in
neurochemical biomarker levels remains unclear.

This pilot study investigated whether CPAP intervention can improve blood biomarker
levels (objective) and sleep questionnaire responses (subjective). We hypothesize that the
use of CPAP would reduce the concentrations of neurochemical biomarkers and thus
indirectly reduce the risks of AD and other neurodegenerative diseases in patients with
OSA. This study enrolled patients with OSA and divided them into two groups on the basis
of their therapy type: control and CPAP groups. Next, we examined their PSG and CPAP
titration study results as well as their neurochemical biomarker levels and questionnaire
outcomes at two time points, namely baseline and after 3 months. A comparison of
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the parameters between the groups can help determine whether CPAP intervention can
alleviate OSA symptoms and thus reduce the risks of neurodegenerative diseases.

2. Materials and Methods
2.1. Participants and Study Flow

From the outpatient department of Taipei Medical University, Shuang Ho Hospital
(New Taipei City, Taiwan), we recruited patients who were suspected of having OSA and
underwent PSG at the sleep center between June and October 2018 and between July 2020
and March 2022. The inclusion criteria were as follows: (1) being aged between 18 and
80 years; (2) not using psychotropic or hypnotic medications in the past 6 months; (3) not
undergoing otorhinolaryngological surgery for OSA treatment; (4) not having any cognitive
symptoms or a diagnosis of neurological, mental, or psychological disorders (e.g., AD,
dementia, epilepsy, and Parkinson’s disease), and (5) not having chronic comorbidities
(e.g., cardiovascular diseases, stroke, and metabolic syndrome). The flowchart of patient
enrolment is illustrated in Figure 1. All eligible participants were administered the Mini-
Mental State Examination (MMSE) [18] to examine their cognitive function as well as
overnight PSG to determine their OSA severity. On the following day, at a fixed time
(6:30 a.m. when PSG ended), blood samples were collected from all patients to measure
neurochemical biomarker levels. Subsequently, patients were administered the Pittsburgh
Sleep Quality Index (PSQI) [19] and the Epworth Sleepiness Scale (ESS) [20]. At the next
outpatient follow-up (in a week), their PSG results were interpreted, and the OSA treatment
was confirmed by attending physicians. Patients made all therapy-related decisions, and
medical professionals only provided sufficient relevant information. Next, patients were
assigned to the CPAP or control group on the basis of their treatment choice and were
followed up for 3 months. At the 3-month follow-up, we examined patients’ neurochemical
biomarker levels again and administered the sleep-related questionnaires. We compared
the findings between the CPAP and control groups to investigate the effect of CPAP.

Patients were first instructed to conduct Mini-Mental State Examination to exclude
patients with cognitive impairment symptoms. Next, all the eligible patients were requested
to undergo polysomnography and blood sampling (the following day at a fixed time) and
respond to all the questionnaires. After the 3-month follow-up with or without continuous
positive airway pressure (CPAP), the second-time data, including blood and questionnaire
outcomes, were obtained. All the derived data were divided and compared based on their
therapy strategy (i.e., control or CPAP groups).

2.2. PSG Parameters

PSG was conducted using two systems at our sleep center, namely ResMed Embla
N7000 (ResMed, San Diego, CA, USA) and an Embla MPR (ResMed Global Supplier Al-
liance, Sydney, Australia), and the results were scored using RemLogic software (version
3.41; Embla Systems, Thornton, CO, USA). Certified PSG technologists, who underwent
regular interscoring training, scored all PSG outcomes in accordance with the 2017 guide-
lines of the American Association of Sleep Medicine [21]. All scoring outcomes were
independently reviewed by another technologist to reduce scoring bias. Inconsistent scor-
ing outcomes were extracted and discussed to determine the final scoring results. Details
regarding sleep architecture and the sleep disorder index were obtained. Sleep efficiency,
duration in the awake state, and sleep stage distribution (i.e., rapid eye movement [REM]
and non-REM [NREM]) were determined. To determine OSA severity, the values of the
AHI and oxygen desaturation (ODI-3%) and the data related to snoring and arousal were
collected. OSA severity was categorized as mild (AHI = 5 to 15 events/h), moderate
(AHI = 15 to 30 events/h), or severe (AHI ≥ 30 events/h) [22].
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Figure 1. Flowchart of clinical assessment, treatment, and follow-up details of this study. Ab-
breviations: MMSE: Mini-Mental State Examination; PSG: polysomnography; PSQI: Pittsburgh
Sleep Quality Index; ESS: Epworth Sleepiness Scale; T-Tau: total tau; Aβ42: amyloid-beta-42;
CPAP: continuous positive airway pressure.

2.3. Determination of Neurochemical Biomarker Levels in Plasma

A hematological biomarker examination was conducted using MagQu Co., Ltd. (New
Taipei City, Taiwan) with IMR technology. In EDTA-containing tubes, 16 mL of whole blood
was collected. The samples were centrifuged at 2500× g for 15 min at room temperature
within 15 min of drawing blood. Plasma was withdrawn and stored at −80 ◦C [23].
Frozen plasma aliquots were shipped on dry ice to MagQu Co., Ltd. for IMR assay. The
principle and procedure of IMR are described in a previous study [24]. The reagent of IMR
is a solution containing magnetic nanoparticles, which are coated with a bioprobe (e.g.,
antibodies) and oscillate under external magnetic fields. Once these magnetic nanoparticles
associate with target antigens, they aggregate and increase in size. Thus, their response to
external magnetic fields is weaker than that of original individual ones. In other words, the
more the amount of target antigens in the reagent is, the more the aggregation of magnetic
nanoparticles occurs; this results in a larger reduction in magnetic flux for reagents. The
reduction of the magnetic property of the reagent indicates the amount of the target antigen
in the reagent. The concentration of the target protein is determined based on the reduction
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in the magnetic field. The present study determined the concentrations of AB42 and T-tau
protein in plasma. Subsequently, because other studies have indicated that the ratios and
products of Aβ42 and T-tau may serve as indicators for screening the risk of AD [25,26], the
present study further computed these values; that is, this study determined the products
and ratios of T-Tau and Aβ42 (Aβ42 × T-Tau and Aβ42/T-Tau, respectively).

2.4. CPAP Treatment

For patients who received CPAP therapy, a CPAP titration study was performed to
determine the optimal pressure point for employing CPAP. All the procedures were similar
to PSG, and a difference existed with respect to the use of CPAP during examination. PSG
technologists increased pressure when respiratory events (apnea, hypopnea, and snoring)
occurred and determined optimal titration pressure, which reduced the AHI to <5 for at
least 15 min (including REM sleeping in the supine position and without spontaneous
arousal or awakening). After determining the optimal pressure for each patient, CPAP was
administered (APEX-iCH-Auto-2, New Taipei City, Taiwan) for 3 months. All participants
were followed up weekly or biweekly to alleviate any relevant risks of using CPAP. All
patients were asked to wear a CPAP mask for at least 4 h per night on 5 days per week. The
participants who agreed to wear a CPAP mask were visited weekly or biweekly to ensure
that they were using the device correctly and to verify their usage time. Those who declined
to receive CPAP therapy (control group) received health hygiene education relevant to body
weight control and pharmacological support (nasal spray) under the advice of physicians.

2.5. Statistics

All statistical analyses were performed using SPSS version 20 (SPSS, Chicago, IL, USA).
The Shapiro–Wilk test was first conducted to examine normality. To examine the mean
difference in demographic characteristics and PSG outcomes, Student’s t test (continuous
variables with a normal distribution), Mann–Whitney U test (continuous variables without
a normal distribution), and chi-square test (categorical variable) were employed. Next,
to compare changes between baseline and 3-month follow-up measurements in both the
control and CPAP groups, the paired t-test was applied for the normally distributed data,
whereas the Wilcoxon signed-rank test was used for non-normally distributed data. Anal-
ysis of covariance (ANCOVA) was performed to compare alterations in neurochemical
biomarker levels between the groups. The equality of slopes of derived data was deter-
mined to confirm that the assumptions were met. Neurochemical biomarker levels of the
two groups determined at the 3-month follow-up were compared using ANCOVA, with ad-
justment for age, body mass index (BMI), sex, AHI, and baseline neurochemical biomarker
levels as covariates, and the post hoc Bonferroni-adjusted t-contrasts were computed for
comparing the main effects.

3. Results
3.1. Demographic Characteristics

Table 1 presents the demographic characteristics of the recruited patients. Thirty adults
with OSA and typical cognitive function were recruited. Of them, 20 and 10 patients were
included in the CPAP and control groups, respectively. No significant differences in age,
sex, body mass index, neck circumference, waist circumference, and MMSE scores were
observed between the groups. Regarding the distribution of sleep stages, the percentage of
the NREM stage was higher in the control group than in the CPAP group (77.86% ± 6.14%
vs. 68.03% ± 12.34%, p < 0.05). The values of the AHI, ODI-3%, snoring index, and arousal
index and the distribution of OSA severity did not significantly differ between the groups.
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Table 1. Demographic characteristics between the control and continuous positive airway pressure
(CPAP) group.

Categorical Variables Control Group (n = 10) CPAP Group (n = 20) p

Age (year) a 50.4 ± 11.84 53.85 ± 10.53 0.43
Sex (male/female) b 9/1 16/4 0.48
BMI (kg/m2) c 27.78 ± 3.86 30.42 ± 4.41 0.12
Neck circumference (cm) c 39.7 ± 3.13 40.4 ± 4.0 0.63
Waist circumference (cm) c 98.5 ± 10.3 100.32 ± 12.15 0.69
MMSE (score) a 29.2 ± 1.03 28.5 ± 1.93 0.43
Sleep architecture

Sleep efficiency (%) a 81.62 ± 10.36 74.78 ± 16.17 0.23
Wake (% of SPT) a 12.48 ± 8.13 20.29 ± 14.7 0.17
NREM (% of SPT) c 77.86 ± 6.14 68.03 ± 12.34 <0.05
REM (% of SPT) c 9.64 ± 5.75 11.68 ± 5.73 0.37
WASO (min) c 42.58 ± 27.79 67.65 ± 43.63 0.11

Sleep disorder index (events/h)
ODI-3% c 41.24 ± 24.14 44.62 ± 20.67 0.69
AHI c 42.02 ± 22.42 47.08 ± 20.38 0.54
Snoring index c 299.8 ± 292.06 374.7 ± 154.82 0.36
Arousal index c 29.19 ± 18.0 27.42 ± 11.51 0.75

OSA severity b 0.05
Normal, n (%) - -
Mild, n (%) 2 (20%) -
Moderate, n (%) - 4 (20%)
Severe, n (%) 8 (80%) 16 (80%)

Abbreviations: BMI: body mass index; MMSE: Mini-Mental State Examination; SPT: sleep period of time; NREM:
Nonrapid eye movement; REM: Rapid eye movement; WASO: wake time after sleep onset; ODI-3%: oxygen
desaturation index ≥3%; AHI: apnea–hypopnea index; OSA: obstructive sleep apnea. Data are expressed as
the mean ± standard deviation. Differences between groups were assessed using the a Mann–Whitney U test,
b chi-squared test, and c Student’s t-test.

3.2. Details of CPAP Titration

Table 2 presents the outcomes of CPAP titration for the CPAP group. The mean of
optimal CPAP pressure setting was 8.95 ± 3.65 cmH2O. During CPAP treatment, sleep effi-
ciency increased from 74.78% ± 16.17% to 79.78% ± 11.96%, the AHI decreased from
47.08 ± 20.38 to 5.39 ± 4.19 events/h, the ODI-3% decreased from 44.62 ± 20.67 to
6.22 ± 5.4 events/h, and the mean arousal index decreased from 27.42 ± 11.51 to
9.02 ± 5.87 events/h. Regarding CPAP mask usage time, as mentioned, all patients were in-
structed to wear a CPAP mask for at least 4 h per night on 5 days per week. Of the participants,
70% wore the CPAP mask for 4–6 h per night, and 30% wore it for 6–8 h per night.

Table 2. Sleep parameters and ventilator setting details in continuous positive airway pressure
(CPAP) titration.

Categorical Variables. CPAP Group (n = 20)

CPAP setting (cmH2O)
Optimal CPAP level 8.95 ± 3.65
Pressure 95th centile 9.06 ± 3.6
Maximum pressure 10.58 ± 4.65

Sleep architecture
Sleep efficiency (%) 79.78 ± 11.96
Wake (% of SPT) 16.6 ± 10.82
NREM (% of SPT) 67.73 ± 8.25
REM (% of SPT) 15.66 ± 6.03
WASO (min) 58.76 ± 36.52

Sleep disorder index (events/h)
ODI-3% 6.22 ± 5.4
AHI 5.39 ± 4.19
Snoring index 73.4 ± 113.06
Arousal index 9.02 ± 5.87

CPAP usage time (n, %)
4–6 h 14 (70%)
6–8 h 6 (30%)

Abbreviations: SPT: sleep period of time; NREM: Non-rapid eye movement; REM: Rapid eye movement;
WASO: wake time after sleep onset; ODI-3%: oxygen desaturation index ≥3%; AHI: apnea–hypopnea index; Data
are expressed as the mean ± standard deviation.
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3.3. Alterations in the Neurochemical Biomarker Levels

Table 3 presents the details of neurochemical biomarker levels and questionnaire
responses at baseline and the 3-month follow-up for both the groups. The mean ESS and
PSQI scores did not significantly differ between baseline and the 3-month follow-up in
the control group. However, the CPAP group had significantly lower mean ESS (baseline:
13.25 ± 6.15, 3-month follow-up: 9.5 ± 6.13, p < 0.05) and PSQI (baseline: 10.05 ± 4.05,
3-month follow-up: 6.85 ± 3.56, p < 0.01) scores, respectively. Regarding neurochemical
biomarkers, the levels of T-Tau (p < 0.05), Aβ42 (p < 0.05), and the product (Aβ42 × T-Tau,
p < 0.01) were significantly increased at the 3-month follow-up in the control group. By
contrast, the levels of T-Tau (p < 0.05) and the product (Aβ42 × T-Tau, p < 0.05) were
significantly decreased, and the ratio of Aβ42 to T-Tau was significantly increased (p < 0.01)
in the CPAP group.

Table 3. Comparison of changes in the sleep-related questionnaire scores and neurochemical
biomarker levels between the two time points (baseline and after 3 months) in the control and
continuous positive airway pressure (CPAP) groups.

Categorical Variables Control Group (n = 10) CPAP Group (n = 20)

Baseline After
3-Month p Baseline After

3-Month p

Questionnaire
ESS (score) a 10.5 ± 7.07 9.2 ± 6.7 0.32 13.25 ± 6.15 9.5 ± 6.13 <0.05
PSQI (score) a 8.6 ± 3.57 7.7 ± 2.98 0.56 10.05 ± 4.05 6.85 ± 3.56 <0.01

Neurochemical biomarker
T-Tau (pg/mL) b 20.17 ± 3.48 22.48 ± 2.78 <0.05 24.69 ± 5.26 22.47 ± 2.38 <0.05
Aβ42 (pg/mL) b 15.84 ± 1.03 16.43 ± 0.64 <0.05 16.53 ± 1.06 16.36 ± 0.43 0.73
Aβ42 × T-Tau

(pg2/mL2) b 321.21 ± 66.36 369.94 ± 51.73 <0.01 412.56 ±
117.73 368.21 ± 46.21 <0.05

Aβ42/T-Tau a 0.8 ± 0.12 0.74 ± 0.09 0.07 0.69 ± 0.09 0.73 ± 0.07 <0.01

Abbreviation: ESS: Epworth Sleepiness Scale; PSQI: Pittsburgh Sleep Quality Index; T-Tau: total tau;
Aβ42: amyloid beta 42. Data are expressed as the mean ± standard deviation. Differences between mean
level at baseline and 3-month follow-up were assessed using the a paired t-test and b Wilcoxon signed-rank test.

3.4. Effect on CPAP on Neurochemical Biomarker Levels

In this study, ANCOVA was used to investigate whether alterations in neurochemical
biomarker levels at baseline and the 3-month follow-up differed between the control and CPAP
groups, and the results are displayed in Figure 2. The mean change in the T-Tau level (∆T-Tau)
between baseline and the 3-month follow-up significantly differed between the CPAP group
(mean: −2.22 ± 3.85 pg/mL) and the control group (mean: 2.31 ± 2.16 pg/mL). Similarly,
changes in the levels of the product of T-Tau and Aβ42 (∆Aβ42 × T-Tau) significantly differed
between the CPAP (mean: −44.35 ± 88.92 pg/mL) and control (mean: 48.73 ± 34.02 pg/mL)
groups. Furthermore, changes in the ratio of Aβ42 to T-Tau (∆Aβ42/T-Tau) significantly differed
between the CPAP (mean: 0.05 ± 0.07 pg/mL) and control (mean: −0.06 ± 0.09 pg/mL) groups.

The alterations in the neurochemical biomarker levels were determined by calculating
differences in the measurements of baseline and after 3 months, including (A) alterations
of T-Tau, (B) alterations of Aβ42, (C) alterations of T-Tau X Aβ42, and (D) alterations of
T-Tau/Aβ42. The derived mean and quantile values were demonstrated. The analysis of
covariance (ANCOVA) was applied to determine the statistical difference by adjusting the
age, sex, body mass index and apnea–hypopnea index to investigate the effect on biomarker
level alterations of employing CPAP.
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4. Discussion

OSA is associated with elevated neurochemical biomarker levels and can thus increase
the risk of neurodegenerative diseases. Thus, treating OSA (e.g., by employing CPAP) may
reduce neurochemical biomarker levels. To investigate this possibility, in this pilot study,
we recruited patients with OSA (diagnosed on the basis of PSG results), measured their
plasma neurochemical biomarker levels, and provided them with therapy options (CPAP or
health hygiene education). The findings revealed that at the 3-month follow-up, the CPAP
group had significantly decreased mean levels of T-Tau and the product of T-Tau and Aβ42,
whereas the control group had significantly increased mean levels of T-Tau, Aβ42, and their
product. Furthermore, to compare the effect of CPAP intervention between the groups, we
performed ANCOVA with adjustment for age, sex, BMI, baseline neurochemical biomarker
levels, and the AHI. Changes in neurochemical biomarker levels (between baseline and the
3-month follow-up) significantly differed between the CPAP and control groups.

The present study compared baseline and 3-month follow-up measurements in the
control group, and the results revealed increased mean levels. These outcomes are in line
with those of previous studies examining the association between untreated OSA and ele-
vated neurochemical biomarker levels [27]. In other words, the clinical symptoms of OSA,
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including sleep-disordered breathing, nighttime hypoxia, sleep arousal, and sleep fragmen-
tation, may be risk factors for neurochemical biomarker formulation and accumulation [28].
A related study reported a significant association between a high mean AHI and increased
neurochemical biomarker levels in patients with OSA without dementia [29]. Another
study analyzed PSG parameters and neurochemical biomarker levels and suggested that
the elevated AHI, ODI-3%, and arousal indexes were significantly associated with the risk
of AD [30]. OSA acts in synergism with neurochemical biomarkers (i.e., Aβ42 and T-tau),
and patients with mild cognitive impairment having untreated OSA may have shorter
progression time to AD compared with those with only mild cognitive impairment [31].
Taken together, the findings indicate that untreated OSA, which can continue to cause
sleep-disordered breathing and other manifestations (e.g., arousal response and oxygen
desaturation), may interrupt the neurochemical biomarker removal process and, thus,
increase the risk of neurodegenerative diseases.

In this study, the CPAP group exhibited significantly decreased mean levels of T-tau
and the Aβ42 × T-Tau product. Moreover, the CPAP group exhibited improved ESS and
PSQI scores at the 3-month follow-up. Similarly, the results of ANCOVA with adjustment
for age, sex, BMI, baseline neurochemical biomarker levels, and the AHI revealed that the
CPAP group had decreased neurochemical biomarker levels than did the control group. CPAP
therapy is a noninvasive option for patients with OSA in clinical practice and is effective
in multiple aspects. For example, CPAP prevents upper airway occlusion during sleep and
enables patients to have an entire night of uninterrupted sleep [32]. CPAP considerably
improves sleep quality [33]. Another study evaluated treatment responses by calculating
various questionnaire outcomes (i.e., mood, energy or fatigue, functional status, and general
health), and the results suggested that the odds of experiencing CPAP treatment responses
were approximately three times compared with conservative treatment responses [34]. CPAP
users had lower odds of incident diagnoses of AD (odds ratio [OR] = 0.78, 95% confidence
interval [95% CI] = 0.69 to 0.89) and mild cognitive impairment (OR = 0.82, 95% CI = 0.66 to
1.02) [35]. A related systematic review indicated that receiving CPAP intervention for OSA
treatment reduced the risk of AD [36]. Collectively, the results indicate that employing CPAP
intervention to alleviate OSA symptoms and improve sleep quality can indirectly prevent
neurodegenerative diseases by reducing neurochemical biomarker levels.

The present study had some strengths. Although previous researchers have indicated
that CPAP therapy partially reverses neurochemical biomarker levels [37], to the best of our
knowledge, the present study was the first to investigate the effects of CPAP therapy on both
plasma neurochemical biomarker levels (objective measure) and questionnaire responses
(subjective measure). In addition, other observational studies that have employed CPAP
therapy have observed changes only in levels of Aβ42 [38,39], whereas the present study
identified changes in both Aβ42 and T-Tau protein levels. Furthermore, although other
studies have obtained similar findings indicating that CPAP therapy may reduce the levels
of Aβ42 and T-Tau in patients with OSA combined with mild cognitive impairment [40],
the present study enrolled only patients with OSA who had no cognitive problems and,
therefore, was able to provide evidence that CPAP interventions can benefit patients
with OSA alongside typical cognitive function and provide early prevention of cognitive
impairment. The present study further observed that untreated OSA may negatively
affect neurochemical biomarker levels and sleep quality. Furthermore, in contrast to other
studies that have investigated the effects of OSA on the incidence of neurodegenerative
diseases [41,42], the present study investigated the benefits of CPAP therapy and provided
evidence supported by data regarding neurochemical biomarker levels rather than that
supported by only data regarding disease prevalence. Because the benefits of CPAP
intervention have not been thoroughly investigated and because existing evidence of these
benefits remains preliminary, the present results offer crucial evidence indicating that
CPAP intervention can not only alleviate OSA manifestations but also prevent cognitive
problems by reducing neurochemical biomarker levels. The results further indicate that
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untreated OSA can interfere with sleep efficiency, aggravate OSA manifestations, and affect
neurochemical biomarker levels.

In terms of limitations that should be considered, this study did not examine the
effects of genetic factors on neurochemical biomarker levels. However, previous related
studies have reported associations between neurodegenerative diseases and some specific
genes (e.g., FABP3 and ApoE4) [43]. Next, although neurochemical biomarkers in both the
cerebrospinal fluid and plasma are regarded as reliable tools for screening the risk of some
neurodegenerative diseases, differences might exist between the two measurements [44].
We measured the neurochemical biomarker levels in plasma only; we did not measure
them in cerebrospinal fluid. A growing body of evidence suggests that the presence of
neurochemical biomarkers in cerebrospinal fluid is an indicator of a continuum of cognitive
disorders and, particularly, an indicator of AD pathology [45,46]. However, practical clinical
obstacles—such as invasiveness, time, and cost—limited the feasibility of performing
lumbar puncture to obtain cerebrospinal fluid in the present study [47]. Therefore, this
study employed an alternative approach that was rapid, minimally invasive, and low in
cost to determine the levels of plasma-based biomarkers for the analyses. Nevertheless,
neurochemical biomarker levels in cerebrospinal fluid may be more directly indicative of
cognitive function or neurodegenerative diseases. In addition, the present study featured
the limitation of a small sample size, and all the patients were enrolled from a single
sleep center in northern Taiwan. The low enrollment may have been the result of CPAP
adherence limitations (CPAP therapy often involves discomfort and nasal congestion) and
of potential participants being informed before enrollment that they would be required to
use the CPAP device for a certain period to ensure participant adherence. Nevertheless,
because of these factors, although this study recruited a small number of patients, all the
recruited patients met the criterion related to CPAP use time. However, this limitation
may affect the generalizability of our outcomes for different populations. Although this
pilot study excluded patients with comorbidities or regular medication usage, lifestyle
habits (tobacco and alcohol use) may affect OSA severity or neurochemical biomarker
levels [48]. Thus, to enhance the robustness of the derived statistical results, these lifestyle
factors should be further examined, and a multicenter study including more participants
or patients of various ethnicities should be conducted.

5. Conclusions

The Taiwanese patients recruited to this study were administered PSG and received
OSA treatment for 3 months (CPAP group) or health hygiene education (control group). In
addition, we measured two neurochemical biomarker levels and questionnaire responses
at baseline and the 3-month follow-up. The CPAP group had significantly lower mean ESS
and PSQI scores at the 3-month follow-up than at baseline. In the control group, the mean
levels of T-Tau, Aβ42, and their product significantly increased at the 3-month follow-up
than at baseline. The CPAP group exhibited significantly decreased levels of T-Tau and
T-Tau × Aβ42 at the 3-month follow-up. This study used ANCOVA to determine whether
CPAP can reduce neurochemical biomarker levels. After adjustment for age, sex, BMI, AHI,
and baseline neurochemical biomarker levels, alterations (between the 3-month follow-up
and baseline) in the CPAP group were significantly different than those in the control
group, including T-Tau, the computed product (Aβ42 × T-Tau), and the ratio of Aβ42 to
T-Tau. Regarding the clinical significance of this pilot study, the major findings of this study
indicate that the use of CPAP devices may reduce neurochemical biomarker levels and
improve sleep quality by alleviating OSA symptoms. Furthermore, the findings indicate
that for patients with OSA who do not undergo treatment, OSA is likely to affect sleep
quality, and the manifestations of OSA are likely to intensify and increase neurochemical
biomarker levels. However, a longitudinal study with a larger population data set should
be conducted to verify the causal relationships among these factors.
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