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Abstract

The present thesis describes the discovery and application of a novel methodology, named
Data-Driven Multiplexing, which uses artificial intelligence and conventional molecular instru-

ments to develop rapid, scalable and cost-effective clinical diagnostic tests.

Detection of genetic material from living organisms is a biologically engineered process
where organic molecules interact with each other and with chemical components to generate
a meaningful signal of the presence, quantity or quality of target nucleic acids. Nucleic acid
detection, such as DNA or RNA detection, identifies a specific organism based on its genetic
material. In particular, DNA amplification approaches, such as for antimicrobial resistance
(AMR) or COVID-19 detection, are crucial for diagnosing and managing various infectious
diseases. One of the most widely used methods is Polymerase Chain Reaction (PCR), which can
detect the presence of nucleic acids rapidly and accurately. The unique interaction of the genetic
material and synthetic short DNA sequences called primers enable this harmonious biological
process. This thesis aims to bioinformatically modulate the interaction between primers and
genetic material, enhancing the diagnostic capabilities of conventional PCR instruments by

applying artificial intelligence processing to the resulting signals.

To achieve the goal mentioned above, experiments and data from several conventional
platforms, such as real-time and digital PCR, are used in this thesis, along with state-of-the-
art and innovative algorithms for classification problems and final application in real-world
clinical scenarios. This work exhibits a powerful technology to optimise the use of the data,
conveying the following message: the better use of the data in clinical diagnostics enables
higher throughput of conventional instruments without the need for hardware modification,

maintaining the standard practice workflows.

In Part I, a novel method to analyse amplification data is proposed. Using a state-of-
the-art digital PCR instrument and multiplex PCR assays, we demonstrate the simultaneous
detection of up to nine different nucleic acids in a single-well and single-channel format. This
novel concept called Amplification Curve Analysis (ACA) leverages kinetic information encoded
in the amplification curve to classify the biological nature of the target of interest. This method
is applied to the novel design of PCR assays for multiple detections of AMR genes and further
validated with clinical samples collected at Charing Cross Hospital, London, UK. The ACA
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showed a high classification accuracy of 99.28% among 253 clinical isolates when multiplex-
ing. Similar performance is also demonstrated with isothermal amplification chemistries using
synthetic DNA, showing a 99.9% of classification accuracy for detecting respiratory-related

infectious pathogens.

In Part II, two intelligent mathematical algorithms are proposed to solve two significant
challenges when developing a Data-driven multiplex PCR assay. Chapter 7 illustrates the
use of filtering algorithms to remove the presence of outliers in the amplification data. This
demonstrates that the information contained in the kinetics of the reaction itself provides a
novel way to remove non-specific and not efficient reactions. By extracting meaningful features
and adding custom selection parameters to the amplification data, we increase the machine
learning classifier performance of the ACA by 20% when outliers are removed. In Chapter 8,
a patented algorithm called Smart-Plexer is presented. This allows the hybrid development of
multiplex PCR assays by computing the optimal single primer set combination in a multiplex
assay. The algorithm’s effectiveness stands in using experimental laboratory data as input,
avoiding heavy computation and unreliable predictions of the sigmoidal shape of PCR curves.
The output of the Smart-Plexer is an optimal assay for the simultaneous detection of seven
coronavirus-related pathogens in a single well, scoring an accuracy of 98.8% in identifying the
seven targets correctly among 14 clinical samples. Moreover, Chapter 9 focuses on applying
novel multiplex assays in point-of-care devices and developing a new strategy for improving

clinical diagnostics.

In summary, inspired by the emerging requirement for more accurate, cost-effective and
higher throughput diagnostics, this thesis shows that coupling artificial intelligence with assay
design pipelines is crucial to address current diagnostic challenges. This requires crossing
different fields, such as bioinformatics, molecular biology and data science, to develop an optimal
solution and hence to maximise the value of clinical tests for nucleic acid detection, leading to

more precise patient treatment and easier management of infectious control.
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Chapter 1

Introduction

1.1 Motivation

The life sciences have a long history of dealing with a large amount of data, and current advances
in instrument throughput have increased the capability of analysing and storing data [1]. There
is a gap between the number of produced data and their analytical use and interpretation [2].
Better usage of the data can lead us to rapid, cost-effective and precise solutions for several
research fields such as genomics, agriculture, environmental protection, cancer and clinical
diagnostics [3]. One example which affected us most during the past two years is the recent
coronavirus pandemic, where massive efforts have been made in order to control this disease
[4]. What could have been done better to reduce the spreading of such outbreaks? The answer
is straightforward - screen pathogenic diseases in a faster, cost-effective and scalable manner,
knowing the source of infection and developing approaches that can allow rapid diagnostics.
One solution has been provided by the detection of deoxyribonucleic acid (DNA) or ribonucleic

acid (RNA) through molecular tests [5, 6].

Nucleic acids contain genetic information in living organisms, like byte-compiled code for
a virtual machine. The language of DNA is digital but not binary; in fact, unlike the binary
encoding with zeros and ones, the DNA has four different nucleotides: adenine (A), cytosine

(C), guanine (G), and thymine (T) [7]. Like in the alphabet, the order, or the sequence, of the

1
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chemical bases, defines the genetic code and the necessary information to ensure the optimal
functioning of living organisms. The genetic code also contains the fingerprint of the biological
classification of organisms and through DNA detection humans are capable of identifying living
species at any level. This feature is crucial for many healthcare applications such as identifying
pathogenic agents (e.g. coronaviruses), but also in recognising a person’s identity or revealing

the genetics of human diseases such as cancer.

From Marshall Nirenberg, who first sequenced DNA bases [8], to Frederick Sanger, who
sequenced the full human genome for the first time [9], DNA detection has been the focus
of many research works and applications for over 80 years. Various techniques have been
developed to determine the sequence of a nucleic acid chain, but the gold-standard method
widely used for DNA detection remains the Polymerase Chain Reaction or PCR. The success
of the PCR technique derives from its simplicity in development and application, its time and
cost-effectiveness and lastly its robustness [10]. Moreover, unlike sequencing approaches that
require heavy computational power to process large amounts of genetic information correctly,
PCR can be seen as a simple binary signal, where the occurrence of a sigmoidal amplification
trend indicates the presence of a desired target. The aim of this thesis is to challenge the idea
that PCR signals can only be interpreted as a binary outcome, showing the potential in the
full use of the hidden information in the kinetics and thermodynamics behaviour of the DNA

amplification event and data.

Performing PCR requires five core ‘ingredients’ (i) the DNA template to be copied; (ii)
primers, short stretches of DNA that initiate the PCR reaction, designed to bind to either side
of the section of DNA to copy; (iii) DNA nucleotide bases (A, C, G and T) to construct the
new strand of DNA; (iv) the Polymerase enzyme to add in the new DNA bases; (v) various
buffers to ensure the right conditions for the reaction. All these ingredients undergo a process
of heating and cooling called thermal cycling performed by a machine in three main steps: (i)
Denaturation, when the double-stranded template DNA is heated to separate it into two single
strands; (ii) Annealing, when the temperature is lowered to enable the DNA primers to attach
to the template DNA. (iii) Extending, when the temperature is raised, and the new strand of

DNA is made by the Polymerase enzyme. These steps are repeated a certain number of times
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to ensure that the number of DNA molecules is doubled on each cycle till a biological signal is

observed [11].

Although PCR is an accurate, reliable, well-established and routinely used technology, the
need for higher throughput of a single PCR reaction has always been the main focus for scaling
the detection capabilities of this technique. Therefore, the concept of multiplex PCR was first
described in 1988 by Jeffrey S. Chamberlain [12], allowing simultaneous detection of two or
more regions of interest in the target genome. As shown in Figure 1.1, producing multiplex
PCR systems is as simple as combining three (or more) reactions in a single tube to produce
three different outputs based on the presence of the target in the tube. This is extremely
beneficial to reduce the cost of the reaction, the usage of clinical samples and the throughput

provided by a single PCR.

%ﬁ’

Singleplex .

influenza

Multiplex 0 COVID-19 Positive

1X reaction cost

Figure 1.1: Singleplex and Multiplex PCR. In the top part of the figure, the concept of singleplex
is depicted, where a pathogen (in this case, viruses) is detected. The tube has all the reagents for
detecting a single specific virus; therefore, when the chemical signal is detected from that particular
reaction, it is possible to identify which of the three viruses is amplified by looking at the label on
the tube. This concept is also called spatial multiplexing. The bottom part of the figure shows the
concept of multiplexing in a single well reaction, where any of the three pathogens can be detected
simultaneously, through a biochemical tag (such as a fluorophore with different colours) or advanced
data processing.

rhinovirus



4 Chapter 1. Introduction

Moreover, other more complex strategies have been successfully established for multiplex-
ing, leveraging the capabilities of more sophisticated and higher throughput PCR machines [13].
From PCR instruments with multiple fluorescence channels (up to six in a single machine) to
the more recent digital PCR instruments for single-molecule amplification, the throughput of
a simple PCR reaction has been enhanced drastically. Moreover, during the COVID-19 pan-
demic, a rise in Point-of-Care instrumentation has been seen in the effort to perform PCR in a
portable manner. All these developments resulted in an enormous quantity of data to analyse

and interpret the molecular test outcome accurately [14].

Previous work by Dr. Jesus Rodriguez-Manzano and Dr. Ahmad Moniri was conducted
in the effort of leveraging the value of the data from multiplex PCR to enhance absolute
quantification using a multidimensional standard curve (MSC) [15, 16, 17]. These studies
highlighted the complexity and volume of data produced in the PCR world, which are largely
increasing with more advanced instruments. With the rise of Artificial Intelligence in medicine,
PCR data can be analysed in more depth, moving towards more data-driven approaches [3].
Coupling Machine Learning with multiplex PCR will benefit the field of DNA detection by
analysing data with more features and working in higher dimensionality to get the most value

from PCR data.

1.2 Introduction to Data-driven Multiplexing

This thesis describes a novel technique named data-driven multiplexing. This method benefits
from state-of-the-art machine learning algorithms to diagnose the presence of multiple nucleic
acids (such as bacteria, viruses, fungi, genetic variants and more) in a single chemical reaction,
using gold-standard techniques such as real-time PCR, (qPCR). Furthermore, this approach can
also be used to design and optimise the multiplex assay, reducing the number of experiments
and laboratory costs when developing molecular diagnostic tests. Using this technique, it is
possible to reduce: (i) the amount of sample needed for screening of multiple genetic locations

or pathogens, (ii) the time for multiple targets screening and (iii) the overall cost, drastically
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reducing the cost of molecular diagnostics.

Data-driven multiplexing uses artificial intelligence algorithms and tailored chemistries to
extract more information from real-time amplification data from conventional PCR instruments
in a single-well and single-channel multiplex PCR reaction. The technology does not require
novel instrumentation or hardware modifications, but standard assay development pipelines
(performed in a molecular biology laboratory) and software development to perform post-test

analysis and final output.

1.3 Hypothesis, Objectives & Research Questions

Hypothesis: the information encoded in the amplification and melting curve of a PCR reaction
represents the relationship between a target genetic material and the primers used to detect it.

Modulating this interaction can be used to develop molecular tests for clinical diagnostics.

Objective: using novel data-driven analysis methods, this thesis aims to investigate the pos-
sibility of improving the precision and throughput of diagnosis outcomes without hardware

modifications and additional costs at current molecular diagnostic platforms.

Research Questions: as Figure 1.2 shows, the strategy focuses on improving bioinformatics
for assay design with tailored chemistries and enhancing the value of the molecular test data
through advanced data analytic approaches. To achieve this, the following research questions

are the focus of this work:

(i) Is it possible to recognise the nature of a target nucleic acid by the kinetic and ther-
modynamic information contained in its resulting PCR amplification reaction? Further-
more, can this information differentiate among multiple targets in a single-well and single-

channel multiplex PCR reaction? (investigated in Chapter 3 and 4)

(ii) Can data-driven multiplexing be translated to different chemistries, such as isothermal,
and across different platforms so it can be applied in the clinic and/or integrated into

point-of-care platforms? (investigated in Chapter 5, 6 and 9)
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(iii) Is it possible to identify and filter out non-specific and not efficient reactions by looking
merely at amplification curves? In doing so, can amplification data be confidently used
from singleplex assays to reduce the laboratory testing of multiplex PCR assays and
develop high-level data-driven multiplexing assays in a time- and cost-effective manner?

(investigated in Chapter 7 and 8)

Data Analysis

Patient Clinical Sample | Genetic Material | Molecular Test | Results

Diagnostic Workflow

Figure 1.2: Example of a Molecular Diagnostic Pipeline. The horizontal blue arrow indicates the
conventional diagnosis workflow from patient to result, where the patient sample is collected from
different sources (e.g., nasopharyngeal swabs). Subsequently, nucleic acids are extracted, and the most
appropriate genetic test is developed. The first aim of this thesis is to develop novel bioinformatics
pipelines to increase the throughput of standard molecular tests (first vertical arrow). The test is
performed with the PCR instrument. The second aim is to develop better data analytic approaches
using machine learning algorithms to ensure reliable and accurate results (second vertical arrow).

1.4 Thesis Structure and Contribution

As described in Figure 1.3, this thesis is separated into ten chapters, taking the readers through
the journey of data-driven multiplexing. This Chapter 1 introduces PCR and the importance
of simultaneous detection of nucleic acids, plus the outline of hypothesis, objectives and re-
search questions. Chapter 2 gives technical insights into understanding multiplex PCR and the

algorithms used for the data-driven multiplexing approach.

The central technological aspect of this thesis, Part I, explains the discovery of the method

(Chapters 3-4), its use with isothermal chemistries (Chapter 5) and its clinical application
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(Chapter 6). Part II focuses on the optimisation of data-driven multiplexing (Chapter 7), the
How-To (Chapter 8) and other applications of intelligent assay design strategies (Chapter 9).

The structure of this thesis is depicted in 1.3 and a summary of each Chapter is as follows.

Chapter 1

Introduction

!

Chapter 2
4 N\
The Beauty of
Multiplexing
(N J
Part I l 1 l
( Chapter 3 Chapter 4 Chapter 5 )
Single-well & Single- High-level Towards Isothermal
channel Data-Driven Multiplexing using Data-driven
Multiplexing Artificial Intelligence Multiplexing
v
Chapter 6
Clinical Application of
the Data-driven
Multiplexing
\ & J
Part IT - < +
Chapter 7 Chapter 8 Chapter 9
. Smart-Plexer: Application of
Enhance Amplification pp.
Data Qualit a Tool to Develop Intelligent Assay
¥ Multiplex Assays Design Strategies
v
Chapter 10
( N\

Conclusion &

Future Perspective
(& J

Figure 1.3: Thesis Organisation
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1.4.1 Thesis Chapters

Chapter 2: The Beauty of Multiplexing

This Chapter reviews the history of multiplex PCR and its application in real-time PCR
and digital PCR instruments. An assessment of several multiplex PCR methodologies is pre-
sented, explaining previous and more novel data-driven approaches from both chemical and

hardware perspectives.
Part I: The Journey of Data-driven Multiplexing
Chapter 3: Single-well and Single-channel Data-Driven Multiplexing

This Chapter introduces a novel data-driven approach called Amplification Curve Analysis
(ACA) to perform single-well and single-channel multiplex PCR reactions. The multi-target
classification was achieved by leveraging the kinetic information of the amplification curve.
Here the first application of machine learning on the entire amplification curve data is used to

distinguish three different targets simultaneously.
Chapter 4: High-level Multiplexing using Artificial Intelligence

This Chapter extends the previous ACA method by exploring the use of melting curves to
perform a higher level of classification using nine different targets in a single-well and single-
channel multiplex PCR. In biological terms, the melting curves are related to the thermodynam-
ics of the amplification reaction; therefore, using both kinetic and thermodynamic information
it is possible to increase the complexity of the multiplex PCR assay, consequently detecting

more targets in a single test. This method is called Amplification and Melting Curve Analysis

(AMCA).
Chapter 5: Towards Isothermal Data-driven Multiplexing

In this Chapter, data-driven multiplexing is also applied to another kind of amplification
chemistry, such as isothermal. Loop-mediated isothermal amplification (LAMP) is used to

classify five different targets in a single-well and single-channel multiplex LAMP. This opens the
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future perspective of the approach for its use on machines which does not require thermocycling,

such as Point-of-Care devices.

Chapter 6: Clinical application of the Data-driven Multiplexing

This Chapter illustrates the clinical application of the AMCA method tackles the burden
of antimicrobial resistance screening in hospitals. A total of 253 clinical isolates from patients’
samples were screened in time and cost-effective manner coupling a novel 5-plex assay and
the data-driven multiplexing approach. In particular, this Chapter shows the success of the

first-ever application of the methods to clinical diagnostics.

Part II: Intelligent Algorithms to Optimise Data-driven Multiplexing

Chapter 7: Enhance Amplification Data Quality

The novel approaches depicted in the previous chapters were optimised by removing out-
liers from amplification events during multiplex PCR reactions. To validate the efficacy of the
approach, comparisons with melting curve data are conducted, leading to the finding that ther-
modynamic information is also contained in the sigmoidal shape of the amplification curves. The
Chapter outcome is a universal approach for removing non-specific and low-efficiency events,
which makes data-driven multiplexing more accurate when only amplification curves are gen-

erated.

Chapter 8: Smart-Plexer: A Tool to Develop Multiplexing Assays

To fully express the potential of data-driven multiplexing and spread over the vast scientific
community, a development pipeline for optimal multiplex assays is needed. This Chapter
explores the use of an intelligent algorithm called Smart-Plexer, that can generate optimal
primer set combinations for ACA approaches. The automation of this process is achieved by
a hybrid assay development, coupling laboratory testing and mathematical computation of

suitable multiplex assays for single-well and single-channel PCR reactions.

Chapter 9: Application of Intelligent Assay Design Strategies

This Chapter serves as a brief literature review of recent applications of novel assay design
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strategies for the application of PCR- and LAMP-based assays in different fields. Here are two
examples: (i) the application of LAMP assays for the detection of COVID-19 in Point-of-Care
devices; (ii) a novel approach to design PCR reaction for the translation of RNA signature, from
RNA sequencing, to a fast and cost-effective diagnostic test. This Chapter highlights the future
direction of this field and the ongoing research with insight into the benefits of incorporating

more sophisticated data-driven methods.






Chapter 2

The Beauty of Multiplexing

2.1 Chapter Overview

This Chapter provides to the reader an overview of the techniques used in the thesis. Here,
several fields are involved, and relevant concepts are explained. More specifically, the first
section is focused on the basics of Polymerase Chain Reaction (PCR) and the kinetics and
thermodynamics trends of amplification and melting curves, respectively. The following section
explains the computational part of PCR amplification, where bioinformatics tools are the focus.
PCR amplification is only possible when short sequences of single-stranded DNA called Primers
create a specific and efficient bond with the DNA/RNA target (or template). Knowing the
target sequence and an optimal area to design primers is one of the primary needs for successful
PCR assays. The following section is the core of the introduction: the fundamentals of multiplex
PCR. Moreover, a short review of current and novel techniques to perform multiplex assays is
presented for PCR and isothermal chemistries. The last section focuses on the basics of digital
PCR and its use for several applications, particularly for clinical diagnostics and infectious

diseases, which are also the case studies of this thesis.

To emphasise the interdisciplinarity of this work, Figure 2.1 illustrate the connections

between each field enclosed in the thesis.

11
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Healthcare

Molecular biology G » |I|| Data Science
Clinical | |% >—>—>\ @ Software

Medicine & "> y Bioinformatics

A
Diagnostics é

Figure 2.1: Thesis topics network within healthcare sector

2.2 Quantitative PCR

Nucleic Acid Amplification Tests (NAATS), such as Polymerase Chain Reaction (PCR), are the
fundamental procedures in life sciences research, bioengineering, and diagnostics. Introduced
in 1986 by Katy B. Mullis, PCR is an in-vitro technique capable of amplifying DNA or RNA,
generating millions of copies of a specific fragment from a minimum amount of starting material
[11]. As the name suggests, the driving force of PCR is the enzyme (Polymerase) that is capable
of chaining nucleotides and generating new identical molecules [18]. In molecular biology, this
process is coupled with a sequence of temperature cycles commonly repeated 20 to 50 times. The
cycling is needed to repetitively denature the DNA duplex at high temperature (typically 95°C),
hybridise two DNA oligonucleotides flanking the target sequence (primers) at a temperature
between 55°C to 65°C [19], and allow the Polymerase to copy the DNA template using the
primers as starting input. As Figure 2.2a shows, each cycle doubles the quantity of target
DNA molecules exponentially, and after n cycles, 2" copies can theoretically be created. Once
PCR reagents run out and accumulated PCR products self-anneal, the amplification process

saturates and hits a plateau, prohibiting any further amplification [20].

Real-time PCR uses a fluorescent readout to detect the amount of PCR product after each

round of amplification [22]. A typical real-time PCR amplification plot is a sigmoidal-shaped
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Figure 2.2: Principles of the polymerase chain reaction (PCR). (a) Each PCR cycle includes three steps:
(1) Denaturation of double-stranded DNA by heat; (2) Annealing of primers to their complementary
target DNA sequences; (3) Extension of primers by a thermostable DNA polymerase. A typical PCR
reaction is cycled 20-40 times. Each cycle can theoretically result in a doubling of the number of
molecules of the target sequence; (b) Different phases of a real-time PCR amplification plot on a
linear scale [21]

curve (on a linear scale) with a baseline phase, an exponential phase, and a linear phase that
approaches a plateau Figure 2.2b. The exponential phase of amplification is the most efficient,
and if the amplification efficiency is 100%, the amount of PCR products doubles with each
cycle. The relative quantification of a target to a calibrator is possible using real-time PCR.
When calibrated using a standard curve (made by the use of data from the exponential phase),
the procedure is quantitative or qPCR. This approach assumes that the sample and standard

amplification efficiencies are equal. Differences in PCR efficiencies can significantly affect the

quantification accuracy [23].
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Two main ways to add fluorescent labels into PCR are intercalating fluorescent dye and
fluorescent probe. Intercalating dyes (e.g., SYBR Green I) can bind to double-strand DNA
(dsDNA) non-specifically but are unable to bind single-strand DNA (ssDNA). Fluorescence is
emitted when the dye binds to dsDNA, and as the PCR cycling proceeds and dsDNA products
accumulate, fluorescent intensity proportionally increases [24]. On the other hand, fluorescent
probes are sequence-specific oligonucleotides with a fluorophore at the 5’-end and a quencher,
which can inhibit fluorophore emission at the 3’-end. During the DNA amplification, when
the Polymerase encounters the probe bound to the target, the exonuclease activity of Taq-
polymerase cuts the probe sequence releasing the fluorophore and the quencher in the solu-
tion. Fluorescence can now be emitted and accumulated in each amplification cycle when the

quencher’s inhibition is removed [25, 26].

2.2.1 The Amplification Curve from qPCR

The kinetic information of the PCR reaction is encoded in the resulting amplification curves,
and quality of a qPCR result [27]. As PCR is characterised by a series of cycles doubling the
starting DNA/RNA material, the exponential behaviour results in a sigmoidal signal, with the
horizontal axis being the PCR cycle number and the vertical axis the fluorescence intensity. The
most notable feature of the sigmoidal trend in PCR is the Cycle threshold (C;), representing
the intersection between an amplification curve and a threshold line [28]. The threshold line can
be arbitrarily set, but typically, it is placed between 10-20% of the final fluorescence intensity
(FFI) value as shown in Figure 2.3b. Many factors could potentially influence an amplification
curve’s C;, such as the target DNA’s initial concentration, the reaction’s efficiency and the

presence of inhibitory agents [23, 29].

It is essential to mention that many efforts have been put into understanding the kinetics of
the amplification curves, and researchers have explored mainly how to extract the most crucial
feature from the sigmoidal trend. However, little research has explored the full use of such
features [20, 30, 31], and therefore the primary aim of the thesis is to move away from the old

concept of PCR as a binary signal and explore in-depth the full use of amplification data.
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Figure 2.3: The Amplification Curve. Illustration of several replicates of a specific target Amplification
Curve in real-time PCR. The orange segmented line indicates the threshold line set at 10% of the FFI
value (segmented green line). The C; is indicated with a blue dot.

2.2.2 The Melting Curve from qPCR using Intercalating Dyes

Melting Curve Analysis involves the assessment of the disassociation characteristics of the DNA
strand during heating. It can only be performed with real-time PCR detection technologies
using intercalating fluorescent dyes. During the denaturation stage in PCR, the various DNA
templates denature at different temperatures. The relation between fluorescence and temper-
ature during the melting step is represented by a bell-shaped graph. As shown in Figure 2.4,
the melting temperature (T,,) is the temperature at which half the DNA strands are in the
denatured (single-stranded) state [32]. Melting curve analysis is used to identify the targets and
to indicate if a reaction is specific to a particular target [33]. The DNA hydrogen bonds rules
this behaviour; the A-T pair has two hydrogen bonds, while the C-G pair has three hydrogen
bonds; therefore, the temperature required to break C-G bounds is higher, resulting in a later
temperature peak [7]. It is important to note that other factors can contribute to modifying the
melting curves and their relative peaks, such as secondary structures or nucleotide variations

in the amplified regions [34].

In traditional PCR, intercalating dyes bind to any dsDNA; thus, the amplification curve
cannot clearly determine which targets are being amplified. Melting curves are often used to
validate the identification of the amplified targets. The ability to distinguish between targets
by their specific melting peak allows melting curve analysis to be used as a gold standard

validation for multi-target detection. However, melting curve analysis is not always accessible,
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Figure 2.4: The Melting Curve. Illustration of several replicates of a specific target Melting Curve in
real-time PCR using intercalating dyes. The black segmented line indicates the Melting Peak of the
curve.

especially in Point-of-Care devices, or amplification chemistries such as TagMan. This further

motivates this work as one of the aims of the thesis is the use of amplification curves to identify

multiple targets in a single channel without using melting curve analysis.

2.3 Bioinformatics in PCR Assay Development

A 2008 study from A.L. Robertson et al., underlies the lack of bioinformatics knowledge in
undergraduate students negatively impact the experiment performance of PCR due to inap-
propriate primer design and evaluation of annealing temperature of PCR cycling [35]. Under-
standing primer quality, directionality, and specificity through bioinformatics tools are crucial
to PCR assay design, defining its success or failure. Database analysis is vital for accurate DNA
detection during the assay design process. Defining boundaries between sequences that have
to be detected (inclusivity) and sequences that are not relevant for the PCR test (exclusivity)
are significant challenges in the development of primer sets [36]. To give a concrete example,
human genomes are 99.9% similar to each others. Even though they are entirely different or-
ganisms, human genetic makeup scores over 60% similarity with the genome of a banana [37].
Designing an assay to identify human genomes using PCR primers, attaching random positions
of the human genome, has a 60% chance of detecting the genome of a banana as well. This fun

fact highlights the importance of exclusivity and the need for bioinformatics pipelines capable
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of analysing several genomes from different species to ensure that the PCR primers specifically
bind to the desired target (in this case, human genomes). Moreover, PCR is also used to detect
single-base variation among organisms of the same species, called Single Nucleotide Polymor-
phism (SNP). During the COVID-19 pandemic, massive efforts in researching viral variants of
the Severe Acute Syndrome Coronavirus 2 (SARS-CoV-2) have been made to tackle the boost
in virulence and lethality capability of the SARS-CoV-2 variants. This behaviour was possible
by changing a single nucleotide in the entire genomic sequence coding for the spike protein on
the virus surface (1 out of 29,903 nucleotides). Detecting such variation is crucial for the surveil-
lance and infection control of COVID-19 [38]. Identifying SNPs across SARS-CoV-2 genomes
is possible by comparing millions of sequences and using tailored designed PCR primers on a
set of inclusive genomes (specific for the desired variant) is likely to detect circulating variants

in communities [39].

2.3.1 Nucleotide Sequence Databases

Biological data, such as DNA or RNA nucleotide sequences, are stored in databases and avail-
able to the public. One of the fastest growing repositories of known nucleotide sequences is
GeneBank (Genetic Sequence Databank) from the National Center for Biotechnology Infor-
mation (NCBI) [40], along with other important bioinformatics databases such as the EMBL
(European Molecular Biology Laboratory) [41], GISAID (Global Initiative on Sharing Avian In-
fluenza Data) [42], GOLD (Genomes Online Database at the University of Illinois) [43], dbSNP
(Database of Single Nucleotide Polymorphisms) [44], CARD (Comprehensive Antibiotic Resis-
tance Database), PATRIC (Pathosystems Resource Integration Center) [45] and many more.
The most common nucleotide sequences file format used in these databases is the FASTA for-
mat, which is text-based for representing either nucleotide sequence in single letters. The first
line in a FASTA file starts with a ”>" (greater-than) symbol where the name of the sequence

is stored, followed by the genomic sequences in the next line [46].

Usually, databases contain several thousands of sequences of the same organism, and a

species can be an object of several studies from different groups around the globe. For example,
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the simplest way to compare two sequences is to calculate the number of matching symbols
after alignment. The value that measures the degree of sequence similarity is the alignment
score of two sequences. In bioinformatics, the Basic Local Alignment Search Tool (BLAST) is
the most common algorithm and program used for comparing biological sequence information
and detecting similarities between them [47]. As shown in Figure 2.5, to ensure that the
sequence coverage is high across genomes or genes of the same species worldwide, it is essential
to perform a multiple sequence alignment (MSA) of the retrieved sequences from the BLAST
search [48]. Web tools such as Clustal Omega [49] or software like Geneious Prime (Biomatters
Ltd) compute rapid and efficient MSA. In this thesis, MSA are heuristic-based aligners, meaning
that a local alignment search is used to operate faster than optimal or exact methods (which,
in the case of large sequences, can require a lot of computational power). Identifying the most
conserved region across genomes or genes of a target species is the foundation for the following

step of assay design: Primer Design.
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Figure 2.5: Primer Design Coverage. On the left, the GENFEious visualisation of a multiple sequence
alignment (MSA) with high similarity among different entries of the target DNA (i.e. a bacterial or
human genome). The Assay is shown on the top of the graph, with the arrows indicating the direction
of the primers. Here it can be observed that the higher similarity makes it simple to design a primer
keeping high coverage. On the right, the GENEious visualisation of MSA with lower similarity among
different entries. Inclusivity of the PCR (TagMan) assay has to be ensured by designing primers
in more conserved regions, avoiding as many mismatches as possible (coloured DNA bases indicate
mismatches).
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2.3.2 Primer Design

Primer Design is the critical step in developing PCR assays as the correct strategy in choosing
primer sets can minimise troubleshooting by avoiding lengthy and costly laboratory testing and
ensure that the PCR reaction works efficiently in a sensitive and specific manner. Primers are
short sequences of ssDNA that bind specifically to the template DNA, seeding the Polymerase
to initiate the amplification event. The terms primers or primer set or assay, or singleplex,
are all indicating the composition of the PCR assay. Two primers are required during the
amplification reaction, one called forward and the other reverse, as they bind to both leader

and lagging DNA strands, respectively.

A primer is a short synthetic oligonucleotide which is used in PCR and other techniques
such as sequencing. These primers are designed to have a sequence which is the reverse com-
plement of a region of template or target DNA to which the primer has to anneal. When
designing primers for PCR, bioinformatics analysis is necessary to make predictions about the

performance of the primers, for parameter such as:

Primer and sequence target GC content (%)

e Primer and sequence target Length (nt)

e maximum and minimum primer T,,

e maximum and minimum primer 3’ clamp

e maximum and minimum primer hairpin T,,

e maximum and minimum primer cross-dimer T,
Several programs (i.e. primer3 [50]) will perform these calculations on any primer sequence
or pair. The Success of primer design is fundamental to develop efficient and highly sensitive
assay. Another important aspect is to ensure that the designed primers do not present cross-

reactivity with undesired organisms. This can be evaluated by a primer BLAST search [51].

When cross-reactivity is a concern, it is import to fine-tune the primer design by targeting only
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conserved regions for the inclusive targets or target regions where the exclusive species exhibit
a low similarity score compared to the binding region of the primer (hence high presence of

mismatches between undesired targets and primer binding sites).

2.4 Fundamentals of Multiplex PCR

In the previous section, biological process and the bioinformatics are described to design PCR
assays. The next complexity level in the hierarchy of qPCR is the design of Multiplex PCR.
Multiplexing expands the PCR capabilities, allowing multi-target detection simultaneously [52,
53].  As shown in Figure 1.1, multiplex PCR provides a practical solution for nucleic acid
detection in a single reaction, reducing the time, cost, and amount of the sample required at
the expense of technical complexity. In many clinical applications, it is important to detect
several DNA targets simultaneously and in one reaction, reducing the sample consumption, the
time and the cost of the reaction. Furthermore, because dozens of different pathogens can be
responsible for similar clinical manifestations, their concomitant detection in limited amounts

of patient samples can be both an important diagnostic endpoint and a technical challenge [54].

Multiplexing can be achieved through several strategies, such as spatial approaches, probe-
based methods or melting curve analysis. Spatial techniques, i.e. leveraging microfluidics sys-
tems, segregate PCR reactions in many compartments, allowing for parallel amplification and
identification of different targets location-based. Probe-based approaches rely on fluorophores
with varying emission wavelengths [55]. Additional optical enables target identification through
a specific colour-sequence mapping. As long as the emission wavelengths of the different probes
do not overlap, the number of target genes for concurrent detection is theoretically unlimited.
However, both approaches present several limitations. On the one hand, spatial multiplexing
requires multiple reactions of the same sample, consuming a high quantity of reagents and
samples. On the other hand, multiplexing with probe-based approaches is expensive as uncom-
monly used fluorophore (e.g. Cy5.5) can double the price of the assay compared to a standard

fluorophore (e.g. FAM) [52, 56]. Instead, melting curve analysis represents a simplified optical
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detection system using a single intercalating dye. The melting step is performed after the PCR
thermocycling. If multiple targets are present, the melting peak T,,s are the differentiation
factor as each represents a target as shown in Figure 2.6. However, because T,, ranges are
limited, and close melting curves may be challenging to discern, primer design becomes more
complex, plus nucleotide sequence becomes a limiting factor for primer location (highlighted
grey area in Figure 2.6) [57, 58]. This highlights the need to develop novel techniques to achieve

rapid and cost-effective multiplexing solutions, which is the main aim of this thesis.
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Figure 2.6: Multiplexing Melting Curves. Illustration of five targets’ specific Melting Curve in real-
time PCR using intercalating dyes. The highlighted area represents the temperature where melting
curves overlap.

2.5 Machine Learning for Multiple Nucleic Acids Detec-

tion

Machine learning (ML), which relies on the confluence of statistics and computer science, as
well as the basis of data science and artificial intelligence (Al), is currently one of the fastest
growing fields widely used in research, innovative technology, and nearly every facet of human
society [59]. This thesis is an example of applying novel machine learning and signal processing
approaches for biochemical data to improve their throughput, analysis and interpretation. A
regular job in machine learning is researching and developing algorithms (models) that can
learn and predict data [60]. ML algorithms require a training or learning dataset, which is

utilised to fit the model. The testing or validation dataset is then predicted using the fitted
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model. By using a separate testing or validation dataset to evaluate the model’s performance
while modifying its parameters, we can obtain an unbiased evaluation of the model that is
not biased towards the training data, and estimate its generalization error to ensure that it
can perform well on new, unseen data [60]. In general, parameters of a model are modified
based on the training dataset. The validation dataset is then used to evaluate the performance
of the model during the training process, and to determine when to stop training in order to
avoid overfitting. The testing dataset is used to assess the final performance of the model after

training is completed and the parameters are fixed.

It is important to note that the testing dataset should not be used to modify the param-
eters of the model, as this would introduce bias and invalidate the assessment of the model’s
performance on new, unseen data. Instead, the testing dataset should be used solely for evalu-
ation purposes, and the parameters of the model should be fixed based on the results from the

validation dataset.

Machine learning algorithms are divided into two categories: supervised and unsupervised
learning. The task of learning a function that maps an input to an output based on example
input-output pairs is known as supervised learning. This necessitates ”labelled” datasets, in
which the desired result is ascribed to each input data point. Support vector machines (SVM),
the k-nearest neighbour (KNN) technique, linear /logistic regression, neural networks, and other
supervised machine learning algorithms will be investigated throughout this study [61]. While
supervised learning relies on labeled data to train a model to predict outcomes, unsupervised
learning involves finding patterns and structures in data without prior knowledge of the out-
come or labels. This allows for the emergence of self-organization and the capturing of patterns
through neuronal predilections or probability densities, enabling a deeper understanding of the
underlying data distribution. Although the thesis focuses mainly on supervised learning algo-
rithms, standard unsupervised methods such as K-Means clustering and principal component

analysis (PCA) will also be considered [62].

The use of Al ("software” or data-driven solutions) to extract information from amplifica-

tion reactions has been relatively unexplored, particularly about the sigmoidal trend of PCR
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reactions. The majority of the scientific community still relies on rudimentary data processing
methods, as the PCR signal is mainly used for binary identification of the positive or negative
presence of a single target nucleic acid. As a result, valuable information — present in most
molecular platforms — that could be used to enhance PCR performance is discarded, com-
promising time, overall cost and patient outcomes. However, much progress has been made
recently at the intersection of ML and molecular biology to leverage information in amplifica-
tion and melting curves for accurately classifying multiple DNA targets in a single reaction. Al
using amplification and melting curves or isothermal chemistries leads to improved molecular
diagnostic assays without the need to change hardware or reaction chemistry. Therefore, the
following sub-sections describe those advances with a particular focus on data-driven solutions

to increase the multiplexing capabilities of diagnostic instruments.

2.5.1 Coupling Melting Curve Multiplexing with AI

The analytical process to extract information from melting curves influences has seen gradual
improvement over the years which includes several steps: (i) background fluorescence subtrac-
tion and normalisation; (ii) curve overlay, a “temperature shifting” of curves that allows cor-
rection of minor temperature errors between samples and experiments; (iii) variant clustering,
using hierarchical clustering algorithms; (iv) computation of dissimilarity plots, fluorescence
subtraction in each variant cluster from the average fluorescence of a reference cluster; (v)
computation of negative first derivative plots of normalised melting data using Savitzky-Golay

polynomial estimation [63, 64].

In 2011 Dwight et al propose for the first time an algorithm to in-silico predict melting
curves: uMELT [65]. The uMELT algorithm is a method for predicting the melting tempera-
ture (Tm) and melting curve shape of DNA or RNA sequences. It is a widely used and accurate
method for predicting the effects of single nucleotide polymorphisms (SNPs), mutations, and
other sequence variations on the Tm and melting curve of nucleic acids. The uMELT algorithm
is based on the thermodynamics of DNA or RNA melting, where the temperature at which the

double-stranded DNA or RNA molecule becomes single-stranded is called the melting temper-
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ature (Tm). The Tm is affected by various factors such as sequence composition, length, GC
content, and salt concentration. The uMELT algorithm takes into account all these factors and
predicts the Tm and melting curve shape of a given nucleic acid sequence. The algorithm uses

nearest-neighbor thermodynamic parameters to calculate the Tm and melting curve shape.

Classifying several melting curves to recognise specific nucleotide sequences in multi-target
test benefits from using ML algorithms. Athamanolap et al. generated melting curves related to
a fragment of the capsule polysaccharide synthesis (cps) gene locus of 92 serotypes of Streptococ-
cus pneumonia in-silico. They trained an ensemble of linear kernel SVM algorithm, resulting
in an average classification accuracy of 99.9% [65]. In-vitro validation of the algorithm was
performed using sequence variants of a cancer-related gene, scoring 100% accuracy with three
training data points per variant. In the following work, the same team generated an exper-
imental library of melting curves of long amplicons (> 1000 bp) related to the 16S gene of
37 microorganisms. Training a nested SVM classifier, the group obtained high accuracy with
bacterial isolates but a limited classification performance on clinical samples [66]. Lastly, Con-
volutional Neural Networks (CNN) were used to classify high resolution melting (HRMC) data

converted into images through recurrence plots [67].

2.5.2 Coupling Amplification Curve Multiplexing with Al

As discussed before, the most commonly considered feature of a sigmoidal signal of the ampli-
fication reaction present is the C;, the value at which the fluorescence of PCR products reaches
a specific threshold, indicating a positive presence of the target nucleic acid. Another widely
used feature of the amplification curve is Final Fluorescence Intensity (FFI). In 2019 Rajagopal
et al. engineered the PCR endpoint signal intensity (or FFI) by changing the probe concentra-
tion to perform multiplex PCR with a single fluorescent [68]. The method’s success resulted
in the High Definition PCR (HDPCR) breakthrough and is now commercialised by the molec-
ular diagnostics company ChromaCode (Carlsbad, USA). Similarly, Lee et al. have devised
a technique called MuDT (Multiple Detection Temperatures), which enables the detection of

two targets simultaneously in a single fluorescent channel by using only the amplification signal
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[69]. MuDT relies on the Tagging Oligonucleotide Cleavage and Extension (TOCE) technique,
where indirect temperature-dependent signals are generated at each cycle through two oligonu-
cleotide probes, namely the Pitcher and the Catcher. By designing Extender and Catcher
sequences with specific T,,, this fluorescence signal can be measured during a temperature-
specific detection phase at the end of each annealing step, enabling real-time duplex detection

and quantification (using the Ct value) as well as resolution of co-amplification events.

The previously described technique has great potential in the scalability of multiplexing.
However, developing such tailored chemistries is not always achievable in a timely and cost-
effective manner. In addition, using a single data point, such as FFI, reduces the value of the
entire amplification curve signal. More features can be extracted from the sigmoidal trend,
such as the background fluorescence (or the fluorescence at the start of the reaction) or the
intersection of a line tangent to the curve at the first derivative with the baseline-subtracted
signal level [15]. In 2019 Rodriguez-Manzano et al. simultaneously used those parameters to
develop the Multi-dimensional Standard Curves (MSCs) in a 4plex single-channel PCR assay,
leveraging multiple physical features of the reaction in a shared analytics framework and identi-
fying non-specific amplification events (outlier removal) improving DNA quantification quality
[16]. This work provided an affordable solution to maximise the amount of information ex-
tracted using a ML algorithm coupled with conventional PCR instruments, requiring minimum
assay optimisation and no hardware modification. Moving in this direction, the work in this
thesis aims to optimise such techniques further to extend the level of multiplexing, providing

an effective way to develop and perform Data-driven Multiplexing.

2.6 Beyond qPCR: Isothermal Amplification

Apart from gold-standard PCR methods, DNA detection can also be performed without a
thermocycler using isothermal chemistries as Loop-mediated isothermal amplification (LAMP),
introduced in 2000 by Notomi et al. [70]. In contrast with PCR, LAMP relies on forming a

dumbbell structure using a strand displacing DNA polymerase (e.g. Bacillus stearothermophilus
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DNA polymerase or Bst), which has multiple sites for initiation of synthesis, resulting in expo-
nential amplification. The reaction mix contains target DNA and four sets of primers defined
as the forward outer primer (F3), backward outer primer (B3), forward inner primer (FIP,
with Flc and F2 fragments) and backward inner primer (BIP, with Blc and B2 fragments)
[70]. As Figure 2.7 shows, the reaction starts with strand invasion from the F2 part of the
forward primer FIP, complementary to the F2c region, and the Bst initiates the synthesis. It
is noticeable that the 5’-end of the FIP remains overhanging as it is complementary to the
Flc region (it will be explained later in the loop structure). Now the forward outer primer F3
bind to the F3c region with the only purpose of dissociating the newly formed ssDNA created.
This process is repeated using the BIP primer, and after strand dissociation, carried by the
B3 primer, the first LAMP product (or amplicon) is formed. The reverse complementary F1
directly hybridise with the Flc sequence comprising a loop structure. The same happens with
the B1 and Blec, creating the dumbbell structure. From now on, all primers can bind to gen-
erate more products. To enhance the efficiency of product formation and amplification speed,
loop primers can be designed for the LAMP assay [71]. Finally, the structure that the LAMP
reaction formed can be detected through fluorescence emission using intercalating dyes when

the target DNA is present.

This nucleic acid amplification method offers a rapid, accurate, and easy-to-use diagnosis
of infectious diseases, especially in limited-resource settings. For this reason, LAMP has become
extremely popular as it requires simpler instrumentation [72]. One of the thesis objectives is
to demonstrate the application of Data-driven methodology for multiplexing using isothermal

methods such as LAMP.

2.7 Fundamentals of Digital PCR

Using data-driven approaches, especially when ML algorithms are involved, can represent a
challenge if more than available data is needed to train ML models. Conventional qPCR in-

struments usually have low throughput as only a few reactions can be performed, and obtaining
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Figure 2.7: The Loop-Mediated Isothermal Amplification (LAMP) Reaction. LAMP uses 4-6 primers
recognizing 6-8 distinct regions of target DNA. A strand-displacing DNA polymerase initiates synthesis
and 2 of the primers form loop structures to facilitate subsequent rounds of amplification.

more data points is time and resource-consuming. Digital PCR allows the sample and the PCR
reaction to be divided into numerous distinct PCR sub-reactions, with each partition containing
either a few or no target sequences Figure 2.8. Moreover, dPCR enables absolute quantification
of target nucleic acids by counting the single-molecule positive reactions, overcoming the limita-
tions of qPCR [73, 74]. Amplification-positive wells are utilised to quantify the target sequence
concentration using Poisson’s statistics with a statistically determined precision [75, 76]. Sam-
ple partitioning, it turns out, effectively concentrates the target sequences within the isolated
microreactors. Because of the concentration effect, template competition is reduced, allowing
rare mutations to be detected in the background of wild-type sequences. It may also qualify

for a more robust tolerance to inhibitors found in food [21].

It is important to note that the partitions can be created using a number of different
mechanisms, such as emulsified microdroplets suspended in oil (droplet digital PCR, ddPCR),

microwells, or microfluidic valving [77]. Amplification of target sequences can be detected by
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Figure 2.8: Principles of digital PCR. The sample is divided into many independent partitions such
that each contains either a few or no target sequences. The distribution of target sequences in the
partitions can be approximated with a Poisson’s distribution. Each partition acts as an individual
PCR microreactor, and partitions containing amplified target sequences are detected by fluorescence.
The ratio of positive partitions (presence of fluorescence) over the total number allows for determining
the concentration of the target in the sample [21].

endpoint fluorescence, and some machines also provide real-time fluorescence data. Unlike
qPCR, dPCR back-calculates the target concentration using the number of positive partitions
over the total available. This means that, unlike gPCR, dPCR does not need a calibration curve
for sample quantification. The underlying accuracy and performance characteristics of dPCR
quantification are formally defined by binomial statistics [78]. Typically, the confidence interval
is derived using functions that may be calculated immediately. These forecasts are based on
assumptions that have direct implications for the estimates. To calculate the probability p of
a partition containing at least one target sequence, the case of the random distribution of m
molecules into n partitions has to be considered. This situation is equivalent to a binomial

behaviour where the outcome of each drawing can be present or absent (m times):

The chance of a target sequence being present in a partition is % because it results from

random or independent events.

The probability p is the complementary chance of the partition to be empty after the m

target sequences are distributed.

A partition has m chances to receive one target sequence.

The possibility for a partition to be empty is then 1 — % after one draw and (1 — %)m

after m attempts.
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e The probability is then equal to p =1 — (1 — %)m

1

e When n is large (then - is very small), the probability of p can be approximated to

pzl—e*)‘where)\:%

This formula defines the probability function of a Poisson distribution with the parameter
lambda. When the average number of occurrences () is known, the Poisson distribution ex-
plains the probability distribution of independent events. The fraction of partitions containing
a given number of target sequences is predicted by the Poisson distribution. On the other
hand, knowing the distribution allows you to calculate the average number of target sequences
in the sample. Nonetheless, the ratio of positive partitions k (including some target sequences)
to total partitions n is sufficient to forecast the target sequence’s starting concentration in the

sample with:

A=1In (1 - %) (2.1)

The confidence interval in estimating the target concentration depends on the number
of empty partitions. It is typically assessed using functions that can be directly calculated,
for example, using Wald or Wilson methods [79, 80]. Those estimations suggest that there is
a value of A for which the initial template concentration can be estimated with the highest
confidence. In cases of 10,000 or more partitions, the maximal confidence is obtained for a A
value of about 1.6, which corresponds to a proportion of 20% of empty partitions Figure 2.9.
As noted previously, the precision is poor for low values of A, reaching an optimal for a A of
1.6 before slowly declining with increasing values of A, which corresponds to a saturation of the
partitions. The accuracy of the estimation of A rises with the number of partitions, and the

optimal precision (at A = 1.6) scales as the inverse square root of the number of partitions.

All these assumptions drive us to explore the potential of dPCR as a research method for
“digital” biology and chemistry where detecting single biological entities such as molecules are
made possible. Spatial compartmentalisation, which entails splitting a solution or suspension

of entities into various subunits, plays a crucial function in this context. Low ratios of biological
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Figure 2.9: Quantification accuracy of dPCR. The precision of dPCR is non-uniform and depends
on the average occupancy of the target sequence per partition. The precision of dPCR also increases
with an increasing number of partitions (distinct colours). The inset shows that the evolution of the
relative uncertainty (taken at A ~ 1.6) decays as an inverted square root of the number of partitions
[21].

entities to reaction compartments allow single entities to be captured per compartment [10].
Poisson statistics are often helpful in this regard. Microfluidics is essential for constructing and
manipulating small fluidic chambers that hold a single biological sample. Microfluidic large-
scale integration (LSI) is a technology broadly used for studying single cells and molecules, and
it is currently used in digital PCR instruments [81, 82]. Using multilayer soft-lithography, it
uses pneumatic valves that are monolithically generated in the silicone elastomer polydimethyl-
siloxane (PDMS). The compartmentalisation of a sample is achieved by an array of binary valve

patterns that, when closed, can partition a network of microfluidic channels into several sections

21, 83].

For dPCR, it is possible to achieve both singleplex and multiplex assaying, as each target-
containing well proceeds with the amplification process only with their specific primers, and no
reaction will occur in wells without targeted DNA molecules if the single molecule occupancy is
maintained. This allows high and low-abundance targets to be evaluated in a single experiment

without being concerned about highly concentrated targets “swamping out” the lower ones
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73, 83)].

2.8 Chapter Summary and Reflection

In summary, this Chapter reviewed the basics of DNA detection with a significant focus on
PCR. The knowledge and understanding of the biological process and bioinformatics tools to
design optimal PCR assay is the arsenal needed to proceed to more complex assay designs such
as multiplex PCR and isothermal (LAMP). In section 2.5, Machine Learning concepts have
also been introduced, which are the cardines of the data-driven multiplexing method exposed
in this thesis. The literature review in paragraphs 2.5.1 and 2.5.2 highlights the gaps regarding
PCR data usage to leverage the information encoded in the amplification and melting curve.
Integration machine learning algorithm it is crucial to fill this gap and optimise the use of data

to enhance diagnostic capabilities of state-of-the-art PCR or Point-of-Care instruments.
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Chapter 3

Single-well & Single-channel
Data-Driven Multiplexing

3.1 Chapter Overview

Polymerase Chain Reaction (PCR) has been used as the gold standard to identify the presence
or absence of a specific target nucleic acid. However, this binary usage of the PCR (posi-
tive/negative) neglects the true potential of this powerful technique by discarding the kinetic
information contained in this sigmoidal signal. This Chapter demonstrates that the large vol-
ume of raw data obtained from real-time digital PCR (qdPCR) instruments can be exploited to
perform data-driven multiplexing in a single fluorescent channel using machine learning meth-
ods by virtue of the information in the amplification curve. This new approach, referred to
as amplification curve analysis (ACA), by using an intercalating dye (EvaGreen), reduces the
cost and complexity of the assay, and enables the use of melting curve analysis for valida-
tion. As a case study, three carbapenem-resistant genes are multiplexed in a single reaction,
targeting global challenges such as antimicrobial resistance. In the presence of single targets,
a classification accuracy of 99.1% (N = 16, 188) is reported, representing a 19.7% increase
compared to multiplexing based on the final fluorescent intensity. Considering all combina-
tions of amplification events (including co-amplifications), the accuracy was 92.9%. To support
the analysis, a formula to estimate co-amplification occurrence in dPCR based on multivari-

ate Poisson statistics is derived, suggesting that reducing the dPCR occupancy improves the

33
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digital count when multiple targets in the same digital panel are present. The ACA approach
takes a step towards maximising the capabilities of existing real-time dPCR instruments and
chemistries by extracting more information from data to enable data-driven multiplexing with
high accuracy. Furthermore, combining this method with existing probe-based assays will in-
crease multiplexing capabilities significantly and facilitate the implementation of amplification

chemistries outside the lab.

The concepts in this Chapter resulted in the following journal article and patent application:

e Moniri A*, Miglietta L*, Malpartida-Cardenas K, Pennisi I, Moser N, Holmes A, Georgiou
P, Rodriguez-Manzano J. “Amplification Curve Analysis: Data-Driven Multiplexing Us-
ing Real-Time Digital PCR.” ACS Analytical Chemistry, 2020 Oct 6;92(19):13134-13143.

*First joint authorship.

e Rodriguez-Manzano J, Moniri A, Miglietta L and Georgiou P. “Identifying a target nucleic
acid”, W0O2022038279A1, Assignee: Imperial Innovations Limited, 2020.

3.2 Introduction

Digital PCR (dPCR) is a well-established method to detect and quantify nucleic acid [73, 84].
It is based on the amplification of single target DNA /RNA molecules in many separate reaction
wells. This approach offers several advantages over conventional real-time PCR (qPCR), such
as: (i) lack of references or standards; (ii) high precision in quantification; (iii) tolerance to
inhibitors; and (iv) the capability to analyse complex mixtures [21, 85, 86]. Therefore, dPCR
has enabled scientific breakthroughs in cancer biomarker discovery, genetic alterations and

infectious diseases, among others [87, 88, 89].

As the need for high throughput analysis of multiple targets continues to escalate, several
approaches have been proposed to simultaneously detect and quantify multiple nucleic acids.
Currently, most multiplex dPCR assays rely on the use of fluorescent probes (e.g. TagMan),
such that the probe concentration can be optimised to distinguish between the targets using
the final fluorescent intensity (FFI) [68]. However, probes are expensive and require time-
consuming optimization [90]. In an effort to achieve similar multiplexing capabilities, dye-

based approaches (e.g. EvaGreen) have also been proposed which alter primer concentration
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in order to change the PCR efficiency and impact the FFI [91]. The aforementioned methods
require extensive optimization to achieve accurate multiplexing without compromising assay
performance. Current methods rely on the FFI only and there has been no report of alternative

methods such as analysing the entire amplification curve in real-time dPCR.

Recently, in qPCR it was shown that sufficient information exists within the amplifica-
tion curve so as to distinguish several targets using multidimensional standard curves [16, 15].
However, since the volume of data from qPCR is limited (< 10? reactions per experiment),
explicit features of the amplification curve were extracted to perform reliable multiplexing in a
single-channel. In this study, machine learning models and multiplex qdPCR outputs are com-
bined , to prove that sufficient kinetic information exists in the amplification curve to perform
data-driven multiplexing - referred to as amplification curve analysis (ACA). Melting curve
analysis (MCA) were used as the ’gold standard’ method to assess the performance of the
proposed approach, as illustrated in the experimental workflow depicted in Figure 3.1. Taking
advantage of the large volume of raw data extracted from real-time dPCR (> 10* reactions
per experiment) and the high likelihood of single-molecule events, a machine learning model
is developed without explicitly extracting features of the amplification curve or compromising
the assay performance (by modifying probe or primer concentration). Moreover, normalisation
of the FFI is performed, showing that this method can be combined with current approaches
for dAPCR multiplexing - breaking the barrier of one target for each level of FFI (in a given
fluorescent channel). Finally, a theoretical derivation for the likelihood of multiple targets in a
single well (i.e. co-amplification) is provided to understand the effect of this phenomenon on

quantification and multiplexing.

As a clinically relevant application, this methodology is applied to the global challenge of
antimicrobial resistance [92]. In particular, the carbapenemases are the focus. Carbapenemases
are -lactamases (bla) that are resistant to the carbapenems, a class of highly effective antibiotic
agents [93]. Therefore, a multiplex assay is developed for the detection of three common

carbapenem-resistant genes, namely blaxpwm, blayny and blaxpc.

The vision for this work is three-fold: (1) maximise the capabilities of existing instruments
and chemistries by extracting more information from the data that already exists; (2) combine
this approach with existing probe-based methods to increase multiplexing capabilities signifi-

cantly; and (3) translate this methodology to isothermal chemistries and emerging point-of-care
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PCR Reagents Real-Time Digital PCR Data Extraction Melting Curve Analysis
-dF/dT 4

Temperature

Amplification Curve Analysis

@ Intercalating Dye

Cycles

Figure 3.1: Experimental workflow. A multiplex PCR assay (with an intercalating dye) is developed for
detecting targets A, B and C. Real-time digital PCR is used to perform single-molecule amplification
to detect the targets. Melting curve analysis is used to validate the specificity of the amplification
product. The output of real-time dPCR is a sequence of images, from which the time-series of the
amplification and melting curves can be extracted. Subsequently, supervised machine learning using
the amplification curves, referred to as amplification curve analysis, can be used to distinguish the
targets, and melting curve analysis can be used to evaluate the performance.

technologies to facilitate the implementation of dPCR outside of the lab.

3.3 Experimental Section

3.3.1 DNA Templates

Double-stranded synthetic DNA (gBlock™ Gene fragments) containing blanpy, blaymy and
blakpc gene sequences (ranging from 801 to 917 bp) is used. The sequences of these genes
were downloaded from the NCBI GenBank with accession numbers of NC_023908, NC_023274
and NC_014312 for blaxpm, blayvny and blakpc, respectively. These genes belong to the class B
metalloenzymes encoding blanpy and blaymy, plus the class A carbapenemases encoding blakpc
type. They were purchased from Life Technologies (ThermoFisher Scientific) and re-suspended
in Tris-EDTA buffer to 10ng/pL stock solutions (stored at —80°C until further use). The
concentrations of all DNA stock solutions were determined using a Qubit 3.0 fluorimeter (Life

Technologies).
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Table 3.1: Primer Specification

Target Primer  Sequence Amplicon
Name (5= 3") size (bp)

blaxpyy NDM-F  CACACCAGTGACAATATCACCGTTG 85
NDM-R ACTTGGCCTTGCTGTCCTTGAT

blaypy  VIM-F ~ CTTCGGTCCAGTAGAACTCT 258
VIM-R  GTGTGCTTGAGCAAGTCT
blakpc KPC-F  TCGAACAGGACTTTGGCG 202

KPC-R  GGAACCAGCGCATTTTTGC
Primers have been developed in this study [97].

3.3.2 PCR Primer Design

Primers for the multiplex assay were designed to target the aforementioned referenced se-
quences. For each gene of interest, 1,000 sequences were retrieved from NCBI blast (in-silico),
to identify all the possible inclusive targets and exclude potential cross-reactivity sequences.
Alignments were performed using the MUSCLE algorithm [94], in Geneious Prime® 2020.1.2
[95]. Primer characteristics were analysed through the IDT OligoAnalyzer software using the
J.SantaLucia thermodynamic table for melting temperature (T,,) evaluation, hairpin, self-dimer
and cross-primer formation [96]. The T,, of the amplification product of each primer set was
determined by the Melting Curve Predictions Software (uMELT) package [65]. All primers
were synthesised by Life Technologies (ThermoFisher Scientific). Primer sequences are listed

in Table 3.1.

3.3.3 PCR Reaction Conditions

Real-time PCR. Each amplification reaction was performed in 10 pL of final volume with 5 nL
of SsoFast EvaGreen Supermix with Low ROX (6-Carboxyl-X-Rhodamine) (BioRad, UK),
3pL of PCR grade water, 1l of 10x multiplex PCR primer mixture containing the three
primer sets (5 pM of each primer), and 1L of different concentrations of synthetic DNA. PCR
amplifications consisted of 10 min at 95 °C, followed by 45 cycles at 95°C for 20s, 65 °C for 45s,
and 72°C for 30s. In order to validate the proposed method, the results were compared against
melting curve analysis. One melting cycle was performed at 95°C for 10s, 65°C for 60s, and
97°C for 1 s (continuous reading from 65 to 97°C). Each experimental condition was run in

triplicates, loading the reactions into a 96-well plate using a Light Cycler 96 Real-Time PCR
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System (Roche Diagnostics, Germany). Moreover, negative and positive controls were included

in each experiment.

Real-time Digital PCR (qdPCR). Each amplification reaction was performed in 4 nL
of final volume with 2 pLi of SsoFast EvaGreen Supermix with Low ROX (BioRad, UK), 0.4 uL
of 20x GE Sample Loading Reagent (Fluidigm PN 85000746), 0.3 uL of PCR grade water,
0.2puL of 20x multiplex PCR primer mixture containing the three primer sets (0.25 uM of
each primer), and 1.2pL of different concentrations of synthetic DNA. PCR amplifications
consisted of a hot start step for 10 min at 95°C, followed by 45 cycles at 95°C for 20s, 65°C
for 45s, and 72°C for 30s. The results were validated using melting curve analysis. One
melting cycle was performed at 65°C for 3s and continuous reading from 65 to 97°C with an
increment of 0.5°C every 3s. The reactions are loaded into Juno or FC1™ cycler or Biomark
HD/Biomark (Fluidigm Corporation, South San Francisco, California, United States) using
the qdPCR 37K™ integrated fluidic circuit (IFC) provided by the same company. Moreover,

negative and positive controls were included in each.

3.3.4 Data Analysis

Multiple in-house Python (v3.7) scripts were developed to extract and analyse the data using
standard data science packages including: NumPy, Pandas and Scikit-Learn. Complete details
of the code can be found at www.github.com/am5113/pyACA. All graphics are made using the
Matplotlib package and optimised for colour blindness[98].

3.4 Results & Discussion

In this Chapter, it is shown, for the first time, that data-driven multiplexing can be achieved by
ACA at the single-molecule level using intercalating dyes, by only considering the amplification
curve. The following section is structured as follows. First, the challenges of qPCR multi-
plexing in the presence of multiple targets are illustrated, which motivate the use of dPCR.
Second, the limitation of dPCR multiplexing based on final fluorescent intensity is demon-

strated, highlighting the need to extract more information from the amplification curve for
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high-level multiplexing. Subsequently, this kinetic information is visualised in the entire ampli-
fication curve using unsupervised machine learning. This enables the use of supervised machine
learning to perform data-driven multiplexing - called amplification curve analysis. Therefore,
the performance of ACA in the presence of single and multiple targets is assessed, and the

impact of co-amplification in dPCR using multivariate Poisson statistics is explored.

3.4.1 Challenges of qPCR multiplexing in the presence of multiple

targets in a single reaction

Performing multiplexing in a single fluorescent channel using intercalating dyes presents a
major challenge since the measured fluorescence is proportional to all double-stranded DNA
produced in the reaction. To this end, several methods analyse the amplification product
through approaches such as melting curve analysis and gel electrophoresis in order to distinguish
the targets from each other (and from non-specific products). In general, the presence of
multiple targets in the same reaction is either neglected because it is a rare event or it is solved
through lengthy and expensive optimization to reliably distinguish the amplification products

(68, 99)].

First, a 3plex assay for the detection of blaxpm, blayiy and blakpc is developed. Figure
3.2A shows the amplification curves and melting peaks for each target at concentrations ranging
from 5 x 10® to 1 x 10° copies/reaction. Observe that the melting peaks for blaxpm, blaymv
and blakpc can be distinguished from each other and are given as 84.7°C, 88.5°C and 89.7°C
respectively. Moreover, Figure 3.2B shows the corresponding standard curves illustrating the
C; value as a function of the target concentration, yielding an assay efficiency of 80.5%, 88.6%

and 92.2% for targets blaxpum, blayma and blaxpc, respectively.

Typically, a single value, i.e. T,,, is used to identify the specificity of the melting peak.
However, information is also contained in the width of the melting peaks (due to GC content
and amplicon length) [100]. In the co-presence of multiple targets in a single reaction, the width
is important since it defines the ability to resolve two peaks. For example, Figure 3.2C shows the
amplification curves for the co-presence of targets and Figure 3.2D shows the corresponding
melting curves. It can be observed that the blaxpy+blaxpe and blanpy+blayny peaks are

sufficiently different in order to identify two distinct peaks in the melting profile. However,
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Figure 3.2: Real-time PCR Experiments showing the performance of a 3plex assay in the presence
of single and multiple targets. (A) Amplification curves for single targets (in a single reaction) with
corresponding melting curves, where six different dilutions were used ranging from 5 x 10% to 1 x 10°
copies/reaction. (B) Corresponding standard curves correlating the C; values with the concentration
of each target. (C) Amplification curves for the co-presence of targets and (D) respective empirical
melting curves. (E) Prediction of melting curves for co-presence of targets: solid lines indicate single
target meltings; dashed line is an estimation of the expected melting curve for mixture of products.
(F) Gel electrophoresis image of each reaction type.
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the mixture containing blayi+blakpc results in only a single peak. This is also observed in
the mixture with all three targets as only two peaks are evident. This may suggest there
are fewer amplification products. Through adding the pure melting profiles, the ‘expected’
melting curve for mixtures of products is estimated, as in Figure 3.2E. Observe that for blayny
and blakpc, the expected melting curve only predicts a single peak. This demonstrates the
uncertainty as to whether the single peak contains 1 or more products - representing one
of the major challenges with using MCA for multiplexing in the presence of more than one
target. Therefore, it must be run post PCR analysis techniques such as gel electrophoresis or
sequencing. Figure 3.2F shows the gel electrophoresis image for the same reactions as above.
It can be observed that each reaction contains the same number of bands as the expected
number of targets at the correct amplicon length (see Experimental Section). Although gel
electrophoresis can resolve the multiple products, it is time-consuming, increases the risk of
contamination and is impractical for many applications due to the protocol and components of

the gel [101].

Recently, it was shown that kinetic information in the amplification curve can be used
to multiplex without the need for melting curve analysis or gel electrophoresis using multidi-
mensional standard curves [16, 15]. However, this work did not explore the presence of co-
amplification and explicit features of the amplification curve were extracted due to the limited

amount of data in qPCR.

3.4.2 Real-time dPCR Multiplexing based on Melting Curve Anal-

ysis

The aforementioned limitations motivate the use of real-time dPCR as a method of multiplexing
for two main reasons: (1) the vast number of partitions reduce the likelihood of co-amplification
in a single reaction significantly; and (2) the large volume of data enables the use of advanced
machine learning algorithms to detect subtle kinetic differences encoded in the amplification

curves.

Here, the translation from the 3plex assay in qPCR to qdPCR is performed. First, the
multiplex assay in the presence of pure targets in each digital panel is investigated. Figure

3.3A and 3.3B show the digital pattern and amplification curves for a serial dilution of the



42 Chapter 3. Single-well & Single-channel Data-Driven Multiplexing

A) Digital Patterns
5x103 1x10% 5x104 1x10° 5x 105 1x108

B) Amplification Curves

07 blayyy, (N=4589)
0.8

01 blay,, (N=5682)
0.8

07 blay, (N=5917)
0.8

0.6 - 0.6 0.6 -

0.4 0.4 0.4

0.2+ 0.24 0.2

Normalized Fluorescence

Normalized Fluorescence
Normalized Fluorescence

0.0 0.0 0.0

T T T T T T T T T T T T T T T
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

. S0 Cycles Cycles Cycles
C) Time-to-Positive

261 Single Molecule Bulk 26  Single Molecule Bulk 26  Single Molecule Bulk

e -H-H s + *fff """ H- H

204
------ y = -2.78x + 36.50 _/ 189 oy =-3.49x +38.52 _j + % 18 - y=-3.37x+38. 15

10" 10° 10 10° 10 10 10 10

Cq

DNA (copies/reaction) DNA (copies/reaction) DNA (copies/reaction)

D) Melting Curves
5

blaypm blayy blaypc

. blaypm 84.8

88.6
blaym 89.9
24 . blakec
Unknown
14
0 T

82 84 86 88 LY 92
Temperature (°C)

Normalized Distribution

Figure 3.3: Real-time dPCR data. (A) Digital patterns for each panel at increasing concentrations.
(B) Amplification curves for serial dilution of each target at concentrations ranging from 5 x 103 to
1 x 10% copies/reaction. (C) Standard curves correlating the C; values with the concentration of each
target; shaded blue area indicates single-molecule region; shaded orange shows the bulk region; and
the middle area displays the transition between single-molecule and bulk. (D) Normalised distribution
of the melting curve peaks, i.e. T,,, for each target.

targets. Concentrations ranging from 5 x 103 to 1 x 10° copies/reaction were chosen such
that amplification events in both single-molecule and bulk regions are observed, capturing the
kinetic information in both domains. In total, there were 36960 amplification events with
16188 positive reactions: blanpm (N = 4589), blay (N = 5682) and blaxpc (N = 5917). It is
interesting to observe the C; values as a function of the target concentration as seen in Figure
3.3C since there is a clear separation between the single-molecule and the bulk regions. In the
bulk region, the panels are saturated and therefore the target can be quantified using a standard
curve (as in qPCR), whereas the low concentrations form a digital pattern that can be quantified
using Binomial and Poisson statistics [21]. Moreover, it is observed that the assay efficiency
in digital PCR is 129.0%, 93.4% and 98.2% for target blaxpwm, blayiv and blaxpc respectively.
This is a 48.5%, 4.8% and 6.0% increase compared to qPCR, which is expected due to several
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factors such as: less inhibition and high local concentration[21, 85, 86]. Figure 3.3D shows the
distribution of the melting curve peaks (T,,) for each target. The maximum likelihood value of
T,, for blaxpm, blayiv and blakpc is 84.8°C, 88.6°C and 89.9°C, respectively. All T,, values are
within 0.2°C of their respective qPCR quantities. The width of the distributions are related to
the resolution of the measurements. To obtain a manageable volume of data from the dPCR
platform, a resolution of 0.5°C was used for the melting curve analysis. Based on this, the
bounds for distinguishing the targets are determined by considering the 1% and 99" percentile.

The lower and upper bounds for blaxpy, blayiv and blakpc were computed as (84.1°C, 86.0°C),

(88.1°C, 89.3°C) and (89.4°C, 91.8°C) respectively.

3.4.3 Real-time dPCR Multiplexing using Final Fluorescent Inten-
sity

In the literature, the current method of multiplexing with intercalating dyes in dPCR is based
on differentiating the final fluorescent intensity (FFI) between the targets [99]. Figure 3.4A
shows the raw amplification curves with background subtraction. The associated FFI for each
amplification event is shown in Figure 3.4B. It can be observed that there is an overlap between
the distributions of FFI for the 3 targets. Based on these values, a machine learning model
can be trained to learn the optimal boundaries to distinguish the targets. The dashed red
lines, T1 and T2, show the thresholds learned using a Logistic Regression classifier. Based on
this classifier, the overall classification accuracy (based on 10-fold cross-validation) is computed
as 79.42%, which is not adequate for many applications. In particular, the confusion matrix
demonstrating the predictions is given in Figure 3.4B and details of the one-vs-one classifiers
which are combined to form the multi-class model are given in Table 3.2. It can be observed
that accurate multiplexing can be achieved for blaxpy vs blaxpc or blaxpy Vs blayiy, however
the blayvy and blakpc are not separable which compromises the entire 3plex. This demonstrates
the challenge of scaling up the FFI method to three or higher targets due to the large variation
of FFI values.
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Table 3.2: Final Fluorescent Intensity Classification Performance

Classifier Acc. Sens. Spec.
blCLNDM VS blaVIM 982% 973% 990%
blaNDM VS blaKpC 995% 993% 996%
blaVIM VS blaKPc 729% 710% 749%

Acc. = Accuracy
Sens. = Sensitivity
Spec. = Specificity
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Figure 3.4: Multiplexing based on final fluorescent intensity. (A) Raw amplification curves with
background subtraction. (B) Distribution of FFI values across the 3 targets. The red dashed lines (T'1
and T2) indicate the thresholds generated from a Logistic Regression method for target classification.
The predictions are shown in the overlay confusion matrix.

3.4.4 Information in the Amplification Curve

The findings above suggest that more information than the FFI is needed. The MCA clearly

encoded this information since it is able to distinguish the 3 targets in dPCR. However, this
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process required 1.7Gb extra memory (at just 0.5°C resolution), more time for acquisition &
processing, and cannot be extended to chemistries which are not compatible with MCA such
as TagMan assays or pH-based sensing. Therefore, in this study, a new method of multiplexing
through the use of machine learning is explored, leveraging specific kinetic information extracted
directly from the amplifications curve. First, unsupervised machine learning is used to visualise
the complex interaction from cycle to cycle, by embedding the high dimensional amplification
curves (i.e. 40 cycles) into a visualizable low dimensional space (e.g. 2 or 3). That is, amplifi-
cation curves which are more similar are mapped to points which are close in lower-dimensional
space. This can be achieved using the t-distributed Stochastic Neighbor Embedding (t-SNE)
algorithm, which has the ability to preserve local structure [102]. It is important to understand
that t-SNE is an unsupervised learning algorithm and therefore does not use the target labels.
Figure 3.5 illustrates the t-SNE algorithm (perplexity=500) applied to the amplification curves
with each target coloured for visualization purposes. It can be observed that the different tar-
gets fall in a different region of this embedding and can therefore be distinguished automatically
using statistical machine learning. Therefore, it is demonstrated that even after normalising for
fluorescent intensity, the kinetic information which is encoded in the amplification curve can
provide sufficient information to perform data-driven multiplexing. Moreover, it is interesting
to observe that the region indicated within the dashed red circle shows amplification curves
which do not fully plateau, and therefore are similar across the 3 targets. This suggests that

the entire curve is necessary to extract sufficient kinetic information.

40

Component 2
o
1

Component 1

Figure 3.5: Visualising the similarity between amplification curves using the t-distributed stochastic
neighbor embedding algorithm with 2 components. Direction of arrows indicate high to low concen-
tration. Dashed red circle indicates curves that have not reached plateau.



46 Chapter 3. Single-well & Single-channel Data-Driven Multiplexing

3.4.5 Amplification Curve Analysis: Data-Driven Multiplexing us-

ing Supervised Machine Learning

After establishing that information exists in the amplification curve using unsupervised meth-
ods, supervised learning methods can be used to exploit this information to perform multiplex-
ing. Several machine learning algorithms exist for classification tasks such as k-nearest neigh-
bors (KNN), support vector machines and deep neural networks [103, 104, 105]. The following
section is demonstrated using the k-nearest neighbors algorithm which is a non-parametric
method that is intuitive [106]. In order to assess the performance of this new form of data-
driven multiplexing, referred to in this report as amplification curve analysis, four questions

were answered:

1. What is the performance of ACA in the presence of single targets?
2. How much data is required to perform accurate ACA multiplexing?
3. What is the performance of ACA in the presence of multiple targets?

4. What is the impact of co-amplification events on ACA?

Performance in the presence of a single target. Melting curve analysis can be used
as the 7gold standard” to evaluate the performance of ACA. The data presented in Figure
3.3 can be used to estimate the out-of-sample (or test) accuracy in the presence of a single
target using 10-fold cross-validation. Figure 3.6A shows the prediction accuracy in a confusion
matrix for the KNN algorithm (for number of neighbors k& = 10). The dark green squares
indicate the single-target true positive classifications. The overall classification accuracy was
99.1% (CI: 99.08-99.09%). Moreover, the accuracy, sensitivity and specificity for the one-
vs-one classifiers are given in Table 3.3. This result demonstrates that all 3 targets can be
accurately distinguished from each other. Moreover, these results show the high concordance
between MCA and ACA, suggesting that the amplification curve contains more information
than commonly presumed. Compared to the FFI method, the overall classification accuracy

was increased from 79.4% to 99.1%, representing a 19.7% increase in performance.

Volume of data required for accurate multiplexing. The volume of data required for

training has significant practical implications in order to obtain high test performance whilst
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Table 3.3: ACA Classification Performance

Classifier Acc. Sens. Spec.
blCLNDM VS blCLVIM 998% 999% 997%
blCLNDM VS blCLKPC 997% 999% 995%
blGVIM VS blaKpC 991% 991% 990%

Acc. = Accuracy
Sens. = Sensitivity
Spec. = Specificity

reducing the number of experiments. Figure 3.6B shows the test accuracy for 1000 samples as
a function of the number of training samples. This was computed through bootstrapping 100
times using a stratified shuffle split. As expected, as the number of training data increases,
the out-of-sample performance increases. More interestingly, with 100 training samples, the

performance is at 95%, and increases to 98% before 1000 training samples.

Performance in the presence of multiple targets. Although theoretically with suffi-
cient number of wells the challenges of multiple targets are mitigated, in reality the likelihood of
co-amplification exists. Moreover, from a practical perspective, the training data is conducted
in a different experiment to the test data, raising the possibility of inter-experiment variations.
In this section, previous data is used as the training samples and run a different experiment

which contains all possible combinations of the targets.

Figure 3.6C illustrates the number of positives for each panel class, as determined by
MCA and ACA. The dashed red boxes illustrate the co-amplification events. In total, 228
co-amplification events were observed. Moreover, the shaded boxes indicate the events where
co-amplifications is expected to occur, but MCA is not able to detect due to the merging
melting peaks discussed previously. Furthermore, it can be observed that compared to MCA,
some of the panels show misclassified reactions using ACA. More specifically, observing each
amplification event at the single-molecule level independently, the overall predictions of ACA are
described in the confusion matrix illustrated in Figure 3.6D. The overall classification accuracy
(including the co-amplification events indicated by the dashed red line) is computed as 92.9%.
However, only considering pure events yields an accuracy of 95.0%. Figure 3.6E displays the
accuracy for both, pure and all, amplification events as a function of the volume of training
data. It can be observed the accuracy plateaus within 1000 training samples. The error due
to the co-amplification events can be mitigated further by increasing the number of wells (or

equivalently decreasing the digital occupancy).
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Figure 3.6: Performance of ACA in the presence of single and multiple targets. (A) Confusion matrix
showing the predictions of ACA compared with MCA in the presence of single targets; (B) The effect of
training size (with pure targets) on the train/test performance; (C) Matrices displaying the prediction
of MCA and ACA per panel type; (D) Confusion matrix showing the predictions of ACA compared
with MCA in the presence of multiple targets; (E) The effect of training size (with all combinations
of targets) on the train/test performance.

3.4.6 Understanding the impact of co-amplification events

Quantification in dPCR is performed based on Binomial & Poisson statistics in order to estimate
the number of molecules taking into account the probability of double, triple, etc. events|21].
This analysis assumes that the DNA molecules are independently and uniformly distributed
across the digital array. The advantage of dPCR is that the accuracy of the quantification can be
estimated using the confidence interval in the Poisson parameter estimation. Figure 3.7A shows
the quantification precision as a function of the occupancy (based on the Wilson confidence
interval). It can be observed that the optimal occupancy across all m is approximately 80%
or A = 1.6 (marked with a cross). However, an acceptable range of digital occupancy can
be defined according the desired accuracy for a given application. For example, under the
constraint of m = 36960 (number of wells in a Fluidigm 37K™ chip), the uncertainty is below

5% between 16.7% occupancy (A = 0.2, marked with a circle) and 99.3% occupancy (A = 5.0,
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marked with a square).

Here, the Poisson statistics is extended to derive a formula to estimate the theoretical
number of wells with more than one target, i.e. wells that represent a challenge for ACA. The

probability that & molecules fall within a well can be described by the Poisson distribution

given by:
Aee=A
pl) == (3.1)
n
A= — 3.2
y (32)

Where n is the number of DNA molecules and m is the number of wells. Let p(k) denote
p(k1, ..., kk), the joint probability distribution of having k; molecules from target ¢ in each well
(where K is the number of targets). Under the independence assumption, the joint distribution

can be given as

p(k)

p(k) ... p(kx) (3.3)
H (3.4)

The proportion of co-amplification, denoted by P¢, is defined as having more than 1 target in
a well. Or equivalently, it is defined as 1 — Py — P, where F; is the probability of having no
targets and P; is the probability of having a single or multiple molecules of the same target.

Therefore, using equation (3)-(4), Py and P; are given as

Py = Hp(ki =0) (3.5)
P = Z pk Hp (3.6)

Substituting equation (1) into the above and using the identity p(k > 0) =1 — p(k = 0) yields

K K

Pc_l—He eI | e (3.7)

7j=1 q=1

/

~\~

Py Py
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which can be simplified to

Po=1-e(1+) (¥ -1)) (3.8)
where \ = i i (3.9)

Using this formula, the theoretical error introduced by co-amplifications can be estimated.
In the ideal scenario, as the number of wells tends to infinity, i.e. m — oo, then A — 0,
therefore Fy — 1 and P; — 0, resulting in P — 0. This demonstrates the error in ACA
due to co-amplifications tend to zero as the number of wells increases. Figure 3.7B shows the
proportion of co-amplification events for two targets (A and B) as a function of A4 and Ag. It
can be observed that an increase in the total A = A4 + Ap, causes an increase in the likelihood
of co-amplification events. Moreover, the worst-case scenario is experienced when A4 = Ap as
marked with a dashed red line. The shaded region indicates the range of \’s between 0.4 and
1.6. Therefore, the intersection of the shaded region and the worst-case scenario shows 30.3%
for A = 1.6 and 0.8% for A = 0.2. Figure 3.7C shows the worst-case co-amplification proportion
as a function of the number of targets. For three targets, the Po is reduced from 37.1% down
to 1.2% by decreasing A to 0.2. Moreover, the error starts to plateau (for all A\) above 6 targets.
In fact, as the number of targets tends to infinity, P is equivalent to the probability of wells

with more than 1 molecule independently of the number of targets. That is,
lim Po=1—¢e— e (3.10)
K—oo

Contrary to single target Poisson quantification, to maximise ACA multiplexing performance,

A should be decreased without compromising quantification significantly.

3.5 Conclusion

No previous published study has reported dPCR, (or droplet dPCR) multiplexing by considering
the kinetic information encoded in the entire amplification curve. By leveraging the large
volume of single-molecule data in real-time dPCR, a new data-driven method using supervised

machine learning, referred to as amplification curve analysis or ACA, is reported. The validation



3.5. Conclusion

o1

A) Confidence Interval for Poisson Quantification

Worst Case
Co-amplification (%)

Relative Uncertainty (%)

SIE

1l
<
~

102 E

10! E

optimal
quantification

# wells, m
—— 770 (1 panel)
3080 (4 panels)
—— 12320 (16 panels)
—— 36960 (48 panels)

2.0 -
l=-70
1.5 e
u o)
L 60 _g
1.0 5
50 8
40 g'
0.5 30 =
L0 &
=-10
0.0 - =
0.0 0.5 1.0 1.5 2.0
Np
C) Effect of # of Targets As=m
A
— 2.0
40 1.6
—_12 .
— 0.8
20 0.4 i
0.2
! 1.2%
V===
0 1 !
0 2 4 6 8 10

Number of Targets

5%

Figure 3.7: The impact of co-amplification events. (A) The relative uncertainty of Poisson quantifica-
tion as a function of A and the number of wells. (B) The probability of co-amplification in the presence
of 2 targets. (C) The effect of the number of targets on the worst-case probability of co-amplification.

of this approach is performed through detection of three drug-resistant genes: blanpwm, blayviv

and blakpc, by comparing to melting curve analysis as the ”ground truth”. Although MCA

is not ideal due to merging of peaks, it remains the only post PCR method to validate dPCR

amplification products.

The results show that in the presence of single targets, the accuracy of ACA is 99.1%

when training and testing within a digital experiment.

This represents an improvement of
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19.7% compared to the conventional method of multiplexing based on the final fluorescent
intensity. Furthermore, when training and testing across experiments, an accuracy of 95.0% is
observed. However, this promising performance was reduced to 92.9% due to the presence of
co-amplification in a single well. To support the analysis, a formula to estimate the occurrence
of co-amplification is derived, suggesting reducing the digital occupancy in the case of multiple

targets in the same digital panel.

CHAPTER LESSON

This Chapter showed a novel artificial intelligence method to multiplex in single-
well and single-channel, suggesting that the entire amplification curve contains
more information than commonly presumed. The method is cross-validated with
melting curve analysis (MCA) showing high concordance with the Amplification
Curve Analysis (ACA). The implications of this method motivate further research
in maximising the value of nucleic acid amplification data, by uniquely merging

molecular biology and data science.

TAKEAWAY QUESTION

”Can the level of multiplexing (or the number of targets multiplexed in a single-well

reaction) be further increased using these data-driven approaches?”






Chapter 4

High-level Multiplexing using Artificial

Intelligence

4.1 Chapter Overview

The previous Chapter explored how to better use the data from PCR signals to perform data-
driven multiplexing in single-well and single-channel reactions. This diagnostic solution shows
excellent potential for multiple target detection rapidly and cost-effectively. However, when it
is required to identify a higher number of nucleic acids in a single reaction, seeking new features
of the amplification event is needed. Here, an expansion of the previous Amplification Curve
Analysis (ACA) method is proposed, referred to as Amplification and Melting Curve Analysis
(AMCA), which besides leveraging the kinetic information in real-time amplification data, also
accounts for the thermodynamic melting profile. The method trains a system comprised of
supervised machine learning models for accurate classification by virtue of the large volume of
data from dPCR platforms. As a case study, a new 9plex assay is developed to detect nine
mobilised colistin resistant (mcr) genes as clinically relevant targets for antimicrobial resistance.
Over 100,000 amplification events have been analysed, and for the positive reactions, the AMCA
approach reports a classification accuracy of 99.33 + 0.13%, an increase of 10.0% over using
melting curve analysis. This work provides an affordable method of high-level multiplexing

without fluorescent probes, extending the benefits of dPCR in research and clinical settings.

The concepts in this Chapter resulted in the following journal article and patent application:

93
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e Moniri A*, Miglietta L*, Holmes A, Georgiou P, Rodriguez-Manzano J. “High-Level Mul-
tiplexing in Digital PCR with Intercalating Dyes by Coupling Real-Time Kinetics and
Melting Curve Analysis.” ACS Analytical Chemistry, 2020 Oct 20;92(20):14181-14188.
*First joint authorship.

e Rodriguez-Manzano J, Moniri A, Miglietta L and Georgiou P. “Identifying a target nucleic
acid”, W0O2022038279A1, Assignee: Imperial Innovations Limited, 2020.

4.2 Introduction

Detecting and quantifying nucleic acids are important tasks in several fields, where the real-
time polymerase chain reaction (qPCR) remains the most common technique [107, 108, 109,
15, 110, 111, 112]. More recently, the use of digital PCR (dPCR) has been flourishing due to
the several advantages over conventional qPCR, such as: (i) lack of references or standards; (ii)
high precision in quantification; (iii) tolerance to inhibitors; and (iv) the capability to analyse
complex mixtures [21, 85, 86, 113]. Therefore, dPCR has enabled scientific breakthroughs in

clinical microbiology, gene expression and precision cancer research, among others [114, 89, 115].

Multiplex assays provide a practical solution for nucleic acid detection in a single reaction,
reducing the time, cost and amount of sample required, at the expense of technical complexity
[16, 116]. Current approaches based on fluorescent probes are expensive and require lengthy
optimization which is challenging for high-throughput applications [55, 117]. Intercalating dyes
provide a suitable and alternative chemistry which is affordable and does not require in-silico
design. However, since intercalating dyes bind to any double-stranded DNA, the prospect of
non-specific amplification are typically addressed with further post-PCR analyses such as gel

electrophoresis, melting curve analysis or sequencing methods.

Current multiplex dPCR methods that are dependent on intercalating dyes are either lim-
ited to analysing real-time amplification data or performing melting curve analysis, since gel
electrophoresis or sequencing is not possible [99, 118]. Since most commercially available plat-
forms (such as Fluidigm EP1, Bio-Rad QX200 and Stilla Naica systems) do not have real-time
data acquisition, the most common approach for multiplexing uses the final fluorescent intensity

(FFI) of the amplification curve to distinguish between targets [117]. Reported studies showed
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that specific target identification could be achieved through adjusting primer concentration to
modulate the FFI value [99]. However, extensive optimization is required and the number of
targets is limited due to the variation of FFI values. In an effort to reduce the need for lengthy
optimization, a new method called amplification curve analysis (ACA) was recently proposed,
to extract target-specific kinetic information from real-time amplification data using super-
vised machine learning [97]. However, for the ACA approach, there is currently no systematic
method of shaping the amplification curve and this presents a challenge for high-level multi-
plexing. Alternatively, some dPCR instruments offer the capability of melting curve analysis
(MCA), providing a post-PCR method to identify specific targets with established literature
and tools to assist assay design [100]. Similar to ACA, high-level multiplexing with MCA also

requires complex assay design to distinguish between close melting curve peaks [97].

Although the ACA and MCA methods are analysing the same amplification product, they
take advantage of different information to distinguish between targets. The amplification curve
encodes target-specific kinetic information (i.e. complex reaction efficiency from cycle-to-cycle)
while the melting curve is the result of thermodynamic properties of the amplicon (e.g. GC
content and length). Recently, it was shown that kinetic and thermodynamic parameters can
be combined to detect non-specific amplification product in real-time digital loop-mediated
isothermal amplification (LAMP) [119]. Moreover, some studies have combined dPCR and
melting curves, although they are restricted to end-point PCR which does not encode kinetic
information [120, 121]. To date, there has been no report of enhancing multiplexing capabilities

by combining amplification and melting curves.

In this Chapter, this concept was explored using a commercially available dPCR plat-
form (Fluidigm’s BioMark HD) with an intercalating dye (EvaGreen) to demonstrate that
non-mutual information from amplification and melting curves can improve multiplexing accu-
racy. The proposed method, referred to as amplification and melting curve analysis (AMCA),
leverages the large volume of data from real-time dPCR and trains a “three-step” machine
learning system, as depicted in Figure 4.1. The first step trains a model on the entire real-time
amplification data and the seconds step trains a model using melting curve information. The

final step combines the resulting outputs into a final classification for each amplification event.

As a case study, this work applies the AMCA method to the global challenge of antimicro-

bial resistance [122]. In particular, colistin is a "last-line” antibiotic, reserved for the treatment



56 Chapter 4. High-level Multiplexing using Artificial Intelligence

Target A

Amplification Curve Analysis
(Kinetic information)

1.
Single Well Multiplexing Cycles
3 %
;( +f
. : probe” -

Target C m—

T N

v 'Y Temp.

Cod
’e ®

Melting Curve Analysis
(Thermodynamic information)

_3. %' F]‘Aif/— _gl MCAT

Data
Melting Curve IR ) Gy T Cycles Temp.
Data | "_;‘ ML Model ~ +-» 1

____________
1 W Amplification and Melting Curve Analysis
] (Combined information)

Figure 4.1: Concept of the proposed method. Amplification and melting curve data from real-time
dPCR instrument (e.g. Fluidigm BioMark HD) is extracted. Subsequently, machine learning models
are trained to classify multiple targets for both datasets individually. For high-level multiplexing,
combining both methods can provide higher accuracy. Therefore, referred to as amplification and
melting curve analysis, or AMCA, takes into account both kinetic and thermodynamic information in
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of the concept.
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of severe bacterial infections. The rise of mobilised colistin resistance (mcr) has been reported
in over 40 countries across five different continents [123, 124, 125]. Colistin resistant genes are
often co-localised on highly transmissible plasmids with carbapenemase genes and are readily
shared between bacterial species, providing the ideal conditions for multi-drug resistant organ-
isms, and raising the possibility of untreatable infections [126, 127]. Incorrect diagnosis delays
appropriate intervention, increases financial burdens for the healthcare system and complicates
antimicrobial stewardship efforts [128]. Therefore, detecting variants of mer is important to
help treat and understand this emerging antimicrobial resistance. In this study, the first 9plex

PCR assay to detect mer-1 to mer-9 in a single-well and single-channel was developed.

Our vision is that by sharing this new method, researchers and practitioners can use
affordable multiplex assays, compatible with dPCR platforms, for their clinically relevant ap-

plications. Moreover, extending this methodology to conventional qPCR instruments will be

beneficial for the wider scientific community.
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4.3 Experimental Section

4.3.1 DNA Templates

Double-stranded synthetic DNA (gBlock™ Gene fragments) containing the entire coding se-
quences of mer-1 to mer-9 were used. The accession numbers from the NCBI GenBank web
site for each target are shown in Table 4.1. The gBlocks™ were purchased from Life Tech-
nologies (ThermoFisher Scientific) and re-suspended in Tris-EDTA buffer to 10ng/uL stock
solutions (stored at —80°C until further use). The concentrations of all DNA stock solutions

were determined using a Qubit 3.0 fluorimeter (Life Technologies).

4.3.2 Multiplex Primer Design

To perform the (in-silico) design for the 9plex, the first step was to conduct an NCBI blast
(https://blast.ncbi.nlm.nih.gov) to ensure that each primer set binds to a conserved
region. For each target, the blast was able to retrieve an average of 1,000 sequences, which
have been used to identify variation in the nucleotide sequence for all possible inclusive targets
within the same gene and exclude potential cross-reactivity sequences (either within the mer
family or from a different species). Alignments were performed using the MUSCLE algorithm
[94], in Geneious Prime® 2020.1.2 [95]. Primer characteristics were analysed through the IDT
OligoAnalyzer software using the J. Santal.ucia thermodynamic table for melting tempera-
ture (T,,) evaluation [96]. Moreover, to avoid secondary structure formation such as hairpin
and primer-dimer (including self-dimer and cross-primer), the Multiple Primer Analyzer (Ther-
moFisher Scientific) was used [129]. The T,, of the amplification product of each primer set
was determined by the Melting Curve Predictions Software (uMELT) package [65]. All primers
were synthesised by Life Technologies (ThermoFisher Scientific). Primer sequences, amplicon

length and GC content of the product are listed in Table 4.1.

4.3.3 PCR Reaction Condition

Real-time Digital PCR Each amplification reaction was performed in 4 pnL of final
volume with 2L of 2x SsoFast EvaGreen Supermix with Low ROX (BioRad, UK), 0.4 pL
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Table 4.1: Primer sequences and relevant meta data regarding the amplicon for all nine mcr targets.

Target Forward primer Reverse primer Amplicon Amplicon
(accession number) (55— 3) (5 —=3) length (bp) GC cont. (%)
mer-1 (KP347127.1)  TGGCGTTCAGCAGTCATTATGC CAAATTGCGCTTTTGGCAGCTTA 516 50.0

mer-2 (LT598652.1)  CTGTATCGGATAACTTAGGCTTT  ATACTGACTGCTAAATAGTCCAA 407 47.9

mer-3 (KY924928.1)  AGACACCAATCCATTTACCAGTAA GCGATTATCATCAAACTCCTTTCT 136 47.1

mer-4 (MF543359.1)  TTGCAGACGCCCATGGAATA GCCGCATGAGCTAGTATCGT 207 454

mer-5 (KY807921.1)  GGTTGAGCGGCTATGAAC GAATGTTGACGTCACTACGG 207 56.0

mer-6 (MF176240.1)  GTCCGGTCAATCCCTATCTGT ATCACGGGATTGACATAGCTAC 556 46.9

mer-7 (MG267386.1) TGCTCAAGCCCTTCTTTTCGT TTGGCGACGACTTTGGCATC 466 56.2

mer-8 (NG_061399.1) CGAAACCGCCAGAGCACAGAATT TCCCGGAATAACGTTGCAACAGTT 617 42.9

mer-9 (NG_064792.1) TATAAAGGCATTGCTTACCGTT GGAAAGGCACTTTAGTCGTAAA 202 45.0

All primers have been fully developed in-house and published for the first time in this study [130].

of 20x GE Sample Loading Reagent (Fluidigm PN 85000746), 0.4 uL. of 10x multiplex PCR
primer mixture containing the nine primer sets (51M of each primer), and 1.2 uLi of different
concentrations of synthetic DNA (or controls). PCR amplifications consisted of a hot start step
for 10 minutes at 95°C, followed by 45 cycles at 95°C for 20 seconds, 66 °C for 45 seconds,
and 72°C for 30 seconds. Melting curve analysis was performed with one cycle at 65°C for 3
seconds and reading from 65 to 97 °C with an increment of 0.5°C. The integrated fluidic circuit
controller is used to prime and load qdPCR 37K™ digital chips. The Fluidigm’s Biomark HD
system performs the dPCR experiments. Each digital chip contains 48 inlets, where each inlet
is connected to a panel consisting of 770 wells (0.85nL well volume) [131]. In this study,
three digital chips were used, totalling 144 panels (110,880 wells), with experiments equally
distributed across all mcr variants and negative controls. The number of positive reactions for
each mer variant is as follows: mer-1 (N = 6,767), mer-2 (N = 6,889), mer-3 (N = 6,159),
mer-4 (N = 6,520), mer-5 (N = 6,424), mer-6 (N = 6,447), mer-7 (N = 5,919), mer-8 (N
= 6,884) and mer-9 (N = 6,589).

Real-time PCR. Each amplification reaction was performed in 10 pL of final volume
with 5L of 2x SsoFast EvaGreen Supermix with Low ROX (BioRad, UK), 3 pL of PCR grade
water, 1pL of 10x multiplex PCR primer mixture containing the nine primer sets (5pM of
each primer), and 1L of different concentrations of synthetic DNA (or controls). The reaction
consisted of 10 min at 95 °C, followed by 45 cycles at 95 °C for 20 seconds, 66 °C for 45 seconds,
and 72°C for 30 seconds. Melting curve analysis was performed with one cycle at 65°C for 60
seconds, and reading from 65 to 97 °C with an increment of 0.2°C. The PCR machine used in

this study was the Light Cycler 96 Real-Time PCR System (Roche Diagnostics, Germany).
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4.3.4 Data Analysis

Multiplexing based on FFI. Final fluorescent intensity values were extracted from each
amplification curve (as in [99]) and used to train a logistic regression classifier to distinguish
targets. It is important to stress that the primer mix concentration was not optimised to

improve classification, therefore higher performance is expected if optimisation is conducted.

Amplification Curve Analysis (ACA). ACA consists of training a supervised machine
learning model to distinguish targets based on the entire real-time amplification curve [97]. In
this study, a deep neural network was chosen based on cross-validation score. In particular, the
neural architecture consists of two convolutional layers in order to extract temporal dynamics
of the curve whilst keeping training times low (compared to recurrent architectures such as
long short-term memory or gated recurrent unit networks). The first layer consists of 16 filters
(kernel size of 5) and the second layer has 8 filters (kernel size of 3), where both layers have
a rectified linear unit activation function. Prior to training the model, amplification curves
were pre-processed using background subtraction (removing the mean of the first 5 fluores-
cent measurements) and subsequently calling positive/negative curves based on an arbitrary

threshold.

Melting Curve Analysis (MCA). MCA consists of distinguishing the thermodynamic
profile (i.e. —fl—?) of the amplification product. In this study, and conventionally, this is
achieved by distinguishing the melting peak, T,,, although methods have also been proposed to
consider the entire curve [66, 132]. After peak detection, negative reactions can be confirmed
by identifying curves with no peak. Subsequently, a supervised machine learning model can be
trained to distinguish the T,, values. In this study, logistic regression was chosen as a classifier

based on cross-validation.

The Proposed Method. The amplification and melting curve analysis, or AMCA, trains
a supervised machine learning model to combine the predictions of ACA and MCA. This process
is visualised in Figure 4.2. The output of ACA and MCA are probabilities for the amplification
event belonging to each target of interest. In the training process, these probabilities are
concatenated and used to train a model. In this study, a logistic regression classifier was
chosen. It is important to note that this classifier is tuned with its own cross-validation step in

order to avoid over-fitting.



60 Chapter 4. High-level Multiplexing using Artificial Intelligence

SAMPLE COLLECTION, NUCLEIC ACID EXTRACTION & PCR TESTING

Amplification curves (AC): Melting curves (MC): Sample labels:
data extraction data extraction Synthetic DNA label
Fluorescence background Melting temperature
subtraction detection
Remove negative Remove negative
amplification curves melting curves
AC Training dataset: MC Training dataset:
synthetic DNA synthetic DNA
AC Testing dataset: MC Testing dataset: True labels
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ACA model MCA model
(k-NN algorithm) (logistic regression)
ACA coefficients MCA coefficients
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Figure 4.2: Flowchart to visualise the data processing workflow for the proposed method. True labels
(marked as Synthetic DNA label from manufacture) are only required for training the models, as
opposed to testing unknown samples. The input to the machine learning models are denoted as AC
Training and MC Training. The output coefficients of ACA and MCA are concatenated and used for
the final AMCA model sample prediction.

4.3.5 Statistical Analysis

Performance of the models were evaluated based on out-of-sample classification accuracy, as
determined by 10-fold cross-validation (using stratified splits). In order to assess the perfor-
mance as a function of the volume of training data, a shuffled stratified split was performed
5 times, with 5000 test samples. The two-sided t-test with unknown variances was used to
determine statistical significance for comparing the classification accuracy of different mod-
els. Prior to this test, a Lilliefors test was used to determine normality of the distributions
and the Bartlett test for equal/unequal variances. A p-value of 0.05 was used as a thresh-

old for statistical significance for all tests. All data and code in this study can be found at
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https://github.com/am5113/pyAMCA.

4.4 Results & Discussion

4.4.1 A new multiplex assay for mobilised colistin resistance which

is highly sensitive and efficient

To date, there has been no report of multiplexing mer-1 to mer-9. Here, a new 9plex has
been designed and validated using a conventional gPCR platform. Figure 4.3A - 4.3C show the
real-time amplification curves, melting peak distributions (extracted from melting curves) and
standard curves for a serial dilution of each mcr target. Appendix Figure A.1 and A.2 show the
raw melting curves before peak extraction and conventional standard curves, respectively. From
Figure 4.3A, it can be observed that the final fluorescence and shape can vary between targets,
although the precise overlap cannot be visualised. On the other hand, as in Figure 4.3B, the
melting peak distributions have distinct mean T,, values, although some targets (e.g. mecr-
1 and mer-5) have overlapping distributions, compromising MCA multiplexing classification.
Figure 4.3C demonstrates that the multiplex assay is highly efficient (all > 95%) with a lower
limit of detection (LoD) down to 10 copies per reaction for all targets (excluding mer-9 which
showed an LoD of 100 copies per reaction). All negative controls did not amplify before 45
cycles. The data suggests that the presence of mer variants, by virtue of the overlapping T,,
distributions, raise the possibility of a single melting peak with multiple amplification products
- leading to unavoidable misclassification using MCA. This motivates the use of digital PCR

due to physical (single-molecule) partitioning.

4.4.2 Classification accuracy of FFI, ACA and MCA in dPCR is

limited

To assess the performance of previously reported methods for dPCR multiplexing, 110,880 am-
plification reactions were analysed, of which 58,598 are considered positive. To train the ACA
model to be invariant to template concentration, experiments included concentrations ranging

from single-molecule (digital pattern) to bulk reactions (saturated panels). Figure 4.3D and
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4.3E show the amplification and T,, distributions resulting from the dPCR platform, respec-
tively. It is interesting to observe that the amplification curves and melting peak distributions
resemble the qPCR data (within 0.8 °C), highlighting the consistency and reproducibility of the
PCR chemistry and multiplex assay across platforms. The discrepancy between the distribu-
tions from qPCR to dPCR can be explained by the change in instrument resolution (from 0.2°C
to 0.5°C) and the volume of data. The reason for selecting a lower resolution in dPCR, was
such that a manageable volume of data was extracted via the Fluidigm digital PCR analysis

software.

Figure 4.4A and 4.4B show the confusion matrices, comparing the true and predicted
targets for ACA and MCA, and the overall classification performance is 82.31 + 1.47% and
89.34 + 0.33%, respectively. Furthermore, a naive classification based on FFI gives an overall
accuracy of 24.59 + 0.52% (confusion matrix and FFI distributions are provided in Appendix
Figure A.3). As the results indicate, the FFI performance has low accuracy, although better
than a random classifier (i.e. 11.1%), due to single-parameter usage, which contains little
information specific to each target. Therefore, optimization for primer concentration must
be performed to achieve acceptable classification accuracy, as in McDermott et al. (2013),
although this is neither trivial nor guaranteed for a 9plex [99]. On the other hand, analysing
the entire amplification curves (without normalising for FFI) using a neural network boosts
performance by 57.7%, extracting relevant kinetic information from each event. The third
method, MCA, analysed thermodynamic information encoded in the melting profiles, showing
a further increase of 7.0% in classification accuracy. It is interesting to observe that there is
no obvious misclassification of any target which is common in both ACA and MCA, suggesting

that the two methods extract non-mutual information.
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A) Real-time Amplification Curves from gPCR Instrument

B) Melting Curve Peak Distribution from qPCR Instrument
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Figure 4.3: Analysis of real-time amplification and melting curves from qPCR and dPCR instruments.
A) Real-time amplification curves from qPCR instrument. B) Melting curve peak distribution from
qPCR instrument showing the probability density function (PDF) for each target. The mean =+ std
of mer-1 to mer-9 is 87.6 £0.2°C, 86.0+0.1°C, 82.6 £0.4°C, 82.9£0.1°C, 88.0+0.1°C, 85.5+0.1°C,
89.440.2°C, 84.4+0.1°C, 84.1+0.2°C, respectively. C) Visualization and statistics of standard curves
for a serial dilution of each target in qPCR using 9plex assay. D) Real-time amplification curves from
dPCR instrument. E) Melting curve peak distribution from dPCR instrument. The mean + std of
mer-1 to mer-9 is 87.7 + 0.3°C, 86.6 + 0.2°C, 82.7 + 0.2°C, 83.6 + 0.2°C, 88.5 + 0.2°C, 86.3 £+ 0.2°C,
89.7 + 0.2°C, 84.8 + 0.3°C, 84.3 4+ 0.3°C, respectively. Raw melting curves are shown in Appendix

Figure A.1.
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4.4.3 AMCA method increases classification accuracy compared to

ACA or MCA individually

Figure 4.4C shows the confusion matrix comparing the predicted classification from the AMCA
method to the true labels. It can be observed that the accuracy is 99.33 £ 0.13% and that no
target is misclassified more than 1.7%, showing a significant improvement from ACA or MCA
individually (p-value << 0.01). Since the chosen supervised machine learning model for AMCA
is linear, the coefficients can be investigated to understand how it weighs the predictions from

ACA and MCA. More specifically, the output of AMCA is defined by:

y = Waca yaca + Waica Yaica (4.1)

Where yaca € R? and yyca € R? are the probability vectors outputted from the ACA and
MCA models, WACA € R and WMCA € R are the model coefficients, respectively. This
method is one of the simplest forms of ”stacking” [133], which is a special case of ensembling,
where after training and getting the coefficients of both ACA and MCA models their a linear
regression is applied to further enhance the classification performance. Here, predictions are
made by selecting the maximum entry for the y vectors (containing arbitrary non-negative real
numbers) and selecting the corresponding mer label. Figure 4.4D and 4.4E show the ACA
and MCA coefficients in the form of a heatmap, respectively. It is interesting to observe that
AMCA weighs the prediction from ACA more heavily for targets which show poor classification
in MCA, and vice-versa. For example, MCA misclassifies 1,515 mcr-9 reactions as mer-8,
therefore the AMCA positively weighs the ACA prediction by 3.1 and negatively weights the
MCA prediction by —2.1. Similarly, ACA misclassifies 1,846 mcr-9 reactions as mcr-2 and the

coefficients compensate for this phenomenon.

4.4.4 AMCA method reaches high accuracy with only 1000 training

data points

From a practical perspective, it is important to understand the volume of training data required
for the AMCA model, denoted by ny.qin, for accurate classification. Figure 4.4F shows the

classification performance on 5000 out-of-sample data points (repeated 10 times) where 74q:p
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A) Amplification Curve Analysis

Confusion Matrix (Acc: 82.31%)
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Figure 4.4: Performance of all methods for multiplexing the 9 mer targets. A, B, C) Confusion
matrices illustrating the predictions from ACA, MCA and AMCA (proposed method), respectively.
Values indicate the number of amplification events with diagonal entries corresponding to correct
predictions. D, E) Coefficients of the AMCA model weighting the predictions from the ACA and
MCA methods, respectively. Darker colours indicate more positive weighting. F) The effect of the
number of training data points on the overall classification accuracy for all methods. The shaded
regions correspond to + 1 standard deviation.

is between 1.0 x 10% and 5.3 x 10* for all models. It can be observed that all of the models

perform better given more training data points. Since AMCA weighs ACA and MCA, it is

unlikely to perform worse than either of its constituents with sufficient data.

In fact,

the

AMCA model consistently outperforms the other models for all training data sizes and repeats.

Through observing the enhanced multiplexing accuracy, it can be concluded that the target-

specific kinetic information (provided by ACA) and thermodynamic information (provided by

MCA) is non-mutual.
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4.4.5 AMCA method shows promising classification accuracy in con-

ventional real-time PCR platform

The same methodology (as in Figure 4.2) was applied to the qPCR data presented in Figure 4.3A
and 4.3B. The classification accuracy for ACA, MCA and AMCA was shown to be 84.40+6.7%,
82.74 £ 5.5% and 95.98 & 3.4%, respectively. The confusion matrices for each method and the
model coefficients for AMCA are provided in Appendix Figure A.4. These results suggest that
the AMCA method works across real-time platforms, both quantitative and digital.

4.5 Conclusion

The AMCA method was shown to enhance the capability of high-level multiplexing in real-time
digital PCR platforms, increasing the classification accuracy by combining kinetic information
(through ACA) and thermodynamic information (through MCA). Currently, most instrument
that have melting curve capabilities also integrate a real-time system for extracting amplification
curves, which allows this method to be widely applicable to many labs. Furthermore, this
method shows that even a non-ideal multiplex based on ACA or MCA may in fact contain
sufficient information when combined together to perform accurate multiplexing, reducing the

need for further time and resource consuming optimization .

On the other hand, the AMCA method requires training a supervised machine learning
model which raises its own challenges. Firstly, since 3 models are required to be trained,
especially if a neural network is used, this may take time and expertise in data science to
perform. However, computational resources have negligible cost given the wide variety of open-
source tools available for machine learning (such as tensorflow and scikit-learn). Secondly,
it is important to ensure reproducibility of the experiment from a chemistry perspective in
order for the training and testing data to be consistent. More specifically, if the instrument or
laboratory approach show variability between experiments, then this needs to be accounted for
from a data perspective (e.g. more data, pre-processing or data augmentation) or experimental
procedures (i.e. consistent processes in the lab). However, since it was shown in this study that
only 1000 amplification curves were required to achieve accurate multiplexing, it is possible to

run training data within an experiment to avoid inter-experiment variations. For example, the
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Fluidigm qdPCR 37K™ digital chip contains 48 sample inlets (each connected to a panel of
770 wells), of which 9 panels can be used to generate the training data, one for each target.
Assuming a digital occupancy of 80%, 9 panels translates to 5544 training data points, which
based on Figure 4.4F, is expected to give an accuracy of 99.1%. From a practical point of
view, this means that a single digital chip could accommodate screening 39 samples against 9
targets, whereas conventional spatial multiplexing (with single-plex assays) would only manage

to screen 5 samples against the 9 targets.

As reported in a previous study, the ACA performance is degraded as a result of a phe-
nomenon called ‘co-amplification’, which refers to the presence of multiple targets in a single
chamber in dPCR instruments. This problem can be solved by keeping the occupancy of the
digital panel (using Poisson statistics) within acceptable bounds in order to simultaneously re-
duce co-amplification and retain sufficient quantification precision. For example, for mcr genes,
the vast majority of studies report the presence of a single mcr variant, and only few studies
have reported the presence of two mer variants in the same sample [134]. Therefore, as in
Moniri et al. (2020), considering the presence of 2 targets and under the constraint of 36,960
chambers (Fluidigm 37K™ chip), the quantification uncertainty is below 5% between 16.7%
and 99.3% digital occupancy [97]. Currently, there is no method of identifying co-amplification
events in qPCR platforms using only the real-time amplification profile. However, melting
curves can be used to circumvent this issue, although MCA is also limited when two melting
peaks are close, e.g. within 1.0°C. Recent studies show that using the entire melting profile

using machine learning methods can be beneficial for classification purposes [66, 132].

This study showed a the application of AMCA method for high-multiplexing in real-time
digital PCR instruments with melting curve capabilities. This approach is based on training
supervised machine learning algorithms to extract kinetic and thermodynamic information to-
gether, to enhance the classification accuracy in multiplexing. An accuracy of 99.3% is reported
to identify the nine colistin resistance genes, using affordable intercalating dye. Observing
that the AMCA classification accuracy is better than solely analysing amplification or melting
curves demonstrates that the underlying biological factors driving these methods for target
identification are fundamentally different. This biological insight is seen in the parameters of
the machine learning model, which characterise the contribution of ACA and MCA across all

targets to optimise the final classification of each amplification event.
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CHAPTER LESSON

This Chapter showed the application of data-driven multiplexing high-multiplexing
in real-time PCR instruments with melting curve capabilities. This approach ex-
tracts kinetic and thermodynamic information, to enhance the classification ac-
curacy in single-well and single-channel multiplex assays using machine learning

algorithms.

TAKEAWAY QUESTION

”Can data-driven multiplexing be translated to other amplification chemistries

such as isothermal-based?”






Chapter 5

Towards Isothermal Data-driven

Multiplexing

5.1 Chapter Overview

The previous Chapter explored how to expand the data-driven multiplexing capabilities by
leveraging Kinetic and thermodynamic information encoded in the amplification event to triple
the number of detectable targets. The method is further developed here, and data-driven ap-
proaches are translated to isothermal chemistries, in particular to Loop-mediated isothermal
amplification (LAMP). LAMP assays are currently limited to one target per reaction in the
absence of melting curve analysis, molecular probes or restriction enzyme digestion. Here, mul-
tiplexing of five targets in a single fluorescent channel is demonstrated using digital LAMP and
the machine learning-based method Amplification Curve Analysis, resulting in a classification

accuracy of 91.33% on 54, 186 positive amplification events.

The concepts in this Chapter resulted in the following journal article:
e Malpartida-Cardenas K*, Miglietta L*, Peng T, Moniri A, Holmes A, Georgiou P, Ro-

driguez Manzano J. “Single-channel digital LAMP multiplexing using amplification curve

analysis.” Sensors & Diagnostics, 2022 May 19;1(3):465-8. *First joint authorship.
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5.2 Introduction

Nucleic acid amplification tests for diagnosis and epidemiological surveillance of infectious dis-
ease are essential in the fight against outbreaks such as the ongoing COVID-19 pandemic. In
addition to the gold standard polymerase chain reaction (PCR), loop-mediated isothermal am-
plification (LAMP) has become a popular alternative due to its high sensitivity, specificity, and
rapidness. Although numerous LAMP assays have been developed in the last two decades, they
have commonly been restricted to detect one target per reaction, limiting the throughput of
technologies that rely on LAMP. Several methods have been employed to increase the number
of targets in a single LAMP reaction, including: (i) fluorescence-based detection at different ex-
citation wavelengths through the incorporation of a specific quencher-fluorophore pair per each
target [135, 136, 137, 138], (ii) DNA restriction enzyme digestion followed by gel electrophore-
sis [139, 140], and (iii) melting curve analysis [141, 142]. However, probe-based approaches
are still limited by the number of fluorescence channels present in the PCR platform and the
increased cost of reagents, whereas post-PCR analysis requires more complex instrumentation,
longer protocols and exposes the reaction to a greater risk of DNA contamination [143]. As
demostrated in the previous Chapter, kinetic information embedded in an amplification curve
can be used to distinguish nucleic acid targets [97, 144, 130]. This novel approach, named
as data-driven multiplexing, utilise mathematical algorithms to extract target specific features
from real-time amplification data which can be used as classifiers’ input. In particular, this
work explores the use of the Amplification Curve Analysis (ACA) classifier, which consists of a
supervised machine learning model (i.e., k-nearest neighbours) using the entire real-time curve
from each amplification event. This study demonstrates for the first time the applicability of
ACA in digital LAMP (dLAMP) for multiplexing five LAMP assays (5plex-LAMP) in a single
reaction with a non-specific intercalating dye (EvaGreen), therefore using a single-fluorescent
channel in digital PCR. As a case study, this work focuses on the detection of five respiratory
pathogens which present similar flu-like symptoms [145]: human influenza A virus (IAV), hu-
man influenza B virus (IBV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),

human adenovirus (hAdV) and Klebsiella Pneumoniae (KP).
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5.3 Experimental Section

5.3.1 LAMP primer sequences

Primer sequences for each of the targets are summarised in 5.1. A LAMP assay was de-
signed for the detection of the "M” gene of the influenza A virus. Genomic sequences were
retrieved from NCBI (http://www.ncbi.nlm.nih.gov/genbank/) and sequence alignment
was performed using the MUSCLE algorithm [94]. A conserved region of interest was se-
lected, and the sequence was uploaded into Primer Explorer v5 software for the generation
of several sets of LAMP assays. Further manual optimisation and design of loops primers
were performed using GENEious Prime 2020.1.2 (https://www.geneious.com). Primer
sequences specific to each of the targets were analysed with IDT OligoAnalyzer software
(https://eu.idtdna.com/pages/tools/oligoanalyzer) using the J. SantalLucia thermo-
dynamic table for melting temperature (T,,) evaluation, hairpin, self-dimer, and cross-primer
formation. Primers were purchased from IDT and rehydrated in TE (pH 8.00) at 500 nM.
A 50X primer mix was prepared for each target and subsequently, the 10X 5plex-LAMP was

obtained by mixing each specific primer mix at equitable volumes.

5.3.2 Multiplex real-time LAMP

Real-time LAMP reactions consisted of 6 pl final reaction volume including: 0.60 pL of 10x
custom isothermal buffer, 0.30 puL of Mg SO4 (100 mM stock), 0.34 pL of dNTPs (25 mM
stock), 0.36 nL. of BSA (20 mg/mL), 0.48 pL of Betaine (5 M stock), 0.60 uL of 10X 5plex
LAMP primer mix, 0.15 pL. of NaOH (0.2 M stock), 0.03 pL of Bst 2.0 DNA polymerase (120
kU /uL stock), 0.30 nL. of EvaGreen (20X stock), 1.8 nLL of the target oligonucleotide and enough
nuclease free water to have a final volume of 6 pL.. Amplification reaction was performed at 63°C
for 35 cycles of 60 seconds duration reading at the end of each cycle. Melting curve analysis
was performed after the amplification reaction and consisted of 1 cycle at 95°C for 10 seconds,
65°C for 60 seconds, and gradual temperature change from 65°C to 97°C with a step of 2.2°C/s
reading every 0.2°C. The LAMP protocol was based and adapted from Rodriguez-Manzano et
al. [146].
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Table 5.1: Primer sequences of the LAMP assays used for the 5plex-LAMP.

Assay Primer Sequence 5°— 3’ Gene LOD* Author
TAMPTAI T3 GGCTATGGAGCAAATGGCTG

LAMP-FAI B3 CACTTGAACCGTTGCATCTG

LAMP-FAI  LF CTGACTAGCAACCTCCATCG , . A
LAMP-FAl LB GCTGGTCTGAAAAATGATCTTCTTG M 180 copies/reaction  This study [147]
LAMP-FAL  FIP CGCTTGCACCATTTGCCTAGCGATCGAGTCGAGCAAGCAGC

LAMP-FAI BIP  TGGGACTCATCCTAGCTCCAGTCACCCCCATTCGTTTCTGA

LAMPcov T3 ACCAATAGCAGTCCAGATGA

LAMPcov B3 CACCATTGCACCATTGTTAGC

LAMPcov ~ LF GGACTGAGATCTTTCATTTTACCGT N 10 copies/reaction  [146]
LAMPcov LB ACTGAGGGAGCCTTGAATACA ! :

LAMPcov FIP TCTGGCCCAGTTCCTAGGTAGTCCAGACAAATTCGTGGTGG
LAMPcov BIP GGACTTCCCTATGGTGCTAACAAACGGGTGCCAATGTGATCT

LAMP-FBI _ F3 AGGCACATGAACAACAAAGA

LAMP-FB1 B3 CAAGTTTAGCAACAAGCCT

LAMP-FBl LF TCAAACGGAACTTCCCTTCTTTC NS 1 et/ reacts "
LAMP-FB1 LB GGATACAAGTCCTTATCAACTCTGC : copy /reaction [141)
LAMP-FBl  FIP TCAGGGACAATACATTACGCATATCGATAAAGGAGGAAGTAAACACTCA

LAMP-FBl  BIP TAAACGGAACATTCCTCAAACACCACTCTGGTCATAGGCATTC

LAMP-IAdV F3 GTGCGACAGGACCATGTG

LAMP-HAdV B3 GGTAGACGGCCTCGATGA

LAMP-HAdV LF GGCCCCCCATGGACATGAA ) .
LAMP-HAAV LB CCACCCTGCTTTATCTTCTTTTCG HEXON 180 copies/reaction  [148]

LAMP-HAdV FIP AGCATGTTCTGTCCCAGGTCGGCATTCCCTTCTCCAGCAA
LAMP-HAdV BIP GAGGTGGATCCCATGGATGAGCACTCTGACCACGTCGAARAC

LAMP-KPn  F3 GGATATCTGACCAGTCGG
LAMP-KPn B3 GGGTTTTGCGTAATGATCTG
LAMP-KPn LB GAAGACTGTTTCGTGCATGATGA

LAMP-KPn  FIP CGACGTACAGTGTTTCTGCAGTTTTAAAAAACAGGAAATCGTTGAGG ~— RCSA 10 copies/reaction  [149]

LAMP-KPn  BIP CGGCGGTGGTGTTTCTGAATTTTGCGAATAATGCCATTACTTTC

¢ Limit of Detection (LOD)

5.3.3 Multiplex real-time digital LAMP

Real-time digital LAMP reactions consisted of 6 pL final reaction volume including: 0.024
nL of ROX (50 pM stock), 0.60 pL of 20x GE Sample Loading Reagent (Fluidigm), 0.60 pL
of 10x custom isothermal buffer, 0.30 pL of MgSO, (100 mM stock), 0.34 pL. of ANTPs (25
mM stock), 0.36 uL. of BSA (20 mg/mL), 0.48 nL of Betaine (5 M stock), 0.60 pL of 10X
Splex LAMP primer mix, 0.15 pL. of NaOH (0.2 M stock), 0.03 pL of Bst 2.0 DNA polymerase
(120,000 U/uL stock), 0.30 pL of EvaGreen (20X stock), 1.8 uL of the target oligonucleotide

K™ integrated

and enough nuclease free water to have a final volume of 6 pL.. The qdPCR 37
fluidic circuit (IFC) was used to perform the dLAMP experiments. Firstly, the 48.48 control
lines fluid were injected into each accumulator of the qdPCR 37K™ IFC and primed in the
IFC Controller MX. Secondly, reactions and 1X GE were loaded into the qdPCR 37K™ IFC
following manufacturer’s instructions and the qdPCR 37K™ IFC was loaded IFC Controller
MX. Finally, the qdPCR 37K™ IFC was placed into the Fluidigm’s Biomark HD system and
the amplification reaction was performed at 63°C for 35 cycles of 1 min duration reading at the
end of each cycle. Melting curve analysis was performed after the amplification reaction and

consisted of 1 cycle at 95°C for 10 s, 65°C for 60 s, and gradual temperature change from 65°C
to 97°C with a step of 2.2 °C/s reading every 0.2 °C. The qdPCR 37K™ IFC contains 48 inlets
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which correspond to 48 panels. Each of the panels contains 770 wells with a volume of 0.85 nL.

5.3.4 Evaluation of the 5plex-LAMP assay

Performance of the 5plex-LAMP was evaluated by using 10-fold serial dilutions of synthetic
DNA of each of the targets at concentrations ranging from 11.8 x 10® to 1.8 x 10% copies per
reaction. A total of 8 replicates were performed per each concentration and target. Specificity
of the bplex-LAMP assay was evaluated in-silico by testing the primers with the sequences of
the target pathogens and experimentally by cross-testing each LAMP assay with all the other
targets including non-template controls (NTC). Synthetic oligonucleotides (gBlock™ Gene
Fragment) for each of the targets were purchased from IDT and resuspended at 5 ng/nL.

5.3.5 Machine learning methods for the detection of amplification

events: ACA, MCA and FFI

Multiple standard packages and in-house scripts in Python (v3.7) were developed to analyse
the data: (i) FFI values were extracted from each amplification curve, considering only the last
values in the cycle time series. The FFI model consisted in a logistic regression classifier to
distinguish different targets (please note that these assays are not optimised for an improved
FFI classification). (ii) A k-Nearest neighbor model was used to implement the ACA model
using scikit-learn package with default parameters (for more information please see provided
code and package documentation). The ACA classification accuracy (i.e., proportion of cor-
rectly identified events), sensitivity (i.e., true positive rate), and specificity (i.e., true negative
rate) values in Tables 1 were computed for each binary classification subproblem in the one-vs-
one multiclass classification scheme. (iii) The MCA classifier distinguished the melting peak
temperature or peak Tm, using a supervised machine learning classifier. Here a logistic regres-
sion was used. Performance of the models was evaluated based on out-of-sample classification
accuracy, as determined by 10-fold cross-validation (using stratified splits). In order to assess
the performance as a function of the volume of training data, shuffled stratified split was per-
formed five times, with 5,000 test samples. All data and code used in this study can be found
at https://github.com/LMigliet/pyiACA.
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5.4 Results & Discussion

Publicly available assays were used to demonstrate the applicability of the ACA method for
multiplexing in dLAMP without lengthy assay optimisation. All primer LAMP sequences used
in this study are detailed in 5.1. Please note that the LAMP assay for IAV (targeting M
gene) was designed in-house. Performance of the 5plex-LAMP assay was evaluated with a
fluorescence-based real-time instrument (LightCycler96 system, Roche) using a 10-fold serial
dilution of synthetic DNA, at concentrations ranging from 1.8 x 107 to 1.8 x 10% copies per
reaction. All assays amplified their specific target down to 180 copies per reaction. Melting
curve analysis was used to confirm the target-specific amplification; obtained melting tempera-
ture peak values (T,,) for AV, IBV, SARS-CoV-2, hAdV and KP were 88.5°C, 83.5°C, 86.5°C,
89.5°C and 88°C, respectively. Self-dimer or cross-primer formation was not observed in the

non-template control (NTC) during the 35 cycles (1 min/cycle) run.

The 5plex-LAMP was then tested in a digital real-time instrument, dLAMP. In total,
110, 880 amplification events were generated including 54,186 positive amplification reactions.
Time-to-positive distribution obtained with the 5plex-LAMP assay are provided in Appendix
Figure B.2. Between 6,000 to 14,000 positive amplification events were obtained per target,
and an adequate number of NTC reactions (N = 6,930) were included to verify the absence of

contamination, formation of any detectable secondary structure or primer dimerisation.

The obtained data was first evaluated by unsupervised machine learning using the Uniform
Manifold Approximation and Projection (UMAP) method to visualise how distinguishable the
amplification curves were per target [150]. Classification and clustering considered all available
real-time data (in this case, 40 data-point per amplification reaction). After dimensionality
reduction into a 3D space (Figure 5.1A), it can be observed that amplification curves obtained

per each target formed distinguishable clusters.

As shown in Figure 5.1A; supervised machine learning was employed to classify the ampli-
fication curves demonstrating the capability of the ACA method for single-channel multiplexing
in dLAMP. The selected classification algorithm was k-nearest neighbor (KNN, with parameter
k = 10) [144, 151]. The overall classification accuracy of the ACA method was 91.33% =+ 0.33%
(mean + std), represented by the confusion matrix shown in Figure 5.1B. In addition, the

accuracy, sensitivity, and specificity for the one-vs-one classifiers is shown in Table 5.2, which
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Figure 5.1: Performance of the multiplex LAMP assay using the ACA machine-learning based method
in real-time digital LAMP. (A) Visualisation of the similarity of real-time LAMP amplification curves
using the Uniform Manifold Approximation and Projection algorithm. (B) Confusion matrix showing
prediction performance of ACA for each of the selected targets in the 5plex-LAMP: human influenza A
virus (IAV), human influenza B virus (IBV), severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), human adenovirus (hAdV) and Klebsiella Pneumoniae (KP).

demonstrates that the 5 targets can be distinguished with a classification accuracy ranging
from 91.10% to 99.15%.

Table 5.2: ACA classification performance by one-vs-one classifiers.

Targets Accuracy Sensitivity Specificity
hAdV vs SARS-CoV-2 97.40% 98.74% 94.69%
hAdV vs TAV 97.22% 98.32% 96.25%
hAdV vs IBV 99.15% 99.88% 98.51%
hAdV vs KP 97.55% 99.42% 94.45%
SARS-CoV-2 vs AV 97.03% 94.02% 98.34%
SARS-CoV-2 vs IBV  98.64% 98.64% 98.63%
SARS-CoV-2 vs KP 91.10% 93.08% 89.48%
[AV vs IBV 98.96% 99.30% 98.63%
[AV vs KP 97.94% 99.03% 95.86%
IBV vs KP 98.25% 97.93% 98.86%

Furthermore, these results are compared with two alternative machine learning-based
methods commonly used for the identification of multiple targets in single-well PCR multiplex
assays; Final Fluorescence Intensity (FFI) and Melting Curve Analysis (MCA). The obtained
classification accuracy of the MCA method was 94.55% =+ 0.33% (melting curves distribution

and confusion matrix are shown in Figure 5.2A-B), which represents a 3.41% =+ 0.33% improve-
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Figure 5.2: Performance of Melting Curve Analysis (MCA) and Final Fluorescence Intensity (FFI)
machine-learning based methods in real-time digital LAMP. (A) Confusion matrix showing the pre-
diction performance of MCA for each of the targets in the respiratory panel. (B) Melting curve
distributions for each target showing the median temperature of the distribution. (C) Confusion ma-
trix showing the prediction performance of FFI for each of the targets in the respiratory panel. (D)
Distribution of FFI across the five targets.

ment compared to the ACA. The results obtained with the FFI method reported a classification
accuracy of 48.32% =+ 0.56% (Figure 5.2C), showing a 43.01% =+ 0.56% decreased classification
accuracy compared to ACA method. The FFI values were similar across different assays, and

consequently the LAMP mechanism are not suitable for FFI classification-based (Figure 5.2D).

It is important to note that the 5plex-LAMP has not been optimised for any of the used
methods, neither for ACA, MCA nor FFI analysis, therefore obtained results could have been
improved. Furthermore, this is the first time FFI has been applied for target identification in
LAMP. The combination of ACA and MCA methods, named Amplification and Melting Curve
Analysis (AMCA) has been previously reported by Moniri et al. [130] and Miglietta et al. [144]
as an approach that combines coefficients from both classifiers improving overall accuracy (as

shown in Figure 5.3). As depicted in Appendix Figure B.1, all methods except FFI achieved
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a classification accuracy superior to 90% requiring 103 training data points. Although MCA
and AMCA have shown superior performance compared to the ACA, the limitations that MCA
impose in terms of accurate thermal control restrict its future use in combination with LAMP,

particularly for point-of-care applications.
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Figure 5.3: Confusion matrices showing the prediction performance of the four methods evaluated:
FFI, ACA, MCA and AMCA.
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5.5 Conclusion

The achieved throughput and turnaround time (< 35 min) in a single well reaction leverages
target identification accuracy of several pathogens. This proof-of-concept study demonstrates
that the ACA method can be used to multiplex LAMP assays using only the amplification
curves. No further primer design optimisation, modifications in the reaction, incorporation of
molecular probes or accurate thermal cycling are needed. Furthermore, it is observed that 5plex
LAMP assays did not generate non-specific products (e.g., primer dimerisation). Although there
may be a limitation in the maximum number of assays that can be multiplexed in a single well,
the 5plex-LAMP used here has proven to be equal or higher than the currently used methods
for multiplexing in LAMP which rely on molecular probes [135], melting curve analysis or

restriction enzyme digestion [140].

Notwithstanding the achieved results, limitations to this study include the fact that real-
time digital instruments are not commonly available, and therefore, the performance of the
evaluated methods for target classification using data from a conventional real-time instrument
should be further assessed. This will also require verifying if the trained data is transferable
across instruments such that the proposed methodologies could be implemented in conventional
real-time instruments, and ultimately in affordable devices for point-of-care diagnostics. Lastly,
the conducted experiments for the demonstration of data-driven multiplexing with LAMP only
considered the presence of synthetic pure DNA targets. Co-infections are likely to occur,
especially in the field of infectious diseases where it is common to find patients presenting with
more than one disease. The use of dLAMP with single molecule resolution will increase the
accuracy in determining the presence of co-infections. This could also be further investigated in
future work, as well as the validation of the proposed method with clinical samples to determine

its robustness and performance for multiplexing.
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CHAPTER LESSON

This Chapter demonstrated that multiplexing five LAMP assays in a single well
reaction using a single fluorescent channel can be achieved with the Amplification
Curve Analysis (ACA) in a highly accuracy manner without the need of down-
stream experiments. The Chapter vision is to apply the proposed method for
multiplexing any desired isothermal assay at standard laboratory settings enhanc-
ing the current testing capabilities, and at the point-of-care once integrated in

portable devices that acquire real-time data.

TAKEAWAY QUESTION

”Can data-driven multiplexing be validated in real-world clinical diagnostics sce-

narios, for example in hospitals?”






Chapter 6

Clinical Application of the Data-driven
Multiplexing

6.1 Chapter Overview

Previous chapters have demonstrated the ability to combine machine learning algorithms with
real-time PCR instruments to increase classification accuracy of multiplex PCR assays when
using synthetic DNA templates. The next study aims to determine if this novel methodology
could be applied to improve identification of the five antimicrobial resistance genes in clinical
isolates, which would represent a leap forward in the use of PCR-based data-driven diagnostics
for clinical applications. A total of 253 clinical isolates (including 221 positive samples) were
collected and a novel bplex PCR assay for detection of blanp, blakpc, blaxpwm, blaoxa-4g and
blay was developed. Combining the described ML method ” Amplification and Melting Curve
Analysis” (AMCA) with the abovementioned multiplex assay, the performance of the AMCA
method is assessed for the detection of these five genes. The AMCA classifier demonstrated
excellent predictive performance with 99.6% (CI 97.8-99.9%) accuracy (only one misclassified
sample out of the 253, with a total of 160,041 positive amplification events), which represents
a 7.9% increase (p-value < 0.05) compared to conventional melting curve analysis. This work
demonstrates the use of the AMCA method to increase the throughput and performance of
state-of-the-art molecular diagnostic platforms, without hardware modifications and additional

costs, thus potentially providing substantial clinical utility on screening patients for CPO car-

80
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riage.

The concepts in this Chapter resulted in the following journal article:

e Miglietta L, Moniri A, Pennisi I, Malpartida-Cardenas K, Abbas H, Hill-Cawthorne K,
Bolt F, Jauneikaite E, Davies F, Holmes A, Georgiou P. “Coupling machine learning
and high throughput multiplex digital PCR enables accurate detection of carbapenem-

resistant genes in clinical isolates”. Frontiers in molecular biosciences, 2021;8:775299.

6.2 Introduction

This Chapter demonstrates that machine learning (ML) approaches coupled with high through-
put real-time digital PCR, (dPCR) can be used to increase detection accuracy of multiplex PCR
assays when screening clinical isolates for the presence of carbapenemase-producing organisms
(CPOs). A recently reported ML method called Amplification and Melting Curve Analysis
(AMCA), which leverages the target-specific information encoded in each amplification event
(via real-time data), was used to identify the nature of nucleic acid molecules [97]. The AMCA
approach is based on training supervised machine learning algorithms to extract kinetic and
thermodynamic information from PCR amplification and melting curves to enhance the clas-
sification accuracy in multiplexing. Validation of this methodology using clinical isolates has
never been reported before; therefore, this work represents a step forward towards the imple-
mentation of this method into clinical microbiology laboratories. Nucleic acid amplification
tests (NAATS) that incorporate the AMCA classifier for multiple target detection will greatly
improve their specificity, sensitivity and turn-around time to result, reducing overall resource

consumptions and improving diagnostic performance.

Antimicrobial resistance (AMR) is a serious global threat and poses a challenge for modern
medicine, compromising effective infectious disease management [152, 153]. One of the most
concerning forms of AMR is the rapid spread of CPOs; bacteria producing enzymes that inacti-
vate the potent antibiotics, carbapenems. Whilst overall UK incidence is low, there are centres
nationally facing increasing rates and outbreaks, including Imperial College Healthcare NHS
Trust (ICHNT), and it is endemic in many other regions worldwide [126, 125]. CPO infections

are associated with higher morbidity and mortality than susceptible strains, in part because
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their resistance can lead to ineffective empirical therapy and suboptimal treatment [154, 155].
Therapeutic options are severely restricted, and in many cases clinical management relies on

“last line” antibiotics that are less effective and have more side effects [156].

Patients infected with CPOs present significant challenges for diagnostics and infection
control. There is an urgent need for accurate and timely diagnosis to improve patient outcomes
and prevent the spread of AMR. Carbapenemase resistance genes are often co-localised on
highly transmissible plasmids and are readily shared between bacterial species, providing the
ideal conditions for multidrug resistant organisms [157]. Incorrect diagnosis delays appropriate
intervention, increases financial burdens for the healthcare system, and complicates antimicro-
bial stewardship efforts [158]. A local ICHNT economic analysis estimated the cost of a large
hospital outbreak (= 100 infections) of carbapenemase producing Klebsiella pneumoniae to be
£1M. Some of the increased expenditure was associated with increased screening, bed closures,

medication and patient bed-days; better diagnostics could reduce these costs [128, 126].

Diagnosis of CPOs is often too complicated and time-consuming, as it is normally based
upon multiple tests which employ a wide range of instruments and diagnostic tests. Pheno-
typic methods typically target carbapenemase production and provide no information on the
underlying resistance mechanism [159]. These tests represent a low-cost (£2-15 per sample) and
robust methodology; however, they rely on pure culture which increases turnaround times (12-
24h) [160]. A variety of molecular methods, including amplification (PCR-based), microarray
and sequencing assays have been developed and are frequently used in microbiology laborato-
ries [161, 162]. Microarray and sequencing are time consuming (>12-48h), expensive (>£50K
platforms and >£80 per sample), and require bioinformatic expertise. Conversely, NAATSs are
commonly cheaper (£15-30 per sample) and faster (1-2h), whereas instrument price signifi-
cantly ranges between tens to hundreds of thousands of pounds for conventional and digital
PCR platforms, respectively [21, 163]. Furthermore, the application of sophisticated data pro-
cessing for its optimisation (as done with microarray and sequencing methods) has been largely
unexplored [164, 165]. As a result of all aforementioned limitations, implementation of mi-
croarrays, sequencing and molecular methods for CPO diagnosis into routine practice is often

limited.

Recently, our group has demonstrated that the large volume of data obtained from real-

time digital PCR (dPCR) instruments can be exploited to perform data-driven multiplexing
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in a single fluorescent channel, reporting a 99.33 £ 0.13% classification accuracy when using
synthetic DNA in a 9-plex format [130]. This result represented an increase of 10% over using
melting curve analysis, indicative of the potential benefits of this methodology for diagnostic and
screening applications. The ML method used (AMCA) leverages kinetic and thermodynamic
information encoded in the amplification and melting curves to perform target identification
in multiplexed environments [16, 15]. For the first time, the analytical performance of AMCA
method was compared to Xpert Carba-R Cepheid and Resist-3 O.K.N assays on clinical isolates
for detection of the most common types of serine-beta-lactamases (blaxpc and blagxa.4g) and
metallo-beta-lactamases (blapyp, blayiv and blanpy) [166, 167]. Results were compared against
another ML based classifier ‘Melting Curve Analysis’ (MCA), which uses the thermodynamic
information contained in PCR melting curves for identification of multiple targets in a single
well reaction [66, 97]. A 5plex PCR assay was developed in-silico and validated with synthetic
DNA templates. The performance of the AMCA method, using this 5plex, was further assessed
with 253 clinical isolates provided by the microbiology department at Charing Cross Hospital,
ICHNT. All samples were analysed in real-time dPCR, using an intercalating dye (EvaGreen) in
a single-fluorescent channel. This work demonstrates that the AMCA method can be integrated
with conventional clinical diagnostic workflows in combination with real-time dPCR platforms,
as it does not require any hardware modification. Increasing multiplexing capabilities enables
improved workflow efficiency while reducing per sample cost, and it is beneficial to a number of
application fields beyond clinical diagnostics, such as veterinary and environmental fields, where
multiple targets need to be analysed simultaneously (e.g., SNP genotyping, forensic studies and
gene deletion analysis). Figure 6.1 illustrates the concept of data-driven multiplexing, where
tailored PCR-based amplification chemistries combined with advance data analytics can be

seamlessly integrated into existing diagnostics pipelines which utilise real-time platforms.

6.3 Experimental Section

6.3.1 Synthetic DNA

Double-stranded synthetic DNA (gBlock™ Gene Fragments) containing the entire coding se-
quences of blapp, blaxpc, blanpm, blaoxa-as and blayy genes was used for quantitative real-

time PCR (qPCR) experiments when determining the limit-of-detection of the 5plex PCR assay,
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Figure 6.1: Integration of data-driven approaches to standard diagnostic workflows. The blue arrow
indicates the conventional diagnosis pipeline from patient to result, where patient sample is collected
from different sources (e.g., eye swab, nasopharyngeal swab, throat swab, urine, or rectal swab).
Subsequently, samples are cultured, and nucleic acids are extracted in a microbiology lab. Following
this, the most suitable genetic test is developed in-silico, comprising of specialised assays capable of
multi target detection in a single reaction (first grey arrow). The test is performed in the dPCR
instrument, outputting large amounts of data, which are analysed by a machine learning supported
algorithm to ensure reliable and accurate results (second grey arrow). This is where the AMCA
methodology is applied.

and in dPCR experiments for generating the digital bulk standards and training the mathemat-
ical models. The gene fragments (ranging from 900 to 1000 bp) were purchased from Integrated
DNA Technologies Ltd (IDT) and resuspended in Tris-EDTA buffer to 10 ng/pL stock solutions
(stored at —80°C until further use). The DNA stock concentration for all targets was estimated
by dPCR using the Fluidigm’s Biomark HD system. The following NCBI accession numbers
are used as reference for the gBlocks™ synthesis: NG_049172 (blapp), NC_016846 (blaxpc ),
NC_023908 (blaxpm), NG_049762 (blaoxa.4s) and NG_050336 (blaym)-

6.3.2 Clinical isolates: Bacterial Strains and Culture Condition

A total of 253 non-duplicated Enterobacteriaceae isolates were collected between 2012-2020 from
clinical or screening samples routinely processed by Microbiology Department at Charing Cross

Hospital, ICHNT (Ethics protocol 06/Q0406/20). Species identification was performed using
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MALDI-TOF MS and carbapenemase mechanisms were determined using the Xpert Carba-R
(Cepheid) or Resist-3 O.K.N assay (Corisbio). The isolates were subcultured on appropriate
growth media and incubated at 37°C overnight, and the genomic DNA was extracted using
GenElute Bacterial Genomic DNA kit (Sigma-Aldrich) following the manufacturer’s instruc-

tions.

6.3.3 Primer Design

The genes used in this study belong to (i) class A carbapenemase encoding for blakpc type,
(ii) class D oxacillinases encoding blapxa.as and (iii) class B metalloenzymes encoding blaxp,
blapvp and blayyy. The sequences of these genes were downloaded from the NCBI GenBank
databse [168]. Based on the comprehensive analyses and alignments of each carbapenemase
type using the MUSCLE algorithm, primers were specifically designed to amplify all alleles
of each carbapenemase gene family described above [94]. Design and in-silico analysis were
conducted using GENEious Prime 2020.1.2 [95]. Primer characteristics were analysed through
IDT OligoAnalyzer software (https://eu.idtdna.com/pages/tools/oligoanalyzer) using
the J. SantaLucia thermodynamic table for melting temperature (T,,) evaluation, hairpin, self-
dimer, and cross-primer formation [96]. The T,, of the amplification product of each gene
was determined by Melting Curve Predictions Software (uMELT') package [65]. To confirm the
specificity of the real-time digital PCR assays, the primers were first evaluated in a singleplex
PCR environment to ensure that they correctly amplified their respective loci and that the
amplicons showed the predicted T,, and after that in multiplex format. All primers were
synthesised by IDT (Coralville, IA, USA). Primer sequences and amplicon information are

listed in Table 6.1.

Table 6.1: The 5plex PCR. assay primer sets.

CPE Forward primer Reverse primer Amplicon Amplicon
Target sequence (5°— 37) sequence (5'— 3°) size (bp) T, (°C)
blanp CAGCAGAGYCTTTGCCAGATT GCCACGYTCCACAAACCAA 203 86.5
blakpc GGCTCAGGCGCAACTGTAA GCCCAACTCCTTCAGCAACAA 273 95.5
blanpm CGCGTGCTGKTGGTCGATA GGCGAAAGTCAGGCTGTGTTG 240 96.0
blaoxaas CGATTTGGGCGTGGTTAAGGAT GTCGAGCCARAAACTGTCTAC 235 88.5
blayiv CGAGGYAGAGGGGARCGAGATT CTSTGCTTCCGGGTAGTGTT 275 94.0

Primers have been developed in this study [144].
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6.3.4 Multiplex real-time digital PCR

Each amplification mix for dPCR experiments contained the following: 2 M of SsoFast Eva-
Green Supermix with Low ROX (BioRad, UK), 0.4 uLL of 20X GE Sample Loading Reagent
(Fluidigm PN 85000746), 0.2 puL of PCR grade water, 0.2pL of 20X multiplex PCR primer
mixture containing the five primer sets (10 pM of each primer), and 1.2 uLi of different concen-
trations of synthetic DNA, samples or controls to bring the final volume to 4 uL.. PCR cycling
condition consisted of a hot start step for 10 minutes at 95°C, followed by 45 cycles at 95°C for
20 seconds, 67°C for 45 seconds, and 72°C for 30 seconds. Melting curve analysis was performed
with one cycle at 65°C for 3 s and reading from 65 to 97°C with an increment of 0.5°C. The
integrated fluidic circuit controller was used to prime and load qdPCR 37K digital chips and
Fluidigm’s Biomark HD system to perform the dPCR experiments, following manufacturer’s
instructions. Each digital chip contains 48 inlets, where each inlet is connected to a microfluidic
panel consisting of 770 partitions or wells (0.85 nL well volume). In this study, a total of seven
qdPCR 37K digital chips were used, totalling 336 panels and 189,206 positive amplification

reactions (29,165 from training and 160,041 from testing experiments).

6.3.5 Limit of detection for the 5plex PCR assay

Analytical sensitivity was evaluated with 10-fold dilutions of gBlocks™ containing the sequence
for the five carbapenemase genes, ranging from 10! to 105 DNA copies per reaction. Each
experimental condition was run in triplicate. Each amplification reaction was performed in
10 pL of final volume with 5L of 2x SsoFast EvaGreen Supermix with Low ROX (BioRad,
UK), 3pL of PCR~grade water, 1uL of 10x multiplex PCR primer mixture containing the
five primer sets (51M of each primer), and 1puL of different concentrations of synthetic DNA,
clinical sample or controls. The reaction consisted of 10 minutes at 95°C, followed by 45 cycles
at 95°C for 20 seconds, 67°C for 45 seconds, and 72°C for 30 seconds. Melting curve analysis
was performed with one cycle at 65°C for 60 seconds and reading from 65°C to 97°C with an
increment of 0.2°C. The PCR machine used in this study was the Light Cycler 96 real-time

PCR system (Roche Diagnostics, Germany).
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6.3.6 Quantification of clinical isolates

Clinical isolates were quantified by real-time dPCR following the methodology proposed by
Moniri et al. [97]. Thus, using Poisson statistics when the microfluidic panel occupancy was
< 85% (a maximum of 665 positive amplification events for a given panel) and quantification
cycle (C;) interpolation from digital bulk standards when panel occupancy was > 85%. Digital
bulk standards were generated by serial dilutions of the gBlocks™ Gene Fragments containing
the sequence for the "big 57 carbapenemase genes ranging from 10! to 10° DNA copies per

panel. The C; values are calculated by the Fluidigm Digital PCR Analysis software 2.1.1.

6.3.7 Machine learning-based methods

The proposed method, AMCA, trains a supervised machine learning model in which the best
fit linear line and the optimal value of intercept and coefficient are calculated to minimise error
when combining the predictions of amplification curve analysis (ACA) and MCA [97, 130]. In
this study, the ACA consists of applying a k-nearest neighbors (KNN) model (with parameter
k=10) to the entire real-time curve from each amplification event, whereas the MCA method
consists of applying a logistic regression model to T,,, values extracted from each melting curve.
Both ACA and MCA output 5 probabilities associated with each target in the 5plex. Therefore,
as showed in the flowchart in the Figure 4.2, these probabilities are concatenated into 10 values
which are the input to the AMCA method. It is important to note that this classifier is tuned
with its own cross-validation step to avoid over fitting. The classifier threshold for positive

samples has been set at 5% of panel occupancy.

6.3.8 Statistical Analysis

(i) Sample size: A sufficient number of samples was determined to provide statistically signifi-
cant results via the binomial proportion confidence interval method [169]. Under the assumption
that the test has a sensitivity and specificity of 95% with a 5% margin of error, the number
of samples were determined as 72 (which is significantly smaller than 221 used in this study).
(ii)) AMCA cross-validation performance: Prior to evaluating the in-sample performance of the

model, by using the 221 clinical isolates, the out-of-sample classification accuracy was estimated
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by 10-fold cross-validation on the training data (using stratified splits). (iii) AMCA accuracy:
The two-sided t-test with unknown variances was used to determine statistical significance for
comparing the classification accuracy of AMCA against MCA. Prior to this test, a Lilliefors test
was used to determine normality of the distributions and the Bartlett test for equal/unequal

variances. A p-value of 0.05 was used as a threshold for statistical significance for all tests.

6.4 Results & Discussion

6.4.1 Primer characterisation for optimal multiplex PCR assay per-

formance

in-silico analysis. To test the inclusivity and exclusivity of the bplex PCR assay, primers
were subjected to a general NCBI BlastN search against more than 500 sequences per target.
Inclusivity results showed over 99% identity coverage for each target (inclusivity alignments are
provided in Appendix Figure C.1 - C.5. For exclusivity analysis, BlastN hits with an identity
score lower than 80% were regarded as negative [47]. No cross-reactivity was observed with

other sequences deposited in the database.

Experimental results in qPCR. The 5plex PCR assay has been validated using a
conventional qPCR platform with synthetic DNA templates at concentrations ranging from 101
to 106 DNA copies/reaction. Appendix Figure C.6 shows the real-time amplification, melting
and standard curves obtained from analytical sensitivity experiments. The amplification and
melting curves have distinct shape and T,, value distribution for each target, respectively,
which is beneficial for AMCA classification. Observed T,, values for blapp, blaxpc, blaxpm,
blaoxa-ag and blayyy are 81.4°C, 89.5°C, 90.2°C, 83.8°C and 87.9°C, respectively. Moreover,
each primer set (in a multiplex environment) shows an excellent Limit-of-Detection (LOD) of
10 DNA copies/reaction. Corresponding standard curves, illustrating the C; value as a function
of the target concentration, yield an assay efficiency of 87.3%, 103.5%, 105.7%, 98.7%, 88.1%,

respectively. PCR products were absent in all the negative controls.

Experimental results in real-time dPCR. The 5plex PCR assay was further validated
in the dPCR platform with synthetic DNA templates at concentrations ranging from 10! to 10°
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DNA copies per panel, which were chosen such that amplification events in both-single and bulk
regions can be observed to capture kinetic information in both domains. Figure 6.2A shows end-
point photographs (cycle 45) of panels at increasing amount of DNA. A total of 29,165 positive
amplification reactions were performed. As shown in Figure 6.2B, a digital bulk standard curve
for each target was build using the real-time dPCR instrument. As this microfluidic platform
is capable of real-time data collection, quantification cycle values were used to generate the
standard curves by plotting the C; (or C,) values against log|quantity] of a ten-fold (10X)
serial dilution of each DNA target. It can be observed that there is a clear separation between
the single-molecule (10" to 10? copies/panel) and the bulk regions (10* to 10° copies/panel)
based on C; value ranges, where 103 copies/panel acts as a transition region across all the
targets. In the none-saturated panels a digital pattern (number of ONs and OFFs) is observed
at the end of the reaction and the amount input molecules is calculated using binomial and
Poisson statistics, whereas in the saturated panels the amount input molecules is quantified
using the digital bulk standard curve (as in qPCR) [21]. Digital bulk standard curves yield
an assay efficiency of 118.1%, 98.7%, 86.2%, 100.8% and 90.2% efficiency for blanp, blaxpc,
blaxpm, blapxa-as and blayyy assays, respectively. Appendix Figure C.6 reports the standard
curve parameters for each assay, digital count and panel occupancy. Figure 6.3A and 6.3B,
respectively, show the amplification and melting curves for the five carbapenem-resistant genes
and the average characteristic sigmoidal shape for each target (black solid line) in real-time
dPCR. Figure 6.3C represents the distribution of melting temperature, where the T,, range for
each target is computed as: blapp (81.3°C, 83.2°C), blakpc (89.0°C, 91.5°C), blaxpm (90.0°C,
92.7°C), blaoxa-4s (83.7°C, 86.6°C) and blayyy (87.7°C, 90.8°C). After peak detection, negative

reactions can be confirmed by identifying curves with no peak.

6.4.2 Clinical isolates

As depicted in Appendix Figure C.10, the 253 pure bacterial strains were identified from
MALDI-TOF MS as Acinetobacter spp. (N = 2), Citrobacter spp. (n = 16), Enterobacter
spp. (N = 37), Escherichia spp. (N = 57), Klebsiella sp. (N = 133), Proteus sp. (N = 1),
Pseudomonas sp. (N = 5) and Serratia sp. (N = 2). Carbapenemase genes were determined
as a single enzyme in 220 strains (blapyp = 45; blakpc = 9; blaxpm = 74; blaoxaas = 84;

blayiy = 8) and as a combination in one isolate (blanpy and blagxa.4s). Thirty-two isolates
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Figure 6.2: Standard Curve in real-time digital PCR. (A) Digital patterns for each microfluidic panel
at increasing concentrations (770 reaction chambers per panel; 0.85 nL volume per chamber). (B)
Standard curves correlating the C, values with the concentration of each target; shaded blue area
indicates the single-molecule region; shaded orange shows the bulk region; and the middle area displays
the theoretical transition between the single-molecule and bulk.

were confirmed as negative for the five carbapenemase genes. A more detailed description of
each isolate, including bacterial species, date of sampling, specimen type, antibiotic resistance
mechanisms and concentration (copies/pL of extracted DNA) can be found in Appendix Table

C.1-C.b.
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Figure 6.3: Real-time amplification and melting curves obtained from the dPCR instrument. (A)
Raw amplification curves at different concentrations from synthetic DNA templates; the black line
represents the average trend of the kinetic information based on each specific target-primer interaction.
(B) Melting curves across the five different CPO; the black line represents the average trend of the
thermodynamic information based on each specific target-primer interaction. (C) Melting peak (T,)
distribution from the dPCR instrument, showing the probability density function (PDF) for each
target.

6.4.3 The AMCA model: training and cross-validation

Our study aims to validate the performance of the AMCA method for detection of carbapenem-
resistant genes in clinical isolates compared with the MCA approach. To train both models, a
total of 99,860 amplification events were generated using synthetic DNA templates, of which
29,165 were positive: blapyp (N = 4,941), blakpc (N = 5,940), blaxpm (N = 5, 870), blaoxa-s
(N = 4,333) and blayy (N = 8,081). Observed overall classification performance of training
dataset for the MCA and AMCA methods was 94.9% + 21.99% and 99.2% =+ 8.86%, respec-
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tively. Appendix Figure C.7 shows the confusion matrices comparing the true and predicted
targets for both methods. It can be observed that the blaxpy and blakpc targets are misclas-
sified by the MCA methods, whereas the AMCA considerably improves the prediction of both
targets: from 804 to 52 amplification events for blanpy, and from 511 to 46 for blakpc. No

other target was misclassified more than 1.26% for either method.

6.4.4 The AMCA model: validation on clinical isolates

A total of 253 clinical isolates, including 221 positives, and 224,840 amplification events (of
which 160,041 positives) were used for the clinical validation. Compared to results obtained
with the Xpert Carba-R Cepheid and Resist-3 O.K.N assays, the overall observed accuracy for
MCA was 91.7% (CI 87.59% to 94.79%) and 99.6% (CI 97.82% to 99.99%) for AMCA, which
represent a 7.9% increase (p-value < 0.01) (see Appendix Figure C.8). A total of 21 clinical
isolates were misclassified for the MCA method and considered false positives (FP) as shown
in Table 6.2, whereas the AMCA reduced the number of misclassified samples to 1 only (see
Table 6.3). All the false positive samples were identified as double infection with CPO because
of the overlapping distribution in the T,,, as shown in Figure 6.3. Performance improvement
in the AMCA method is due to the addition of real-time amplification data, contrary to the
MCA approach that only takes into account the melting curve distribution. Further details on
AMCA coefficient contributions (i.e., ACA and MCA weights) are shown in Appendix Figure
C.9. Moreover, 32 bacterial isolates not carrying the five carbapenemase genes were used to
evaluate the assay specificity. The bHplex PCR assay showed negative results in the absence of

the specific target.
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Table 6.2: Classification of clinical isolates when using the ML-based MCA method

Target N TP TN*® FP FN SEN SPE Accuracy (CI)

blamp 45 45 32 0 0 100.0% 100.0% 100.0% (95.32 to 100.00%)
blakpc 9 8 32 1 0 100.0% 96.97% 97.56% (87.14 to 99.94%)
blaxpm 74 54 32 20 0 100.0% 61.54% 81.13% (72.38 to 88.08%)
blapxa-as 84 84 32 0 0 100.0% 100.0% 100.0% (96.87 to 100.00%)
blay 8 8 32 0 0 100.0% 100.0% 100.0% (91.19 to 100.00%)
blaoxa-as & blaxpy 1 1 32 0 0 100.0% 100.0% 100.0% (97.24 to 100.00)
Total 221 200 32 210 100.0% 60.38% 91.70% (87.59 to 94.79%)

Abbreviations:

N: number of samples; TP: True Positive TN: True Negative; FP
FN: False Negative; SEN: Sensitivity; SPE: Specificity; CI: Confidence Interval.

: False Positive;

@ A total 32 negatives samples are considered across all the groups for sensitivity,
specificity and accuracy calculation
b This isolate was misclassified as blaxpy and blaxpc double infection

¢ These isolates were misclassified as blaxpy and blakpc double infections

Table 6.3: Classification of clinical isolates based on ML-based AMCA method

Target N TP TN* FP FN SEN SPE  Accuracy (CI)

blapp 45 45 32 0 0 100.0% 100.0% 100.0% (95.32 to 100.00%)
blakpc 9 9 32 0 0 100.0% 100.0% 100.0% (91.40 to 100.00%)
blaxpm T4 73 32 1 0 100.0% 96.97% 99.06% (94.86% to 99.98%)
blaoxa-as 84 84 32 0 0 100.0% 100.0% 100.0% (96.87 to 100.00%)
blayv 8 8 32 0 0 100.0% 100.0% 100.0% (91.19 to 100.00%)
blapxa.as & blaxpm 1 1 32 0 0 100.0% 100.0% 100.0% (97.24 to 100.00)
Total 221 220 32 1 0 100.0% 96.97% 99.60% (97.82 to 99.99%)

Abbreviations:

N: number of samples; TP: True Positive TN: True Negative; FP:

False Positive;

FN: False Negative; SEN: Sensitivity; SPE: Specificity; CI: Confidence Interval.

® A total 32 negatives samples are considered across all the groups for sensitivity,
specificity and accuracy calculation
b This isolate was misclassified as blaxpy and blaxpc double infection
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6.5 Conclusion

In the last decade, novel pandemic outbreaks and the continued threats of emerging multi-
drug resistant microorganisms have significantly increased the demand for molecular tests, in
particular PCR-based methods [170, 171]. To respond to this need, the AMCA technology
has been designed to increase the throughput of real-time molecular platforms. Seamlessly
integrated with conventional diagnostic workflows, this machine learning based approach can
enhance multiplexing capabilities of traditional qPCR and state-of-the art dPCR, instruments,
increasing the number of nucleic acid targets that can be identified in a single fluorescent
channel without hardware modifications. Individual primer sets produce amplification products
at a sequence-specific amplification rate and efficiency, which generate unique amplification
and melting curves for different target concentrations. Such curves can be captured as time-
series data by real-time instruments, feed into machine learning models and used to identify
multidimensional patterns (or signatures) specific to each primer set. Therefore, enabling the
identification of multiple DNA targets per fluorescent channel using only real-time data (i.e.,
data-driven multiplexing). In this study, a clinical validation on diagnostic accuracy of the
AMCA methodology was assessed considering the “big 5” carbapenem-resistant genes (blapp,
blakpc, blanpm, blaoxa.as and blayyy) in multiplex PCR. A 5plex PCR assay was developed
and characterised in both real-time qPCR and dPCR instruments, and the AMCA performance
investigated through the identification of 253 clinical isolates from patients’ samples. The MCA

was used as a reference method to compare results.

A 99.2% accuracy is achieved for identifying the five carbapenem-resistant genes in the
clinical isolates. The AMCA method was shown to enhance the classification performance by
7.9% compared to MCA. The AMCA takes advantage of the volume of raw data extracted
from amplification and melting curves, whereas the MCA only considers melting curves. It
is interesting to observe that the overlapping melting curve distribution in Figure 6.3B (e.g.
blaxpy and blakpc) represents a misclassification of 1303 reactions (509 blakpc as blanpy, and
804 blaxpm as blakpc) and 21 clinical isolates (20 blanpm and 1 blakpc as co-infections) when
using the MCA, but it only represents a misclassification of 99 reactions and 1 clinical isolate
for the AMCA method. As described in previous publications from Moniri et al. [97], these
results support the hypothesis that the underlying biological factors driving these methods
for target identification are fundamentally different. As observed in Appendix Figure C.9,
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machine learning methods can be used to exploit the distinctive information contained on the
amplification and melting curves by weighting the predictions from the ACA and MCA to

optimally combine them and maximise the AMCA performance.

Although dPCR is not likely to replace all qPCR assays in the clinical laboratory due
to associated instrument costs and greater complexity, it has several specific advantages over
qPCR. The vast number of partitions reduce the likelihood of co-amplification and inhibitors
in a single reaction, facilitating accurate detection of multiple analytes; and the large amount
of data enables the use of advance machine learning algorithms to detect subtle kinetic and
thermodynamic differences encoded in the real-time amplification data. On the other hand,
real-time dPCR platforms enable the use of digital bulk standards and offer a valuable solution
for absolute quantification of clinical isolates (equivalently to conventional qPCR standards)
even when the panels are saturated, expanding the dynamic range of quantification of the
microfluidic chips and eliminating the need of testing the samples at multiple dilutions to ensure
that at least one of them falls within the conventional dPCR range (i.e. panels at occupancy
< 85%). As shown in Figure 6.2, it is possible to create a standard curve in real-time dPCR by
extracting C, values as a function of the target concentration because there is a clear separation
between the single-molecule and the bulk regions. It is expected that coupling real-time dPCR
instruments with data-driven multiplexing will expand the use of these platforms in clinical

microbiology laboratories.

The results presented in this Chapter represent a step forward in the use of PCR-based
data-driven diagnostics for clinical applications. However, there are several aspects that need
to be further investigated. Firstly, the performance of the AMCA method is evaluated in
clinical isolates using pure bacterial cultures, therefore a follow-up study needs to be conducted
to evaluate the performance of the method directly from clinical samples (work currently on
going). Secondly, it is important to identify co-presence of infections for patient treatment,
however it was encountered in only one sample with a double infection; a larger study will be
required to test the effectiveness of the AMCA in double pathogen identification. Depending
on the sample concentration, this might not limit multiplexing capabilities in dPCR, but it

could represent a challenge when qPCR instruments are used.
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CHAPTER LESSON

The development of the data-driven multiplexing made possible to use the AMCA
approach as a diagnostics solution for the accurate detection of AMR genes in
clinical isolates in a rapid and cost-effective manner. This Part 1 final Chapter
highlights the importance of integrating artificial intelligence for diagnosis and how
effectively it increases result reliability of state-of-the-art PCR instruments. So far,
the thesis has described the evolution of data-driven multiplexing and its final use
in clinical isolates. The next Part will focus on the optimisation, bioinformatics

implementation and further application of the ACA.

TAKEAWAY QUESTION

”In the previous studies, the incorrectly classified samples from the Amplification
Curve Analysis (ACA) were corrected by the Melting Curve Analysis (MCA).
Can ACA be improved to guarantee higher accuracy in classification when melting

curve capabilities are absent?”
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Chapter 7

Enhance Amplification Data Quality

7.1 Chapter Overview

The previous Chapter has shown the potential of data-driven multiplexing in clinical settings,
unlocking the use of artificial intelligence for innovative scientific breakthroughs, particularly in
the field of molecular diagnostics for infectious diseases. This data-driven approach enhances
the level of multiplexing in single fluorescent channel PCR by extracting target-specific ki-
netic and thermodynamic information contained in amplification curves. However, accurate
target classification can be compromised by the presence of undesired amplification events and
non-ideal reaction conditions. Therefore, this Chapter proposes a novel framework to identify
and filter out non-specific and low efficient reactions from real-time digital Polymerase Chain
Reaction (qdPCR) data using outlier detection algorithms purely based on sigmoidal trends
of amplification curves. As a proof-of-concept, this framework is implemented to improve the
classification performance of the Amplification Curve Analysis (ACA) using the data presented
in Chapter 6. Furthermore, a novel strategy, named Adaptive Mapping Filter (AMF), is devel-
oped to adjust the percentage of outliers removed according to the number of positive counts in
qdPCR. From an overall total of 152,000 amplification events, 116,222 positive amplification re-
actions were evaluated before and after filtering by comparing against melting peak distribution,
proving that abnormal amplification curves (outliers) are linked to shifted melting distribution
or decreased PCR efficiency. The ACA was applied to assess classification performance be-

fore and after AMF, showing an improved sensitivity of 1.2% when using inliers compared to

98
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a decrement of 19.6% when using outliers (p-value < 0.0001), removing 53.5% of all wrong
melting curves based only on the amplification shape. This Chapter explores the correlation
between the kinetics of amplification curves and the thermodynamics of melting curves, and it
demonstrates that filtering out non-specific or low efficient reactions can significantly improve

the classification accuracy for cutting-edge multiplexing methodologies.

The concepts in this Chapter resulted in the following journal article:

e Miglietta L*, Xu K*, Chhaya PM, Kreitmann L, Hill-Cawthorne K, Bolt F, Holmes AH,
Georgiou P, Rodriguez-Manzano J. “Adaptive Filtering Framework to Remove Nonspe-
cific and Low-Efficiency Reactions in Multiplex Digital PCR Based on Sigmoidal Trends”.
ACS Analytical Chemistry, 2022 Oct 1. *First joint authorship.

7.2 Introduction

This Chapter demonstrates that undesired amplification reactions from real-time digital PCR
(qdPCR) can be detected and filtered out by only evaluating the sigmoidal shape of an am-
plification curve. This study proposes a novel methodology that can be used with multiplex
PCR assays without the need of post-amplification analysis, increasing results accuracy and

reliability [99, 117].

During the last decade, gold standard PCR technologies along with other nucleic acid
amplification chemistries have resulted in key procedures for molecular diagnostic in both aca-
demic and clinical environments [107, 112, 109, 172, 173]. However, limitations such as sample
availability, trained personnel, and overall laboratory costs can represent obstacles to the scal-
ability and adoption of PCR-based approaches [174]. To overcome these barriers, multiplexing
has been used to unlock the potential of conventional instruments, increasing the number of
targets that can be detected in a single reaction [16, 175, 176]. Since the adoption of multiplex-
ing techniques, researchers and industries have successfully applied them to different areas such
as molecular diagnostics, RNA signature polymorphism, and quantitative analysis [18, 177].
Moreover, in an effort to increase overall multiplex PCR capabilities, several studies have re-
cently been published on the use of Machine Learning (ML) to identify the biological nature

of an amplification event, improving throughput, clinical and analytical reliability, and sample
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classification accuracy [15, 178]. As described by Athamanolap et al. in 2014, ML methods
were applied to High-Resolution Melt Curve to increase both the tolerance of melting temper-
ature (T,,) deviation among targets and reliability of classification for genetic variants (such
as polymorphic genetic loci) [66]. In Jacky et al. 2021, ML techniques were used to enable
high-level multiplexing using TagMan probes by leveraging on single-feature classification (i.e.
final fluorescence intensity or FFI) and PCR platforms with multiple fluorescent channels [53].
While data driven methods have mostly been employed to improve the accuracy of target iden-
tification, with the aim to increase multiplexing capability, some groups have also explored
such techniques for outlier removal, both in digital and bulk PCR. For instance, Yao et al.
[179] developed a process-based classification model to identify false positive curves in dPCR
(leading to a 64% improvement compared with classical techniques), and Burdukiewicza et al.
[180] developed an algorithm to automatically detect hook effect-like curvatures, allowing for

streamlined quality control in qPCR.

In 2020 Moniri et al. proposed a new approach called Amplification Curve Analysis (ACA)
for single channel multiplexing without explicitly extracting features [97]. The ACA method
comprises a supervised ML classifier to analyse kinetic information encoded in the entire am-
plification curve, by looking into sigmoidal shapes across different targets [181]. Furthermore,
using ACA along with Melting Curve Analysis (MCA), a new method called Amplification
and Melting Curve Analysis (AMCA) was developed, enabling higher-level multiplexing in a
single channel [130]. While the melting curve is determined by thermodynamic properties of
the amplicon, mainly related to its nucleotide sequence, the features of the amplification curve
are also influenced by the concentration of templates and amplicon, as well as PCR efficiency
(and its cycle-to-cycle variation), thus also providing information on the kinetics of the am-
plification reaction. The AMCA couples both ACA and MCA coefficients from the classifier
to improve classification accuracy. This has been demonstrated through the detection of nine
mobilised colistin resistance genes and clinical isolates containing five common carbapenemase
resistance genes [144]. Moreover, multiplex PCR (coupled with innovative approaches such as
ACA or AMCA) is bringing about a change of paradigm in molecular diagnostics by enabling
faster, more accurate and higher throughput detection of several biomarkers in one reaction.
Its applications are wide-ranging, including precision medicine in cancer, genetic testing, and
syndromic testing in clinical microbiology and infectious diseases, where it enables precise

multi-target identification of multiple pathogens and antimicrobial resistance genes.
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A barrier to wider adoption of the aforementioned techniques is that they may be limited
by instrumentation specifications such as thermal profile performance, available optical chan-
nels/filters, and software setup. For example, MCA methodologies are particularly limited in
point-of-care devices, as many do not have melting curve capabilities. Furthermore, in assays
based on probe-based chemistries (such as TaqgMan), where intercalating dyes are not present,
the melting curve cannot be generated. In these circumstances, the ACA method still stands as
a valid option for multiplexing and therefore it has been the methodology of choice for the work
proposed in this Chapter. However, across all these ML-based multiplexing strategies, the ACA
approach can be negatively affected by the presence of abnormal amplification products, due to
primer dimerization, amplification of undesired targets, the miscalibration of the instrument,
and intra-molecule secondary structures. These abnormal behaviours tend to alter the kinetic
information of the sigmoidal curves, causing low efficiency or delaying the amplification reac-
tion [31, 182]. As represented in Figure 7.1, when considering shapes of amplification curves
from a multiplex assay, similarities among different targets can reduce the accuracy of the ACA
classifier, as the presence of non-specific or low efficient reactions results in blurred boundaries
among clusters. To overcome this problem, an intelligent algorithm was developed to filter out
outliers from multiplex amplification events. Furthermore, to validate the correctness of outlier
removal, amplification curves (inliers and outliers) are compared with labelled melting curves

("correct” and "wrong”).

This work demonstrated that non-specific and low efficient PCR reactions affect the shape
of the amplification curve and therefore, they can be filtered out considering only the sigmoidal
trend. Furthermore, an outlier removal algorithm called Adaptive Mapping Filter (AMF) was
developed, which in combination with the ACA approach was used to improve the multi-target
classification accuracy. This represents a step forward to incorporate ACA in clinical applica-
tions and ensure that by filtering in correct amplification curves, higher diagnosic reliability
is delivered to the patient. These concepts were explored using data obtained from qdPCR
experiments reported by Miglietta et al, 2021 [144]. As a case study, three of the “The big 5"

carbapenemase genes (blaxpw, blavp, and blagxa.ag) were considered in this study.

The vision of this Chapter is to significantly improve the quality of data from qdPCR
instruments and enhance the sensitivity and accuracy of ML-based multiplexing methods re-

lying only on amplification curves. Moreover, extending this framework to other amplification
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chemistries and real-time platforms will improve multiplexing capabilities of existing diagnostic

workflows and platforms.
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Figure 7.1: Filtering Amplification Curve Concept. Left: raw amplification curves and their corre-
sponding ACA clusters (represented by principal component analysis or PCA) include non-specific
and low efficient reactions (confined in the red-circled region). The presence of outliers blurs the
boundaries of the different clusters, negatively impacting ACA classification accuracy. By applying
the proposed filtering framework, kinetic and thermodynamic abnormalities from amplification events
can be captured. Right: Outliers are removed from the original data, resulting in more separated
clusters and clearer boundaries. Therefore, ACA classification accuracy is improved.

7.3 Experimental Section

In this section, a new framework for outlier removal in qdPCR is proposed. As depicted in
Figure 7.2, this framework took raw amplification curve data as input, and applied baseline
and flat/late curve removal in the processing step. Then each processed curve was fitted by
a sigmoid function and the fitted parameters, as well as a newly developed feature referred
as Seng, were used as input for a filtering algorithm which identified outliers automatically.

Finally, the framework output the amplification curves after filtering, marked as inliers.

7.3.1 Data input

As a case study, data from Miglietta et al. 2021 was used in this work [144]. Data from
synthetic DNA (gBlocks™ gene fragments, IDT) containing blaxpy (N = 18,480), blapp (N
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Figure 7.2: Amplification Curve Filter framework. a) Framework steps: raw data input, processing,
curve fitting, feature extraction, Adaptive Mapping Filtering (AMF) and filtered curve output. b)
Input or output of each step. From left to right, the input of the framework were raw amplification
curves, some of which are flat or late curves. By applying the processing step, the baselines were
removed, and flat/late curves were discarded. Following this, the processed curves were fitted using
a five-parameter sigmoid function, after which each curve was condensed into five features. A new
feature Senq plus four of the parameters were used to form a set, which is the input of the filtering
step. The d parameter was discarded from the feature set for filtering as it is unsuitable for the used
algorithms. The AMF was further optimised with a monotonic decreasing map between positive curve
numbers within a panel and the outlier percentage. The outputs of the framework are the curves after
filtering (inliers).

= 17,710), and blapxa.as (N = 17,710) gene sequences were used as the training dataset. From
the original study, a total of 198 clinical isolates labelled with these three targets were used as
the testing samples in order to maintain a balanced dataset and due to their high prevalence
and clinical significance in UK hospitals. Each sample contained 770 raw curves for a total of
152,460 curves across all the samples, within which 116,222 were positive after the processing
step. It is expected that data from clinical isolates are much noisier and thus contain more

outliers than those from gBlocks™.

7.3.2 Data processing

The first step of the framework is processing the raw curves using a baseline correction and a
flat /late curve removal to exclude the negative curves of the unprocessed data from the qdPCR
output. The baseline of real-time PCR reaction during the initial cycles presents little change
in fluorescent signal. The low-level signal of the baseline equates with the back-ground or

noise of the reaction. Therefore, the baseline of each raw curve was processed by averaging
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the fluorescent value of the first five cycles and subtracting it from the time series. Following
this, flat/late curves were removed by applying an upper and lower fluorescence threshold at

the 40" cycle, as suggested by the manufacturer [183].

7.3.3 Fitting and feature extraction

Following the processing step, a curve fitting step was introduced to represent the processed
amplification curves with sigmoid parameters, which were later down-selected and used as input
features for outlier removal and classification algorithms. A 5-parameter sigmoid model, [31]

which is shown below, was used to fit the amplification curves:

Fmam
N
(1 —|—e‘¥>

where t is the PCR cycle number, F(t) is the fluorescence at the " cycle, Fj is the back-

F(t) = F, + (7.1)

ground fluorescence, F},., is the maximum fluorescence, b relates to the slope of the curve, ¢
is the fractional cycle of the inflection point, and d is the asymmetric parameter. To solve the
nonlinear least-square-optimization problem for the curve fitting, the Trust Region Reflective
(TRF) algorithm with specific bounds was used [184]. Here, the upper and lower bounds were
set to [10,0.3,10,50,100] and [0, —0.1,—10, —50, —10], respectively, as for the search of the
5-parameter set p = [Fiuaz, Fp, b, ¢, d]. The initial parameter set py was optimised through pivot
fitting on 5% of the training data. After fitting, each amplification curve was given as five
parameters, which are condensed representations of curve information. The fitting quality was
assessed using Mean Squared Error (MSE) and reported in Figure 7.3. All parameters except
for d were considered as input features for outlier removal algorithms because parameter values
of outliers may have significant differences from those of normal curves. The d parameter shows
a bimodal distribution with two distant peaks, which is unsuitable for the outlier removal step
because many of the outlier algorithms require a unimodal distribution of features. Therefore,

the d parameter was discarded from the feature set for filtering.

In addition, a new feature called the end slope (Se,q) was introduced aiming to provide

further information about the amplification curve shape. This was calculated by taking the
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Figure 7.3: Mean Squared Error distributions. Mean Squared Error (MSE) is used to monitor the
fitting performance and the quality/correctness of fitted parameters. As shown in the figure, for the
majority of curves a MSE smaller than 10-4 can be observed, indicating good fitting considering the
fluorescence values ranged between 0 and 1.

average of the first derivatives at the last five cycles of the amplification curve:

Seu=3 [DIN=4) D(N=3) - D(N)]es' (7.2)
where:
4R
D(z) = i | (7.3)
es=[1 1 1 1 1] (7.4)

and N is the total cycle number.

Using the S,,4 feature, the information in the tail of amplification curves was extracted,
which contributes to distinguishing inliers and outliers. For example, as illustrated in the
“Fitting Curves” step of Figure 7.2b, curves that do not reach the plateau may have larger
end slopes. These curves cannot be precisely represented by the fitted parameters since the
fitting equation is not capable to capture this non-plateaued trend. Therefore, S.,q would
benefit the result of outlier removal by providing additional information to the feature set.

Including Se,q and discarding d, the final feature set for outlier removal algorithms is z; =

[Fmaasa Fb7 b7 c, Send]-
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7.3.4 Outlier removal algorithms

In this research, seven outlier removal algorithms were considered, which can be split into the fol-
lowing categories according to their principal ideas of filtering: proximity-based, linear, outlier
ensembles, and angle-based algorithms. (i) Proximity-based outlier detection algorithms rely
on using a distance metric (e.g. Euclidean or Manhattan) to identify outliers. Two proximity-
based algorithms, which are Local Outlier Factor (LOF) and Density-based Spatial Clustering
of Applications with Noise (DBSCAN), were applied [185, 186]. The LOF algorithm considers
the k-nearest neighbors (KNN) to every point in the dataset and computes a local outlier factor
for each of them. DBSCAN classifies the points into the core, border, and noise of clusters based
on the number of points (min points) within the radius (epsilon) of the considered point. (ii)
The linear outlier detection methods used were One-Class Support Vector Machine (OC-SVM)
and Elliptical Envelope [187, 188]. OC-SVM applies the concept of finding a hyperplane that
separates the inlier points from the origin, such that the hyperplane is closest to the inlier points
as possible. The Elliptical Envelope aims to fit the smallest ellipse possible to the core cluster
of data points, with any point outside being considered outliers. (iii) Outlier ensemble-based
detection methods considered were Isolation Forest and feature bagging [189, 190]. Isolation
Forest uses random forests to recursively randomly partition data, after which datapoints with
fewer partitions to isolate are marked as outliers. Feature bagging considers multiple outlier
algorithms and randomly selects a group of features. From those features, the resulting outlier
scores from each algorithm are merged to find the strongest outliers. (iv) Angle-based Outlier
Detection considers the angles made by a point with all other pairs of points in the dataset [191].
For each point, the variance is calculated from all the angles obtained, where for a potential

outlier the variance is small, since the point is distant from the main cluster of data.

7.3.5 Adaptive mapping filter (AMF)

Most of the outlier detectors explained in the previous section require a hyperparameter called
“contamination ratio” or “outlier percentage”, which represents the percentage of outliers to
be removed from the original data. To adaptively set up this hyperparameter, a mapping
strategy that maps the number of positive qdPCR reactions per panel (processed curves) to

the contamination ratio was developed and used in the outlier removal algorithm.
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In digital PCR, as the number of positive curves increases, the probability of having more
than one molecule in a single well increases, resulting in a shift of reaction state from digital
to bulk. Moreover, as the reaction goes toward the bulk region, a higher number of positive
curves will be present in a panel, which can result in a lower probability of observing a non-
specific or low efficient reaction (outlier) in a well [97, 192]. Let us suppose that for each well
the probability of observing an outlier is p(M;), where M; is the number of processed curves
for the i'h sample. Since p(M;) are independent and identical distributed (i.i.d.) for all the
wells, the total number of outliers X; observed in the i sample follows the distribution of
X; ~ B(M;, p(M;)). Therefore, the expected percentage of outliers in the i sample should
be:

outlier percentage = Y= = p(M;) (7.5)

which means that the expected outlier percentage is a monotonic decreasing function to the
number of positive curves. As illustrated in the filtering step of Figure 7.2B, a piecewise linear

function with empirical turning points was applied.

Coupling the adaptive mapping with an outlier removal algorithm, a novel method called
Adaptive Mapping Filter (AMF) was developed, which takes as input the feature set and

outputs the inliers.

7.3.6 Melting Labeling

An algorithm was developed to automatically label the melting curves as specific (referred to as
“correct”) or non-specific (referred as “wrong”) ones. By using this methodology, the percentage
of wrong melting curves within all the curves of a sample (Wrong Melting Percentage or WMP)

was calculated, and this WMP further served as a metric for performance evaluation.

To apply melting labeling, the reference melting peak for each target needs to be deter-
mined. For a target tg € [blanpm, blap, blaoxa.as], a reference melting peak temperature 79
was given by calculating the median value of all the melting peak temperatures of the gBlock™
curves with target tg. After that, the steps below were followed to label every single melting

curve of the clinical dataset:
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1. Find the global maximum melting peak’s temperature 77 of the current melting curve.

2. IfT9 ¢ [T — %, T!9+ %] where W is the tolerance width of the T¢ distribution,
the current curve is labeled directly as a wrong melting curve. Here, considering the

instrument resolution for melting curve analysis the W is equal to +0.5°C.

3. Otherwise, find the local maximum melting peaks’ temperatures on the left and right
sides of T on the current curve, mark them as T, and 77, respectively. Note that either
T! or T" may not exist. If neither exists, the current curve will be labeled as a correct

melting curve.

4. Tf at least one of T! and 71" exists, a set of this (these) local melting peak(s) will be

constructed. For each element T in this set, check whether

He € [ Hmean - 4]¥std7 Hmean + 4Hstd ] (76)

where H, is the height of the current melting curve at temperature 75, H,eqn and Hy are the
mean and standard deviation of [ Hyre Hyre ... Huyre ] , in which H,, re means the height
of the nth melting curve of the sample at temperature 7, and M is the total curve number in
the sample. If at least one of the above tests fails, the current curve will be labeled as a wrong

melting curve. Otherwise, it will be marked as a correct one.

With the above steps, it is ensured that both curves with large deviations of 79 from
reference melting peaks and curves with large non-specific local melting peaks can be labeled
as wrong. In this way, all the curves had been marked as either “correct” or “wrong”, and

further used to calculate the Wrong Melting Percentage (WMP):

N
WMP = %" » 100 (7.7)

total

where Nyyrong is the number of wrong melting curves within the sample, and Nyoq is the total

number of curves in the sample.

It is worth mentioning that the proposed algorithm of automatic melting labeling is not a
part of the filtering framework. The labeling was used to calculate the WMP which functioned

as a metric for filtering evaluation, where a lower WMP indicates better filtering performance.
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7.3.7 Data visualization

Visualization is a vital step for understanding the distribution of a given dataset. In this article,
Principal Component Analysis (PCA) with two components was used to visualise the feature
sets of the curves before and after applying the outlier removal algorithm into scatter plots.
Visual inspection was performed to illustrate how separated the clusters of different targets
were. Following this, several metrics for measuring density and degree of separation among

those clusters were used to quantitively evaluate how well they were divided.

Specifically, after the PCA of the feature set ¢y = [Fa, b, b, ¢, Send) from the
amplification curves of each target, the Silhouette Coefficient for each feature set was calculated
[193]. The mean value of these coefficients, known as the mean Silhouette Score, was then used
to indicate how well the curves of the same targets are clustered. A Higher Silhouette Score
implies denser and better-separated clusters observed. Two additional metrics, the Calinski-
Harabasz score and the Davies-Bouldin score, were also implemented for clustering evaluation,
where a higher Calinski-Harabasz score or a lower Davies-Bouldin score relates to larger inter-

cluster distances among targets [194, 195].

7.3.8 Classification of amplification curves — data-driven multiplex-

ing

The ACA method uses kinetic information encoded in the amplification curve to classify differ-
ent nucleic acid molecules from a PCR test. As shown in Table 7.1, the performance of the ACA
was assessed using different curve representations, and the five fitted parameters were used in
this study. To illustrate the influence of the AMF on the ACA, a random forest classifier with
100 trees was applied to the feature set z. = [F}, Finaz, b, ¢, d], which differs from the z; used
for outlier removal algorithms. Here, parameter d was reintroduced because more curve-related
information is needed, provided that the proposed classifier is relatively less sensitive to the
feature distributions. S.,q was discarded for classification because, after outlier removal, ab-
normal curves with large end slopes were not present in the data set. For the remaining curves,
Sena Were extremely close to zero, thus it was not necessary for S.,4 to be included again. All
the other features were normalised with the mean and the variance of the training data before

being input into the classifier.
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In this research, after applying data processing and feature extraction on both training
and testing set, the extracted features of the training set were used to train a Random Forest
classifier. This trained classifier was then evaluated on the testing set with or without Adaptive
Mapping Filtering (the progress of AMF is totally unsupervised so it can be applied on testing
dataset without the true labels). For the testing set, both the inliers and the outliers marked by
the aforementioned AMF algorithm were tested. As a comparison, two randomly down-selected
datasets with the same numbers of curves as the inliers and the outliers were also constructed

and tested.

Table 7.1: Performance comparison between the original ACA method and the proposed method,
before applying AMF.

Target Precision (%) Sensitivity (%)  Fl-score
KNN* RF* KNN*  RF* KNN*  RF*
blaxpm 65.5 80.0 83.7 94.4 0.73 0.87
blanp 67.8 75.3 96.0 97.8 0.80 0.85
blaoxa-as 84.4 94.8 02.8 70.6 0.65 0.81
Accuracy (%) 71.7  83.9

* 45 cycles + KNN algorithm
* 5 fitting parameters + Random Forest algorithm

7.3.9 Statistical Analysis

Two-sided Wilcoxon signed-rank tests were used to determine the statistical significance of the
changes of WMP and melting peak distributions (distributions of melting peak temperature,
T,., and height, H,,) before and after outlier removal. Two-sided Mann-Whitney U rank
tests were used to compare the distributions of C;, FFI, and maximum slopes between inlier
and outlier amplification curves. Those three metrics were chosen for their relationship with
the amplification curve efficiency. Many studies suggest that sigmoidal modeling of the entire
amplification curve can be used to define the rate of the PCR efficiency. Therefore, low-efficiency

PCR reactions are related to low fluorescent values and low maximum slope [30, 196].

Moreover, the significance of the comparison between inliers and outliers in clustering
Silhouette coefficients was determined by a two-sided Wilcoxon signed-rank test. This test was
also used in the evaluation of the classification performance. A p-value of 0.001 with Bonferroni

correction was used as the threshold for statistical significance.
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7.4 Results & Discussion

In this study, a new framework is presented to detect outliers from amplification reaction in
qdPCR. The outlier identification relies on the AMF, which is comprised of an outlier detection
algorithm and a mapping strategy to adapt the contamination ratio hyperparameter to the

positive amplification reaction counts (or positive wells) of the qdPCR chip.

7.4.1 Evaluation of outlier detection algorithms

As shown in Figure 7.4a, the detection performance of seven outlier removal algorithms on
filtering amplification curves against outlier percentages were evaluated using three metrics: (i)
Wrong Melting Percentage (WMP), (ii) Melting Curve T,, variance, (iii) Melting Curve H,,
variance. The changing values of metrics for different algorithms with fixed outlier percentages
from 0.1% to 40% are shown in Figure 7.4a. After the filtering is applied, the WMP shows
a significant reduction from 1.1% (from the unfiltered dataset) to a maximum of 0.9% after
filtering across all the algorithms. The graph depicts that outlier percentage and WMP are in-
versely proportional, but the trend can vary among methods. Proximity-based outlier detectors
perform worse overall compared to the rest so they are unable to achieve a dramatic decrease in
WMP, even with very large contamination ratios. On the other hand, ensemble-based detectors
such as Feature Bagging and Isolation Forest have better performance with the lowest WMP
among all the outlier percentages. As shown in the center and right end graphs, the variances
of T, and H,,, have a decreasing trend that can be observed as the outlier percentage increases,
indicating that both of their distributions are narrowed down. In the T,, variance plot, it
is noticed that DBSCAN achieves better performance at lower outlier percentages, but this
trend reaches a plateau as the outlier percentage further increases. Once again, ensemble-based
methods have similar behavior for the T,, variance as for the WMP. For instance, Isolation
Forest outperforms all other detectors after the outlier percentage reaches 12%. Moreover,
Isolation Forest and elliptic envelope show the best performance for H,, variance up to 26%

contamination ratio.

In this analysis, WMP was used to show the change of wrong melting proportion after
applying outlier detection algorithms, indicating the direct effect of the filtering on removing

wrong melting curves. It is important to consider that wrong meltings are not related to wrong
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target sequences, as the true nature of the amplicons resulting from the PCR reaction can only
be established by sequencing, which is impractical in digital PCR. The WMP is used to evaluate
the shift of melting peak or the presence of multiple low-intensity peaks which result from non-
specific or low-efficiency amplification reactions. This can largely affect the ACA classification
depending on the presence of the abovementioned phenomena, therefore filtering such events can
result in improved target identification. Moreover, a smaller T,, variance indicates a narrower
T,, distribution, which in combination with the WMP methods shows that curves with large
deviations from the reference T are removed by the filtering algorithm. In molecular biology,
those curves may be generated after non-specific events such as undesired target interaction
or primer dimerization [197]. In addition, melting curves presenting low —df /dt (or H,,) are
associated with low efficient amplification reactions. Therefore, narrowed distribution of H,,
indicates that low efficient curves, which are present at the tail of the distributions, are removed.
All the algorithms provide better performance compared to the original benchmark calculated
on the unfiltered data. However, it is noticed that Isolation Forest is always among one of
the best methods for all the metrics and does not show any defects, which is common for
other algorithms. In the following sections, the Isolation Forest algorithm is used to further

demonstrate the proposed framework.

7.4.2 Filtering performance analysis of the AMF

In the following step, AMF was applied to the unfiltered data, and the distributions of inner-
sample WMP, T,, and H,, variances are illustrated in Figure 7.2b. Across these three metrics,
significant shifts of distributions to smaller values are shown after filtering, supported by all
the p-values < 0.0001. This indicates that the proposed AMF can significantly remove both
non-specific and low efficiency curves only by looking at amplification curves. This proves the
hypothesis that amplification curves contain not only kinetic but also thermodynamic informa-

tion as numbers of outliers correspond to wrong melting curves.

An example of the AMF visual performance on a clinical isolate containing the carbapen-
emase gene blapxa.as is illustrated in Figure 3c. Columns represent both amplification and
melting curves of: (i) correct melting and predicated inliers (N = 731, 94.9%), (ii) wrong
melting and predicted outliers (N = 19, 2.5%), (iii) correct melting and predicted outliers (N
= 12, 1.6%), (iv) wrong melting and predicted inliers (N = 8, 1%). The first column shows
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c) Example of a blagya.ag Clinical isolate before and after Adaptive Mapping Filter (AMF)

Wrong melting percentage: 3.51% (before AMF) - 1.08% (after AMF)
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Figure 7.4: Melting curve analysis on filtering results. a) Melting performance shown with Wrong
Melting Percentage (WMP), T,, and H,, variances versus fixed outlier percentage. As the outlier
percentage increases, all the metrics show decreasing trends which tend to plateau after a certain
percentage. As illustrated by the firm red line, Isolation Forest performs the best overall for the
three metrics. b) The distribution of melting performance metrics shows that, after filtering, the
WMP becomes significantly smaller, and T,, and H,, have a narrower distribution. c¢) An example
of blapxa-4s clinical isolate. Each column shows the amplification curve and corresponding melting
curve of the correct melting and predicted inliers (N = 731), wrong melting and predicted outliers (N
= 19), correct melting and predicted outliers (N = 12), wrong melting and predicted inliers (N = 8).

the correctly identified inliers representing specific products of PCR tests. In the second col-
umn, non-specific reactions are correctly identified and labeled as outliers, which emphasises

the effectiveness of the filtering. It can be noticed that a small number of specific curves were
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predicted as outliers, as shown in the third column of Figure 7.2c. This phenomenon does not
deny the efficacy of the filter, as these “incorrectly” removed curves have: (i) significantly larger
C; values, (ii) significantly smaller FFI, (iii) and smaller values of maximum slope compared
to the inliers. Across the entire clinical isolate dataset (N = 116,222), compared to melting
curve analysis, 115,535 were correctly predicted inliers and 791 were correctly predicted out-
liers. Furthermore, 5,861 were wrongly classified as outliers whereas 687 were wrongly classified
as inliers. Further statistical analyses on the entire dataset also endorse these significant differ-
ences between inliers and outliers for C;, FFI and maximum slope values, as illustrated in Table
7.2. This indicates that AMF removes certain curves because they are of low amplification ef-
ficiencies even though they have “correct” melting peaks. A few curves labeled as “wrong”
melting may be predicted as inliers, as shown in the fourth column of Figure 7.2c. This can
be explained by the relatively low temperature resolution of the equipment which results in
mislabeled wrong melting curves due to the large quantization noise of 79 during temperature
measurement. In fact, by visually inspecting the last column of Figure 7.2¢c, it can be seen that
amplification curves are of very similar shapes to correctly predicted inliers (shown in the first
column of Figure 7.2c). The WMP of the illustrated sample has dropped from 3.51% to 1.08%.
Overall, in this demonstrated dataset 1.2% of wrong meltings were reported before filtering,

and after applying AMF, the WMP was reduced by half to 0.59%.

Table 7.2: Comparison of C;, FFI and maximum slope between predicted inliers and outliers with
correct melting peaks.

Target C; (mean + std) FFI (mean =+ std) Max Slope (mean + std)
Inliers Outliers Inliers Outliers Inliers Outliers
blaxpm 21.45+3.28 26.40+6.11 0.67+£0.06 0.604+0.12 0.07+£0.01 0.06 +0.01
blapvp 30.33£2.23 31.25+3.43 0.44+0.06 0.41£0.07 0.0276 £0.003 0.0271 £ 0.01
blaoxaas 18.82+3.08 21.03+4.34 0.65+0.08 0.51+0.16 0.05=£0.01 0.04 +0.02

For all the targets, inliers have significantly smaller C; and larger FFI and max slope.
All p-values < 0.0001.

7.4.3 Feature set visualization

To visualise the effect of the AMF, PCA-based feature visualization before and after filtering
is depicted in Figure 7.5. On the left of the figure, the unfiltered data shows larger overlapping
within clusters of different targets and a higher number of outliers compared to the data after

filtering. The segmented squares are used to emphasise the differences in cluster overlapping
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before and after the AMF, where clearer boundaries between blajp, and both blagxa-4g and
blaxpy can be seen. These differences highlight that: (i) outliers can be effectively removed
by the AMF, and (ii) removing outliers enhance the separation and reduce the overlap among
different target clusters, which will ease the classification of the ACA method. To numerically
evaluate the degree of separation across target clusters, the mean Silhouette score of all the
datapoints was calculated before and after filtering, showing an increment from 0.378 to 0.399
(p-value < 0.0001). In addition, the Calinski-Harabasz score increased from 101,002.729 to
130, 134.802, and the Davies-Bouldin score dropped from 0.886 to 0.839. All those results

indicate that AMF makes target clusters denser and better separated.

Before Filtering After Filtering
Mean Silhouette Score: 0.378 Mean Silhouette Score: 0.399
Target (Data Points) Target (Data Points)
15 4 e blaypm (39753) 154 ° blaypm (37307)
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Figure 7.5: Data visualised using 2-D Principle Component Analysis before and after filtering. The
processed data plot shows that most outliers have been removed from the original unfiltered data, and
the clusters are more separated with clearer boundaries and fewer overlaps. The segmented squares
on the bottom side of both figures show the areas where cluster overlapping is more evident, thus they
are zoomed. The mean Silhouette Score rises from 0.378 to 0.399 after filtering.
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7.4.4 ACA classification

After demonstrating that removing outliers improves the overall distance among clusters, fur-
ther exploration on its impact on the ACA classification was explored for both inlier and outliers
against randomly down-selected datasets with the same numbers of curves. In Figure 7.6a, the
confusion matrix shows that the sensitivity for the inliers is 88.96%, which is an increase of
1.13% compared to the randomly down-selected ones in Figure 7.6b. For all the targets, a signif-
icant sensitivity improvement can be observed of 1.06%, 0.95% and 1.39% for blamp, blaxpm,
and blapxa-ag, respectively. Moreover, the overall classification accuracy was 84.94% for in-
liers and 83.76% for randomly down-selected curves, showing a 1.18% improvement (p-value
< 0.0001), which is in line with the overall WMP before filtering (WMP = 1.2%). Applying
the filter will help increase the overall performance and specificity of the dataset. This supports
the hypothesis that melting information or thermodynamics are contained in the amplification

curve.

To show that the removed outliers are less informative for target recognition and harmful
for the overall classification, Figure 7.6¢ and 7.6d show the confusion matrices of the classifica-
tion using both removed outliers and a randomly down-selected dataset with the same size. As
expected, the performance for outliers is significantly worse than the randomly down-selected
ones, with only 68.2% and 54.78% sensitivity and accuracy respectively for outliers (p-values
< 0.0001). This dramatic sensitivity decrement of 19.57% strongly suggests that outliers have

less useful information for the classification of the selected targets.

Furthermore, the statistical analysis on the two randomly down-selected datasets shows
no significant differences of in-sample accuracy with p-value = 0.448, which is in line with the
central limit theorem as they originate from the same distribution. This is a further proof that

the efficacy of the proposed framework is not related to the size of the data.
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Figure 7.6: Confusion matrices for inlier and outlier classification. The four confusion matrices are
shown for: a) inliers, b) randomly down-selected data with the same curve numbers as inliers, c)
outliers, and d) randomly down-selected data with the same curve numbers as outliers. The title of
each matrix reports the sensitivity of the model. Moreover, each square of the matrix has the number
of predicted curves for the corresponding true label and the respective sensitivity of the square.

7.5 Conclusion

This chapter presents a novel framework to adaptively remove abnormal curves from PCR
amplification reactions. The method takes the raw input from a qdPCR run and processes it in
three steps: background subtraction, late curve removal, and sigmoidal fitting. Moreover, a new
feature called end slope (Seq) is developed in this study which, along with sigmoidal parameters,
is used in the Adaptive Mapping Filter (AMF). The AMF is capable of removing non-specific
and low efficient amplification curves, which are labeled as outliers. Melting curves of the
outliers, previously removed, were compared with melting curves of inliers using both Wrong
Melting Percentage (WMP) and melting peak distributions. Results show that non-specific

and low efficient curves can be removed from amplification reaction by purely considering the

sigmoidal trend. Further validation of the framework performance was conducted by assessing
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the classification accuracy and sensitivity of the ACA classifier on both inliers and outliers. This
reinforces the hypothesis that removing abnormalities of amplification reaction in real-time PCR

instruments would benefit data-driven multiplexing by removing undesired information.

This research uses data from qdPCR presented in the previous Chapter to demonstrate
the effectiveness of the proposed framework, but its generality has not been tested in other
settings. Future work will focus on evaluating this methodology on real-time data originating
from various qPCR instruments, from different chemistries (such as isothermal amplification),
and from point-of-care devices. Digital PCR allows to generate amplification curves at low
concentrations of samples, enabling the use of the developed framework. However, future work
will focus on the application of this novel method in bulk reactions. Moreover, in the event of
secondary amplification, the curve may show a second increasing phase with a large FFI and
different shape from sigmoid. However, as shown in Figure 7.2b fitting step, the approximate
shape of the distorted curve can still be depicted by the 5-parameter model, with still relatively
small fitting error. After fitting, certain parameter values of the secondary amplification events
will be different and distant from normal reactions and these events can be identified easily
by the outlier detector. Regarding the presence of multiple targets in a single well, a normal
sigmoidal trend is expected, therefore the fitting error (MSE) will be low without affecting the
AMF progress. However, the ACA classification of such event may be challenging. The previous
Chapter demonstrated that presence of double targets can be resolved by using AMCA approach
(with the help of melting curves), and other solutions such as FFI modulation by changing
probe concentration in TaqgMan assay may also help tackle this issue. Finally, upcoming work
will focus on introducing advanced machine learning techniques to enhance the classification
efficacy of the ACA classifier, and then on making this approach more reliable for use in clinical

diagnostics.
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CHAPTER LESSON

This Chapter reveals the interconnection between the kinetics of the amplifica-
tion curve and the thermodynamics of the melting curves. For the first time, a
framework is introduced which is capable of removing abnormalities in kinetic and
thermodynamic information by purely screening amplification curves, improving

data-driven methods performance and quantification accuracy in qdPCR.

TAKEAWAY QUESTION

”If the Adaptive Mapping Filter (AMF) notably improves the ACA performance
(relying only on the amplification curve), can data-driven multiplexing be applied
for multiple target detection using TagMan probe assays (where melting curve

capabilities are absent)?”






Chapter 8

Smart-Plexer: a Tool to Develop

Multiplex Assays

8.1 Chapter Overview

Developing multiplex PCR assays requires an extensive amount of experimental testing, the
number of which exponentially increases by the number of multiplexed targets. Dedicated
efforts must be devoted to the design of optimal multiplex assays for specific and sensitive
identification of multiple analytes in a single well reaction. Inspired by data-driven approaches,
this Chapter describes the process of reinventing the way of designing and developing multiplex
assays by proposing a hybrid, easy-to-use workflow, named Smart-Plexer, which couples em-
pirical testing of singleplex assays and computer simulation of multiplexing. The Smart-Plexer
leverages kinetic inter-target distances among amplification curves to generate optimal multi-
plex PCR primer sets for accurate multi-pathogen identification. The optimal single-channel
assays, together with a novel data-driven approach, Amplification Curve Analysis (ACA), were
demonstrated to be capable of classifying the presence of desired targets in a single test for

seven common respiratory infection pathogens.
The concepts in this Chapter resulted in the following submitted article and patent:

e Miglietta L, Chen Y, Luo Z, Xu K, Ding N, Peng T, Moniri A, Kreitmann L, Cacho-
Soblechero M, Holmes A, Georgiou P, Rodriguez-Manzano J. “Smart-Plexer: a break-

120
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through workflow for hybrid development of multiplex PCR assays”. Under review -
https://doi.org/10.21203/rs.3.rs-1765213/v1.

e Rodriguez-Manzano J, Moniri A, Miglietta L. and Georgiou P. “Method of assay design”,
GB2108339.9, Assignee: Imperial Innovations Limited, 2021

8.2 Introduction

Quantitative Polymerase Chain Reaction (qPCR) allows to continuously monitor the kinetic
signature of a specific amplification event due to the mutual interaction of oligonucleotides and
their specific template [107, 198, 199]. The extraordinary ease and reliability of this golden
standard method for Nucleic Acid Amplification Tests (NAATSs) have improved routine diag-
nostics in several fields and, more recently, played a crucial role during the COVID-19 pan-
demic, one of the ten deadliest infectious diseases in history [200, 201, 202]. This epidemic
has further highlighted the need for more cost-effective and provisional diagnoses, and for en-
hancing the diagnostic capabilities of conventional instruments along with point-of-care devices
[146, 203, 204, 205]. As the pandemic comes to an end, the focus on developing NAATSs for
the simultaneous detection of multiple respiratory pathogens alongside COVID-19 has drasti-
cally increased [206, 207, 208]. There is an emerging demand for rapid, affordable, and reliable

molecular tests for multiple identifications of infectious disease [204].

Current screening strategies of multiple pathogens are reported to be expensive, sample
consuming and, in some cases, inaccurate [209, 210]. As a result, multiplex PCR is emerg-
ing as an inexpensive alternative for multi-target identification [141, 211]. Many efforts have
been made in developing novel methods to increase the number of targets detected by mul-
tiplex assays and to enhance the accurate identification of multiple infectious sources in a
single test [212, 213]. Advances in multi-pathogen detection include the use of High-Resolution
Melting Analysis (HRMA), fluorescent probe-based method, or restriction enzyme digestion
[214, 215, 216]. Recently, the emergence of machine learning approaches in clinical diagnos-
tics has highlighted the potential of data-driven multiplexing, which, compared to conven-
tional methods, unbars limitations in terms of throughput, costs, time and reliability [3]. A
few methods have been proposed using either melting curve analysis (intercalating dye-based

chemistries) or the final fluorescence intensity (probe-based assays) as features for machine
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learning algorithms [53, 67]. Moreover, using cutting-edge signal processing and tailored ampli-
fication chemistries, state-of-the-art identification performance has been achieved by leveraging
the kinetic information encoded in the entire amplification curve from multiplex PCR assays. A
novel learning-based methodology called Amplification Curve Analysis (ACA) has been recently
reported as a digital tool to expand multiplex capabilities of real-time PCR-based diagnostic
platforms, increasing the number of detectable targets per fluorescent channel in a single reac-

tion without hardware modification [97, 144, 130].

However, the development of multiplex PCR assays is still restrained as extensive experi-
mental testing is required to assess the assay’s analytical performance, such as cross-reactivity,
specificity, and sensitivity [212, 217]. One of the biggest challenges in multiplexing is the com-
plexity of assay design, which dramatically increases with the number of targets, making the
development costly, lengthy and resource consuming in the wet laboratory [141, 218]. For N;
multiplexed targets, if Np; candidate primer sets are designed for each of them (which is triv-
ial progress for well-designed singleplex assays), the total number of possible multiplex assay
combinations is N, = Np,™* (e.g. N, = 16,384 when Np, = 4 and N; = 7). The N, increases
exponentially with N;, making it impractical to find the optimal combination by wet-lab ex-
periments in high-level multiplexing. Therefore, an in-silico simulation method is required for

fast screening and for narrowing down selections of multiplex assays.

This problem is addressed with the Smart-Plexer, a mathematical algorithm capable of
simulating thousands of possible multiplex assay combinations based on singleplex real-time
digital PCR (qdPCR) data. The use of this new methodology is addressed by developing a
TaqMan-based multiplex assay, in a single fluorescent channel, for the specific and sensitive
detection of seven common respiratory tract infection (RTI) pathogens. This work is two-fold:
First, the Smart-Plexer is validated by comparing the performance of all possible simulated
and empirical combinations in 3plex, showing a strong correlation between in-silico and lab-
tested multiplexes; second, the proposed pipeline is assessed in high-level multiplex (7plex) by
evaluating the ACA classification performance on synthetic DNA and clinical samples. Out of
4,608 simulated combinations, an optimal multiplex assay could be developed using this novel

framework to detect seven common respiratory pathogens accurately in qdPCR.
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8.3 Experimental Section

8.3.1 Synthetic Double-stranded DNA Templates & Clinical Sam-

ples

Synthetic DNA. Double-stranded synthetic DNA was used in this study to develop and
assess the performance of all singleplex assays. In particular, the entire coding sequence used are
the hexon protein gene (HEX gene) for human adenovirus (HAdV), and the nucleocapsid protein
gene (N gene) of human coronavirus OC43 (HCoV-OC43), HKU1 (HCoV-HKU1), 229E (HCoV-
229E), NL63 (HCoV-NL63), Middle East respiratory syndrome-related coronavirus (MERS-
CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The following NCBI
accession numbers were used as references for the gBlock synthesis: NC_001405, NC_006213,
NC_006577, NC_002645, NC_005831, NC_019843 and NC_045512, respectively. The synthetic
constructs were used for qPCR experiments when determining the limit-of-quantification of
each PCR assay, and in qdPCR experiments for generating the dataset used in the simulation
of the multiplexes and their empirical testing. The gene fragments (ranging from 1,134 to
1,558 bp) were purchased from Integrated DNA Technologies Ltd. (IDT) and re-suspended
in Tris-EDTA buffer to 10ng/nL stock solutions (stored at —80°C until further use). The
concentrations of all DNA stock solutions were determined using a Qubit 3.0 fluorimeter (Life

Technologies).

Commercial Clinical Sample. Whole pathogen control panels were purchased from
Randox Laboratories Ltd, including MERS-CoV (catalog no. QAV154181), CoV-OC43, NL63
(catalog no. QAV164189), and SARS-CoV-2 (catalog no. SCV2QC). Samples were extracted
using the QIAamp Viral RNA Mini Kits (catalog no. 52906). Viral nucleic acid was extracted
using the manufacturer-recommended protocol. Viral RNA was reverse transcribed to cDNA
using Fluidigm reverse transcription master mix (catalog no. SKU 100-6299). Viral cDNA was
further pre-amplified using Fluidigm Preamp master mix (catalog no. PN 100-5744). Reverse
transcription and pre-amplification were conducted according to the Fluidigm manufacturer’s

protocol (Fluidigm document number: 101-7571 A2 and 100-5876 C2).
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8.3.2 PCR Assay Design

The sequences of each gene were downloaded from the NCBI GenBank website [168]. Based
on the comprehensive analyses and alignments of each type using the MUSCLE algorithm [94],
primers were specifically designed to amplify all sequence variations within each gene belonging
to their specific target (inclusivity) and to exclude closely related but not inclusive sequences
(exclusivity). Design and in-silico analysis were conducted using GENEious Prime 2022.0.1
[95]. Primer characteristics were analysed through IDT OligoAnalyzer software using the J.
SantaLucia thermodynamic table for melting temperature (T,,) evaluation, hairpin, self-dimer,
and cross-primer formation [96]. To confirm the specificity of the real-time digital PCR assays,
the primers were first evaluated in a singleplex PCR environment to address their specificity
and sensitivity for both singleplex and multiplex assays. All primers were synthesised by IDT
(Coralville, TA, United States). Primer sequences for both 3plex and 7plex are provided in
Appendix Table D.1 and D.3, plus assay details in Appendix Table D.2 and D.4, respectively.

8.3.3 Real-time Digital PCR and Limit-of-Quantification (LoQ)

For real-time amplification experiments, the BioMark HD (Fluidigm) and the QIAquant 96
Splex (catalog no. 9003011) were used. The master mix used was the PrimeTime Gene Expres-
sion Master Mix from Integrated DNA Technologies (IDT, catalog no. 1055772) supplemented
with ROX passive reference dye and pre-mixed following manufacture guidelines. The qd-
PCR was performed with Fluidigm qdPCR 37k™ integrated fluidic circuits (IFC) (catalog no.
SKU100-6152) and was supplemented with Fluidigm 20X GE loading buffer (PN 85000746).
The priming and loading steps of the IFC were followed as the supplier’s protocol (Fluidigm
document number: 100-6896 Rev 03). Each amplification mix for the qdPCR experiment con-
tained 3 pL 2X IDT PrimeTime Gene Expression Master Mix (with passive ROX), 0.6 pL. 20X
GE, 0.6 pL. 10X Primer mixture, 1.8 p. DNA templates from synthetic DNA, pre-amplified
c¢DNA, or controls, and to bring the final volume to 6 uL.. A total of 4.5 1L of reaction mix
was transferred to each inlet (or panel) of a Fluidigm 37k™ IFC for the thermal cycling step.
Thermal-cycle conditions consisted of a hot start step for 3 minutes at 95°C, followed by 45
cycles at 95°C for 15 seconds and 60°C for 45 seconds. Real-time data of the amplification
events were exported as a text file for each bulk by Fluidigm Digital PCR Analysis software
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(version 4.1.2).

Experiments in qPCR are used to evaluate the Limit of quantification (LoQ) of the selected
7plex assay. Standard curves were generated with synthetic DNA ranging from 107 to 10!,
apart from SARS-CoV-2 whose concentration was from 10° to 10! because of limitations due
to pandemic suppliers and contamination in the manufactures. PCR data were extracted and
processed according to the data processing step. Standard curve plots and statistical values
are reported in Appendix Figure D.2. The Absence of amplification signals was detected in

Negative Template Control (NTC).

8.3.4 Data Processing

The processing of raw amplification curves is comprised of three parts. Firstly, to ensure all
curves start from approximately zero fluorescence value and to normalise the starting cycles of
the curve across the entire time series, the background information was removed, which can be
expressed as:

Fly, (t) = FL(t) — avgpocr (8.1)

where F,,. (t) represents a curve with the background removed and F (¢) is the raw fluorescence
values for each cycle t =1, 2, ---, T. Here T indicates the total number of cycles for each
amplification curve (45 in this case), and avg,,,, is the average background value. In order to
avoid instrumental noise commonly found at the beginning of the PCR reaction, the avg,,
value was estimated as the average value of the first several cycles’ fluorescence, excluding the
initial ones. In this case, five cycles were considered for the flat phase and the first three cycles
were skipped. Secondly, late amplification filtering was applied to select curves that reached
the plateau phase. The basic idea is to estimate the cycle threshold value (E'sts;) for each

curve, which can be represented as:

Fly, (t) — F,;
lbr( ) min > -Fth (82)

Esto, = man ts.t. >
' Fmaa} - Fmin

where t € {1, 2, ---, T}, and F,,4; and F,,;, represent maximum and minimum fluorescence
values of the entire reaction respectively for each curve. Fj; is the fluorescence threshold and
curves whose Fstc, are above the cycle threshold (C; = 30 as suggested by the manufacturer)

were removed. Lastly, a filter was applied to remove non-sigmoidal curves with excessive noisy
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signals. The sigmoidal trend of a noisy curve may contain certain notches. Based on this

feature, the first derivative of each curve was estimated:
Fly,' (t)=Fly, (t) — Fly, (t —1), t=2,---, T (8.3)

The number of zero-crossing points in Fl,’ (t) is related to the number of notches in the
curve. Therefore, noisy curves should have significantly more zero-crossing points in their first
derivatives compared with smooth sigmoidal curves. The curves that satisfied the following

condition were regarded as noisy and removed:

Z —sgn [Fl;/ ()] +1 N (8.4)

t

where sgn [e] is the sign function and N, is the given threshold value (N.. = 9 in this research).

8.3.5 Five-parametric Sigmoidal Fitting

Since amplification curves contain several information (such as background, plateau phase, and
slope), the most representative features are represented using various sigmoidal equations. The
chosen model in this study for curve fitting is the five-parametric sigmoid function, whose

equation is given below:
a

(1+ expct-d)°

(t.p) = +b (8.5)

p=la, b, ¢, d, e]T (8.6)

where t is the amplification cycle, p is the parameter vector, f (¢, p) is the fluorescence at cycle
t. The mathematical function of these parameters and their corresponding representations in

amplification curves are listed below:

e Parameter a: it represents the amplitude of the function in the y-axis and it affects the

maximum fluorescence that the amplification curves can reach.

e Parameter b: it represents the vertical shift of the function along the y-axis and it affects

the maximum fluorescence together with parameter a.
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e Parameter c: it represents the maximum slope of the sigmoid function and it’s related to

the efficiency of PCR reactions.

e Parameter d: it represents the horizontal shift of the function x-axis and the fractional

cycle of the inflection point. It’s also related to C; values of the PCR reaction.

e Parameter e: it’s the Richard’s coefficient and it is related to the asymmetry of the

sigmoidal trend.

To reduce optimisation iterations and unsuccessful fitting, a pivot fitting is applied on a subset
of data (D,) to evaluate the optimal initial parameters pg® * for the equation before searching
on the entire dataset (D). First, a non-linear Least Square function LS (p) is defined, showing

the equation below:

LS(p)= Y _(f(t,p) — Fly (1)) (8.7)

t=1
To apply the pivot fitting, it is first initialised po = [0, 0, 0, 0, 0]". Then, for the i curve
Fli within the dataset D,, the following optimisation problem was solved to find the fitted
parameter vector:

p; = argmin LS (p) (8.8)

Blow <p<Bup
where the lower bound By, and the upper bound B, for all the parameters are —100 and
100, respectively. After all the curves were fitted, the mean vector of all the p; was used as the

optimal pgP*.

With the outcome from the pivot fitting, all curves in D are fitted starting from pgP*. In
addition, to get better fitting performance, the maximum number of fitting iterations (maxfev)
was increased to a sufficiently large value (1,000,000 in this case). The same Bjgy, and By,

were used for the pivot fitting.

8.3.6 Calculating Average Distance Score (ADS) and Minimum Dis-
tance Score (MDS) for Multiplex Assays

There are four curve representations for calculating ADS and MDS, which are: raw curves (45-

D), normalised curves (45-D), fitted parameters (5-D) and ¢ parameter (1-D). Two steps were
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taken before the score calculation: (i) Extract the median feature vectors of each target for 45-
D, 5-D and 1-D feature arrays. The median value was taken on each dimension, and the median
feature vector with the same dimension was generated. It is assumed that the distribution of
each target is Gaussian. However, outliers can affect the distribution unexpectedly. Therefore,
the median value is a more robust representative compared to the average value, and N,
median vectors corresponding to N, targets were constructed. (ii) Calculate Euclidean distance
between each pair of targets, where given N, targets, the total number of distances IN 4 is:

N, = (1‘;) - Mol (8.9)

The vector of distances for each pair of targets is defined as:
Sp=1[dij | foreachi=2, ... Ny, fj=1,2 .i—1] (8.10)

where d;; represents the Euclidean distance between extracted median vectors of target ¢ and
target j. With the constructed distance set, the ADS and MDS were calculated as the average

and the minimum value of all elements in Sp, respectively:
ADS = mean(Sp) (8.11)

MDS = min(Sp) (8.12)

8.3.7 The Smart-Plexer Ranking System

The inputs of the ranking system are simulated ADS and MDS. To increase the likelihood of
choosing an optimal assay for data-driven multiplexing approaches, assays with the highest ADS
and MDS (Sggsr) are selected from the entire combination set (Sarz). Provided the number
of the best combinations to be selected as Ngggr and the number of total combinations as N,

the following steps were applied:

The proposed Algorithm 1 is used to pick the best simulated multiplexes based on the
developed metrics ADS and MDS, and these assays are further tested empirically to select the
optimal one for the diagnostic use. Moreover, to verify the correlation of the Smart-Plexer

ranking with the ACA performance, the algorithm was used to select the bottom multiplexes
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Algorithm 1
1: Initialize:
Nggsr as required, Sgpgr < 0

fOI‘ Ne = NBESTa NBEST+17-'~7 NC do

MDS
SBEST

Sabs. = {x|x are the top n. combinations in Saz; with largest ADS}
Sppst  (Spger N Sppsr) U Spest

2:
3
4
ot
6: if ‘SBE'ST| > Npgsr then
7
8
9:

{z|x are the top n. combinations in S, with largest M DS}

> e

return Sgpsr
end if
end for

with the lowest ADS and MDS, by modifying step 3 and 4, so that the smallest instead of the
largest ADS and MDS are applied.

8.3.8 The Smart-Plexer: Workflow Recap

The complete workflow of utilising the Smart-Plexer in a real laboratory setting is illustrated
in Figure 8.1 and depicted as follows: given a number of target genes to be identified, several
candidate primer sets are first in-silico designed and tested in singleplex format for each tar-
get, resulting in real-time PCR amplification curves for all the assays. The obtained data are
further processed using the background, late curve, and noisy curve removal techniques men-
tioned in the Data Processing section. The processed curves are then fitted with the sigmoidal
function from which the ¢ parameters are extracted. For each potential combination of primer
sets, inter-target distances of ¢ parameters from singleplex curves are calculated and function
as simulated alternatives for empirical multiplex curve distances. In this way, the best candi-
dates for multiplex assays can be selected by choosing the combinations with the most distant
target clusters (represented by c¢) in the simulation. This progress is achieved by calculating
the ¢ parameter-based ADS and MDS of each combination and finding the best ones using
the ranking system mentioned above. The best candidate assays shortlisted from simulated
multiplexes further go through wet-lab tests on synthetic DNA templates, and the ACA-based
target identification is applied to the empirical multiplex data. The final winner assay with
the highest ACA classification performance on synthetic DNA is labelled as the optimal assay,
which is the final output of the entire Smart-Plexer workflow. The ACA model was a KNN
classifier with 10 neighbours (k = 10).
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3plex validation. Synthetic DNA of Adenovirus (HAdV), Human coronavirus HKU1
(HCoV-HKU1) and Middle East respiratory syndrome-related coronavirus (MERS-CoV) tar-
gets were selected for a 3plex validation, and all the data were generated in real-time digital
PCR (qdPCR). Three primer sets were designed as candidates for each target, resulting in 27
potential combinations of multiplex assays in total. Because of the relatively small number
of candidate assays, it is possible to perform wet-lab experiments for all combinations and
analyse the relationship between simulated and empirical multiplex curve distances. Simulated
ADS and MDS were calculated on different levels of curve representations (raw curves, FFI-
normalised curves, and fitted parameters), and their correlations with the same metrics derived
from empirical multiplex data were analysed. Furthermore, the ADS and MDS of ¢ parameters,
which are more concise indicators for inter-target curve distances, were generated and compared
between simulated and empirical multiplexes. ACA performance against simulated ADS and

MDS was depicted, and the t-SNE of the selected assays’ results were illustrated.

7plex validation. Following the 3plex validation, seven targets were used to further
validate the Smart-Plexer performance, where each target had at least two different assays,
resulting in a total of 24 singleplexes and 4, 608 candidate combinations. Unlike for 3plex, the
mass number of combinations makes it impossible to empirically test all the assays in multiplex
settings. Instead, representative groups of assays were chosen for the laboratory validation.
Following the aforementioned Smart-Plexer workflow, after calculating simulated ADS and
MDS on ¢ parameters, six highest ranked (BEST) and six lowest ranked (BOT) combinations
were picked out using the Ranking System. In addition, six middle-distant combinations (MID)

were selected with the step below:

Algorithm 2
1: Initialize:
Narrp as required, Syrp < 0,
MDS, .. and ADS,, ., the maximum MDS and ADS among all combinations,
ADSyins = M DSh;.s < 0.001

A
: Ryps = (MP5maz — MDSyiqs, 225292 + MDS)i0,)

(APSmas — ADS)05, APSmar 4 ADSy,,)

{%’MDSI c RMDSaTLdADSx € RAps,vw € SALL}
. Syrp < apply Algorithm 1 onS%pD with Nysrp
: return Sy;;p

S ot W
\n
£
S° %

e >

TOP-ADS and TOP-MDS (N = 6) assays were selected empirically with large ADS but small
MDS, and large MDS but small ADS, respectively. Similarly to the 3plex validation, the
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relationship between simulated and empirical scores of the selected assays was explored by
correlations of simulated and empirical metrics and comparisons of ¢ parameter distributions.
ACA was also applied to different groups of combinations. The complete pipeline of the 7plex
validation is illustrated in Appendix Figure D.3.

8.4 Results & Discussion

This Chapter describes the Smart-Plexer, a framework that uses singleplex PCR reactions as
a ‘card deck’ to generate a ‘winning combination’ of the multiplex assay. After deciding the
number of targets intended to multiplex, the Smart-Plexer takes as input a dataset generated
from real-time PCR reactions with a single primer set (or singleplex assay) and a single target.
Given the desired number of targets to multiplex in a single channel PCR, sigmoidal curves
generated from all the singleplex/target interactions can be combined to simulate curves from
a multiplex assay Figure 8.1. These simulations of assay combinations are then empirically
tested in wet-lab multiplex tests for each target to evaluate changes in the curve shape of the
amplification reaction during the transition from singleplex to multiplex environment (empirical
multiplex). Moreover, to identify multiple targets with empirical multiplexes, this framework

was coupled and evaluated with the ACA methodology.

As the ACA is a classifier recognising clusters from different amplification shapes (which, in
this case, represent different targets), it is crucial to maintain differences among sigmoidal trends
in-silico. Therefore, those differences across targets can be computed using the Smart-Plexer
method through distance measurements (such as Euclidian distance). This novel framework
is capable of distance calculation from either the entire amplification curve or its sigmoidal
features. The average of computed distances among all the targets is used to rank each com-
bination of singleplex (or simulated multiplex) from high to low inter-curve similarity values.
Moreover, the ranking system takes the minimum distance between the two closest targets to
ensure that simulated multiplex with high average values is not dependent on the high difference
of only a group of curves. When two amplification curves have high similarity, hence a small
distance value, the ACA classifier will not work efficiently to identify either target. Therefore,
the rank of the combination depends on both average and minimum distance scores. A set

of singleplex assays from the top ranks were selected as simulated multiplex for the empirical
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validation in the laboratory, and the ACA performance was assessed.

To compute distances between amplification curves, the Smart-Plexer requires a filtering
process where the amplification data generated undergo the following steps: (i) subtraction of
curve background to remove the fluorescence signal noise at the starting cycles, (ii) removal
of late amplification curves to exclude non-plateau reactions, (iii) removal of noisy curves to
exclude non-sigmoidal shapes as result of operator error or instrumentation faults [219]. The
following step comprised of a fitting equation using the 5-parameter model proposed by Spiess

et al [31].

8.4.1 Selection of representative amplification curve

The ACA method uses the entire amplification curve as a time series where fluorescence values
change as the number of cycles increases. Firstly, the entire raw amplification curve generated
from the real-time PCR reaction is used as the input of the Smart-Plexer. Secondly, the
framework is evaluated using curves normalised with the final fluorescence intensity (FFI) as
input to assess performance changes by removing the absolute fluorescence information. To
further investigate changes related to different curve representations and different levels of
data abstractions (feature dimensions) provided to the Smart-Plexer, sigmoidal parameters

generated from a fitting model are also used as input to assess the influence on this framework.

To evaluate the best fitting model, primary efforts have been focused on the selection of an
appropriate equation. Several methods have been proposed to efficiently model the real-time
PCR sigmoid, such as four, five, and six-parametric functions [220, 221, 31]. As a case study,
the amplification curve data previously reported by Moniri et al., 2020 were retrived [15]. Using
raw curves as input, after sigmoidal fitting, the Mean Square Error (MSE) between the raw
and the fitted curves for the entire dataset was calculated. The lowest MSE is achieved with
the five-parametric model (MSE = 0.0036). The rising MSE in six-parameter sigmoid fitting
is caused by unsuccessful optimisation resulting from a larger searching dimension. Based on
the lowest MSE value, it is determined to utilise the five-parameter sigmoid function to extract

features, and the equation is given below:

f(t) = +b (8.13)
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Figure 8.1: Smart-Plexer workflow. a. Given a dataset of singleplex real-time PCR reactions (real-
time amplification curves), a processing step is applied (a.i-a.iii). The processed curves are fitted
following the equation depicted in step a.iv. An example is given in b., where each curve resulting
from singleplex reactions is used in a simulation of multiplex assays. Three targets are considered,
and each of them has three unique singleplex assays (a total of 27 simulated combinations). c. The
simulated multiplex scores are calculated from the Smart-Plexer according to the Scoring Criteria. d.
Distances within curves from different targets are calculated based on mathematical algorithms (such
as Euclidean), and as shown in the confusion matrices, resulting values are used to rank multiplex
assays from high (high distances within targets) to low (low distances within targets). e. High-
rank multiplex assays are chosen for empirical testing, and the ACA method is used to evaluate the
classification performance on target identification of each selected multiplex. f. Cluster visualisation
with 2-D t-SNE represents the difference in inter-target distances between a High-Rank and a Low-
Rank multiplex, resulting in high and low ACA classification accuracy, respectively.

where ¢ is the amplification time (or PCR cycle), f () is the fluorescence at time ¢, a is the
maximum fluorescence, b is the baseline of the sigmoid, ¢ is related to the slope of the curve, d
is the fractional cycle of the inflection point, and e allows for an asymmetric shape (Richard’s

coefficient).

The three different curve representations (raw curves, FFI normalised curves and fitted
parameters) were further used to evaluate the transferability from singleplex to multiplex re-

actions in the Smart-Plexer.



134 Chapter 8. Smart-Plexer: a Tool to Develop Multiplex Assays

8.4.2 Average Distance Score (ADS) and Minimum Distance Score

(MDS) based on curve distances to rank multiplex assays.

Since it is hypothesised that distances between amplification curves should be maintained during
the transition from singleplex to multiplex environments, two distance metrics to measure

transferability from simulated to empirical multiplexes are developed in this study.

It is possible to calculate distances between two distinct curves by considering them as two
data points in the multidimensional space and quantify their distances using various metrics
(i.e., Euclidian, Cosine and Manhattan). In a single channel multiplex assay, the number of
primer sets present in the reaction equals the number of targets (N;), therefore the number of

distances (Ny) among curves of different targets is represented by the following formula:

N, = (1\2”) = w (8.14)

The average of all the distances is used to assign a score to the multiplex assay called
Average Distance Score (ADS). The ADS provides information on the overall distances across
targets, and the higher its values are, the more distant the curves are, and better ACA per-
formance is expected (as distances are related to data point clusters). A high ADS does not
guarantee a large distance between every two targets of the multiplex. To overcome this limita-
tion, a second metric, called Minimum Distance Score (MDS), is used to account the distance

value of the two closest curves (minimum value of the given NV, distances).

The ADS and MDS narrow down the selection of empirical testing for the highest perform-
ing multiplexes using a ranking system. Moreover, they are used to validate that inter-curve
distance information is maintained during the transition from simulated to empirical multi-
plexes, and they can be used to develop assays in-silico more suitable for ACA, skipping costly

and timely laboratory testing.

8.4.3 Smart-Plexer validation using a 3plex assay

To assess the performance of the Smart-Plexer for both in-silico multiplex development and

ACA classification accuracy, three primer sets were designed to detect the three selected targets
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using synthetic DNA and laboratory tests were conducted in real-time digital PCR (qdPCR).
The considered viruses are Adenovirus (HAdV), Human coronavirus HKU1 (HCoV-HKU1)
and Middle East respiratory syndrome-related coronavirus (MERS-CoV). As shown in Figure
8.1, the number of combinations to test using N, targets (N; = 3) and Np, assays for each
target (Np, = 3) is 27 (N, = Np,* = 27 combinations, listed Appendix Table D.5. Three
targets were chosen to validate the Smart-Plexer because a complete comparison of all the 27
simulated and empirical multiplex assays can be experimentally conducted as the number of

wet-lab experiments is achievable (N, x Ny = 81 tests).

The wet-lab testing of each primer set (or singleplex assay) was conducted, and the re-
sulting raw data were combined in a total of 27 simulated multiplexes as explained before.
Similarly, experiments were carried out on combinations of primer sets (or empirical multiplex
assays) in a single channel reaction. A group of amplification curves, which can be considered
as data points in multidimensional spaces, were generated from a unique interaction between
each assay and its specific target. The median of these data points was calculated to represent
each group of curves. Furthermore, distances among all the curve medians were used to gen-
erate the ADS and MDS of all the possible combinations Figure 8.2a-b visually represent the
correlation between the in-silico and wet-lab tested assays using ADS and MDS in simulated
and empirical multiplexes. Pearson coefficients were reported for both ADS as 0.301, 0.972
and 0.607, and MDS as 0.092, 0.761 and 0.686, for raw curve, normalised curve and fitted
parameters, respectively (visual representations of each curve type/parameters are depicted in
Figure 8.2¢, and ADS and MDS for all the curve types/combinations are reported in Appendix
Table D.7).

It can be observed that normalised curve correlations scored higher than the rest in both
ADS and MDS, showing that simulated and empirical multiplex are correlated if FFI is dis-
carded. It is also important to note that the use of all the five curve parameters worsens the
correlation as the bimodal distribution of parameter e negatively influences the correlation, as
discussed by Miglietta et al., 2022 [219]. Moreover, the correlation from singleplex to multiplex
might be affected by the fact that the d parameter is related to the cycle threshold (C;) of the
amplification curve. Target concentration can be influenced by instrumentation, operator, and
experimental errors; therefore, variabilities of C; can easily mislead the correlation of the five

parameters using d. Moreover, the scope of conducting this correlation is to compare purely
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sigmoidal shapes, and concentrations of the nucleic acid targets should not affect the distance
values of two curves. In addition, the use of parameter a and b is redundant as: (i) a is related
to the FFI, and as shown in the middle plot of Figure 8.2a-b, FFI is not relevant to the distance
correlation and (ii) all curves present in this dataset were processed with a background removal

(baseline correction) and all b parameters were levelled to almost zero.

These discoveries on the correlation between simulated and empirical multiplex distances
inspired us to seek a more representative feature which would maintain the information of
distances during the translation from a singleplex to a multiplex environment. As mentioned
before, the parameter a, b, d and e can negatively influence the correlation for both ADS and

MDS; therefore, the ¢ parameter is the focus of this study.

8.4.4 The key parameter for curve distance correlation in multiplex

assays: the “slope”

The previous section reported all the correlation coefficients for ADS and MDS between sim-
ulated and empirical multiplexes, in concomitance with different curve representations: raw
curves, normalised curves, and fitting parameters. Both ADS and MDS showed the maximum
correlation values when considering normalised curves. Those results, along with the discus-
sion on the fitted parameters in the previous section, indicate that reducing the information
contained in the amplification curve is beneficial. This section explores how the ¢ param-
eter preserves distance information from singleplex to multiple environments of each primer

set/target reaction.

In the 3plex validation, each singleplex assay was tested against its specific target (N=9),
resulting in 27 different combinations of simulated multiplexes. Moreover, the ¢ parameters
were fitted and extracted from 27 empirically tested multiplex assays (81 tests). Appendix Fig-
ure D.1 shows the correlation between simulated and empirical ADS and MDS calculated from
¢ parameters with correlation coefficients of 0.973 and 0.774, respectively. To further evaluate
whether ¢ parameter distributions were maintained in the translation to empirical multiplexes,
their three distributions (where three is equal to the number of multiplexed targets) from the
singleplex reaction were compared with their corresponding distributions in empirical multiplex

reactions. As illustrated in Figure 8.3a-c, distributions of three different multiplex assays are
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Figure 8.2: Representative features investigation based on the 3plex assay. a) The correlations of
the Average distance score (ADS) between simulated and empirical multiplexes for the three types
of curves/parameters (Raw curve, normalised curve and fitted parameters) are presented (from left
to right in the same order). For each plot, each point with unique colour and shape corresponds
to combination 1 to 27. The blue dashed lines are computed using linear regression. The Pearson
coefficients for all three plots are calculated. b) Similarly, the correlations of Minimum distance
score (MDS) are depicted for the three curve representations. c) Illustration of the three types of
curve representations. Examples of raw amplification curve (after data processing), normalised curve
(computed based on the FFI) and fitted curve/parameters are presented from left to right. The fitted
curve is computed with a 5-parameter Sigmoid function using raw curves. As a result of this, both
fitted parameters (a, b, ¢, d, e) and fitted curve (predicted fluorescence values corresponding to each
cycle from the 5-parameter Sigmoid model with fitted parameters) are obtained.

visualised with their relative mean values represented by the dashed/dotted lines. The figures

show the capabilities of the ¢ parameter to maintain distance information going from simulation

to empirical test. It can be observed that in most cases, the location of the parameter distribu-
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tion for each target is maintained. In other situations, the distribution may be shifted from the
singleplex events; however, the relative distance relationship of ¢ values is kept. Figure 8.3a il-
lustrates the ¢ parameter distribution of a low-rank ADS/MDS multiplex, showing overlaps for
all the three singleplex assays in both simulated and empirical multiplexes. As distances among
amplification curve shapes can significantly affect the ACA classifier, reduced performance is
expected for multi-target identification. Another distribution trend among multiplex assays is
represented in Figure 8.3b, where the selected Primer Mix (PM3.01) has a high simulated ADS
value (0.117) but low MDS (0.003). Moreover, the ADS value for distributions in Figure 8.3¢c
equals 0.138, which differs only 0.21 from the combination PM3.01. However, PM3.12 has an
MDS value of 0.075, representing an increase of 0.072 compared to PM3.01. This highlights
the importance of considering minimum distances between ¢ parameter distributions of the two
closest targets: a small MDS value indicates a less separable group of target clusters, resulting
in low ACA accuracies for multi-pathogen identification in a single fluorescent channel reac-
tion. To numerically report how distributions are related in the translation from simulated to

empirical multiplexes, the Rooted Mean Squared Error (RMSE) was calculated as follows:

RMSE = \/ (D, - D m);d(D 2 —Dm) (8.15)

where Dy and D, are vectors for distances among targets in singleplex and multiplex, re-
spectively. RMSE values of all the 3plex combinations range from 0.003 to 0.050, which are
negligible considering the range of the ¢ parameters. The ADS, MDS and RMSE values for all
the 3plex combinations are reported in Appendix Table D.6. These results emphasise that dis-
tances between simulated and empirical multiplex share high similarity across different ranks,
ensuring that the scoring system (based on ADS and MDS) is not affected whether in singleplex

or multiplex environments.

Accuracy of all the possible combinations in 3plex assays

One of the aims of the Smart-Plexer is to improve the classification of multiplex assays, in this
case, related to the ACA method. As demonstrated in the previous section, distances among
amplification curves of empirical multiplex assays are similar to those generated in simulated

multiplexes. Therefore, leveraging ADS and MDS, simulated multiplexes can be used to rank
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Figure 8.3: Relative ¢ parameter distributions of three different multiplex assays. a) Primer Mix 3.07
(PM3.07) illustrates the ¢ parameter distribution of a low-rank ADS/MDS multiplex; b) PM3.01 as
an example of high ADS but low MDS multiplexes. ¢) Multiplex assay with high ADS and MDS with
clearly separated distributions. For each subplot, the left graph shows the distributions of ¢ parameters
for the Simulated Multiplex. The right plot represents the corresponding distributions according to
the empirical multiplex data. The vertical dashed lines correspond to the mean of the distribution
computed for different targets. To quantitatively verify that the distances are maintained in transition
from simulated to empirical multiplexes, the RMSE of distances is calculated and displayed on the
graph title.

each combination and find the optimal assays with the largest inter-target distances for the
ACA classifier. To further demonstrate that the ADS and MDS are crucial to improving multi-
target identification in single well PCR reactions, the classification performance of the ACA
method was assessed by using 10-fold cross-validation and the k-Nearest Neighbors (KNN)
algorithm. Figure 8.4a shows a 3-D graph where both ADS and MDS of the ¢ parameters
are correlated to the ACA accuracy. Accuracy percentages ranged from 98.63% to 100% for
each multiplex. The rainbow plane, which is fitted with linear regression on all the visualised

data points, represents the gradient of the classification accuracy, showing an upward trend as
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ADS and MDS increase, which is consistent with the hypothesis that the ACA classification
performs better with larger inter-target distances. Moreover, the plane on the left of Figure
8.4a has a grey highlight zone called Vacuumed Area, where data points cannot fall inside as
it is mathematically impossible to have an average distance value smaller than the minimum
distance. It is also defined another area called Forbidden Area, as visualised in the rotated 3-D
plot on the right of Figure 8.4a, where it is expected that no point will be founded, provided
high values for ADS and MDS.

Both 3-D plots have circled points labelled as the top combination (TOP), bottom combi-
nation with lowest ADS (BOT ADS), bottom combination with lowest MDS (BOT MDS), and
outlier combination (OUTLIER), with ACA classification accuracies of 99.9%, 99.89%, 98.06%,
99.01%, 99.82% and 99.87%, respectively. Although the overall classification performance for all
the 27 combinations shows a high average of 99.51% + 0.41%, an increase of 1.84% is observed
for the top ADS/MDS data point compared to the bottom one. Furthermore, as depicted in
Figure 8.4b-e, by applying 2-D t-distributed stochastic neighbor embedding (t-SNE) visualisa-
tion on curves generated by the top and bottom-ranked primer combinations, more condensed
target clusters and better separated inter-target boundaries can be seen for top-ranked assays
[222]. This results in more distinguishable curve shapes and larger curve distances among tar-
gets, which benefits the ACA classification. Numerical analysis of the visualised clusters was
assessed using the Mean Silhouette Scores (MSS). As reported by Kaufman et al. 2009, Sil-
houette scores between 0.51-0.70 are considered more effective in cluster separation than values
below 0.50 [223, 193]. The reported MMS scores show significantly larger inter-cluster distances
for the top combinations, with values higher than 0.61 as opposed to the bottom ones of less
than 0.27 (in Appendix Table D.6, ADS, MDS, MSS and ACA accuracies for each combination
of the 3plex experiment are reported). This finding proves that the ADS and MDS metrics are
valid indicators for predicting optimal primer set combinations for the ACA classifier. Relying
on the Smart-Plexer for selecting multiplex assays from singleplexes, the likelihood of accurate
multi-target identification in a single fluorescent channel reaction is significantly increased using

the ACA methodology.

As mentioned above, Figure 8.4a highlights the presence of outlier combinations where
small ADS/MDS with high ACA accuracy are reported (instead, low accuracy for the ACA

classifier is expected). However, the existence of such data points does not deny the effectiveness
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of the proposed method. It is important to emphasise that the overall ACA accuracy for 3plex is
inherently high because of the low levels of multiplexing. Classifying three different curve shapes
does not represent a major challenge for this Machine Learning method, and targets with minor
curve-shape differences can be easily separated in the feature space. Considering this, along
with the prevalent randomness that exists in the ACA method for 3plex, accuracies higher and
lower than expected may occur in the given dataset. In fact, in the area with low ADS/MDS,
a large standard deviation for accuracies among data points which fall beneath and above the
fitted plane are observed. Regardless of the accidentally high accuracies and low ADS/MDS
caused by randomness, Figure 8.4f-g evidence that these outlier combinations will face more
challenges when used for multi-target identification in larger scale multiplexes (or high-level
multiplexing). In the outliers, the mapped target clusters are largely overlapped with unclear
boundaries and small MSS even in 3plex assays. Therefore, the next section demonstrates that
the higher the level of multiplexing is, the more difficult the target separations are in the feature

space when using these outliers.

Although low ADS/MDS combinations may occasionally show good performances, the
proposed method ensures that all predicted optimal multiplex assays with high ADS/MDS show
high accuracies in ACA and never the opposite. As illustrated in the 3-D plots of Figure 8.4a,
the forbidden area (the red triangular prism) has no data point falling in, which highlights the
effectiveness of the ADS/MDS ranking system. This is a first ever demonstration that multiplex
assays tailored to the ACA method can be in-silico developed starting from singleplex PCR
reactions. This not only increases the likelihood of accurate multi-pathogen identification, but
also allows for a higher level of multiplexing in a single fluorescent channel. To demonstrate
the capabilities of the Smart-Plexer in developing optimal high-level multiplex assays for data-
driven approaches, in the following section, its performance with seven different targets is

assessed.

8.4.5 Smart-Plexer for development of 7plex assays

The focus of the previous section was on using a small number of targets to demonstrate that
the developed ADS and MDS used to correlate distances between curves in both simulated
and empirical multiplex assays were maintained. Moreover, accuracies among all the different

combinations were evaluated using the ACA methodology, where high ADS/MDS multiplex
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Figure 8.4: The influence of ADS/MDS on the ACA performance for all possible 3plex combinations.
a) 3-D plot of ACA classification accuracy for each combination versus simulated ADS and simulated
MDS computed based on the ¢ parameter. The rainbow plane is calculated using linear regression.
In the left 3-D figure, the grey highlighted area is called Vacuumed Area, where simulated MDS is
larger than simulated ADS (combinations in this area are mathematically impossible to be found).
The right 3-D figure is a rotation of the left one, where a red is highlighted named Forbidden Area.
In this region, high ADS/MDS combinations possess low ACA accuracies; however, no combinations
were found. b-g) For the combination circled (TOP, BOT MDS, BOT ADS and OUTLIER) in a),
2-D t-SNE was applied on raw curves. In addition, for quantitative verification, the Mean Silhouette
Scores (MSS) of target clusters were reported in the subplot title.

assays show the highest likelihood of correct multi-target classification. These previous results

indicate that the Smart-Plexer is a promising technique for optimal selection of primer set



8.4. Results & Discussion 143

combinations in data-driven multiplexing.

Next, the Smart-Plexer was challenged to develop an optimal 7plex assay, which through
the ACA method, is able to accurately identify the following Respiratory Tract Infection (RTT)
pathogens in a single fluorescent channel using qdPCR: Human adenovirus (HAdV), Human
coronavirus OC43 (HCoV-OC43), Human coronavirus HKU1 (HCoV-HKU1), Human coron-
avirus 229E (HCoV-229E), Human coronavirus NL63 (HCoV-NL63), Middle East respiratory
syndrome-related coronavirus (MERS-CoV), and Severe acute respiratory syndrome coron-
avirus 2 (SARS-CoV-2). At least two different assays for each target were developed, for a
total of 24 singleplexes across the seven pathogens, as shown in Appendix Table D.8. Each
primer set was tested using synthetic DNA of its correspondent pathogenic target. Follow-
ing the previous 3plex experimental workflow, the resulting raw curves were processed, fitted,
and passed to the Smart-Plexer to calculate all possible 7plex combinations (N = 4608) and
compute their ADS/MDS. Based on ¢ parameter distances from fitted simulated multiplexes,
Figure 8.5a shows how the ADS and MDS can be visualised in a two-dimensional space. By
considering the mean and standard deviation of the two scores, boundaries to the ADS/MDS
distribution for all the combinations are set up, dividing the space into four separate regions,
with the purpose of showing how empirical multiplexes would perform for the ACA method
depending on their ADS/MDS. The black horizontal segmented line in Figure 8.5a divides high
and low MDS, and the vertical one separates the two ADS regions, resulting in four distinct
areas. By testing different multiplexes from each of these regions, a further demonstration
that the chance of developing a reliable multiplex can vary based on the selected regions or
selection criteria is conducted. Therefore, multiplex assays from different areas are chosen and
categorised into five classes, which were empirically tested with synthetic DNA in qdPCR: BOT
(N =6), MID (N = 6), BEST (N = 6), TOP-ADS and TOP-MDS (N = 6) values (detailed

selection criteria are reported in the methodology section).

After the empirical testing, the distances of the ¢ parameters of each selected multiplex
were compared to the simulated one, resulting in a correlation coefficient of 0.99, as shown
in the middle graph of Figure 8.5b. Moreover, empirical multiplex amplification events were
visualised using 3-D t-SNE, and distances across target clusters were calculated with the MSS.
As shown in the left plot of Figure 8.5b, clusters of the selected BOT combination have an
MSS of 0.12, whereas for the BEST one the score is 0.67. It can be observed that there is a
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clear difference in clustering between the two selected multiplex assays, where the BEST one
shows clear separation among different targets (in line with the 3plex results), and is expected to

converge in better ACA classification. The opposite scenario is shown in the BOT combination.

It was validated that in higher level multiplexing, distance distributions of the ¢ param-
eters were still maintained from simulated to empirical testing; therefore, the RMSE of the
chosen tested combinations was computed. Figure 8.5¢c-d illustrate side-by-side ¢ parameter
distributions for each target in both simulated (left) and empirical (right) multiplexes, show-
ing a small RMSE for both BOT and BEST assays (0.012 and 0.031), and confirming the
distance-maintaining hypothesis validated in the 3plex experiments. Moreover, the ACA accu-
racy using training and testing datasets obtained in different experimental settings (different
days, operators, and reagents) is tested to ensure the reproducibility of the methodology. As
expected, the performance of the BEST combination was significantly higher than the BOT
one, with a 39.42% increase in accuracy. Furthermore, in Appendix Table D.9, the ADS, MDS
and accuracy values for the 24 selected multiplex assays are reported. In Appendix Figure D.2
is visualised the standard curve for each target using the BEST 7plex assay to evaluate primer
sensitivity and specificity. The chosen multiplex reached a limit of quantification equal to 102

for all the respiratory pathogens using synthetic DNA in real-time PCR.

As described before, ACA performances were evaluated using training and testing datasets
from different experimental settings with the same sample size. All the selected 24 multiplexes
were empirically tested, and their multi-target identification performances were assessed. In
Figure 8.5e, accuracies and standard deviations of each group of multiplexes were reported and
visualised as box plots. The best-combination group scored an average (+ standard deviation)
classification performance of 95% (£ 0.04%) using a KNN classifier, which is the highest av-
erage and the lowest standard deviation among all the groups. There is a decreasing trend
in the average accuracy, and an increasing trend in the standard deviation as the ADS/MDS
values become smaller. Previously, the 3plex validation showed the presence of outliers in low
ADS/MDS rank with high ACA classification accuracy, which is also observed in these 7plex
tests. However, the standard deviation indicates that the Smart-Plexer does provide a robust
and solid solution (even at high-level multiplexing) to significantly increase the likelihood of

choosing an optimal multiplex for data-driven multiplexing (i.e. ACA methodology).



8.4. Results & Discussion 145

8.4.6 Clinical validation results

The final step was to validate that the Smart-Plexer is capable of easing the laboratory work-
load in developing multiplex assays. After testing six potential best combinations based on
ADS/MDS, the one with the highest ACA classification accuracy on synthetic DNA (PM7.2151)
was selected. To clinically validate the selected 7plex for multi-pathogen identification, inacti-
vated clinical samples were purchased from Randox Laboratories (UK) and extracted using a
gold standard kit (QIAGEN mini amp). The extracted samples were used as the testing dataset
(7,638 positive amplification reactions), while curves resulting from synthetic DNA amplifica-
tion reactions (5,207 positive amplification reactions) were the training. The classifier used
was a KNN with the number of neighbours equal to 10. As shown in Table 8.1, a total of 14
positive samples were classified in qdPCR using the ACA methodology. The predicated label
of a sample is given by selecting the most predictable label within all the in-sample curves.
The confidence level was given as the percentage of the amplification curves with the most pre-
dicted label. Using the Smart-Plexer selected candidate assay, all the pathogens were correctly

identified with high confidence level (median = 95.46%).

It is important to note that this study faced a seven-class classification problem, where

4

the accuracy of a “random guess” (or a random classifier as convention) equals 14.3% under a
balanced dataset. All the confidence levels were much higher than the random guess accuracy,
indicating solid and robust predictions with the selected optimal multiplex assay. Although the
number of clinical samples was limited by the number of pathogens provided by the manufac-
turer, the proposed framework, in combination with the ACA methodology, achieved a highly
accurate identification of multiple pathogens by using an optimal multiplex assay in a single

fluorescent channel reaction. The Smart-Plexer can leverage the capability of the data-driven

multiplexing to an easy-to-develop, robust, and cost-effective molecular diagnostic solution.
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Table 8.1: Clinical validation results.

Sample Panel ID Expected Pathogen ACA Classified Pathogen AC Confidence Outcome
index  (Randox, UK) (True Label) (Predicted Label) count Level (%)

1 QAV164189 HAdV HAdV 14 100.0 detected
2 QAV164189 HCoV-NL63 HCoV-NL63 770 100.0 detected
3 QAV164189 HCoV-NLG63 HCoV-NL63 545 96.15 detected
4 QAV164189 HCoV-0C43 HCoV-0C43 94 78.72 detected
5 SCV2QC SARS-COV-2 SARS-COV-2 769 69.96 detected
6 SCV2QC SARS-COV-2 SARS-COV-2 631 94.77 detected
7 SCV2QC SARS-COV-2 SARS-COV-2 766 100.0 detected
8 SCV2QC SARS-COV-2 SARS-COV-2 756 99.34 detected
9 SCV2QC SARS-COV-2 SARS-COV-2 748 99.20 detected
10 QAV154181 MERS MERS 287 60.98 detected
11 QAV154181 MERS MERS 770 96.49 detected
12 QAV154181 MERS MERS 770 79.09 detected
13 QAV154181 MERS MERS 698 91.69 detected
14 QAV154181 MERS MERS 20 70.00 detected

8.5 Conclusion

This Chapter describes the Smart-Plexer, an innovative framework which combines wet-lab
experiments and computational algorithms to generate optimal multiplex assays for data-driven
approaches using real-time PCR data. The method leverages mathematical metrics to construct
an advanced ranking system to increase the throughput of conventional molecular tests by
optimising their chemical peculiarities. To reveal the potential of this powerful approach,
a recently reported machine learning method, named Amplification Curve Analysis (ACA), is
used to identifying multiple nucleic acid targets in a single fluorescent channel with conventional
PCR instruments. As the ACA leverages kinetic information encoded in the amplification curve,
multiple targets can be classified based on the unique interaction with their assigned primer
sets. However, constructing different amplification curve shapes for each multiplexed target is
one of the major challenges for the ACA approach. The Smart-Plexer solves this problem by
providing an easy-to-use framework for multiplex assay development, enabling high-level and

highly accurate data-driven multiplexing.

This study shows the progression of the Smart-Plexer starting from a simple three-target
classification problem. From the wet-lab testing of three singleplex assays for each of the
three targets, a total of 27 combinations (in this case 3plex assays) can be generated in-silico

(simulated multiplex) and ranked based on the mathematical curve-shape distances. Using
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synthetic DNA in qdPCR and a single fluorescent channel, the assays were empirically tested
(empirical multiplex), and the ACA classification accuracies were evaluated for all the possible
combinations. The distance scores computed from the Smart-Plexer for multiplex assay ranking
are linearly correlated between simulated and empirical multiplexes. Moreover, it is showed a
further correlation between high-rank multiplexes and a high probability of increasing the ACA
accuracies, confirming that the metrics used in this novel framework are theoretically connected

to the distance measurement of the machine learning classifier.

As the complexity of developing multiplex assays exponentially increases with the number
of targets, the Smart-Plexer was further challenged by designing a 7plex assay to identify
common respiratory tract infection (RTI) pathogens. Consistent with the 3plex validation, the
correlation between simulated and empirical multiplex is also maintained in 7plex. Regarding
the ACA classification, it is logical that higher similarities among curves exist in a scenario
with a higher number of targets, making it harder to develop multiplex assays. Nevertheless,
the Smart-Plexer brilliantly generated an optimal multiplex assay, which correctly identified
pathogens presented in 14 commercial clinical samples. It was further demonstrated that, since
ACA is a clustering method, it requires a large minimum distance between the two closest
clusters and a large average distance among all clusters in the multiplex. Therefore, the Smart-
Plexer ranking system enables the development of optimal multiplex assays for data-driven

multiplexing.

Apart from the scalability of multiplexing that the Smart-Plexer can provide to the ACA
method, it is demonstrated for the first time that machine learning approaches can be applied
to probe-based multiplexes, in this case, TagMan. Probe-based assays, together with the use
of intercalating dyes and isothermal chemistries, are expanding the boundaries of data-driven
multiplexing and opening new windows for its application in commercial, research and clinical
fields. The Smart-Plexer eases the development of any novel multiplex panel or molecular
assays, enabling the use of the ACA as an emerging diagnostic tool. Through this hybrid
method, it is possible to select the highest rank combination in-silico with wet-lab tested
singleplexes, avoiding performing expensive and time-consuming multiplex assay development

phases.

While this novel framework is validated with high-level multiplexing (7plex), it is essential

to highlight that distances between amplification curves can be a limiting factor in single flu-
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orescent channel multiplexing. This affects the Smart-Plexer since the inter-target differences
of fitting parameters considered for the distance measurement become smaller as the target
number increases. In this work, linear distance measurements are used, but more advanced
metrics (e.g. Minkowski, Chebyshev or Cosine) can be adopted to improve the ranking per-
formance. Moreover, when a higher level of multiplexing is required, the use of probe-based
chemistries such as TagMan comes handy. By leveraging the optical capability of real-time
PCR instruments, a multiplex assay using multiple-channel detection can double or triple the
number of targets in a single reaction. All these strategies aim to improve the ACA classification
through a more innovative development from the chemistry perspective, while from the machine
learning view, the current classifiers rely on state-of-the-art algorithms which shine for their
robustness but are limited for tailoring to specific datasets. Previous studies demonstrated that
more advanced classifiers such as convolutional neural networks (CNN) could extend the ACA
capability to classify targets for higher-level multiplex assays. However, as a novel technique,

data-driven multiplexing requires more optimisation and development of algorithms.

The Smart-Plexer represents a solution for developing multiplex assays by utilising both
empirical testing and in-silico computation. The hybrid nature of this framework still requires
wet-lab experiments; therefore, certain limitations exist in terms of staff training and time re-
quirements. However, future work will focus on the full automation of developing such assays.
Novel methodologies to predict amplification curve behaviours will be developed. One example
is the brand-new algorithm for designing multiplex PCR primers using Dimer Likelihood Esti-
mation by Xie et al. 2021 [212]. Another future aspect of this research is to further increase the
level of multiplexing by using more fluorescent channels and by increasing inter-target curve
shape differences. The development of a 21-plex using probe-based chemistries for three differ-
ent fluorescent channels is an ongoing work (see Supplementary Figure D.4). Moreover, studies
on the modulation of the amplification curve are conducted by changing the concentration lev-
els of the fluorescent probe, increasing inter-target distances of amplification curves, easing the
ACA classification with better clustering performance. All the above-mentioned future works
will inspire the use of the ACA method for a broad range of applications and significantly

increase its flexibility and scalability.
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CHAPTER LESSON

In this Chapter, for the first time, a complete pipeline for developing optimal
data-driven multiplex assays was presented, opening the usage of the Amplifica-
tion Curve Analysis (ACA) method to the broad scientific community. The de-
velopment of novel molecular tests is finally revealed, enabling easy-to-develop,

easy-to-use, rapid and cost-effective data-driven molecular diagnostics solutions.

TAKEAWAY QUESTION

”Can intelligent assay design and development be utilised for point-of-care instru-

ments or in other fields (outside of infectious diseases)?”






Chapter 9

Application of Intelligent Assay Design
Strategies

9.1 Chapter Overview

The previous Chapter showed the development of Data-driven approaches, their application
to different chemistries and instruments, and the optimisation process from improving devel-
opment pipelines to increasing the accuracy of the methods for detecting viral and bacterial
infections. This presents a more rapid, affordable and scalable solution than existing healthcare
systems methods without the changing standard diagnostics pipelines. Moreover, several fields
can benefit from adopting tailored chemistries and novel data analytics algorithms for wide-
scale applications such as Point-of-Care (PoC) or RNA signature translation. This first part
of this Chapter serves as a short overview of some studies that have used Ion-Sensitive Field-
Effect Transistor (ISFET) arrays for nucleic acid detection to identify applications and ongoing
research which will significantly benefit from algorithms such as that presented in Chapters 4
and 7. In particular, these studies show the first steps towards moving diagnostics (i.e. DNA
detection, quantification and multiplexing) directly to the patient. The second part overviews
a novel technique that enables the development of nucleic acids-based assays for optimal trans-
lation of transcriptomic diagnostic and prognostic signatures, primarily (but not limited) from

high-throughput sequencing data to a PCR-based platform.
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9.2 COVID-19 detection with Point-of-Care Devices

A worldwide health emergency, the COVID-19 pandemic is characterised by a rapid trans-
mission rate and a steady rise in cases worldwide. To identify and isolate patients, stop the
transmission of the virus, and direct clinical management, quick point-of-care diagnostics to
identify the causal virus, SARS-CoV-2, are urgently required. The creation of a quick Point-
of-Care (PoC) diagnostic test (< 20 min) based on RT-LAMP and semiconductor technology
is disclosed in this work to detect SARS-CoV-2 from extracted RNA samples. The following

extract is taken from:

e Rodriguez-Manzano J, Malpartida-Cardenas K, Moser N, Pennisi I, Cavuto M, Miglietta L,
Moniri A, Penn R, Satta G, Randell P, Davies F, Bolt F, Barclay W, Holmes A, Georgiou
P. “Handheld Point-of-Care System for Rapid Detection of SARS-CoV-2 Extracted RNA
in under 20 min.” ACS Central Science, 2021 Feb 24;7(2):307-317.

9.2.1 ISFET array

In 1970, Bergveld introduced the Ion-Sensitive Field-Effect Transistor (ISFET), a field sensitive
transistor used to measure ion concentration in solution [224]. ISFET has a gate electrode sep-
arated from the channel by a barrier sensitive to hydrogen (H ). As nucleic acid amplification
naturally releases protons (H1), ISFETs are ideal for DNA detection because insulators like
silicon dioxide (Si0s), silicon nitride (Si3V,), and aluminium oxide (Al;O3) are ideal candiates
for monitoring the concentration of released proton. Chemistry such as LAMP produces 50X
more amplicons than PCR, so the production of H* is much larger. As a consequence, LAMP

is perfect chemistry to couple with Point-of-Care ISFET-based devices [225].

ISFETs produced using unaltered complementary metal-oxide semiconductor (CMOS)
technology are used in an embedded lab-on-chip (LoC) device that we recently reported [125,
226] for label-free electrochemical biosensing applications [227]. This device is compatible with
isothermal tests, has integrated heat management, and can detect nucleic acids by keeping
track of pH variations during nucleic acid amplification. As Figure 9.1 shows, the platform
shows adaptability to a variety of targets. When used with a sample preparation module, it is

compatible with real-time RT-LAMP (RT-eLAMP) and various sample types.



9.2. COVID-19 detection with Point-of-Care Devices

153

A Sample collection and preparation
Nasopharyngeal

swab
=" l

Viral sample

Constant>,
/ Temperature®
- '1 (o ‘

Thermal™,
~ cycling

|
|
i

\ Time /' Time
\Real-time gPCR/
N.instrument -

N LoC /
\._ platform //

C Point-of-Care detection by RT-eLAMP
Microfluidic cartridge

...................... . LoC platform

I P

w2

Sample . g

Control
Sample loading

W 5609

30 mm

Extracted RNA

—
~BgLayp
"""""""" N
/Constant™,
/Temperature™,

[/ &

[ !

| |
]

¥ Time  /
“Real-time gPCR/
\._nstrument >

Connectivity and
processing

Surveillance

b Timegmng
SAR-CoV-2
detected in

<20 mins

Figure 9.1: PoC diagnostic workflow. (A) Sample collection and preparation illustrating nasopha-
ryngeal swab and RNA extraction. (B) Nucleic acid amplification methods for SARS-CoV-2 RNA
detection were used in this study (RT-qPCR, RT-qLAMP, and RT-eLAMP) [146]. Thermal profiles
are illustrated for comparison of the assays. (C) Point-of-care diagnostics by RT-eLAMP showing the
proposed handheld LoC platform including the microfluidic cartridge with control and sample inlets,
and the smartphone-enabled application for geolocalization and real-time visualization of results.

9.2.2 LAMP Assay Optimisation using Tailored Assay Design

In this work, we designed and optimized an RT-LAMP assay targeting the nucleocapsid (N)

gene of SARS-CoV-2 based on collated sequences from available databases [168]. To validate the

assay, we used a real-time benchtop instrument (RT-qLAMP). We have designed and optimized
an RT-LAMP assay targeting the N gene of SARS-CoV-2, named LAMPcov. The N gene was

selected as the optimal target since it is conserved across available sequences and more resilient

to emergent mutations.
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Extensive database analysis was conducted in NCBI and GISAID EpiCov databases. We
developed an algorithm using python, and local blast query to analyse a total of 8 921 sequences
across different countries such as China, USA, and United Kingdom [229, 42]. After inclusivity
and exclusivity analysis, we were able to detect the most conserved region with the highest
coverage and using an optimised primer design tool based on primer3 we designed our covid

assay [50]. Primer sequences and the location in the gene can be found in Figure 9.2. Moreover,

A
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Figure 9.2: Phylogenetic analysis and LAMPcov assay design. (A) Reference sequence NC_45512
SARS-CoV-2 showing priming regions. (B) Phylogenetic tree showing the specificity of the amplicon
for SARS-CoV-2 detection. Clades shadowed in blue include the reference sequence NC_45512. Clades
highlighted in light red include HKU1, SARS, and MERS, all distant from the inclusivity clade. (C)
Sequences of primers of the LAMPcov assay. One mismatch was introduced in F2 to avoid hairpin
formation of the primer (in red). (D) A standard curve with RT-qLAMP using a control RNA at
concentrations ranging between 10' and 10° copies per reaction. (E) Comparison between our assay
(blue bars) and the published assay by Zhang et al [228]. (striped bars). Concentrations (dilution
factor) of a clinical sample are plotted against TTP (minutes).
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we compared our assay performance with available COVID-19 LAMP assays and summarized

the results in Appendix Figure E.1.

9.2.3 Case Study

The previously described real-time benchtop device (RT-qLAMP) was used to test the newly
constructed COVID-19 LAMP assay, and it revealed a lower limit of detection of 10 RNA copies
per reaction, using viral particles. To clinically validate the use of the newly developed LoC
device and the LAMP assay, a total of 183 clinical samples, including 127 positive ones, were
used to validate this test and compared with gold-standard CDC COVID-19 RT-PCR tests
[230].

When compared to RT-qPCR, the results demonstrated 90% sensitivity and 100% speci-
ficity, with average positive detection times of 15.45 + 4.43 min. A subset of samples was
examined (N = 40) to validate the integration of the RT-LAMP assay onto the PoC platform
(RT-eLAMP), and the results showed average detection times of 12.89 + 2.59 min for posi-
tive samples (N = 34). This performance was comparable to that of a tabletop commercial
instrument. This portable diagnostic tool with secure cloud connectivity will allow real-time
case identification and epidemiological surveillance when paired with a smartphone for result

visualisation and geo-localization.
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9.3 From Sequencing Data to PCR-based Diagnostics

This Section focuses on the need for novel frameworks for biomarker discovery and tailored
assay design for PCR-based platforms based on user-provided or public RNA-Sequencing data.
A case study is presented to showcase the impact on the translation of RNA signatures when
primer design constraints are not considered. With the growing popularity of RNA signature-
based tests, it is expected that this research will build a bridge between high-throughput ex-
periments and molecular validation in conventional and Point-of-Care PCR-based instruments.
This method has been patented, and the following is taken from a paper in preparation for

submission:

e Jackson H*, Miglietta L*, Habgood-Coote D, ..., Rodriguez-Manzano J, Kaforou M, Levin
M. ”Diagnosis of multi-system inflammatory syndrome in children by a whole-blood tran-

scriptional signature”. In preparation for submission, 2022. *First joint authorship.

e Rodriguez-Manzano J, Jackson H, Miglietta L, Habgood-Coote D, Kaforou M. “A Method
to optimise transcriptomic signatures”, GB2211707.1, Assignee: Imperial Innovations

Limited, 2022.

e Levin M, Kaforou M, Rodriguez-Manzano J, Jackson H, Miglietta L. Diagnosis of multi-
system inflammatory syndrome in children by a whole-blood transcriptional”. Signature

Assignee: Imperial Innovations Limited, 2023.

9.3.1 RNA Diagnostics Signatures

The diagnostic signature is defined as a small number of host molecules (in this case RNA
transcripts) that when combined, can distinguish between groups of interest. The discovery
of diganostic signature occurs using high-dimensional ‘omic data obtained from individuals in
disease groups of interest (e.g. bacterial and/or viral infections), including, but not limited to,
RNA-sequencing (RNA-seq) gene counts, exon counts, or microarray data [231]. Infection gives
rise to certain changes in gene expression, leading to disease-specific patterns of RNA transcripts
[232]. Discovering an RNA signature involves identifying a small number of transcripts that can

distinguish between disease groups of interest, such as bacterial infections vs. viral infections
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[233]. The initial step to define these patterns is to sequence the hosts’ transcriptomes using
a high-throughput method such as RNA-seq and develop a bioinformatics pipeline to identify
the key combination of transcripts that characterise a certain disease. First, a filtering method
such as differential expression analysis (e.g., DESeq2, EdgeR) is used to reduce the number
of genes considered and retrieve only genes that contribute to disease-specific features, for
example using statistical significance measures such as p-values and log2 fold-change values in
RNA-seq counts. Using the filtered features, a feature selection algorithm is applied to the data
to identify a signature composed of a small number of features that can distinguish between

the disease groups of interest.

9.3.2 Novel Bioinformatics Pipeline to Translate RINA Signatures
to PCR-based Tests

A new paradigm of diagnostic testing is urgently needed to guide the clinical care of patients
where disease or pathogen identification is insufficient to guide treatment and prognosis, or in
cases where traditional diagnostic methods fail to identify the disease-causing organism. High-
throughput host transcriptomics, such as through RNA-seq, offers an alternative to traditional
diagnostic processes. Despite the extensive benefits of RNA-seq or other high-throughput
methods, they cannot be directly used for clinical diagnostics due to high costs and lengthy
laboratory and analytical stages. On the other hand, state-of-the-art PCR assays are a much
more viable alternative to host transcriptomics and can feasibly be integrated into existing
clinical practices. Companies are tying to fill the gap barrier, in using host gene expression
for molecular diagnostics, one example ius the Cephid Xpert MTB/RIF test. However, there
are still limitations and barriers in moving from the highly accurate RNA-seq analysis to a
sensitive and specific host response RT-qPCR-based test. A key reason for this gap is the
signatures’ compromised performance when transferred to more straightforward detection and

quantification platforms.

PCR assay design constraints must be considered when designing RNA signature-based
diagnostics tests. When targeting a gene using bioinformatic approaches, the amplicon has
several features to consider, such as GC content, sequence length and secondary structure

formations. equally for the primer design process, GC content, T,,, 3’-clamp, hairpin and cross-
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priming have to be considered. We developed a new method that integrates these constraints

when translating RNA signatures into PCR-based diagnostic tests.

9.3.3 Case Study

Our method for identifying optimal RNA targets based on RT-qPCR design constraints offers
multiple unique contributions to the field of host diagnostics. For example, it is a workflow that
does not depend on commercial primers, thus avoiding their high costs and design constraints.
Our method incorporates a bespoke primer design, which provides more control over the targets
of interest. For example, during the exploration genes related to Multisystem inflammatory
syndrome (or MIS-C) [234] several exons associated with LEPROT gene [235] showed a strong
correlation. To develop diagnostic tests targeting LEPROT exons, evaluation of a commercial
primer pair and an in-house optimising primer (based on RT-qPCR) constraints were tested.

The location of the primer binding sites and the exon were different:

e location 1:65,900,457-65,900,598 (BIORAD LEPROT gene, human [236])

e location 1:65,425,301-65,425,378 in-house design, reference transcript: ENSE00003644138

Using our in-house primer design approach, we tested several primer sets for genes included
in the MIS-C signature. For each gene, we found the optimal primer that best translated the
RNA signature to the molecular method approach. The approach is shown in Figure 9.3 for one
of the genes of interest, where several assays have been designed with the purpose of generating
a primer pair that best describes the differential expression of genes related to MIS-Cand not in
children with Kawasaki disease, bacterial infections, or viral infections [234]. The figure shows
four different assays, which we named VIP_01, VIP_02, VIP_03 and VIP_04. After testing them
at the same condition with 48 clinical samples of patients with and without MIS-C diagnosis,

we plot the C; of each of them in a box plot format, from which we can observe that:

e VIP_01 had good C;, but the difference with MIS-C or not MIS-C samples could not be

appreciated because of the C; distributions.

e VIP_02 assay worked for the majority of samples, but 7 of them didn’t show signal
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Figure 9.3: Assay design strategy and performance in qPCR instrument

e VIP_03 failed for all but three samples.

e VIP 04 had good C; and translated the signature as the fold-change within MIS-C or not

MIS-C samples could be appreciated.

This experiment highlighted that not all the exons could be considered for the molecular
method in PCR as primer design constraints and the sequence of the targeted nucleic acid has
a massive impact on the performance of each assay. Moreover, laboratory testing confirms that
using standard primer design parameters does not necessarily result in the best-performing assay
being translated across platforms from high-throughput to low-throughput methods. Firstly,
this confirms that the RNA-seq and primer design constraints must be combined to increase
the success rate of the assay. Furthermore, this shows that primer design parameters must be
adjusted according to the target to obtain the best discrimination of the groups of interest.
Another factor that can be missed when designing PCR assays is the presence of the targeted
region as it can be subject to splicing events, or gene expression can be modified by the presence

of other unknown or undiagnosed conditions.

This study represents a shift in the entire process of discovery of gene signatures. These

pipelines are built with the final validation platform in mind, which is not done in transcrip-
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tomics. Developing discovery pipelines based on the shortcomings, requirements and capabil-
ities of the intended validation platforms is a novel concept in the field of transcriptomics.
Furthermore, a unique aspect of this work is that it considers the different regions of genes,
determining the most optimal area for cross-platform translation. Appendix Figures E.2 and

E.3 are provided to further clarify the methodology workflow.

CHAPTER LESSON

In this Chapter, we have delineated the application of innovative assay design
methods and data-driven techniques. Specifically, the utilization of Point-of-Care
instruments and chemistries to enhance their throughput by employing advanced
data analytics methods is an exceedingly attractive future prospect for diagnostic
purposes in low and middle-income countries. Furthermore, the potential of these
innovations can shed light on novel molecular tests, such as RNA signature trans-
lation, which are currently unattainable. The scope of data-driven methods for
molecular diagnostics is extensive and untapped, but its potential is immense and

ready to be explored.






Chapter 10

Conclusion & Future Perspective

This thesis explored the use of novel Data-driven approaches in the field of DNA detection
and demonstrated the value that could be obtained from the available data from the sigmoidal
trend of a PCR-based amplification reaction. Particularly, PCR and LAMP (as an isother-
mal alternative) were used to investigate the application of Data-driven Multiplexing in both
quantitative and digital molecular instruments. In this work, we explored the use of Artificial
Intelligence algorithms (such as Machine Learning) to enhance the throughput of conventional
instruments, and we proposed a new perspective for the hybrid development of high-level mul-
tiplex assays (up to nine targets) using laboratory tests, bioinformatics tools and mathematical

modelling. With this thesis, I would like to pass on the following message:

7 Sigmoidal curves from amplification reactions are not Binary, and the better use of the

data is essential to develop novel higher throughput molecular tests.” - Luca Miglietta

10.1 Contribution

Chapter 3 revealed that machine learning algorithms coupled with the large amount of
data from real-time digital instruments can be used for PCR multiplexing based on the entire
amplification curve. This was accomplished by explicitly training a supervised machine learning
model to classify targets using target-specific kinetic information automatically. A formula was
developed to provide a trade-off between quantification and multiplexing because digital PCR

executes spatial multiplexing by default and quantification by Poisson statistics (rather than
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standard curves) by default. Chapter 3’s contributions resulted in [J1] and [P1] (see List of
Publications): Paper conceptualisation, writing original draft, final review, data collection,

algorithm development, assay design and experimental testing.

In Chapter 4, a high-level digital PCR multiplex using intercalating dyes was demon-
strated. This was accomplished using a revolutionary three-step machine learning approach
that combined the kinetic information from amplification curves and the thermodynamic in-
formation from melting curves. It was demonstrated that despite analysing the same nucleic
acid product, both amplification and melting curves contain non-mutual valuable information
for target identification. Chapter 4’s contributions resulted in [J2] and [P1] (see List of Pub-
lications): paper conceptualisation, writing original draft, final review, data collection, data

processing, algorithm development, assay design and experimental testing.

Chapter 5 extended the use of Data-driven multiplexing to isothermal chemistries, partic-
ularly LAMP. This was the first demonstration of applying an Al-based method to identify 5
respiratory pathogens with a 5plex assay in a single reaction using only sigmoidal shape infor-
mation from LAMP. The contributions of Chapter 5 led to the [J6] (see List of Publications):
paper conceptualisation, final review, data collection, data processing, algorithm development,

assay design and experimental testing.

Chapter 6 demonstrated the first successful application of data-driven multiplexing for
clinical diagnostics. A multiplex assay for the detection of the "big 5”7 carbapenem resistance
genes was developed in this study. Coupling a Machine Learning classifier and the novel 5plex
assay, using the information encoded in amplification and melting curves, the classification of
253 clinical isolates was achieved with over 99 % accuracy. Moreover, the demonstration of the
digital standard curve was introduced in this Chapter for the first time. The contributions of
Chapter 6 led to the [J5] (see List of Publications): paper conceptualisation, writing original
draft, final review, data collection, data processing, algorithm development, assay design and

experimental testing.

Chapter 7 introduced a new framework for enhanced data quality from digital PCR instru-
ments and outlier detection. This was achieved by fitting the amplification curve and combining
the resulting feature with novel ones. Removing outliers based on the sigmoidal trend allows
more precise detection in instruments and chemistries without melting capabilities and enables

better quantification in digital applications. The contributions of Chapter 7 led to the [J10]
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and [S3] (see List of Publications). Contribution: paper conceptualisation, writing original
draft, final review, data collection, data processing, algorithm development, assay design and

experimental testing.

Chapter 8 demonstrated the first-ever hybrid pipelines to develop Data-driven Multiplex
assays. Through better data use, the Smart-Plexer utilises laboratory assays (in singleplex) to
in-silico compute optimal simulated multiplex assays. This drastically reduces the resources
needed in developing high-level multiplex for data-driven approaches. We demonstrate the
concept in a 7plex assay for Respiratory tract infectious pathogens (COVID-19 related). The
contributions of Chapter 8 led to the [S2] and [P2] (see List of Publications): paper con-
ceptualisation, writing original draft, final review, data collection, data processing, algorithm

development, assay design and experimental testing.

Chapter 9 identified recent applications of intelligent assay design pipelines to highlight
the future direction of this field. The ongoing research on Point-of-Care and RNA signature
diagnostics tests will benefit from incorporating more sophisticated data-driven methods like
that in Chapters 3 and 7. The contributions of Chapter 9 led to the [J3], [J4], [J8], [J9]
and [S5] (see List of Publications): paper conceptualisation, final review, data collection, data

processing, assay design and experimental testing.

10.2 Remarks, Impact and Future Perspective

This thesis directly targets the need for rapid diagnostic tests. As the COVID-19 pandemics
highlighted, shortages in test kits paralysed the health system in many countries. Data-driven
methods for multiple target detection aim to ease the burden of molecular diagnostic tests
in hospitals (such as NHS) and reduces diagnostics cost for low and middle-income countries’
applications. Furthermore, the apporach represent an answer in new infectious outbreaks and

optimise diagnosis outcomes for patient treatment.

The social impact of new diagnostic solutions allows better infection prevention and reduces
morbidity associated with delayed or inappropriate treatment. Accurate diagnosis informs real-
time bed planning and escalation of care pathways improving patient and healthcare worker

safety. Furthermore, improved tools with faster turnaround time prevent transmission. The
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proposed research can be applied to other field requiring nucleic acid detection and, when
combined with POC instruments, data-driven approaches enable better diagnostics outside of

the lab and in low- and middle-income countries.

There is also an economic impact related to this work. More diagnostic companies are
moving towards integrating artificial intelligence and advanced data processing to enhance the
throughput of their chemistries or instruments (such as ChromaCode, Diacarta and Diagnos-
tic.ai). This is especially the case for multiplexing. Several digital PCR providers are developing
software that, by integrating Machine Learning algorithms in their data processing pipelines,
can perform multiple detections in a single-molecule reaction [237]. This is highly crucial when
we analyse the cost of individual PCR reactions. As Figure 10.2 shows, the price of PCR can
vary based on chemistry and level of multiplexing. It can be seen that probe-based assays
are 54% more expensive than intercalating dye chemistries for single target detection, reaching
even 157% increase with three target detection [238, 239]. This highlights how PCR cost can
be reduced in intercalating dye multiplexing. We broadly illustrate how the AMCA method

can achieve five target detection with a single intercalating dye in a single well reaction [144].

The method benefits from large
data mining using Al
algorithms, applying to real-
time PCR platforms

No interruption in

the current
standards
e Enabling high accuracy

(sensitivity and specificity) for
target identification in
i multiplexed assays

Processing speed Simple
in order of

implementation

Highlight the benefit of high-
g throughput instruments and
development hence potentially increase their

complexity and
trained staff market share

Figure 10.1: Vision of Data-driven Multiplexing



10.3. Future Work 165

Single target detection Three targets detection
1.6 The Fluorescent 1.6 The Fluorescent
14 probe-based 14 probe-based
assays are 54.4% $0.32  assays are 157.6%
1.2 more expensive 12 $0.01 more expensive
1 than intercalating 1 $0.32  than intercalating
dye-based assays $0.01 dye-based assays
0.8 0.8
$0.01 $0.32 $0.01 $0.32
0.6 0.6 [l Master Mix Cost
Assay 1 Cost
0.4 ] 0.4
B Master Mix Cost $0.56 $0.56 Assay 2 Cost
0.2 Assay Cost 0.2 Assay 3 Cost
0 0
Intercalating Fluorescent Intercalating Fluorescent
dye probe dye probe

Figure 10.2: The cost of PCR per reaction. On the right, the cost of PCR per reaction when detection
of single target is performed (intercalating dye-based vs fluorescent probe-based assay). On the left,
the cost of PCR per reaction when detection of three targets is performed (intercalating dye-based vs
fluorescent probe-based assay).

10.3 Future Work

1. Optimisation of data-driven multiplexing classification by using deep-learning and transfer

learning methods (the first study has been already conducted [240]).

2. the expansion of the multiplex level by using multiple colour with TagMan probes (see the
21-plex RTT panel in three fluorescent channels using the ACA method, Supplementary
Figure D.4).

3. the integration of the developed data-driven multiplexing (i.e. ACA) into a Point-of-Care

platforms.

4. mathematical modelling of the amplification curve kinetics and thermodynamics to de-

velopment of data-driven multiplex assays fully in-silico.

The contents of this thesis are the outcome of a highly multidisciplinary collaboration
amongst several disciplines, specifically data science, engineering, and molecular biology. This
may help to explain why there hasn’t been much research done on this topic; this thesis intends
to fill that gap. There is a growing trend among biologists to learn more about data processing,
and given the worldwide focus on COVID-19 pandemic, the field of DNA detection has seen a

surge in interest among data scientists. I therefore expect that by disseminating the concepts in
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this thesis, others will be able to modify and improve this work in order to address the biggest

healthcare concerns in the world.
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Appendix A

Supporting Information: Chapter 3

This Appendix contains the following:

Raw melting curves from qPCR and dPCR (Figure A.1)

Standard curves for each mer target using new 9-plex assay (Figure A.2)

Performance of high-level dPCR multiplexing with FFI (Figure A.3)

Performance of all methods in conventional PCR (Figure A.4)
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A) Melting Curves from gPCR Instrument
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B) Melting Curves from dPCR Instrument
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Figure A.1: Raw melting curves from (A) gPCR and (B) dPCR instrument.
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Figure A.2: Standard curves for each mcr target using new 9plex assay. (Top Panel) Plots were
generated using Roche LightCycler software (version 1.1). (Bottom Panel) Table with relevant meta
data for each standard curve.
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Final Fluorescence Intensity
A. Confusion Matrix (Acc: 34.50%)
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Figure A.3: Multiplexing with FFI in dPCR (without optimization of primer concentration). (Top
panel) Confusion matrix showing performance of logistic regression classifier on FFI values. (Bottom
panel) Visualisation of the distribution of FFI values for all targets and amplification events. For each
target, amplification events are ordered from low to high concentration.
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Figure A.4: Performance of all methods for multiplexing the 9 mer targets in conventional qPCR
instrument. A, B, C) Confusion matrices illustrating the predictions from ACA, MCA and AMCA
(proposed method), respectively. Values indicate the number of amplification events with diagonal
entries corresponding to correct predictions. D, E) Coefficients of the AMCA model weighting the
predictions from the ACA and MCA methods, respectively. Darker colours indicate more positive
weighting. F) The effect of the number of training data points on the overall classification accuracy
for all methods. The shaded regions correspond to +/- 1 standard deviation.



Appendix B

Supporting Information: Chapter 5

This Appendix contains the following:

e Effect of training data size on the classification accuracy (Figure B.1)

e Distribution of Time-To-Positive in 5plex LAMP (Figure B.2)
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Figure B.1: Effect of training data size on the classification accuracy using 5,000 out-of-sample data
points (10 iterations).
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Figure B.2: Distribution of Time-To-Positive in 5plex LAMP. Histogram showing the distribution of
Time-To-Positive (TTP) values of the 5plex-LAMP in dLAMP using a single fluorescence channel.



Appendix C

Supporting Information: Chapter 6

This Appendix contains the following:

Figure List

e Inclusivity alignment of blapxa.ss (Figure C.1)
e Inclusivity alignment of blapp (Figure C.2)
e Inclusivity alignment of blaxpy (Figure C.3)
e Inclusivity alignment of blakpc (Figure C.4)
e Inclusivity alignment of blayyy (Figure C.5)

e Analysis of real-time amplification and melting curves from qPCR instruments (Figure

C.6)

e Performance of the MCA and AMCA in the training dataset using synthetic DNA tem-
plates (Figure C.7)

Performance of MCA and AMCA methods in clinical isolates (Figure C.8)

Table List

e Clinical Enterobacteriaceae isolates used in this study (Figure C.10)

e Bacterial isolates used in this study [144]. (Table C.1 - C.5)
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Figure C.1: Inclusivity alignment of blagxa.4s. Sequences retrieved from nr/nt NCBI database (N
= 603) with a coverage of 100% for each primer binding region. The alignment shows only unique
sequences that differ from the reference NG_049762 in the amplification region. The sequences are
ordered from the largest number of unique sequences to the lowest as shown in bracket (after the
NCBI accession number) on the left side of the alignment.

Consensus
Identity

D+ 1. NG_049172 extraction (182)

B636651 extraction (121)
Q685900 extraction (20)
PO30080 extraction (19)

531212 extraction (d) L T

Al
. Hi
. C
- At
. AB700341 extraction (11) e . 1 -
K
N 217 extraction (3)
. KI

z=

M589497 extraction (3)
10. LC348383 extraction (3) T
11.LC055762 extraction (2)
12. AB753456 extraction (2) ,
13.1C190726 extraction (2) e . 1 .
14.C385062 extraction (2) e
15. AB753457 extraction (2) T e
16. CPO6B026 extraction (2) e w " B T " T " &
17. CPO68240 extraction e ~ A B A
18, CPO42967 extraction
19.F]384365 extraction B T A n 3

?F????????????????‘

Figure C.2: Inclusivity alignment of blapp (including blapyp.1 and blapgp.g4 groups). Sequences
retrieved from nr/nt NCBI database (N = 400) with a coverage of 100% for each primer binding
region. The alignment shows only unique sequences that differ from the reference NG_049172 in the
amplification region. The sequences are ordered from the largest number of unique sequences to the
lowest as shown in bracket (after the NCBI accession number) on the left side of the alignment.



Consensus
Identity

Ce 1.NC_023908 extraction (672)

Ce 2. APO18833 extraction (259)
L+ 3. CPO12990 extraction (35)

Ce 4. APO18146 extraction (2d)

[+ 5. CPO15725 extraction (18)

L+ 6. MH917717 extraction (6) "
Ce 7. ABBOBO38 extraction (5)

Cé 8. MK157018 extraction (4)

Ce 9. KM210086 extraction (2)

L+ 10. MNG24980 extraction (2)

oe 11

Ce 16. MN240794 extraction

Figure C.3: Inclusivity alignment of blanpym. Sequences retrieved from nr/nt NCBI database (n
= 1,035) with a coverage of 100% for each primer binding region. The alignment shows only unique
sequences that differ from the reference NC_023908 in the amplification region. The sequences are
ordered from the largest number of unique sequences to the lowest as shown in bracket (after the
NCBI accession number) on the left side of the alignment.
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Figure C.4: Inclusivity alignment of blakpc. Sequences retrieved from nr/nt NCBI database (n
= 1,001) with a coverage of 99.9% for each primer binding region. The alignment shows only unique
sequences that differ from the reference NC_016846 in the amplification region. The sequences are
ordered from the largest number of unique sequences to the lowest as shown in bracket (after the
NCBI accession number) on the left side of the alignment.
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Figure C.5: Inclusivity alignment of blayry. Sequences retrieved from nr/nt NCBI database (n = 593)
with a coverage of 99.9% for each primer binding region. The alignment shows only unique sequences
that differ from the reference NG_050336 in the amplification region. The sequences are ordered from
the largest number of unique sequences to the lowest as shown in bracket (after the NCBI accession
number) on the left side of the alignment.
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a) Amplification curves for CPO targets
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Figure C.6: Analysis of real-time amplification and melting curves from qPCR instruments. (a) Raw
real-time amplification curves. (b) Raw melting curve for each target. (c) Standard curves for each
target using our new 5plex PCR assay. (Bottom Panel) Table with relevant meta data for each
standard curve.
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Figure C.7: Performance of the MCA and AMCA methods for multiplexing the five carbapenemase
gene targets in the training dataset using synthetic DNA templates. (left) Confusion matrix illustrating
the predictions from Melting Curve Analysis (MCA) algorithm. (right) Confusion matrix illustrating
the predictions from Amplification and Melting Curve Analysis (AMCA) algorithm. Values in the
matrices indicate the number of positive amplification events (N = 29,165) with diagonal entries

corresponding to correct predictions.
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Figure C.8: Performance of MCA and AMCA methods for multiplexing the five carbapenemase gene
targets in clinical isolates. (left) Confusion matrix illustrating the predictions from Melting Curve
Analysis (MCA) algorithm. (right) Confusion matrix illustrating the predictions from Amplifica-
tion and Melting Curve Analysis (AMCA) algorithm. Values indicate the number of clinical isolates
(N=253) with diagonal entries corresponding to correct predictions.
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Figure C.9: The coefficients of the AMCA model. The values in the confusion matrices, ranging from
—5 to 6.3, indicate the predictions weights from the ACA and MCA methods, respectively. Darker
colours indicate more positive weighting. For example, as it can be observed, the AMCA weighs the
prediction from ACA more heavily for blapp target (4.7 in the ACA model compared to the 2.4 of

the MCA model), instead for blanpy the situation is the opposite (5.7 in the MCA model compared
to the 4.6 of the ACA model).
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Species (MALDI-TOF MS) Carbapenemase gene  Number of isolates

Citrobacter spp. blape 1
b|aKpc 2
blanom 1
blaoxa s 10
b|a\,.r1|\,.1 1
Enterobacter spp. blap 20
blanom 7
blaoxa-as 2
blaym 2
Escherichia spp. blae 7
b|aNDM 14
blanom and blaoya.as 1
blaoxa-as 26
Klebsiella pneumoniae blape 15
b|aKpc 6
blanom 51
blaoxa-as 45
b|a\,.r;|\,.1 3
Proteus mirabilis blanpm 1
Pseudomonas aeruginosa blape 2
b|a\,.r;|\,.1 2
Serratia marcescens blakec 1
blaoxa-as 1
Multiple species* negative 32

Figure C.10: Clinical Enterobacteriaceae isolates.
*CPO-negative species: Acinetobacter baumannii, Citrobacter freundii, Enterobacter spp., Escherichia
coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa.
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Table C.1: Bacterial isolates from clinical samples (part 1)
Sample ID Specimen Source Collection CPE AMCA Conc. cp/uL
CPO001 Acinetobacter baumannii  Bronchoalveolar 26/02/2015 oxa23 neg 0.00E+00
CPO0002 Klebsiella pneumoniae Urine 15/04/2013 neg neg 0.00E+00
CPO003 Klebsiella pneumoniae Rectal swab 29/05/2018 neg neg 0.00E+00
CPO004 Enterobacter cloacae Right leg tissue 13/07/2018 neg neg 0.00E+00
CPO005 Escherichia coli Sputum 10/10/2015 neg neg 0.00E+-00
CPO006 Escherichia coli Urine 04/01/2016 neg neg 0.00E+-00
CPO007 Klebsiella pneumoniae Urine 29/02/2016 neg  neg 0.00E+00
CPO008 Citrobacter freundii Urine 09/03/2016 neg  neg 0.00E+00
CPO009 Klebsiella pneumoniae Urine 10/07/2016 neg neg 0.00E+00
CPOO010 Enterobacter cloacae Bronchoalveolar 15/08/2016 neg neg 0.00E+00
CPOO011 Klebsiella pneumoniae Perineum 05/10/2016 neg neg 0.00E+00
CPO012 Klebsiella pneumoniae Right leg tissue 23/10/2016 neg neg 0.00E4-00
CPO0O013 Klebsiella pneumoniae Rectal swab 26/12/2016 neg neg 0.00E+00
CPO014 Escherichia coli Urine 18/06/2017 neg neg 0.00E4-00
CPOO015 Klebsiella pneumoniae Urine 18/06/2017 neg  neg 0.00E+00
CPO016 Klebsiella pneumoniae Urine 05/08/2017 mneg  neg 0.00E+00
CPOO017 Enterobacter cloacae Sputum 18/08/2017 mneg  neg 0.00E+00
CPO018 FEscherichia coli Urine 18/08/2017 neg  neg 0.00E+-00
CPO019 Klebsiella pneumoniae Urine 27/10/2017 neg neg 0.00E+00
CPO020 Klebsiella pneumoniae Urine 05/01/2018 neg neg 0.00E4-00
CPO021 Enterobacter cloacae Wound swab 14/11/2017 neg neg 0.00E+00
CPO0022 Escherichia coli Rectal swab 22/01/2018 neg neg 0.00E+00
CPO0023 Escherichia coli Urine 22/01/2018 neg neg 0.00E+00
CPO0024 Klebsiella pneumoniae Urine 26/01/2018 neg neg 0.00E+00
CPO025 Enterobacter spp Rectal swab 16/05/2019 neg  neg 0.00E+00
CPO0026 FEscherichia coli Rectal swab 16/05/2019 neg neg 0.00E+00
CPO027 Enterobacter cloacae Rectal swab 12/05/2018 neg neg 0.00E+00
CPOO028 FEscherichia coli Rectal swab 22/04/2018 neg neg 0.00E+00
CP0029 Klebsiella pneumoniae Rectal swab 07/01/2019 neg neg 0.00E+00
CPO0O030 Pseudomonas aeruginosa Rectal swab 12/01/2019 neg neg 0.00E+00
CPOO031 Escherichia coli Rectal swab 11/02/2019 neg neg 0.00E+00
CPO032 Acinetobacter baumannii  Rectal swab 13/03/2019 neg neg 0.00E4-00
CPOO033 Pseudomonas aeruginosa Throat swab 31/03/2015 imp  imp 2.42E4-03
CPO034 FEscherichia coli Rectal swab 12/05/2018 imp  imp 1.64E+04
CPOO035 Klebsiella pneumoniae Rectal swab 18/05/2018 imp  imp 2.06E+403
CPO036 Enterobacter cloacae Rectal swab 23/06/2018 imp  imp 9.88E+01
CPO037 Klebsiella pneumoniae Rectal swab 03/07/2018 imp  imp 8.00E+02
CPO0O038 Escherichia coli Rectal swab 13/01/2019 imp  imp 3.24E+04
CPO039 Klebsiella pneumoniae Rectal swab 14/01/2019 imp  imp 3.28E+04
CPO0040 FEscherichia coli Rectal swab 30/01/2019 imp  imp 1.36E4-04
CPO041 Enterobacter cloacae Rectal swab 27/07/2019 imp  imp 2.11E+02
CPO0O042 Klebsiella pneumoniae Rectal swab 24/07/2019 imp  imp 9.11E+403
CPO0043 Klebsiella pneumoniae Rectal swab 29/07/2019 imp  imp 3.69E+03
CPO0044 Enterobacter cloacae Rectal swab 26/08/2019 imp  imp 6.58E+403
CPO045 Enterobacter cloacae Rectal swab 18/08/2019 imp  imp 1.67E+4-04
CPO0046 Klebsiella pneumoniae Rectal swab 06/05/2019 imp  imp 2.59E+04
CPO047 Enterobacter cloacae Rectal swab 09/05/2019 imp imp 1.46E4-02
CPO048 Enterobacter cloacae Rectal swab 11/05/2019 imp  imp 1.75E4-04
CPO0O049 Enterobacter spp Rectal swab 13/06/2019 imp  imp 3.27E+04
CPOO050 Escherichia coli Rectal swab 20/06/2019 imp  imp 9.15E4-03
CPO051 Enterobacter cloacae Rectal swab 09/09/2017 imp  imp 2.32E+04
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Table C.2: Bacterial isolates from clinical samples (part 2)

Sample ID Specimen Source Collection CPE AMCA Conc. cp/uL
CPO052 Klebsiella pneumoniae Rectal swab 03/10/2017 imp  imp 4.27E+01
CPO0O053 Enterobacter cloacae Rectal swab 05/10/2017 imp  imp 2.18E+404
CPO054 Enterobacter spp Rectal swab 11/10/2017 imp  imp 1.60E+04
CPOO055 Citrobacter freundii Rectal swab 28/10/2017 imp  imp 5.55E+02
CPO056 Klebsiella pneumoniae Rectal swab 22/01/2018 imp  imp 1.20E+03
CPOO057 Klebsiella pneumoniae Rectal swab 28/01/2018 imp  imp 9.89E+02
CPO058 Enterobacter cloacae Urine 06/02/2018 imp  imp 7.53E+01
CPO059 Enterobacter spp Rectal swab 21/02/2018 imp  imp 7.92E+02
CPO060 Klebsiella pneumoniae Rectal swab 10/09/2018 imp  imp 1.89E+-02
CPO061 Enterobacter cloacae Rectal swab 07/09/2018 imp  imp 1.83E+02
CPO062 FEscherichia hermannii Rectal swab 20/11/2018 imp  imp 1.47E+02
CPO063 Escherichia coli Rectal swab 21/02/2018 imp  imp 1.05E+03
CPO064 Enterobacter cloacae Rectal swab 28/01/2018 imp  imp 1.20E+02
CPO065 Klebsiella pneumoniae Rectal swab 02/04/2018 imp  imp 3.48E+404
CPO066 Klebsiella pneumoniae Rectal swab 22/04/2018 imp  imp 3.45E404
CPO067 Enterobacter cloacae Rectal swab 18/08/2018 imp  imp 1.05E+02
CPO0O068 Klebsiella pneumoniae Rectal swab 07/01/2019 imp  imp 1.72E+02
CPO069 Pseudomonas aeruginosa Rectal swab 12/01/2019 imp  imp 4.95E403
CPOO070 Enterobacter cloacae Rectal swab 11/02/2019 imp  imp 2.41E402
CPOO071 Klebsiella pneumoniae Rectal swab 13/03/2019 imp  imp 4.20E+02
CPOO072 FEscherichia hermannii Rectal swab 27/05/2019 imp  imp 3.01E+02
CPOO073 Enterobacter spp Rectal swab 08/05/2019 imp  imp 1.32E+02
CPO074 Klebsiella pneumoniae Swab 11/05/2019 imp  imp 3.45E+401
CPOO075 Enterobacter cloacae Rectal swab 16/06/2016 imp  imp 5.43E+401
CPOO076 Enterobacter cloacae Rectal swab 16/05/2019 imp  imp 2.41E+04
CPOO077 Enterobacter cloacae Rectal swab 12/05/2018 imp  imp 1.51E+04
CPOO078 Klebsiella pneumoniae Wound swab 08/10/2012 kpc  kpc 5.83E403
CPOO079 Citrobacter spp Rectal Swab 01/10/2017 kpc  kpe 9.73E+403
CPOO080 Klebsiella pneumoniae Urine 22/03/2014 kpc  kpe 1.22E+04
CPO081 Klebsiella pneumoniae Rectal Swab 10/09/2017 kpec  kpc 3.48E+403
CPO082 Citrobacter spp Rectal Swab 15/10/2017 kpc  kpc 3.45E+03
CPO083 Klebsiella pneumoniae Urine 08/04/2015 kpc  kpe 7.61E+03
CPO084 Serratia marcescens Rectal Swab 10/10/2017 kpc  kpc 8.66E403
CPOO085 Klebsiella pneumoniae Rectal Swab 11/09/2017 kpc  kpe 3.98E+03
CPOO086 Klebsiella pneumoniae Rectal Swab 11/09/2017 kpc  kpc 1.82E+04
CPOO087 Escherichia coli Rectal Swab 01/08/2016 ndm ndm 4.23E+03
CPOO088 Klebsiella pneumoniae Urine 25/12/2015 ndm  ndm 5.39E+03
CPOO089 Klebsiella pneumoniae Rectal Swab 18/12/2015 ndm  ndm 6.47E+03
CPO090 FEscherichia coli Bone (Tibia) 14/01/2015 ndm ndm 3.69E+03
CPO091 Klebsiella pneumoniae Throat swab 02/08/2016 ndm ndm 3.66E+03
CPO092 Klebsiella pneumoniae Rectal Swab 18/04/2015 ndm  ndm 1.19E+04
CPO093 Klebsiella pneumoniae Urine 23/04/2015 ndm ndm 4.26E+403
CPO094 Klebsiella pneumoniae Rectal Swab 25/04/2015 ndm ndm 2.22E403
CPO095 Proteus mirabilis Urine 07/02/2014 ndm ndm 1.40E4-03
CPO096 Klebsiella pneumoniae Rectal Swab 04/12/2016 ndm ndm 2.63E+403
CPO097 Klebsiella pneumoniae Mouth Swab 29/01/2015 ndm ndm 2.48E+403
CPO098 Klebsiella pneumoniae Rectal Swab 20/04/2015 ndm ndm 2.39E+403
CPO0099 Klebsiella pneumoniae Perinrum swab 10/05/2015 ndm  ndm 1.00E+04
CPO0O100 FEscherichia coli Vaginal swab ~ 05/03/2015 ndm ndm 1.40E+04
CPO101 FEscherichia coli Perinrum swab 09/04/2015 ndm  ndm 9.82E+403
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Table C.3: Bacterial isolates from clinical samples (part 3)
Sample ID Specimen Source Collection CPE AMCA Conc. cp/uL
CPO102 Klebsiella pneumoniae Perinrum swab 09/12/2014 ndm  ndm 1.56E+4-04
CPO103 Klebsiella pneumoniae Rectal Swab 20/04/2015 ndm  ndm 1.66E+04
CPO104 Klebsiella pneumoniae Rectal Swab 15/04/2015 ndm  ndm 1.06E+04
CPO105 FEscherichia coli Faeces 23/11/2015 ndm ndm 9.28E+03
CPO106 FEscherichia coli Rectal Swab 26/12/2015 ndm ndm 7.51E+03
CPO107 Klebsiella pneumoniae Perinrum swab  07/05/2015 ndm ndm 6.29E+-03
CPO108 Klebsiella pneumoniae Rectal Swab 20/04/2015 ndm ndm 1.85E+04
CPO109 Klebsiella pneumoniae Sputum 23/03/2018 ndm ndm 9.74E4-03
CPO110 Klebsiella pneumoniae Rectal Swab 29/04/2015 ndm  ndm 1.27TE+04
CPO111 Klebsiella pneumoniae Perinrum swab 07/05/2015 ndm  ndm 1.05E+04
CPO112 Klebsiella pneumoniae  Catheter Urine 02/07/2014 ndm  ndm 1.21E+04
CPO113 Klebsiella pneumoniae  Perinrum swab 09/12/2014 ndm  ndm 1.50E+04
CPO114 Klebsiella pneumoniae  Urine 08/03/2015 ndm ndm 8.01E+03
CPO115 Klebsiella pneumoniae Urine 10/04/2015 ndm ndm 2.06E+-04
CPO116 Klebsiella pneumoniae Perinrum swab 19/04/2015 ndm  ndm 1.46E+04
CPO117 Klebsiella pneumoniae Rectal Swab 18/04/2015 ndm  ndm 2.83E+04
CPO118 Klebsiella pneumoniae Rectal Swab 17/05/2015 ndm  ndm 9.15E+03
CPO119 Klebsiella pneumoniae Urine 23/04/2015 ndm  ndm 2.22E+04
CPO120 Klebsiella pneumoniae Rectal Swab 25/04/2015 ndm ndm 1.41E+4+04
CPO121 Klebsiella pneumoniae Perinrum swab 10/05/2015 ndm  ndm 8.60E+03
CPO122 Klebsiella pneumoniae Rectal Swab 03/10/2015 ndm ndm 2.08E+04
CPO123 Klebsiella pneumoniae Rectal Swab 16/08/2015 ndm ndm 1.96E+04
CPO124 Klebsiella pneumoniae  Wound swab 19/04/2015 ndm ndm 6.44E403
CPO125 Klebsiella pneumoniae Rectal Swab 16/09/2015 ndm ndm 1.68E+04
CPO126 Klebsiella pneumoniae Rectal Swab 07/06/2015 ndm ndm 1.64E+04
CPO127 Klebsiella pneumoniae Rectal Swab 07/07/2015 ndm ndm 2.29E+04
CPO128 Klebsiella pneumoniae Rectal Swab 03/06/2015 ndm ndm 6.54E+03
CPO129 Klebsiella pneumoniae Rectal Swab 20/05/2015 ndm ndm 1.18E+04
CPO130 Klebsiella pneumoniae Rectal Swab 10/08/2015 ndm ndm 7.64E+03
CPO131 Klebsiella pnewmoniae Perinrum swab 12/07/2015 ndm ndm 6.86E+03
CPO132 Klebsiella pneumoniae Rectal Swab 21/07/2015 ndm ndm 2.40E+04
CPO133 Escherichia coli Rectal swab 29/06/2018 ndm ndm 1.02E+04
CPO134 Klebsiella pneumoniae Blood culture  23/09/2016 ndm  ndm 3.14E404
CPO135 Enterobacter cloacae Rectal swab 24/06/2018 ndm ndm kpce 5.75E+04
CPO136 FEscherichia coli Urine 12/03/2019 ndm  ndm 1.83E+04
CPO137 Escherichia coli Rectal swab 28/01/2019 ndm ndm 1.29E+04
CPO138 Klebsiella pneumoniae Rectal swab 23/02/2019 ndm ndm 2.41E404
CPO139 Klebsiella pneumoniae Rectal swab 25/03/2019 ndm ndm 5.85E+-04
CPO140 Enterobacter cloacae  Rectal swab 03/04/2019 ndm ndm 1.24E+04
CPO141 Enterobacter cloacae  Rectal swab 21/01/2019 ndm ndm 8.38E+03
CPO142 Citrobacter freundii Abdomen 08/04/2019 ndm ndm 1.34E+04
CPO143 Klebsiella pneumoniae Urine 23/04/2015 ndm ndm 1.11E+04
CPO144 Klebsiella pneumoniae Leg tissue 29/07/2015 ndm ndm 7.75E+03
CPO145 Klebsiella pneumoniae Abdomen 22/09/2016 ndm ndm 1.55E+04
CPO146 FEscherichia coli Urine 04/05/2017 ndm  ndm 1.73E+04
CPO147 FEscherichia coli Catheter urine  06/06/2019 ndm  ndm 6.45E+03
CPO148 Escherichia coli Rectal swab 12/01/2019 ndm  ndm 1.13E+05
CPO149 Escherichia coli Rectal swab 27/05/2019 ndm  ndm 2.44E405
CPO150 Enterobacter cloacae  Rectal swab 16/06/2016 ndm ndm 2.72E+406
CPO151 Klebsiella pneumoniae Rectal swab 16/05/2019 ndm  ndm 7.59E+04
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Table C.4: Bacterial isolates from clinical samples (part 4)

Sample ID Specimen Source Collection CPE AMCA Conc. cp/uL
CPO152 Enterobacter cloacae Rectal swab 12/05/2018 ndm ndm 2.48E+06
CPO153 Enterobacter cloacae Rectal swab 22/04/2018 ndm ndm 1.80E+06
CPO154 FEscherichia coli Rectal swab 18/08/2018 ndm ndm 3.59E+405
CPO155 Klebsiella pneumoniae Rectal swab 08/05/2019 ndm ndm 1.87E+406
CPO156 Enterobacter cloacae Rectal swab 12/05/2018 ndm ndm 1.11E405
CPO157 Klebsiella pneumoniae Rectal swab 07/01/2019 ndm ndm 1.54E+4-06
CPO158 Klebsiella pneumoniae Rectal swab 12/01/2019 ndm ndm 2.27TE+06
CPO159 Klebsiella pneumoniae Rectal swab 13/03/2019 ndm ndm 3.15E+04
CPO160 Klebsiella pneumoniae Rectal swab 27/05/2019 ndm ndm 9.98E+04
CPO161 FEscherichia coli Rectal Swab 01/12/2014 ndm_oxad48 ndm_oxad8 1.70E+04
CPO162 FEscherichia coli Wound swab 14/03/2014 oxa48 oxad8 2.45E+04
CPO163 FEscherichia coli Rectal Swab 20/10/2017 oxad8 oxad8 3.76E+03
CPO164 Citrobacter freundii Rectal Swab 06/01/2016 oxad8 oxad8 5.56E+03
CPO165 Escherichia coli Urine 04/04/2015 oxadd oxad8 2.48E+03
CPO166 Klebsiella pneumoniae Rectal Swab 07/01/2016 oxa48 oxad8 1.50E+04
CPO167 FEscherichia coli Wound swab 25/11/2012  oxa48 oxa48 2.22E+03
CPO168 FEscherichia coli Blood culture ~ 21/07/2013 oxa48 oxa48 1.17E+04
CPO169 Serratia marcescens Bone (Tibia) 28/01/2015 oxad8 oxa48 6.25E-+03
CPO170 Citrobacter freundii Rectal Swab 13/12/2015 oxad8 oxad8 3.23E+03
CPO171 Klebsiella pneumoniae Urine 02/07/2014  oxad8 oxad8 1.46E+4-03
CPO172 Klebsiella pneumoniae Abdomen Fluid 22/01/2015 oxa48 oxad8 4.55E+03
CPO173 FEscherichia coli Urine 04/04/2015 oxad8 oxad8 2.25E+04
CPO174 FEscherichia coli Rectal swab 28/06/2018 oxad8 oxad8 1.16E+404
CPO175 Klebsiella pneumoniae Urine 08/05/2018 oxa48 oxad8 3.36E+04
CPOL176 Klebsiella pneumoniae Blood culture ~ 13/06/2018 oxa48 oxa48 2.77TE+04
CPO177 Klebsiella pneumoniae Blood culture 15/10/2018 oxa48 oxad8 3.40E+04
CPO178 Klebsiella pneumoniae Blood culture 21/02/2015 oxa48 oxad8 8.70E4-03
CPO179 Citrobacter freundii Rectal swab 14/01/2018 oxa48 oxad8 4.21E+04
CPO180 Citrobacter freundii Urine 16/01/2018 oxa48 oxad8 3.12E+04
CPO181 Klebsiella pneumoniae Rectal swab 04/03/2019 oxad8 oxad8 6.24E+04
CPO182 Klebsiella pneumoniae Urine 30/08/2018 oxa48 oxad8 2.14E+04
CPO183 Klebsiella pneumoniae Urine 23/04/2019 oxa48 oxad8 8.64E+04
CPO184 Klebsiella pneumoniae Urine 01/06/2015 oxa48 oxad8 2.82E+405
CPO185 FEscherichia coli Wound swab 08/07/2015 oxad8 oxad8 1.58E+4-04
CPO186 Klebsiella pneumoniae Urine 04/01/2016 oxad8 oxad8 9.71E+04
CPO187 Citrobacter amalonaticus Rectal swab 18/01/2016 oxa48 oxa48 3.38E+04
CPO188 Klebsiella pneumoniae Urine 08/02/2016 oxad8 oxad8 8.94E+05
CPO189 Klebsiella pneumoniae Urine 08/02/2016 oxa48 oxad8 4.47E405
CPO190 Klebsiella pneumoniae Wound swab 01/07/2016 oxa48 oxa48 5.80E+05
CPO191 Klebsiella pneumoniae Pleural fluid 10/07/2016  oxa48 oxa48 7.23E+05
CPO192 FEscherichia coli Rectal swab 15/08/2016 oxa48 oxad8 4.37E+04
CPO193 FEscherichia coli Urine 26/08/2016 oxad8 oxad8 2.14E+04
CPO194 Klebsiella pneumoniae Urine 22/10/2016 oxa48 oxad8 1.35E+405
CPO195 FEscherichia coli Urine 27/11/2016 oxa48 oxad8 1.11E+04
CPO196 Klebsiella pneumoniae Rectal swab 18/03/2017 oxad8 oxad8 5.28E+05
CPO197 FEscherichia coli Wound swab 18/04/2017 oxa48 oxad8 9.71E+03
CPO198 Citrobacter freundii Urine 05/05/2017 oxad8 oxad8 5.71E+03
CPO199 Klebsiella pneumoniae Wound swab 06/08/2017 oxa48 oxa48 1.29E+04
CPO200 Klebsiella pneumoniae Abdomen 17/01/2018 oxa4d8 oxad8 1.73E403
CPO201 Klebsiella pneumoniae Rectal swab 22/01/2018 oxa48 oxad8 1.78E+03
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Table C.5: Bacterial isolates from clinical samples (part 5)
Sample ID Specimen Source Collection CPE AMCA Conc. cp/uL
CP0O202 Klebsiella pneumoniae Urine 27/01/2018 oxad8 oxa48 1.26E+05
CPO0203 FEscherichia coli Rectal swab ~ 22/04/2018 o0xad8 oxad8 1.02E4-06
CPO0204 Citrobacter freundii Rectal swab ~ 18/08/2018 o0xad8 oxad8 5.77TE+05
CPO0O205 FEscherichia coli Rectal swab ~ 07/01/2019 oxad48 oxa48 2.69E+05
CPO0206 FEscherichia coli Rectal swab ~ 12/01/2019 oxa48 oxa48 1.78E+404
CPO207 Citrobacter freundii Rectal swab ~ 11/02/2019 oxad8 oxa48 2.92E+06
CPO208 Escherichia coli Rectal swab  13/03/2019 oxad8 oxad8 1.57E+04
CP0O209 Klebsiella pneumoniae Rectal swab ~ 27/05/2019 oxad8 oxad8 2.45E+06
CPO210 Klebsiella pneumoniae Rectal swab ~ 08/05/2019 oxad8 oxadd 2.03E+06
CPO211 Klebsiella pneumoniae Rectal swab ~ 11/05/2019 oxad8 oxad8 2.41E+05
CPO212 Klebsiella pneumoniae Rectal swab ~ 16/06/2016 oxad8 oxad8 3.61E405
CPO213 FEscherichia coli Rectal swab ~ 16/05/2019 oxad8 oxa48 3.29E+04
CPO214 Klebsiella pneumoniae Rectal swab ~ 12/05/2018 oxad8 oxa48 1.21E+406
CPO215 Klebsiella pneumoniae Rectal swab ~ 22/04/2018 oxad8 oxa48 1.57E+06
CPO216 Klebsiella pneumoniae Rectal swab ~ 18/08/2018 oxad8 oxa48 4.18E405
CPO217 Klebsiella pneumoniae Rectal swab ~ 07/01/2019 oxad8 oxa48 2.43E4-06
CPO218 Escherichia coli Rectal swab ~ 12/01/2019 oxad8 oxa48 1.80E+05
CPO219 Escherichia coli Rectal swab ~ 11/02/2019 oxad8 oxa48 2.78E+403
CPO0220 Klebsiella pneumoniae Rectal swab ~ 13/03/2019 o0xad8 oxad8 3.75E+05
CPO0O221 FEscherichia coli Rectal swab ~ 27/05/2019 oxad8 oxad8 5.40E+06
CP0O222 Klebsiella pneumoniae Rectal swab ~ 08/05/2019 oxad8 oxa48 9.42E+03
CPO0O223 Klebsiella pneumoniae Rectal swab ~ 11/05/2019 oxad48 oxa48 3.71E+05
CPO0224 Citrobacter freundii Rectal swab ~ 16/06/2016 oxad8 oxa4d8 7.02E+05
CPO225 Escherichia coli Rectal swab ~ 12/05/2018 oxad8 oxad8 8.26E+05
CP0O226 Klebsiella pneumoniae Rectal swab  22/04/2018 oxad8 oxadd 7.85E+05
CPO227 Escherichia coli Rectal swab  18/08/2018 o0xad8 oxadd 4.46E405
CPO228 Clitrobacter freundii Rectal swab ~ 07/01/2019 oxad8 oxad8 5.04E4-05
CPO229 Klebsiella pneumoniae Rectal swab ~ 11/02/2019 oxad8 oxad8 2.57TE405
CPO230 Klebsiella pneumoniae Rectal swab ~ 13/03/2019 oxad8 oxa48 4.65E4-05
CPO231 Klebsiella pneumoniae Rectal swab ~ 08/05/2019 oxad8 oxa48 4.16E405
CPO232 Klebsiella pneumoniae Rectal swab ~ 11/05/2019 oxad8 oxa48 1.03E+05
CPO233 Klebsiella pneumoniae Rectal swab ~ 07/01/2019 oxad8 oxa48 2.01E+406
CPO234 Klebsiella pneumoniae Rectal swab ~ 12/01/2019 oxad8 oxa48 6.13E+04
CPO235 FEscherichia coli Rectal swab ~ 11/02/2019 oxad8 oxa48 2.54E4-05
CPO236 Klebsiella pneumoniae Rectal swab ~ 13/03/2019 oxad8 oxa48 2.26E4-05
CPO237 FEscherichia coli Rectal swab ~ 27/05/2019 oxad8 oxad8 2.22E+05
CPO0238 FEscherichia coli Rectal swab ~ 11/05/2019 oxa48 oxa48 8.02E+05
CPO0O239 Klebsiella pneumoniae Rectal swab  16/06/2016 oxad8 oxa4d8 2.90E+05
CPO0240 Klebsiella pneumoniae Rectal swab ~ 16/05/2019 oxad8 oxa48 2.93E+05
CPO0O241 Escherichia coli Rectal swab ~ 22/04/2018 oxad8 oxad8 5.33E+05
CP0O242 Enterobacter cloacae Rectal swab ~ 18/08/2018 oxad8 oxadd 8.86E+04
CP0O243 Klebsiella pneumoniae Rectal swab ~ 16/06/2016 oxad8 oxad8 4.46E+06
CPO244 Klebsiella pneumoniae Rectal swab ~ 18/08/2018 oxad8 oxadd 2.11E+06
CP0O245 Enterobacter spp Rectal swab ~ 27/05/2019 oxad8 oxad8 4.32E4-04
CPO246 Pseudomonas aeruginosa  Wound swab  25/03/2015 vim  vim 2.28E+03
CPO247 Citrobacter freundii Rectal Swab  02/04/2016 vim  vim 1.33E+04
CPO248 Enterobacter cloacae Bone (Tibia) 14/01/2015 vim  vim 5.66E+4-03
CPO249 Pseudomonas aeruginosa Sputum 01/11/2013 vim  vim 5.19E+03
CPO250 Enterobacter cloacae Bone (Tibia) 14/01/2015 vim  vim 2.95E+04
CPO251 Klebsiella pneumoniae Rectal swab ~ 11/02/2019 vim  vim 1.49E+05
CPO252 Klebsiella pneumoniae Rectal swab ~ 08/05/2019 vim  vim 1.90E+05
CPO253 Klebsiella pneumoniae Rectal swab ~ 11/05/2019 vim  vim 1.39E+05




Appendix D

Supporting Information: Chapter 8

This Appendix contains the following:

Figure List

Correlation of ¢ ADS and MDS for 3plex (Figure D.1)

Standard curves for all targets in the BEST selected 7plex (Figure D.2)

Overall development of Smart-Plexer (Figure D.3)

The 21-plex for RTI detection using three fluorescent channels (Figure D.4)

Table List

Primer table for 3plex (Table D.1)

Assay table for 3plex (Table D.2)

Primer table for 7plex (Table D.3)

Assay table for 7plex (Table D.4)

Assay Combination table for 3plex (Table D.5)

The ¢ parameter stats for 3plex (Table D.6)

187



188 Chapter D. Supporting Information: Chapter 8

e ADS and MDS scores for the three curve representations in 3plex (Table D.7)
e Assay Combination table for 7plex (Table D.8)

e The ¢ parameter stats for 7plex (Table D.9)
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Figure D.1: Correlation of ¢ ADS and MDS for 3plex.
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qPCR Standard Curve of HAdV qPCR Standard Curve of HCoV-229E
Assay name: HAdV_HEX_06 Assay name: HCoV-229E_N_02
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Figure D.2: Standard curves for all targets in the BEST selected 7plex.



191

Data Processing Curve Fitting
Stream 1
Back Pr— :
ackground Late amphflcatlon Noisy curve Sigmoid fitting
removal filter removal

$

f(t) = FI(t) — apex FU(Bstey) —min C Z —sgnlg(m)] + 1 Stream 2 5 parameters fitting equation:
- i ="t
Fl = Fluorescence max = min 2 ftp) = fb et b > p=labcdel"
Qpcy = average C, = Cycle threshold with 7 = 1 to max cycle Q+exp )
background Estc, = Estimated C, g(n) = Fl(n) - Fi(n —1) Curve representation: “c” parameter

E Simulated Multiplex

5 types of combinations were
selected to validate the translation

from simulated to empirical 7-plex: //’//////%9%////%

BEST, TOP-ADS, TOP-ADS
MID and BOT

Simulated scores
computation

Combination selection

Calculate simulated multiplex -
'ADS and MDS of all possible Select combinations based on

combinations distances ADS/MDS

Score validation

1. Correlation empirical
score and simulated
score

- ) 2. Verify with relative
Empirical Multiplex error

Empirical scores
computation

ACA accuracy with
synthetic DNA

The multiplex assay is tested on

clinical sample using the ACA
methodology and the classification

accuracy is output

Training and testing dataset
have been generated to assess
preliminary accuracy on
synthetic DNA

Compute empirical multiplex
ADS and MDS on all tested
combinations

Figure D.3: Overall development of Smart-Plexer. Stream 1. Pipeline for combo selection based
on simulated multiplex assays. Before combination selection, operations including 3-fold data ma-
nipulation (Background removal, Late amplification filter and Noisy curve removal), data processing
(Sigmoid fitting and Curve FFI normalization) and simulated score computation (The types of data
are raw curve, normalized curve, fitted parameters and “c” parameter) are conducted. The princi-
ple of selection is then based on MDS-ADS ranking system. Combinations from 5 groups (BEST,
TOP-ADS, TOP-MDS, MID, BOT) are chosen for validation progress. Stream 2. Pipeline for re-
sult validation based on empirical multiplex assays. With empirical experiment, same pre-operations
(3-fold data manipulation and data processing) are taken. Then, the empirical scores are computed,
and the distributions of classification accuracy are evaluated versus scores. The last validation step is
based on clinical samples with best assay combination developed so far.
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Figure D.4: The 21-plex for RTI detection using three fluorescent channels (data-driven multiplex-
ing). Multiplexed panel of 21 respiratory pathogens, coupling the ACA method and TagMan probe
chemistries, using three different fluorescent channels in qPCR.
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Table D.1: Primer table for 3plex

Oligo name

Target Oligo type Oligo modification

Oligo sequence

HAdV_01
HAdV_02
HAdV_03
HAdV_04
HAdV_05
HAdV_07
HCoV-HKU1.02
HCoV-HKU1.03
HCoV-HKU1 .05
HCoV-HKU1_.06
HCoV-HKU1.08
MERS-CoV_01
MERS-CoV_02
MERS-CoV_03
MERS-CoV_04
MERS-CoV_05
MERS-CoV _06

HEX forward
HEX forward
HEX probe
HEX probe
HEX reverse
HEX reverse

N forward
N probe 56-FAM / ZEN / 3IABKFQ
N reverse
N reverse
N reverse
N forward
N probe 56-FAM / ZEN / 3IABKFQ
N reverse
N forward
N probe 56-FAM / ZEN / 3IABKFQ
N reverse

56-FAM / ZEN / 3IABKFQ
56-FAM / ZEN / 3IABKFQ

CCCTTCGATGATGCCGCA
CGCAGTGGTCTTACATGCACATCTC
CCTCGGAGTACCTRAGCCCCGG
CCGCGCCACCGAGACGTACTTCAG
CAGGCTGAAGTACGTCTCGGT
CGCAGCGTCAAACGCTG
TCAAGAAGCTATCCCTACTAGGT
CGCCTGGTACGATTTTGCCTCAAGGCT
AGACCTTCCTGAGCCTTCAACA
CTATTAGAAGCAGACCTTCCTGA
GCGATCTCATCAGCCATATCAGGT
ACGCGGAACCCTAACAATGATT
TGCCTCCAGTCCCCTCAATGTGGA
GCTAGAGGCTCTTGAAGATGATTGA
CCACAAGCGCACTTCCACCAA
TTCCCTGGAGGTCTCCTGGTCCGC
GTGGGTCCTCAGTGCCGAGT

Table D.2: Assay table for 3plex

Assay_ID Forward_ID Probe_ID Reverse_ID
HAdV_HEX_03 HAdV_01 HAdV_04 HAdV_05
HAdV_HEX 09 HAdV 01 HAdV_03 HAdV_07
HAdV_HEX_12 HAdV_02 HAdV_04 HAdV_07

HCoV-HKU1.N_02 HCoV-HKU1.02 HCoV-HKU1.03 HCoV-HKU1.05
HCoV-HKU1.N_04 HCoV-HKU1.02 HCoV-HKU1.03 HCoV-HKU1.06
HCoV-HKU1_N_06 HCoV-HKU102 HCoV-HKU1.03 HCoV-HKU1.08

MERS-CoV_N_01
MERS-CoV_N_03
MERS-CoV_N_04

MERS-CoV_01
MERS-CoV_01
MERS-CoV_04

MERS-CoV_02
MERS-CoV_05
MERS-CoV_05

MERS-CoV_03
MERS-CoV_06
MERS-CoV_06




194 Chapter D. Supporting Information: Chapter 8

Table D.3: Primer table for 7plex

Oligo name Target Oligo type Oligo modification Oligo sequence

HAdV_01 HEX forward CCCTTCGATGATGCCGCA

HAdV_02 HEX forward CGCAGTGGTCTTACATGCACATCTC
HAdV_03 HEX probe 56-FAM / ZEN / 3IABKFQ CCTCGGAGTACCTRAGCCCCGG
HAdV_04 HEX probe 56-FAM / ZEN / 3IABkFQ CCGCGCCACCGAGACGTACTTCAG
HAdV_06 HEX reverse GCCACCGTGGGGTTTCTAAACTTG
HAdV_07 HEX reverse CGCAGCGTCAAACGCTG
HCoV-229E_01 N forward CAGTCAAATGGGCTGATGCA
HCoV-229E_02 N probe 56-FAM / ZEN / 3IABkFQ ACCCTGACGACCACGTTGTGGTTCA
HCoV-229E_03 N reverse TTGTTCACTATCAACAAGCAAAGG
HCoV-229E_04 N forward GAAATGCAAAAGCCACGGTGGAA
HCoV-229E_05 N probe 56-FAM / ZEN / 3IABKFQ AGTTGTGGTCAAGGTCTCTGGGGCC
HCoV-229E_06 N reverse AGCTCAGCAAATTGTGGATAGCC
HCoV-HKU1.02 N forward TCAAGAAGCTATCCCTACTAGGT
HCoV-HKU1.03 N probe 56-FAM / ZEN / 3IABkFQ CGCCTGGTACGATTTTGCCTCAAGGCT
HCoV-HKU1.05 N reverse AGACCTTCCTGAGCCTTCAACA
HCoV-HKU1.06 N reverse CTATTAGAAGCAGACCTTCCTGA
HCoV-HKU1.07 N probe 56-FAM / ZEN / 3IABKFQ ACG[+T]TCTC[+A]JATCA[+C]GTGG[+A]CCC
HCoV-HKU1.08 N reverse GCGATCTCATCAGCCATATCAGGT
HCoV-NL63.01 N forward TGGTTAGTTCTGATAAGGCACC
HCoV-NL63.02 N probe 56-FAM / ZEN / 3IABkFQ TGGAATGTTCAAGAGCGTTGGCGTATGCG
HCoV-NL63 .03 N reverse GGAGGCAAATCAACACGTTG
HCoV-NL63 04 N forward GGTGCTAAAACTGTTAATACCAGT
HCoV-NL63.05 N probe 56-FAM / ZEN / 3IABKFQ AGGTTTCTGATTACGTTTGCGATTACCA
HCoV-NL63.06 N reverse GCAATAGAGAACTTTGGTTCCA
HCoV-0C43.01 N forward CTTGGTTCTCTGGAATTACTCA
HCoV-0C43 02 N probe 56-FAM / ZEN / 3TABKFQ AGAAGGACAAGGTGTGCCTATTGCACCA
HCoV-0C43.03 N reverse GTTCCCAGATAGTAAAAATACCAT
HCoV-0C43.04 N forward GGTGGAGAAATGTTAAAACTTGGAACT
HCoV-0C43.06 N probe 56-FAM / ZEN / 3IABKFQ TCCCCATTCTTGCAGAACTCGCACCCA
HCoV-0C43 07 N reverse CCAAAGAAAAACGCACCAGCTG
SARS-CoV-2.01 N forward ATAATGGACCCCAAAATCAGCGA
SARS-CoV-2.02 N probe 56-FAM / ZEN / 3TABKFQ CACCCCGCATTACGTTTGGTGGACC
SARS-CoV-2.03 N reverse TCTGGTTACTGCCAGTTGAATCTG
SARS-CoV-2.04 N forward CTGATTACAAACATTGGCCGCA
SARS-CoV-2.05 N probe 56-FAM / ZEN / 3IABkFQ TGCACAATTTGCCCCCAGCGCTTCAG
SARS-CoV-2.06 N reverse ATGCGCGACATTCCGAAGAA
SARS-CoV-212 N forward GACCCCAAAATCAGCGAAAT
SARS-CoV-2_.13 N probe 56-FAM / TAMRA ACCCCGCATTACGTTTGGTGGACC
SARS-CoV-2.14 N reverse TCTGGTTACTGCCAGTTGAATCTG
MERS-CoV_01 N forward ACGCGGAACCCTAACAATGATT
MERS-CoV_02 N probe 56-FAM / ZEN / 3IABkFQ TGCCTCCAGTCCCCTCAATGTGGA
MERS-CoV_03 N reverse GCTAGAGGCTCTTGAAGATGATTGA
MERS-CoV_04 N forward CCACAAGCGCACTTCCACCAA
MERS-CoV_05 N probe 56-FAM / ZEN / 3IABKFQ TTCCCTGGAGGTCTCCTGGTCCGC
MERS-CoV_06 N reverse GTGGGTCCTCAGTGCCGAGT
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Table D.4: Assay table for 7Tplex

Assay 1D Forward_ID Probe_ID Reverse_ID
HAdV_HEX_ 06 HAdV_02 HAdV_03 HAdV_06
HAdV_HEX 09 HAdV_01 HAdV_03 HAdV_07
HAdV_HEX_ 12 HAdV_02 HAdV_04 HAdV_07

HCoV-229E_N_01
HCoV-229E_N_02
HCoV-HKU1_N_02
HCoV-HKU1_N_04
HCoV-HKU1_N_06
HCoV-HKU1_N_08
HCoV-NL63_N_01
HCoV-NL63_N_02
HCoV-NL63_N_04
HCoV-0C43_N_01
HCoV-0OC43_N_02
HCoV-0C43_N_04
SARS-CoV-2_N_01
SARS-CoV-2_N_02
SARS-CoV-2_N_03
MERS-CoV_N_01
MERS-CoV_N_02
MERS-CoV_N_03
MERS-CoV_N_04

HCoV-229E 01
HCoV-229E_04
HCoV-HKU1.02
HCoV-HKU1.02
HCoV-HKU1.02
HCoV-HKU1.02
HCoV-NL63_01
HCoV-NL63_01
HCoV-NL63.04
HCoV-0C43.01
HCoV-0C43.01
HCoV-0C43.04
SARS-CoV-2.01
SARS-CoV-2_04
SARS-CoV-2_12
MERS-CoVS-CoV_01
MERS-CoVS-CoV_01
MERS-CoVS-CoV_01
MERS-CoVS-CoV_04

HCoV-229E_02
HCoV-229E_05
HCoV-HKU1.03
HCoV-HKU1.03
HCoV-HKU1_03
HCoV-HKU1.07
HCoV-NL63_02
HCoV-NL63_02
HCoV-NL63_05
HCoV-0C43.02
HCoV-0C43.02
HCoV-0C43.06
SARS-CoV-2.02
SARS-CoV-2.05
SARS-CoV-2_13
MERS-CoVS-CoV_02
MERS-CoVS-CoV_02
MERS-CoVS-CoV_05
MERS-CoVS-CoV_05

HCoV-229E_03
HCoV-229E_06
HCoV-HKU1_.05
HCoV-HKU1.06
HCoV-HKU1.08
HCoV-HKU1_08
HCoV-NL63_03
HCoV-NL63_06
HCoV-NL63_06
HCoV-0C43_03
HCoV-0C43_07
HCoV-0C43_.07
SARS-CoV-2_03
SARS-CoV-2_06
SARS-CoV-2_14
MERS-CoVS-CoV_03
MERS-CoVS-CoV_06
MERS-CoVS-CoV_06
MERS-CoVS-CoV_06
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Table D.5: Assay Combination table for 3plex

Multiplex
assay name

HAdV
singleplex

HCoV-HKU1
singleplex

MERS-CoV
singleplex

PM3.01
PM3.02
PM3.03
PM3.04
PM3.05
PM3.06
PM3.07
PM3.08
PM3.09
PM3.10
PM3.11
PM3.12
PM3.13
PM3.14
PM3.15
PM3.16
PM3.17
PM3.18
PM3.19
PM3.20
PM3.21
PM3.22
PM3.23
PM3.24
PM3.25
PM3.26
PM3.27

HAdV_HEX 03
HAdV_HEX 03
HAdV_HEX 03
HAdV_HEX 03
HAdV_HEX 03
HAdV_HEX 03
HAdV_HEX 03
HAdV_HEX 03
HAdV_HEX 03
HAdV_HEX 09
HAdV_HEX_09
HAdV_HEX_09
HAdV_HEX_09
HAdV_HEX_ 09
HAdV_HEX_09
HAdV_HEX_09
HAdV_HEX_09
HAdV_HEX_ 09
HAdV_HEX_12
HAdV_HEX_12
HAdV_HEX_12
HAdV_HEX_12
HAdV_HEX_ 12
HAdV_HEX_ 12
HAdV_HEX_ 12
HAdV_HEX 12
HAdV_HEX 12

HCoV-HKU1_N_02
HCoV-HKU1_N_02
HCoV-HKU1_N_02
HCoV-HKU1_N_04
HCoV-HKU1_N_04
HCoV-HKU1_N_04
HCoV-HKU1_N_06
HCoV-HKU1_N_06
HCoV-HKU1_N_06
HCoV-HKU1_N_02
HCoV-HKU1_N_02
HCoV-HKU1_N_02
HCoV-HKU1_N_04
HCoV-HKU1_N_04
HCoV-HKU1_N_04
HCoV-HKU1_N_06
HCoV-HKU1_N_06
HCoV-HKU1_N_06
HCoV-HKU1_N_02
HCoV-HKU1_N_02
HCoV-HKU1_N_02
HCoV-HKU1_N_04
HCoV-HKU1_N_04
HCoV-HKU1_N_04
HCoV-HKU1_N_06
HCoV-HKU1_N_06
HCoV-HKU1_N_06

MERS-CoV_N_01
MERS-CoV_N_03
MERS-CoV_N_04
MERS-CoV_N_01
MERS-CoV_N_03
MERS-CoV_N_04
MERS-CoV_N_01
MERS-CoV_N_03
MERS-CoV_N_04
MERS-CoV_N_01
MERS-CoV_N_03
MERS-CoV_N_04
MERS-CoV_N_01
MERS-CoV_N_03
MERS-CoV_N_04
MERS-CoV_N_01
MERS-CoV_N_03
MERS-CoV_N_04
MERS-CoV_N_01
MERS-CoV_N_03
MERS-CoV_N_04
MERS-CoV_N_01
MERS-CoV_N_03
MERS-CoV_N_04
MERS-CoV_N_01
MERS-CoV_N_03
MERS-CoV_N_04
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Table D.6: The ¢ parameter stats for 3plex

Combo sADS eADS sMDS eMDS RMSE MSS ACA*

PM3.01 0.117 0.139 0.003 0.013 0.022 0.218 98.97%
PM3.02 0.127 0.147 0.017 0.032 0.018 0.365 98.86%
PM3.03 0.115 0.124 0.041 0.030 0.018 0.264 99.90%
PM3.04 0.100 0.115 0.003 0.027 0.018 0.291 99.55%
PM3.05 0.110 0.130 0.017 0.045 0.022 0.399 98.92%
PM3.06 0.098 0.093 0.041 0.008 0.024 0.306 99.66%
PM3.07 0.024 0.034 0.003 0.019 0.020 0.249 99.28%
PM3.08 0.034 0.060 0.017 0.044 0.028 0.342  98.86%
PM3.09 0.027 0.028 0.008 0.001 0.009 0.241 99.82%
PM3.10 0.138 0.166 0.032 0.019 0.041 0.310 99.75%
PM3.11 0.138 0.159 0.017 0.016 0.027 0.210 99.35%
PM3.12 0.138 0.154 0.075 0.075 0.019 0.376  99.90%
PM3.13 0.121 0.138 0.032 0.011 0.031 0.274 99.75%
PM3.14 0.121 0.161 0.017 0.010 0.050 0.122  99.88%
PM3.15 0.121 0.151 0.075 0.069 0.040 0.485 99.90%
PM3.16 0.045 0.051 0.032 0.011 0.021 0.365 99.50%
PM3.17 0.045 0.047 0.017 0.016 0.003 0.211 98.63%
PM3.18 0.050 0.055 0.008 0.005 0.008 0.282  99.04%
PM3.19 0.117 0.123 0.043 0.056  0.009 0.391 99.95%
PM3.20 0.127 0.149 0.057 0.079 0.025 0.396 99.64%
PM3.21 0.089 0.096 0.001 0.019 0.014 0.152 99.75%
PM3.22 0.100 0.115 0.043 0.073 0.022 0.452 100.0%
PM3.23 0.110 0.150 0.057 0.072 0.044 0.414 99.52%
PM3.24 0.072 0.067 0.001 0.017 0.017 0.220 99.74%
PM3.25 0.028 0.010 0.007 0.005 0.027 0.093 99.88%
PM3.26 0.038 0.055 0.007 0.011 0.020 0.253 99.29%
PM3.27 0.0056 0.019 0.001 0.002 0.019 0.147 99.51%

Combo: Combination or mulitplex assay name

sADS: Simulated ADS
eADS: Empirical ADS
sMDS: Simulated MDS
eMDS: Empirical MDS

RMSE: Rooted Mean Squared Error

MSS: Mean Silhouette
ACA: ACA accuracy

Score
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Table D.7: ADS and MDS scores for the three curve representations in 3plex

Raw curve FFI Normalised 5 fitted parameters

Combination Multiplex type ADS MDS ADS MDS ADS MDS
PM3.01 Simulated 2.544 0.585 0.434 0.130 66.089 5.489
PM3.01 Empirical 1.279 0.903 0.488 0.068 12.764 6.693
PM3.02 Simulated 2978 1.239 0.655 0.440 66.115 5.489
PM3.02 Empirical 1.804 0.537 0.721 0.443 6.999 1.378
PM3.03 Simulated 2.260 0.647 0.393 0.261 8.067  5.489
PM3.03 Empirical 2.021 1.008 0.438 0.128 5.599  2.232
PM3.04 Simulated 2.462 0.585 0.401 0.130 65.369 4.357
PM3.04 Empirical 1.848 1.198 0.396 0.129 15.182  5.940
PM3.05 Simulated 2.806 1.239 0.622 0.440 65.395 4.357
PM3.05 Empirical 1.828 0.382 0.644 0.487 7.165  3.297
PM3.06 Simulated 2.174 0.514 0.359 0.261 7.290  4.357
PM3.06 Empirical 2.586 0.898 0.320 0.118 3.336 1.905
PM3.07 Simulated 0.884 0.585 0.209 0.130 64.450 4.770
PM3.07 Empirical 1.258 0.314 0.190 0.155 15.637 4.916
PM3.08 Simulated 1.286 0.810 0.334 0.265 64.535 4.989
PM3.08 Empirical 0.654 0.495 0.397 0.178 6.503  2.948
PM3.09 Simulated 1.999 0.810 0.321 0.261 62.730 7.012
PM3.09 Empirical 3.197 1.822 0.263 0.171 7.041  1.976
PM3.10 Simulated 3.638 1.664 0.644 0.378 66.659 2.998
PM3.10 Empirical 1.925 0.867 0.769 0.266 67.390 2.001
PM3.11 Simulated 3.654 1.066 0.656 0.059 66.601 2.779
PM3.11 Empirical 1.777 0.619 0.789 0.129 67.853  3.792
PM3.12 Simulated 3.734 0.647 0.646 0.338 66.257 11.699
PM3.12 Empirical 2.674 0.966 0.749 0.561 66.970 10.969
PM3.13 Simulated 3.558 1.664 0.611 0.378 65.969 2.998
PM3.13 Empirical 2494 0.751 0.692 0.272 66.407 1.132
PM3.14 Simulated 3.574 1.066 0.622 0.059 65.910 2.779
PM3.14 Empirical 1.461 1.141 0.787 0.131 67.556 2.493
PM3.15 Simulated 3.650 0.514 0.613 0.287 65.509 10.501
PM3.15 Empirical 2.645 1.799 0.728 0.530 67.005 17.366
PM3.16 Simulated 1.930 1.258 0.292 0.199 5.179  2.998
PM3.16 Empirical 2.228 0.548 0.307 0.214 5.590  1.088
PM3.17 Simulated 1.914 1.066 0.208 0.059 5.178  2.779
PM3.17 Empirical 2.084 0.615 0.234 0.092 6.334  3.364
PM3.18 Simulated 3.425 2304 0.448 0.301 61.079 7.767
PM3.18 Empirical 3.026 1.571 0.401 0.304 64.531 9.985
PM3.19 Simulated 3.207 1.027 0.422 0.091 65.674 2.055
PM3.19 Empirical 3.176  2.246 0.485 0.134 65.996 1.461
PM3.20 Simulated 3.261 0.542 0.636 0.382 65.703 2.055
PM3.20 Empirical 2.532 1.213 0.781 0.525 66.492 1.275
PM3.21 Simulated 3.301 0.647 0.392 0.259 7.947  2.055
PM3.21 Empirical 3.375 0.757 0.399 0.117 5.731 1.125
PM3.22 Simulated 3.127 1.027 0.388 0.091 65.057 1.230
PM3.22 Empirical 3.071 1.789 0.436 0.172 66.130 1.302
PM3.23 Simulated 3.181 0.542 0.603 0.382 65.085 1.230
PM3.23 Empirical 1.857 0.940 0.761 0.488 66.533 1.742
PM3.24 Simulated 3.217 0.514  0.359 0.259 7.272  1.230
PM3.24 Empirical 3.252  0.479 0.292 0.168 4574 1.999
PM3.25 Simulated 1.511 1.027 0.149 0.091 65.860 4.770
PM3.25 Empirical 3.396 2.002 0.145 0.092 65.538 6.607
PM3.26 Simulated 1.534 0.542 0.268 0.157 65.947 4.989
PM3.26 Empirical 1.799 1.349 0.370 0.129 67.646 7.135
PM3.27 Simulated 3.004 2.249 0.273 0.157 64.435 10.085

PM3.27 Empirical 2.027 1.391 0.274 0.097 65.362 1.782
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Table D.8: Assay Combination table for 7plex

Assay
Name

HAdV
Singleplex

Coronavirus 229E
Singleplex

Coronavirus HKU1
Singleplex

Coronavirus NL63
Singleplex

Coronavirus OC43
Singleplex

SARS-CoV-2
Singleplex

MERS
Singleplex

PMT7.1176
PM7.1191
PM7.1286
PM7.1294
PM7.1318
PM7.1319
PM7.1339
PM7.1430
PM7.1449
PM7.1451
PM7.1593
PM7.1595
PM7.2014
PM7.2151
PM7.2155
PM7.2203
PM7.2295
PM7.2302
PM7.2303
PM7.2601
PM7.2602
PM7.4382
PM7.4441
PM7.4443

HAdV_HEX_06
HAdV_HEX_06
HAdV_HEX_06
HAdV_HEX_06
HAdV_HEX_06
HAdV_HEX_06
HAdV_HEX_06
HAdV_HEX_06
HAdV_HEX_06
HAdV_HEX_06
HAdV_HEX_06
HAdV_HEX_06
HAdV_HEX_06
HAdV_HEX_06
HAdV_HEX_06
HAdV_HEX_06
HAdV_HEX_06
HAdV_HEX_06
HAdV_HEX_06
HAdV_HEX_09
HAdV_HEX_09
HAdV_HEX_12
HAdV_HEX_12
HAdV_HEX_12

HCoV-229E_N_01
HCoV-229E_N_01
HCoV-229E_N_01
HCoV-229E_N_01
HCoV-229E_N_01
HCoV-229E_N_01
HCoV-229E_N_01
HCoV-229E_N_01
HCoV-229E_N_01
HCoV-229E_N_01
HCoV-229E_N_01
HCoV-229E_N_01
HCoV-229E_N_02
HCoV-229E_N_02
HCoV-229E_N_02
HCoV-229E_N_02
HCoV-229E_N_02
HCoV-229E_N_02
HCoV-229E_N_02
HCoV-229E_N_01
HCoV-229E_N_01
HCoV-229E_N_02
HCoV-229E_N_02
HCoV-229E_N_02

HCoV-HKU1_N_02
HCoV-HKU1_N_02
HCoV-HKU1_N_02
HCoV-HKU1_N_02
HCoV-HKU1_N_04
HCoV-HKU1_N_04
HCoV-HKU1_N_04
HCoV-HKU1_N_04
HCoV-HKU1_N_06
HCoV-HKU1_N_06
HCoV-HKU1_N_08
HCoV-HKU1_N_08
HCoV-HKU1_N_04
HCoV-HKU1_N_06
HCoV-HKU1_N_06
HCoV-HKU1_N_08
HCoV-HKU1_N_08
HCoV-HKU1_N_08
HCoV-HKU1_N_08
HCoV-HKU1_N_06
HCoV-HKU1_N_06
HCoV-HKU1_N_06
HCoV-HKU1_N_06
HCoV-HKU1_N_06

HCoV-NL63_N_01
HCoV-NL63_N_02
HCoV-NL63_N_04
HCoV-NL63_N_04
HCoV-NL63_N_01
HCoV-NL63_N_01
HCoV-NL63_N_02
HCoV-NL63_N_04
HCoV-NL63_N_01
HCoV-NL63_N_01
HCoV-NL63_N_01
HCoV-NL63_N_01
HCoV-NL63_N_04
HCoV-NL63_N_04
HCoV-NL63_N_04
HCoV-NL63_-N_02
HCoV-NL63_N_04
HCoV-NL63_N_04
HCoV-NL63_N_04
HCoV-NL63_N_01
HCoV-NL63_N_01
HCoV-NL63_N_02
HCoV-NL63_N_04
HCoV-NL63_N_04

HCoV-OC43_N_02
HCoV-OC43.N_01
HCoV-OC43_N_04
HCoV-OC43_N_04
HCoV-OC43.N_02
HCoV-OC43_N_02
HCoV-OC43.N_01
HCoV-OC43_N_04
HCoV-OC43_N_01
HCoV-OC43.N_01
HCoV-OC43_N_01
HCoV-OC43_N_01
HCoV-OC43_N_04
HCoV-OC43_N_04
HCoV-OC43_N_04
HCoV-OC43.N_01
HCoV-OC43_N_04
HCoV-OC43_N_04
HCoV-OC43_N_04
HCoV-OC43_N_01
HCoV-OC43_N_01
HCoV-OC43_N_04
HCoV-OC43_N_02
HCoV-OC43_N_02

SARS-CoV-2_N_03
SARS-CoV-2_N_01
SARS-CoV-2_N_01
SARS-CoV-2_N_03
SARS-CoV-2.N_03
SARS-CoV-2_N_03
SARS-CoV-2_N_02
SARS-CoV-2_N_01
SARS-CoV-2_N_03
SARS-CoV-2_N_03
SARS-CoV-2_N_03
SARS-CoV-2_N_03
SARS-CoV-2_N_03
SARS-CoV-2_N_01
SARS-CoV-2_N_02
SARS-CoV-2_N_02
SARS-CoV-2_N_01
SARS-CoV-2_N_03
SARS-CoV-2_N_03
SARS-CoV-2.N_03
SARS-CoV-2_N_03
SARS-CoV-2_N_01
SARS-CoV-2_N_01
SARS-CoV-2_N_01

MERS_N_04
MERS_N_03
MERS_N_02
MERS_N_02
MERS_N_02
MERS_N_03
MERS_N_03
MERS_N_02
MERS_N_01
MERS_N_03
MERS_N_01
MERS_N_03
MERS_N_02
MERS_N_03
MERS_N_03
MERS_N_03
MERS_N_03
MERS_N_02
MERS_N_03
MERS_N_01
MERS_N_02
MERS_N_02
MERS_N_01
MERS_N_03
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Table D.9: The ¢ parameter stats for 7Tplex (tested)

Combo sADS eADS sMDS eMDS RMSE MSS ACA*
PM7.1176 0.098 0.101 0.012 0.002 0.011 0.382 59.44%
PM7.1191 0.098 0.107 0.013 0.018 0.009 0.441 76.54%
PM7.1286 0.190 0.188 0.024 0.003 0.026 0.345 82.88%
PM7.1294 0.193 0.189 0.024 0.006 0.019 0.379 91.99%
PM7.1318 0.098 0.092 0.012 0.002 0.029 0.381 60.38%
PM7.1319 0.097 0.090 0.012 0.002 0.031 0.521 83.45%
PM7.1339 0.097 0.089 0.013 0.004 0.018 0.426 94.01%
PM7.1430 0.191 0.184 0.024 0.010 0.026 0.330 71.62%
PM7.1449 0.034 0.039 0.000 0.004 0.012 0.591 93.64%
PM7.1451 0.035 0.041 0.000 0.001 0.014 0.557 95.32%
PM7.1593 0.034 0.041 0.000 0.001 0.012 0.555 92.92%
PM7.1595 0.035 0.041 0.000 0.003 0.010 0.393 94.41%
PM7.2014 0.195 0.206 0.007 0.007 0.035 0.576 90.46%
PM7.2151 0.190 0.182 0.037 0.012 0.031 0.456 97.10%
PM7.2155 0.190 0.182 0.037 0.016 0.023 0.484 70.63%
PM7.2203 0.098 0.120 0.012 0.008 0.033 0.520 92.71%
PM7.2295 0.192 0.180 0.025 0.009 0.036 0.574 95.51%
PM7.2302 0.195 0.208 0.002 0.005 0.024 0.561 88.85%
PM7.2303 0.192 0.191 0.002 0.006 0.041 0.538 84.60%
PM7.2601 0.028 0.031 0.000 0.001 0.006 0.626 98.86%
PM7.2602 0.032 0.034 0.000 0.001 0.010 0.527 97.34%
PM7.4382 0.155 0.188 0.023 0.033 0.033 0.691 97.16%
PM7.4441 0.145 0.157 0.023 0.018 0.026 0.612 91.72%
PM7.4443 0.146 0.163 0.023 0.022 0.031 0.424 85.25%
Combo: Combination or mulitplex assay name

sADS: Simulated ADS

eADS: Empirical ADS

sMDS: Simulated MDS

eMDS: Empirical MDS

RMSE: Rooted Mean Squared Error

MSS: Mean Silhouette Score
ACA: ACA accuracy




Appendix E

Supporting Information: Chapter 9

This Appendix contains the following:

e Summary of reported assays for nucleic-acid amplification of SARS CoV-2 (Figure E.1)

e Classification accuracy or AUC of two genes and four primer sets (single RNA signature)

(Figure E.2)

e RNA signature translation to development of tailored molecular tests based on amplifi-

cation chemistries (Figure E.3)
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" Annealing — . .
Author Assay Type Detection Temp. (°C) Gene Target Limit of detection (LOD) Time Volume (uL) Ref.
CcbC TaqMan NA 55 N NA <45 cycles AL fotel 'y
5 uL sample
ORFlab 0.2 f, til
Lamb et al. RT-gLAMP colorimetric 63 & g/reac I?n <30 min 25 pl total 14
(pplab) (387 cp/reaction)
Moh det 70 ti Opti 10 pl total
ohamed e gLAMP colorimetric 63 RARP epreactioniOptigens <50 min A 15
al. mix) 1 ulL template
: . . s 20 ul total
Zhang et al. RT-gLAMP colorimetric 65 ORFla 120 cp/reaction <30 min 13
3 uL sample
Zhang et al. RT-gLAMP colorimetric 65 N 120 cp/reaction <30 min 20/stats 13
3 pL sample
25 pl total
Yang et al. RT-LAMP turbidimetry 63 ORFlab 20-fold <60 min R-toE 18
2 pL sample
25 pl total
Yang et al. RT-LAMP turbidimetry 63 N 160-fold <60 min e 18
2 pL sample
- . 25 pl total
Yang et al. RT-LAMP turbidimetry 63 E 40-fold <60 min 18
2 pL sample
. . . X 20 pl total
Yu et al. RT-LAMP colorimetric 65 ORFlab 10 cp/reaction <40 min 16
1 L sample
. " Spike (S), Orf8, x "
Park et al. RT-LAMP colorimetric 69 N* 100 cp/reaction <30 min 15 pl total 19
Jiang et al. RT-LAMP colorimetric 63 N 500 cp/mL <30 min EPpCtot 20
2 pL sample
lorimetri ORFlab, N " <lh 25 pl total
Zhuetal. | RT-LAMP-NBS colonimetric 63 @ 12 cp/ reaction r ptot 21
(NPs, LF) (sample to result) 5 pL sample
AIOD-CRISPR colorimetric 25 pl total
Dij tal. 37 N 1.3 f pl id <40 mi 22
850 (RPA-based) (LED) SRR £ 1 pL sample
Luetal. RT-LAMP colorimetric 63 ORFl1ab (RdRP) 300 cp/reaction <40 min 25 pl total 23
This study RT-gLAMP electrochemical 63 N 10 cp/reaction <20 min 2L total This study
2 pL sample

Figure E.1: Summary of reported assays for nucleic-acid amplification of SARS CoV-2.
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Figure E.2: Classification accuracy or AUC of two genes and four primer sets (single RNA signature).
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a) Signature discovery
RNAseq Data N OGene 1
— | By Gene 3 .
—— ' 1 Gene 2 Feature selection
4 — ' (signature identification)
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SYBR signature:

Gene 1 (exon 1)
Gene 2 (exon 1)

TagMan signature

Gene 2 (exon 3)
Gene 4 (exon 4)

LAMP signature

Gene 1 (exon 2)
Gene 3 (exon 2)

Figure E.3: RNA signature translation to development of tailored molecular tests based on amplifica-

tion chemistries.
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